GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / nand_legacy.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
4  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
5  *
6  *  Credits:
7  *      David Woodhouse for adding multichip support
8  *
9  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
10  *      rework for 2K page size chips
11  *
12  * This file contains all legacy helpers/code that should be removed
13  * at some point.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/nmi.h>
19
20 #include "internals.h"
21
22 /**
23  * nand_read_byte - [DEFAULT] read one byte from the chip
24  * @chip: NAND chip object
25  *
26  * Default read function for 8bit buswidth
27  */
28 static uint8_t nand_read_byte(struct nand_chip *chip)
29 {
30         return readb(chip->legacy.IO_ADDR_R);
31 }
32
33 /**
34  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
35  * @chip: NAND chip object
36  *
37  * Default read function for 16bit buswidth with endianness conversion.
38  *
39  */
40 static uint8_t nand_read_byte16(struct nand_chip *chip)
41 {
42         return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
43 }
44
45 /**
46  * nand_select_chip - [DEFAULT] control CE line
47  * @chip: NAND chip object
48  * @chipnr: chipnumber to select, -1 for deselect
49  *
50  * Default select function for 1 chip devices.
51  */
52 static void nand_select_chip(struct nand_chip *chip, int chipnr)
53 {
54         switch (chipnr) {
55         case -1:
56                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
57                                       0 | NAND_CTRL_CHANGE);
58                 break;
59         case 0:
60                 break;
61
62         default:
63                 BUG();
64         }
65 }
66
67 /**
68  * nand_write_byte - [DEFAULT] write single byte to chip
69  * @chip: NAND chip object
70  * @byte: value to write
71  *
72  * Default function to write a byte to I/O[7:0]
73  */
74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
75 {
76         chip->legacy.write_buf(chip, &byte, 1);
77 }
78
79 /**
80  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
81  * @chip: NAND chip object
82  * @byte: value to write
83  *
84  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
85  */
86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
87 {
88         uint16_t word = byte;
89
90         /*
91          * It's not entirely clear what should happen to I/O[15:8] when writing
92          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
93          *
94          *    When the host supports a 16-bit bus width, only data is
95          *    transferred at the 16-bit width. All address and command line
96          *    transfers shall use only the lower 8-bits of the data bus. During
97          *    command transfers, the host may place any value on the upper
98          *    8-bits of the data bus. During address transfers, the host shall
99          *    set the upper 8-bits of the data bus to 00h.
100          *
101          * One user of the write_byte callback is nand_set_features. The
102          * four parameters are specified to be written to I/O[7:0], but this is
103          * neither an address nor a command transfer. Let's assume a 0 on the
104          * upper I/O lines is OK.
105          */
106         chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
107 }
108
109 /**
110  * nand_write_buf - [DEFAULT] write buffer to chip
111  * @chip: NAND chip object
112  * @buf: data buffer
113  * @len: number of bytes to write
114  *
115  * Default write function for 8bit buswidth.
116  */
117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
118 {
119         iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
120 }
121
122 /**
123  * nand_read_buf - [DEFAULT] read chip data into buffer
124  * @chip: NAND chip object
125  * @buf: buffer to store date
126  * @len: number of bytes to read
127  *
128  * Default read function for 8bit buswidth.
129  */
130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
131 {
132         ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
133 }
134
135 /**
136  * nand_write_buf16 - [DEFAULT] write buffer to chip
137  * @chip: NAND chip object
138  * @buf: data buffer
139  * @len: number of bytes to write
140  *
141  * Default write function for 16bit buswidth.
142  */
143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
144                              int len)
145 {
146         u16 *p = (u16 *) buf;
147
148         iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
149 }
150
151 /**
152  * nand_read_buf16 - [DEFAULT] read chip data into buffer
153  * @chip: NAND chip object
154  * @buf: buffer to store date
155  * @len: number of bytes to read
156  *
157  * Default read function for 16bit buswidth.
158  */
159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
160 {
161         u16 *p = (u16 *) buf;
162
163         ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
164 }
165
166 /**
167  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
168  * @chip: NAND chip object
169  * @timeo: Timeout
170  *
171  * Helper function for nand_wait_ready used when needing to wait in interrupt
172  * context.
173  */
174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
175 {
176         int i;
177
178         /* Wait for the device to get ready */
179         for (i = 0; i < timeo; i++) {
180                 if (chip->legacy.dev_ready(chip))
181                         break;
182                 touch_softlockup_watchdog();
183                 mdelay(1);
184         }
185 }
186
187 /**
188  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
189  * @chip: NAND chip object
190  *
191  * Wait for the ready pin after a command, and warn if a timeout occurs.
192  */
193 void nand_wait_ready(struct nand_chip *chip)
194 {
195         unsigned long timeo = 400;
196
197         if (in_interrupt() || oops_in_progress)
198                 return panic_nand_wait_ready(chip, timeo);
199
200         /* Wait until command is processed or timeout occurs */
201         timeo = jiffies + msecs_to_jiffies(timeo);
202         do {
203                 if (chip->legacy.dev_ready(chip))
204                         return;
205                 cond_resched();
206         } while (time_before(jiffies, timeo));
207
208         if (!chip->legacy.dev_ready(chip))
209                 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
210 }
211 EXPORT_SYMBOL_GPL(nand_wait_ready);
212
213 /**
214  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
215  * @chip: NAND chip object
216  * @timeo: Timeout in ms
217  *
218  * Wait for status ready (i.e. command done) or timeout.
219  */
220 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
221 {
222         int ret;
223
224         timeo = jiffies + msecs_to_jiffies(timeo);
225         do {
226                 u8 status;
227
228                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
229                                         false);
230                 if (ret)
231                         return;
232
233                 if (status & NAND_STATUS_READY)
234                         break;
235                 touch_softlockup_watchdog();
236         } while (time_before(jiffies, timeo));
237 };
238
239 /**
240  * nand_command - [DEFAULT] Send command to NAND device
241  * @chip: NAND chip object
242  * @command: the command to be sent
243  * @column: the column address for this command, -1 if none
244  * @page_addr: the page address for this command, -1 if none
245  *
246  * Send command to NAND device. This function is used for small page devices
247  * (512 Bytes per page).
248  */
249 static void nand_command(struct nand_chip *chip, unsigned int command,
250                          int column, int page_addr)
251 {
252         struct mtd_info *mtd = nand_to_mtd(chip);
253         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
254
255         /* Write out the command to the device */
256         if (command == NAND_CMD_SEQIN) {
257                 int readcmd;
258
259                 if (column >= mtd->writesize) {
260                         /* OOB area */
261                         column -= mtd->writesize;
262                         readcmd = NAND_CMD_READOOB;
263                 } else if (column < 256) {
264                         /* First 256 bytes --> READ0 */
265                         readcmd = NAND_CMD_READ0;
266                 } else {
267                         column -= 256;
268                         readcmd = NAND_CMD_READ1;
269                 }
270                 chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
271                 ctrl &= ~NAND_CTRL_CHANGE;
272         }
273         if (command != NAND_CMD_NONE)
274                 chip->legacy.cmd_ctrl(chip, command, ctrl);
275
276         /* Address cycle, when necessary */
277         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
278         /* Serially input address */
279         if (column != -1) {
280                 /* Adjust columns for 16 bit buswidth */
281                 if (chip->options & NAND_BUSWIDTH_16 &&
282                                 !nand_opcode_8bits(command))
283                         column >>= 1;
284                 chip->legacy.cmd_ctrl(chip, column, ctrl);
285                 ctrl &= ~NAND_CTRL_CHANGE;
286         }
287         if (page_addr != -1) {
288                 chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
289                 ctrl &= ~NAND_CTRL_CHANGE;
290                 chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
291                 if (chip->options & NAND_ROW_ADDR_3)
292                         chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
293         }
294         chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
295                               NAND_NCE | NAND_CTRL_CHANGE);
296
297         /*
298          * Program and erase have their own busy handlers status and sequential
299          * in needs no delay
300          */
301         switch (command) {
302
303         case NAND_CMD_NONE:
304         case NAND_CMD_PAGEPROG:
305         case NAND_CMD_ERASE1:
306         case NAND_CMD_ERASE2:
307         case NAND_CMD_SEQIN:
308         case NAND_CMD_STATUS:
309         case NAND_CMD_READID:
310         case NAND_CMD_SET_FEATURES:
311                 return;
312
313         case NAND_CMD_RESET:
314                 if (chip->legacy.dev_ready)
315                         break;
316                 udelay(chip->legacy.chip_delay);
317                 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
318                                       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
319                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
320                                       NAND_NCE | NAND_CTRL_CHANGE);
321                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
322                 nand_wait_status_ready(chip, 250);
323                 return;
324
325                 /* This applies to read commands */
326         case NAND_CMD_READ0:
327                 /*
328                  * READ0 is sometimes used to exit GET STATUS mode. When this
329                  * is the case no address cycles are requested, and we can use
330                  * this information to detect that we should not wait for the
331                  * device to be ready.
332                  */
333                 if (column == -1 && page_addr == -1)
334                         return;
335                 fallthrough;
336         default:
337                 /*
338                  * If we don't have access to the busy pin, we apply the given
339                  * command delay
340                  */
341                 if (!chip->legacy.dev_ready) {
342                         udelay(chip->legacy.chip_delay);
343                         return;
344                 }
345         }
346         /*
347          * Apply this short delay always to ensure that we do wait tWB in
348          * any case on any machine.
349          */
350         ndelay(100);
351
352         nand_wait_ready(chip);
353 }
354
355 static void nand_ccs_delay(struct nand_chip *chip)
356 {
357         const struct nand_sdr_timings *sdr =
358                 nand_get_sdr_timings(nand_get_interface_config(chip));
359
360         /*
361          * The controller already takes care of waiting for tCCS when the RNDIN
362          * or RNDOUT command is sent, return directly.
363          */
364         if (!(chip->options & NAND_WAIT_TCCS))
365                 return;
366
367         /*
368          * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
369          * (which should be safe for all NANDs).
370          */
371         if (nand_controller_can_setup_interface(chip))
372                 ndelay(sdr->tCCS_min / 1000);
373         else
374                 ndelay(500);
375 }
376
377 /**
378  * nand_command_lp - [DEFAULT] Send command to NAND large page device
379  * @chip: NAND chip object
380  * @command: the command to be sent
381  * @column: the column address for this command, -1 if none
382  * @page_addr: the page address for this command, -1 if none
383  *
384  * Send command to NAND device. This is the version for the new large page
385  * devices. We don't have the separate regions as we have in the small page
386  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
387  */
388 static void nand_command_lp(struct nand_chip *chip, unsigned int command,
389                             int column, int page_addr)
390 {
391         struct mtd_info *mtd = nand_to_mtd(chip);
392
393         /* Emulate NAND_CMD_READOOB */
394         if (command == NAND_CMD_READOOB) {
395                 column += mtd->writesize;
396                 command = NAND_CMD_READ0;
397         }
398
399         /* Command latch cycle */
400         if (command != NAND_CMD_NONE)
401                 chip->legacy.cmd_ctrl(chip, command,
402                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
403
404         if (column != -1 || page_addr != -1) {
405                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
406
407                 /* Serially input address */
408                 if (column != -1) {
409                         /* Adjust columns for 16 bit buswidth */
410                         if (chip->options & NAND_BUSWIDTH_16 &&
411                                         !nand_opcode_8bits(command))
412                                 column >>= 1;
413                         chip->legacy.cmd_ctrl(chip, column, ctrl);
414                         ctrl &= ~NAND_CTRL_CHANGE;
415
416                         /* Only output a single addr cycle for 8bits opcodes. */
417                         if (!nand_opcode_8bits(command))
418                                 chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
419                 }
420                 if (page_addr != -1) {
421                         chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
422                         chip->legacy.cmd_ctrl(chip, page_addr >> 8,
423                                              NAND_NCE | NAND_ALE);
424                         if (chip->options & NAND_ROW_ADDR_3)
425                                 chip->legacy.cmd_ctrl(chip, page_addr >> 16,
426                                                       NAND_NCE | NAND_ALE);
427                 }
428         }
429         chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
430                               NAND_NCE | NAND_CTRL_CHANGE);
431
432         /*
433          * Program and erase have their own busy handlers status, sequential
434          * in and status need no delay.
435          */
436         switch (command) {
437
438         case NAND_CMD_NONE:
439         case NAND_CMD_CACHEDPROG:
440         case NAND_CMD_PAGEPROG:
441         case NAND_CMD_ERASE1:
442         case NAND_CMD_ERASE2:
443         case NAND_CMD_SEQIN:
444         case NAND_CMD_STATUS:
445         case NAND_CMD_READID:
446         case NAND_CMD_SET_FEATURES:
447                 return;
448
449         case NAND_CMD_RNDIN:
450                 nand_ccs_delay(chip);
451                 return;
452
453         case NAND_CMD_RESET:
454                 if (chip->legacy.dev_ready)
455                         break;
456                 udelay(chip->legacy.chip_delay);
457                 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
458                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
459                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
460                                       NAND_NCE | NAND_CTRL_CHANGE);
461                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
462                 nand_wait_status_ready(chip, 250);
463                 return;
464
465         case NAND_CMD_RNDOUT:
466                 /* No ready / busy check necessary */
467                 chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
468                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
469                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
470                                       NAND_NCE | NAND_CTRL_CHANGE);
471
472                 nand_ccs_delay(chip);
473                 return;
474
475         case NAND_CMD_READ0:
476                 /*
477                  * READ0 is sometimes used to exit GET STATUS mode. When this
478                  * is the case no address cycles are requested, and we can use
479                  * this information to detect that READSTART should not be
480                  * issued.
481                  */
482                 if (column == -1 && page_addr == -1)
483                         return;
484
485                 chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
486                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
487                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
488                                       NAND_NCE | NAND_CTRL_CHANGE);
489                 fallthrough;    /* This applies to read commands */
490         default:
491                 /*
492                  * If we don't have access to the busy pin, we apply the given
493                  * command delay.
494                  */
495                 if (!chip->legacy.dev_ready) {
496                         udelay(chip->legacy.chip_delay);
497                         return;
498                 }
499         }
500
501         /*
502          * Apply this short delay always to ensure that we do wait tWB in
503          * any case on any machine.
504          */
505         ndelay(100);
506
507         nand_wait_ready(chip);
508 }
509
510 /**
511  * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
512  * @chip: nand chip info structure
513  * @addr: feature address.
514  * @subfeature_param: the subfeature parameters, a four bytes array.
515  *
516  * Should be used by NAND controller drivers that do not support the SET/GET
517  * FEATURES operations.
518  */
519 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
520                                   u8 *subfeature_param)
521 {
522         return -ENOTSUPP;
523 }
524 EXPORT_SYMBOL(nand_get_set_features_notsupp);
525
526 /**
527  * nand_wait - [DEFAULT] wait until the command is done
528  * @chip: NAND chip structure
529  *
530  * Wait for command done. This applies to erase and program only.
531  */
532 static int nand_wait(struct nand_chip *chip)
533 {
534
535         unsigned long timeo = 400;
536         u8 status;
537         int ret;
538
539         /*
540          * Apply this short delay always to ensure that we do wait tWB in any
541          * case on any machine.
542          */
543         ndelay(100);
544
545         ret = nand_status_op(chip, NULL);
546         if (ret)
547                 return ret;
548
549         if (in_interrupt() || oops_in_progress)
550                 panic_nand_wait(chip, timeo);
551         else {
552                 timeo = jiffies + msecs_to_jiffies(timeo);
553                 do {
554                         if (chip->legacy.dev_ready) {
555                                 if (chip->legacy.dev_ready(chip))
556                                         break;
557                         } else {
558                                 ret = nand_read_data_op(chip, &status,
559                                                         sizeof(status), true,
560                                                         false);
561                                 if (ret)
562                                         return ret;
563
564                                 if (status & NAND_STATUS_READY)
565                                         break;
566                         }
567                         cond_resched();
568                 } while (time_before(jiffies, timeo));
569         }
570
571         ret = nand_read_data_op(chip, &status, sizeof(status), true, false);
572         if (ret)
573                 return ret;
574
575         /* This can happen if in case of timeout or buggy dev_ready */
576         WARN_ON(!(status & NAND_STATUS_READY));
577         return status;
578 }
579
580 void nand_legacy_set_defaults(struct nand_chip *chip)
581 {
582         unsigned int busw = chip->options & NAND_BUSWIDTH_16;
583
584         if (nand_has_exec_op(chip))
585                 return;
586
587         /* check for proper chip_delay setup, set 20us if not */
588         if (!chip->legacy.chip_delay)
589                 chip->legacy.chip_delay = 20;
590
591         /* check, if a user supplied command function given */
592         if (!chip->legacy.cmdfunc)
593                 chip->legacy.cmdfunc = nand_command;
594
595         /* check, if a user supplied wait function given */
596         if (chip->legacy.waitfunc == NULL)
597                 chip->legacy.waitfunc = nand_wait;
598
599         if (!chip->legacy.select_chip)
600                 chip->legacy.select_chip = nand_select_chip;
601
602         /* If called twice, pointers that depend on busw may need to be reset */
603         if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
604                 chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
605         if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
606                 chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
607         if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
608                 chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
609         if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
610                 chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
611 }
612
613 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
614 {
615         struct mtd_info *mtd = nand_to_mtd(chip);
616
617         /* Do not replace user supplied command function! */
618         if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
619                 chip->legacy.cmdfunc = nand_command_lp;
620 }
621
622 int nand_legacy_check_hooks(struct nand_chip *chip)
623 {
624         /*
625          * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
626          * not populated.
627          */
628         if (nand_has_exec_op(chip))
629                 return 0;
630
631         /*
632          * Default functions assigned for ->legacy.cmdfunc() and
633          * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
634          *  populated.
635          */
636         if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
637             !chip->legacy.cmd_ctrl) {
638                 pr_err("->legacy.cmd_ctrl() should be provided\n");
639                 return -EINVAL;
640         }
641
642         return 0;
643 }