GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_data/mtd-mxc_nand.h>
25
26 #define DRIVER_NAME "mxc_nand"
27
28 /* Addresses for NFC registers */
29 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
30 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
31 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
32 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
33 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
34 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
35 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
36 #define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
37 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
38 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
39 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
40 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
41 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
42 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
43 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
44 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
45 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
46 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
47 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
48 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
49 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
50 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
51
52 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
53 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
54 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
55 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
56 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
57 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
58 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
59 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
60 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
61 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
62
63 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
64
65 /*
66  * Operation modes for the NFC. Valid for v1, v2 and v3
67  * type controllers.
68  */
69 #define NFC_CMD                         (1 << 0)
70 #define NFC_ADDR                        (1 << 1)
71 #define NFC_INPUT                       (1 << 2)
72 #define NFC_OUTPUT                      (1 << 3)
73 #define NFC_ID                          (1 << 4)
74 #define NFC_STATUS                      (1 << 5)
75
76 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
77 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
78
79 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
80 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
81 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
82
83 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
84
85 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
86
87 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
88 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
89 #define NFC_V3_WRPROT_LOCK              (1 << 1)
90 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
91 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
92
93 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
94
95 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
96 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
97 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
98 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
99 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
100 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
101 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
102 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
103 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
104 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
105 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
106 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
107 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
108 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
109
110 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
111 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
112 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
113 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
114 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
115 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
116 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
117
118 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
119 #define NFC_V3_IPC_CREQ                 (1 << 0)
120 #define NFC_V3_IPC_INT                  (1 << 31)
121
122 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
123
124 struct mxc_nand_host;
125
126 struct mxc_nand_devtype_data {
127         void (*preset)(struct mtd_info *);
128         int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
129                          int page);
130         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
131         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
132         void (*send_page)(struct mtd_info *, unsigned int);
133         void (*send_read_id)(struct mxc_nand_host *);
134         uint16_t (*get_dev_status)(struct mxc_nand_host *);
135         int (*check_int)(struct mxc_nand_host *);
136         void (*irq_control)(struct mxc_nand_host *, int);
137         u32 (*get_ecc_status)(struct mxc_nand_host *);
138         const struct mtd_ooblayout_ops *ooblayout;
139         void (*select_chip)(struct nand_chip *chip, int cs);
140         int (*setup_interface)(struct nand_chip *chip, int csline,
141                                const struct nand_interface_config *conf);
142         void (*enable_hwecc)(struct nand_chip *chip, bool enable);
143
144         /*
145          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
146          * (CONFIG1:INT_MSK is set). To handle this the driver uses
147          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
148          */
149         int irqpending_quirk;
150         int needs_ip;
151
152         size_t regs_offset;
153         size_t spare0_offset;
154         size_t axi_offset;
155
156         int spare_len;
157         int eccbytes;
158         int eccsize;
159         int ppb_shift;
160 };
161
162 struct mxc_nand_host {
163         struct nand_chip        nand;
164         struct device           *dev;
165
166         void __iomem            *spare0;
167         void __iomem            *main_area0;
168
169         void __iomem            *base;
170         void __iomem            *regs;
171         void __iomem            *regs_axi;
172         void __iomem            *regs_ip;
173         int                     status_request;
174         struct clk              *clk;
175         int                     clk_act;
176         int                     irq;
177         int                     eccsize;
178         int                     used_oobsize;
179         int                     active_cs;
180
181         struct completion       op_completion;
182
183         uint8_t                 *data_buf;
184         unsigned int            buf_start;
185
186         const struct mxc_nand_devtype_data *devtype_data;
187         struct mxc_nand_platform_data pdata;
188 };
189
190 static const char * const part_probes[] = {
191         "cmdlinepart", "RedBoot", "ofpart", NULL };
192
193 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
194 {
195         int i;
196         u32 *t = trg;
197         const __iomem u32 *s = src;
198
199         for (i = 0; i < (size >> 2); i++)
200                 *t++ = __raw_readl(s++);
201 }
202
203 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
204 {
205         int i;
206         u16 *t = trg;
207         const __iomem u16 *s = src;
208
209         /* We assume that src (IO) is always 32bit aligned */
210         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
211                 memcpy32_fromio(trg, src, size);
212                 return;
213         }
214
215         for (i = 0; i < (size >> 1); i++)
216                 *t++ = __raw_readw(s++);
217 }
218
219 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
220 {
221         /* __iowrite32_copy use 32bit size values so divide by 4 */
222         __iowrite32_copy(trg, src, size / 4);
223 }
224
225 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
226 {
227         int i;
228         __iomem u16 *t = trg;
229         const u16 *s = src;
230
231         /* We assume that trg (IO) is always 32bit aligned */
232         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
233                 memcpy32_toio(trg, src, size);
234                 return;
235         }
236
237         for (i = 0; i < (size >> 1); i++)
238                 __raw_writew(*s++, t++);
239 }
240
241 /*
242  * The controller splits a page into data chunks of 512 bytes + partial oob.
243  * There are writesize / 512 such chunks, the size of the partial oob parts is
244  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
245  * contains additionally the byte lost by rounding (if any).
246  * This function handles the needed shuffling between host->data_buf (which
247  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
248  * spare) and the NFC buffer.
249  */
250 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
251 {
252         struct nand_chip *this = mtd_to_nand(mtd);
253         struct mxc_nand_host *host = nand_get_controller_data(this);
254         u16 i, oob_chunk_size;
255         u16 num_chunks = mtd->writesize / 512;
256
257         u8 *d = buf;
258         u8 __iomem *s = host->spare0;
259         u16 sparebuf_size = host->devtype_data->spare_len;
260
261         /* size of oob chunk for all but possibly the last one */
262         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
263
264         if (bfrom) {
265                 for (i = 0; i < num_chunks - 1; i++)
266                         memcpy16_fromio(d + i * oob_chunk_size,
267                                         s + i * sparebuf_size,
268                                         oob_chunk_size);
269
270                 /* the last chunk */
271                 memcpy16_fromio(d + i * oob_chunk_size,
272                                 s + i * sparebuf_size,
273                                 host->used_oobsize - i * oob_chunk_size);
274         } else {
275                 for (i = 0; i < num_chunks - 1; i++)
276                         memcpy16_toio(&s[i * sparebuf_size],
277                                       &d[i * oob_chunk_size],
278                                       oob_chunk_size);
279
280                 /* the last chunk */
281                 memcpy16_toio(&s[i * sparebuf_size],
282                               &d[i * oob_chunk_size],
283                               host->used_oobsize - i * oob_chunk_size);
284         }
285 }
286
287 /*
288  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
289  * the upper layers perform a read/write buf operation, the saved column address
290  * is used to index into the full page. So usually this function is called with
291  * column == 0 (unless no column cycle is needed indicated by column == -1)
292  */
293 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
294 {
295         struct nand_chip *nand_chip = mtd_to_nand(mtd);
296         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
297
298         /* Write out column address, if necessary */
299         if (column != -1) {
300                 host->devtype_data->send_addr(host, column & 0xff,
301                                               page_addr == -1);
302                 if (mtd->writesize > 512)
303                         /* another col addr cycle for 2k page */
304                         host->devtype_data->send_addr(host,
305                                                       (column >> 8) & 0xff,
306                                                       false);
307         }
308
309         /* Write out page address, if necessary */
310         if (page_addr != -1) {
311                 /* paddr_0 - p_addr_7 */
312                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
313
314                 if (mtd->writesize > 512) {
315                         if (mtd->size >= 0x10000000) {
316                                 /* paddr_8 - paddr_15 */
317                                 host->devtype_data->send_addr(host,
318                                                 (page_addr >> 8) & 0xff,
319                                                 false);
320                                 host->devtype_data->send_addr(host,
321                                                 (page_addr >> 16) & 0xff,
322                                                 true);
323                         } else
324                                 /* paddr_8 - paddr_15 */
325                                 host->devtype_data->send_addr(host,
326                                                 (page_addr >> 8) & 0xff, true);
327                 } else {
328                         if (nand_chip->options & NAND_ROW_ADDR_3) {
329                                 /* paddr_8 - paddr_15 */
330                                 host->devtype_data->send_addr(host,
331                                                 (page_addr >> 8) & 0xff,
332                                                 false);
333                                 host->devtype_data->send_addr(host,
334                                                 (page_addr >> 16) & 0xff,
335                                                 true);
336                         } else
337                                 /* paddr_8 - paddr_15 */
338                                 host->devtype_data->send_addr(host,
339                                                 (page_addr >> 8) & 0xff, true);
340                 }
341         }
342 }
343
344 static int check_int_v3(struct mxc_nand_host *host)
345 {
346         uint32_t tmp;
347
348         tmp = readl(NFC_V3_IPC);
349         if (!(tmp & NFC_V3_IPC_INT))
350                 return 0;
351
352         tmp &= ~NFC_V3_IPC_INT;
353         writel(tmp, NFC_V3_IPC);
354
355         return 1;
356 }
357
358 static int check_int_v1_v2(struct mxc_nand_host *host)
359 {
360         uint32_t tmp;
361
362         tmp = readw(NFC_V1_V2_CONFIG2);
363         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
364                 return 0;
365
366         if (!host->devtype_data->irqpending_quirk)
367                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
368
369         return 1;
370 }
371
372 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
373 {
374         uint16_t tmp;
375
376         tmp = readw(NFC_V1_V2_CONFIG1);
377
378         if (activate)
379                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
380         else
381                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
382
383         writew(tmp, NFC_V1_V2_CONFIG1);
384 }
385
386 static void irq_control_v3(struct mxc_nand_host *host, int activate)
387 {
388         uint32_t tmp;
389
390         tmp = readl(NFC_V3_CONFIG2);
391
392         if (activate)
393                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
394         else
395                 tmp |= NFC_V3_CONFIG2_INT_MSK;
396
397         writel(tmp, NFC_V3_CONFIG2);
398 }
399
400 static void irq_control(struct mxc_nand_host *host, int activate)
401 {
402         if (host->devtype_data->irqpending_quirk) {
403                 if (activate)
404                         enable_irq(host->irq);
405                 else
406                         disable_irq_nosync(host->irq);
407         } else {
408                 host->devtype_data->irq_control(host, activate);
409         }
410 }
411
412 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
413 {
414         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
415 }
416
417 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
418 {
419         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
420 }
421
422 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
423 {
424         return readl(NFC_V3_ECC_STATUS_RESULT);
425 }
426
427 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
428 {
429         struct mxc_nand_host *host = dev_id;
430
431         if (!host->devtype_data->check_int(host))
432                 return IRQ_NONE;
433
434         irq_control(host, 0);
435
436         complete(&host->op_completion);
437
438         return IRQ_HANDLED;
439 }
440
441 /* This function polls the NANDFC to wait for the basic operation to
442  * complete by checking the INT bit of config2 register.
443  */
444 static int wait_op_done(struct mxc_nand_host *host, int useirq)
445 {
446         int ret = 0;
447
448         /*
449          * If operation is already complete, don't bother to setup an irq or a
450          * loop.
451          */
452         if (host->devtype_data->check_int(host))
453                 return 0;
454
455         if (useirq) {
456                 unsigned long timeout;
457
458                 reinit_completion(&host->op_completion);
459
460                 irq_control(host, 1);
461
462                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
463                 if (!timeout && !host->devtype_data->check_int(host)) {
464                         dev_dbg(host->dev, "timeout waiting for irq\n");
465                         ret = -ETIMEDOUT;
466                 }
467         } else {
468                 int max_retries = 8000;
469                 int done;
470
471                 do {
472                         udelay(1);
473
474                         done = host->devtype_data->check_int(host);
475                         if (done)
476                                 break;
477
478                 } while (--max_retries);
479
480                 if (!done) {
481                         dev_dbg(host->dev, "timeout polling for completion\n");
482                         ret = -ETIMEDOUT;
483                 }
484         }
485
486         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
487
488         return ret;
489 }
490
491 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
492 {
493         /* fill command */
494         writel(cmd, NFC_V3_FLASH_CMD);
495
496         /* send out command */
497         writel(NFC_CMD, NFC_V3_LAUNCH);
498
499         /* Wait for operation to complete */
500         wait_op_done(host, useirq);
501 }
502
503 /* This function issues the specified command to the NAND device and
504  * waits for completion. */
505 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
506 {
507         dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
508
509         writew(cmd, NFC_V1_V2_FLASH_CMD);
510         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
511
512         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
513                 int max_retries = 100;
514                 /* Reset completion is indicated by NFC_CONFIG2 */
515                 /* being set to 0 */
516                 while (max_retries-- > 0) {
517                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
518                                 break;
519                         }
520                         udelay(1);
521                 }
522                 if (max_retries < 0)
523                         dev_dbg(host->dev, "%s: RESET failed\n", __func__);
524         } else {
525                 /* Wait for operation to complete */
526                 wait_op_done(host, useirq);
527         }
528 }
529
530 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
531 {
532         /* fill address */
533         writel(addr, NFC_V3_FLASH_ADDR0);
534
535         /* send out address */
536         writel(NFC_ADDR, NFC_V3_LAUNCH);
537
538         wait_op_done(host, 0);
539 }
540
541 /* This function sends an address (or partial address) to the
542  * NAND device. The address is used to select the source/destination for
543  * a NAND command. */
544 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
545 {
546         dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
547
548         writew(addr, NFC_V1_V2_FLASH_ADDR);
549         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
550
551         /* Wait for operation to complete */
552         wait_op_done(host, islast);
553 }
554
555 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
556 {
557         struct nand_chip *nand_chip = mtd_to_nand(mtd);
558         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
559         uint32_t tmp;
560
561         tmp = readl(NFC_V3_CONFIG1);
562         tmp &= ~(7 << 4);
563         writel(tmp, NFC_V3_CONFIG1);
564
565         /* transfer data from NFC ram to nand */
566         writel(ops, NFC_V3_LAUNCH);
567
568         wait_op_done(host, false);
569 }
570
571 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
572 {
573         struct nand_chip *nand_chip = mtd_to_nand(mtd);
574         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
575
576         /* NANDFC buffer 0 is used for page read/write */
577         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
578
579         writew(ops, NFC_V1_V2_CONFIG2);
580
581         /* Wait for operation to complete */
582         wait_op_done(host, true);
583 }
584
585 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
586 {
587         struct nand_chip *nand_chip = mtd_to_nand(mtd);
588         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
589         int bufs, i;
590
591         if (mtd->writesize > 512)
592                 bufs = 4;
593         else
594                 bufs = 1;
595
596         for (i = 0; i < bufs; i++) {
597
598                 /* NANDFC buffer 0 is used for page read/write */
599                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
600
601                 writew(ops, NFC_V1_V2_CONFIG2);
602
603                 /* Wait for operation to complete */
604                 wait_op_done(host, true);
605         }
606 }
607
608 static void send_read_id_v3(struct mxc_nand_host *host)
609 {
610         /* Read ID into main buffer */
611         writel(NFC_ID, NFC_V3_LAUNCH);
612
613         wait_op_done(host, true);
614
615         memcpy32_fromio(host->data_buf, host->main_area0, 16);
616 }
617
618 /* Request the NANDFC to perform a read of the NAND device ID. */
619 static void send_read_id_v1_v2(struct mxc_nand_host *host)
620 {
621         /* NANDFC buffer 0 is used for device ID output */
622         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
623
624         writew(NFC_ID, NFC_V1_V2_CONFIG2);
625
626         /* Wait for operation to complete */
627         wait_op_done(host, true);
628
629         memcpy32_fromio(host->data_buf, host->main_area0, 16);
630 }
631
632 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
633 {
634         writew(NFC_STATUS, NFC_V3_LAUNCH);
635         wait_op_done(host, true);
636
637         return readl(NFC_V3_CONFIG1) >> 16;
638 }
639
640 /* This function requests the NANDFC to perform a read of the
641  * NAND device status and returns the current status. */
642 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
643 {
644         void __iomem *main_buf = host->main_area0;
645         uint32_t store;
646         uint16_t ret;
647
648         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
649
650         /*
651          * The device status is stored in main_area0. To
652          * prevent corruption of the buffer save the value
653          * and restore it afterwards.
654          */
655         store = readl(main_buf);
656
657         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
658         wait_op_done(host, true);
659
660         ret = readw(main_buf);
661
662         writel(store, main_buf);
663
664         return ret;
665 }
666
667 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
668 {
669         struct mxc_nand_host *host = nand_get_controller_data(chip);
670         uint16_t config1;
671
672         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
673                 return;
674
675         config1 = readw(NFC_V1_V2_CONFIG1);
676
677         if (enable)
678                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
679         else
680                 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
681
682         writew(config1, NFC_V1_V2_CONFIG1);
683 }
684
685 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
686 {
687         struct mxc_nand_host *host = nand_get_controller_data(chip);
688         uint32_t config2;
689
690         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
691                 return;
692
693         config2 = readl(NFC_V3_CONFIG2);
694
695         if (enable)
696                 config2 |= NFC_V3_CONFIG2_ECC_EN;
697         else
698                 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
699
700         writel(config2, NFC_V3_CONFIG2);
701 }
702
703 /* This functions is used by upper layer to checks if device is ready */
704 static int mxc_nand_dev_ready(struct nand_chip *chip)
705 {
706         /*
707          * NFC handles R/B internally. Therefore, this function
708          * always returns status as ready.
709          */
710         return 1;
711 }
712
713 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
714                                  bool ecc, int page)
715 {
716         struct mtd_info *mtd = nand_to_mtd(chip);
717         struct mxc_nand_host *host = nand_get_controller_data(chip);
718         unsigned int bitflips_corrected = 0;
719         int no_subpages;
720         int i;
721
722         host->devtype_data->enable_hwecc(chip, ecc);
723
724         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
725         mxc_do_addr_cycle(mtd, 0, page);
726
727         if (mtd->writesize > 512)
728                 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
729
730         no_subpages = mtd->writesize >> 9;
731
732         for (i = 0; i < no_subpages; i++) {
733                 uint16_t ecc_stats;
734
735                 /* NANDFC buffer 0 is used for page read/write */
736                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
737
738                 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
739
740                 /* Wait for operation to complete */
741                 wait_op_done(host, true);
742
743                 ecc_stats = get_ecc_status_v1(host);
744
745                 ecc_stats >>= 2;
746
747                 if (buf && ecc) {
748                         switch (ecc_stats & 0x3) {
749                         case 0:
750                         default:
751                                 break;
752                         case 1:
753                                 mtd->ecc_stats.corrected++;
754                                 bitflips_corrected = 1;
755                                 break;
756                         case 2:
757                                 mtd->ecc_stats.failed++;
758                                 break;
759                         }
760                 }
761         }
762
763         if (buf)
764                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
765         if (oob)
766                 copy_spare(mtd, true, oob);
767
768         return bitflips_corrected;
769 }
770
771 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
772                                     void *oob, bool ecc, int page)
773 {
774         struct mtd_info *mtd = nand_to_mtd(chip);
775         struct mxc_nand_host *host = nand_get_controller_data(chip);
776         unsigned int max_bitflips = 0;
777         u32 ecc_stat, err;
778         int no_subpages;
779         u8 ecc_bit_mask, err_limit;
780
781         host->devtype_data->enable_hwecc(chip, ecc);
782
783         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
784         mxc_do_addr_cycle(mtd, 0, page);
785
786         if (mtd->writesize > 512)
787                 host->devtype_data->send_cmd(host,
788                                 NAND_CMD_READSTART, true);
789
790         host->devtype_data->send_page(mtd, NFC_OUTPUT);
791
792         if (buf)
793                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
794         if (oob)
795                 copy_spare(mtd, true, oob);
796
797         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
798         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
799
800         no_subpages = mtd->writesize >> 9;
801
802         ecc_stat = host->devtype_data->get_ecc_status(host);
803
804         do {
805                 err = ecc_stat & ecc_bit_mask;
806                 if (err > err_limit) {
807                         mtd->ecc_stats.failed++;
808                 } else {
809                         mtd->ecc_stats.corrected += err;
810                         max_bitflips = max_t(unsigned int, max_bitflips, err);
811                 }
812
813                 ecc_stat >>= 4;
814         } while (--no_subpages);
815
816         return max_bitflips;
817 }
818
819 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
820                               int oob_required, int page)
821 {
822         struct mxc_nand_host *host = nand_get_controller_data(chip);
823         void *oob_buf;
824
825         if (oob_required)
826                 oob_buf = chip->oob_poi;
827         else
828                 oob_buf = NULL;
829
830         return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
831 }
832
833 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
834                                   int oob_required, int page)
835 {
836         struct mxc_nand_host *host = nand_get_controller_data(chip);
837         void *oob_buf;
838
839         if (oob_required)
840                 oob_buf = chip->oob_poi;
841         else
842                 oob_buf = NULL;
843
844         return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
845 }
846
847 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
848 {
849         struct mxc_nand_host *host = nand_get_controller_data(chip);
850
851         return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
852                                              page);
853 }
854
855 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
856                                bool ecc, int page)
857 {
858         struct mtd_info *mtd = nand_to_mtd(chip);
859         struct mxc_nand_host *host = nand_get_controller_data(chip);
860
861         host->devtype_data->enable_hwecc(chip, ecc);
862
863         host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
864         mxc_do_addr_cycle(mtd, 0, page);
865
866         memcpy32_toio(host->main_area0, buf, mtd->writesize);
867         copy_spare(mtd, false, chip->oob_poi);
868
869         host->devtype_data->send_page(mtd, NFC_INPUT);
870         host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
871         mxc_do_addr_cycle(mtd, 0, page);
872
873         return 0;
874 }
875
876 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
877                                    int oob_required, int page)
878 {
879         return mxc_nand_write_page(chip, buf, true, page);
880 }
881
882 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
883                                    int oob_required, int page)
884 {
885         return mxc_nand_write_page(chip, buf, false, page);
886 }
887
888 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
889 {
890         struct mtd_info *mtd = nand_to_mtd(chip);
891         struct mxc_nand_host *host = nand_get_controller_data(chip);
892
893         memset(host->data_buf, 0xff, mtd->writesize);
894
895         return mxc_nand_write_page(chip, host->data_buf, false, page);
896 }
897
898 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
899 {
900         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
901         uint8_t ret;
902
903         /* Check for status request */
904         if (host->status_request)
905                 return host->devtype_data->get_dev_status(host) & 0xFF;
906
907         if (nand_chip->options & NAND_BUSWIDTH_16) {
908                 /* only take the lower byte of each word */
909                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
910
911                 host->buf_start += 2;
912         } else {
913                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
914                 host->buf_start++;
915         }
916
917         dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
918         return ret;
919 }
920
921 /* Write data of length len to buffer buf. The data to be
922  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
923  * Operation by the NFC, the data is written to NAND Flash */
924 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
925                                int len)
926 {
927         struct mtd_info *mtd = nand_to_mtd(nand_chip);
928         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
929         u16 col = host->buf_start;
930         int n = mtd->oobsize + mtd->writesize - col;
931
932         n = min(n, len);
933
934         memcpy(host->data_buf + col, buf, n);
935
936         host->buf_start += n;
937 }
938
939 /* Read the data buffer from the NAND Flash. To read the data from NAND
940  * Flash first the data output cycle is initiated by the NFC, which copies
941  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
942  */
943 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
944                               int len)
945 {
946         struct mtd_info *mtd = nand_to_mtd(nand_chip);
947         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
948         u16 col = host->buf_start;
949         int n = mtd->oobsize + mtd->writesize - col;
950
951         n = min(n, len);
952
953         memcpy(buf, host->data_buf + col, n);
954
955         host->buf_start += n;
956 }
957
958 /* This function is used by upper layer for select and
959  * deselect of the NAND chip */
960 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
961 {
962         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
963
964         if (chip == -1) {
965                 /* Disable the NFC clock */
966                 if (host->clk_act) {
967                         clk_disable_unprepare(host->clk);
968                         host->clk_act = 0;
969                 }
970                 return;
971         }
972
973         if (!host->clk_act) {
974                 /* Enable the NFC clock */
975                 clk_prepare_enable(host->clk);
976                 host->clk_act = 1;
977         }
978 }
979
980 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
981 {
982         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
983
984         if (chip == -1) {
985                 /* Disable the NFC clock */
986                 if (host->clk_act) {
987                         clk_disable_unprepare(host->clk);
988                         host->clk_act = 0;
989                 }
990                 return;
991         }
992
993         if (!host->clk_act) {
994                 /* Enable the NFC clock */
995                 clk_prepare_enable(host->clk);
996                 host->clk_act = 1;
997         }
998
999         host->active_cs = chip;
1000         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001 }
1002
1003 #define MXC_V1_ECCBYTES         5
1004
1005 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006                                 struct mtd_oob_region *oobregion)
1007 {
1008         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1009
1010         if (section >= nand_chip->ecc.steps)
1011                 return -ERANGE;
1012
1013         oobregion->offset = (section * 16) + 6;
1014         oobregion->length = MXC_V1_ECCBYTES;
1015
1016         return 0;
1017 }
1018
1019 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020                                  struct mtd_oob_region *oobregion)
1021 {
1022         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023
1024         if (section > nand_chip->ecc.steps)
1025                 return -ERANGE;
1026
1027         if (!section) {
1028                 if (mtd->writesize <= 512) {
1029                         oobregion->offset = 0;
1030                         oobregion->length = 5;
1031                 } else {
1032                         oobregion->offset = 2;
1033                         oobregion->length = 4;
1034                 }
1035         } else {
1036                 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037                 if (section < nand_chip->ecc.steps)
1038                         oobregion->length = (section * 16) + 6 -
1039                                             oobregion->offset;
1040                 else
1041                         oobregion->length = mtd->oobsize - oobregion->offset;
1042         }
1043
1044         return 0;
1045 }
1046
1047 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048         .ecc = mxc_v1_ooblayout_ecc,
1049         .free = mxc_v1_ooblayout_free,
1050 };
1051
1052 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053                                 struct mtd_oob_region *oobregion)
1054 {
1055         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1057
1058         if (section >= nand_chip->ecc.steps)
1059                 return -ERANGE;
1060
1061         oobregion->offset = (section * stepsize) + 7;
1062         oobregion->length = nand_chip->ecc.bytes;
1063
1064         return 0;
1065 }
1066
1067 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068                                  struct mtd_oob_region *oobregion)
1069 {
1070         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1072
1073         if (section >= nand_chip->ecc.steps)
1074                 return -ERANGE;
1075
1076         if (!section) {
1077                 if (mtd->writesize <= 512) {
1078                         oobregion->offset = 0;
1079                         oobregion->length = 5;
1080                 } else {
1081                         oobregion->offset = 2;
1082                         oobregion->length = 4;
1083                 }
1084         } else {
1085                 oobregion->offset = section * stepsize;
1086                 oobregion->length = 7;
1087         }
1088
1089         return 0;
1090 }
1091
1092 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093         .ecc = mxc_v2_ooblayout_ecc,
1094         .free = mxc_v2_ooblayout_free,
1095 };
1096
1097 /*
1098  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099  * on how much oob the nand chip has. For 8bit ecc we need at least
1100  * 26 bytes of oob data per 512 byte block.
1101  */
1102 static int get_eccsize(struct mtd_info *mtd)
1103 {
1104         int oobbytes_per_512 = 0;
1105
1106         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1107
1108         if (oobbytes_per_512 < 26)
1109                 return 4;
1110         else
1111                 return 8;
1112 }
1113
1114 static void preset_v1(struct mtd_info *mtd)
1115 {
1116         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118         uint16_t config1 = 0;
1119
1120         if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1121             mtd->writesize)
1122                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1123
1124         if (!host->devtype_data->irqpending_quirk)
1125                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1126
1127         host->eccsize = 1;
1128
1129         writew(config1, NFC_V1_V2_CONFIG1);
1130         /* preset operation */
1131
1132         /* Unlock the internal RAM Buffer */
1133         writew(0x2, NFC_V1_V2_CONFIG);
1134
1135         /* Blocks to be unlocked */
1136         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1137         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1138
1139         /* Unlock Block Command for given address range */
1140         writew(0x4, NFC_V1_V2_WRPROT);
1141 }
1142
1143 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1144                                        const struct nand_interface_config *conf)
1145 {
1146         struct mxc_nand_host *host = nand_get_controller_data(chip);
1147         int tRC_min_ns, tRC_ps, ret;
1148         unsigned long rate, rate_round;
1149         const struct nand_sdr_timings *timings;
1150         u16 config1;
1151
1152         timings = nand_get_sdr_timings(conf);
1153         if (IS_ERR(timings))
1154                 return -ENOTSUPP;
1155
1156         config1 = readw(NFC_V1_V2_CONFIG1);
1157
1158         tRC_min_ns = timings->tRC_min / 1000;
1159         rate = 1000000000 / tRC_min_ns;
1160
1161         /*
1162          * For tRC < 30ns we have to use EDO mode. In this case the controller
1163          * does one access per clock cycle. Otherwise the controller does one
1164          * access in two clock cycles, thus we have to double the rate to the
1165          * controller.
1166          */
1167         if (tRC_min_ns < 30) {
1168                 rate_round = clk_round_rate(host->clk, rate);
1169                 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1170                 tRC_ps = 1000000000 / (rate_round / 1000);
1171         } else {
1172                 rate *= 2;
1173                 rate_round = clk_round_rate(host->clk, rate);
1174                 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1175                 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1176         }
1177
1178         /*
1179          * The timing values compared against are from the i.MX25 Automotive
1180          * datasheet, Table 50. NFC Timing Parameters
1181          */
1182         if (timings->tCLS_min > tRC_ps - 1000 ||
1183             timings->tCLH_min > tRC_ps - 2000 ||
1184             timings->tCS_min > tRC_ps - 1000 ||
1185             timings->tCH_min > tRC_ps - 2000 ||
1186             timings->tWP_min > tRC_ps - 1500 ||
1187             timings->tALS_min > tRC_ps ||
1188             timings->tALH_min > tRC_ps - 3000 ||
1189             timings->tDS_min > tRC_ps ||
1190             timings->tDH_min > tRC_ps - 5000 ||
1191             timings->tWC_min > 2 * tRC_ps ||
1192             timings->tWH_min > tRC_ps - 2500 ||
1193             timings->tRR_min > 6 * tRC_ps ||
1194             timings->tRP_min > 3 * tRC_ps / 2 ||
1195             timings->tRC_min > 2 * tRC_ps ||
1196             timings->tREH_min > (tRC_ps / 2) - 2500) {
1197                 dev_dbg(host->dev, "Timing out of bounds\n");
1198                 return -EINVAL;
1199         }
1200
1201         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1202                 return 0;
1203
1204         ret = clk_set_rate(host->clk, rate);
1205         if (ret)
1206                 return ret;
1207
1208         writew(config1, NFC_V1_V2_CONFIG1);
1209
1210         dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1211                 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1212                 "normal");
1213
1214         return 0;
1215 }
1216
1217 static void preset_v2(struct mtd_info *mtd)
1218 {
1219         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1220         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1221         uint16_t config1 = 0;
1222
1223         config1 |= NFC_V2_CONFIG1_FP_INT;
1224
1225         if (!host->devtype_data->irqpending_quirk)
1226                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1227
1228         if (mtd->writesize) {
1229                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1230
1231                 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1232                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1233
1234                 host->eccsize = get_eccsize(mtd);
1235                 if (host->eccsize == 4)
1236                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1237
1238                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1239         } else {
1240                 host->eccsize = 1;
1241         }
1242
1243         writew(config1, NFC_V1_V2_CONFIG1);
1244         /* preset operation */
1245
1246         /* spare area size in 16-bit half-words */
1247         writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1248
1249         /* Unlock the internal RAM Buffer */
1250         writew(0x2, NFC_V1_V2_CONFIG);
1251
1252         /* Blocks to be unlocked */
1253         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1254         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1255         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1256         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1257         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1258         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1259         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1260         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1261
1262         /* Unlock Block Command for given address range */
1263         writew(0x4, NFC_V1_V2_WRPROT);
1264 }
1265
1266 static void preset_v3(struct mtd_info *mtd)
1267 {
1268         struct nand_chip *chip = mtd_to_nand(mtd);
1269         struct mxc_nand_host *host = nand_get_controller_data(chip);
1270         uint32_t config2, config3;
1271         int i, addr_phases;
1272
1273         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1274         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1275
1276         /* Unlock the internal RAM Buffer */
1277         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1278                         NFC_V3_WRPROT);
1279
1280         /* Blocks to be unlocked */
1281         for (i = 0; i < NAND_MAX_CHIPS; i++)
1282                 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1283
1284         writel(0, NFC_V3_IPC);
1285
1286         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1287                 NFC_V3_CONFIG2_2CMD_PHASES |
1288                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1289                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1290                 NFC_V3_CONFIG2_INT_MSK |
1291                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1292
1293         addr_phases = fls(chip->pagemask) >> 3;
1294
1295         if (mtd->writesize == 2048) {
1296                 config2 |= NFC_V3_CONFIG2_PS_2048;
1297                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298         } else if (mtd->writesize == 4096) {
1299                 config2 |= NFC_V3_CONFIG2_PS_4096;
1300                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1301         } else {
1302                 config2 |= NFC_V3_CONFIG2_PS_512;
1303                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1304         }
1305
1306         if (mtd->writesize) {
1307                 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1308                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1309
1310                 config2 |= NFC_V3_CONFIG2_PPB(
1311                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1312                                 host->devtype_data->ppb_shift);
1313                 host->eccsize = get_eccsize(mtd);
1314                 if (host->eccsize == 8)
1315                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1316         }
1317
1318         writel(config2, NFC_V3_CONFIG2);
1319
1320         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1321                         NFC_V3_CONFIG3_NO_SDMA |
1322                         NFC_V3_CONFIG3_RBB_MODE |
1323                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1324                         NFC_V3_CONFIG3_ADD_OP(0);
1325
1326         if (!(chip->options & NAND_BUSWIDTH_16))
1327                 config3 |= NFC_V3_CONFIG3_FW8;
1328
1329         writel(config3, NFC_V3_CONFIG3);
1330
1331         writel(0, NFC_V3_DELAY_LINE);
1332 }
1333
1334 /* Used by the upper layer to write command to NAND Flash for
1335  * different operations to be carried out on NAND Flash */
1336 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1337                              int column, int page_addr)
1338 {
1339         struct mtd_info *mtd = nand_to_mtd(nand_chip);
1340         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1341
1342         dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1343               command, column, page_addr);
1344
1345         /* Reset command state information */
1346         host->status_request = false;
1347
1348         /* Command pre-processing step */
1349         switch (command) {
1350         case NAND_CMD_RESET:
1351                 host->devtype_data->preset(mtd);
1352                 host->devtype_data->send_cmd(host, command, false);
1353                 break;
1354
1355         case NAND_CMD_STATUS:
1356                 host->buf_start = 0;
1357                 host->status_request = true;
1358
1359                 host->devtype_data->send_cmd(host, command, true);
1360                 WARN_ONCE(column != -1 || page_addr != -1,
1361                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1362                           command, column, page_addr);
1363                 mxc_do_addr_cycle(mtd, column, page_addr);
1364                 break;
1365
1366         case NAND_CMD_READID:
1367                 host->devtype_data->send_cmd(host, command, true);
1368                 mxc_do_addr_cycle(mtd, column, page_addr);
1369                 host->devtype_data->send_read_id(host);
1370                 host->buf_start = 0;
1371                 break;
1372
1373         case NAND_CMD_ERASE1:
1374         case NAND_CMD_ERASE2:
1375                 host->devtype_data->send_cmd(host, command, false);
1376                 WARN_ONCE(column != -1,
1377                           "Unexpected column value (cmd=%u, col=%d)\n",
1378                           command, column);
1379                 mxc_do_addr_cycle(mtd, column, page_addr);
1380
1381                 break;
1382         case NAND_CMD_PARAM:
1383                 host->devtype_data->send_cmd(host, command, false);
1384                 mxc_do_addr_cycle(mtd, column, page_addr);
1385                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1386                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1387                 host->buf_start = 0;
1388                 break;
1389         default:
1390                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1391                           command);
1392                 break;
1393         }
1394 }
1395
1396 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1397                                  u8 *subfeature_param)
1398 {
1399         struct mtd_info *mtd = nand_to_mtd(chip);
1400         struct mxc_nand_host *host = nand_get_controller_data(chip);
1401         int i;
1402
1403         host->buf_start = 0;
1404
1405         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1406                 chip->legacy.write_byte(chip, subfeature_param[i]);
1407
1408         memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1409         host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1410         mxc_do_addr_cycle(mtd, addr, -1);
1411         host->devtype_data->send_page(mtd, NFC_INPUT);
1412
1413         return 0;
1414 }
1415
1416 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1417                                  u8 *subfeature_param)
1418 {
1419         struct mtd_info *mtd = nand_to_mtd(chip);
1420         struct mxc_nand_host *host = nand_get_controller_data(chip);
1421         int i;
1422
1423         host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1424         mxc_do_addr_cycle(mtd, addr, -1);
1425         host->devtype_data->send_page(mtd, NFC_OUTPUT);
1426         memcpy32_fromio(host->data_buf, host->main_area0, 512);
1427         host->buf_start = 0;
1428
1429         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1430                 *subfeature_param++ = chip->legacy.read_byte(chip);
1431
1432         return 0;
1433 }
1434
1435 /*
1436  * The generic flash bbt descriptors overlap with our ecc
1437  * hardware, so define some i.MX specific ones.
1438  */
1439 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1440 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1441
1442 static struct nand_bbt_descr bbt_main_descr = {
1443         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1444             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1445         .offs = 0,
1446         .len = 4,
1447         .veroffs = 4,
1448         .maxblocks = 4,
1449         .pattern = bbt_pattern,
1450 };
1451
1452 static struct nand_bbt_descr bbt_mirror_descr = {
1453         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1454             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1455         .offs = 0,
1456         .len = 4,
1457         .veroffs = 4,
1458         .maxblocks = 4,
1459         .pattern = mirror_pattern,
1460 };
1461
1462 /* v1 + irqpending_quirk: i.MX21 */
1463 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1464         .preset = preset_v1,
1465         .read_page = mxc_nand_read_page_v1,
1466         .send_cmd = send_cmd_v1_v2,
1467         .send_addr = send_addr_v1_v2,
1468         .send_page = send_page_v1,
1469         .send_read_id = send_read_id_v1_v2,
1470         .get_dev_status = get_dev_status_v1_v2,
1471         .check_int = check_int_v1_v2,
1472         .irq_control = irq_control_v1_v2,
1473         .get_ecc_status = get_ecc_status_v1,
1474         .ooblayout = &mxc_v1_ooblayout_ops,
1475         .select_chip = mxc_nand_select_chip_v1_v3,
1476         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1477         .irqpending_quirk = 1,
1478         .needs_ip = 0,
1479         .regs_offset = 0xe00,
1480         .spare0_offset = 0x800,
1481         .spare_len = 16,
1482         .eccbytes = 3,
1483         .eccsize = 1,
1484 };
1485
1486 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1487 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1488         .preset = preset_v1,
1489         .read_page = mxc_nand_read_page_v1,
1490         .send_cmd = send_cmd_v1_v2,
1491         .send_addr = send_addr_v1_v2,
1492         .send_page = send_page_v1,
1493         .send_read_id = send_read_id_v1_v2,
1494         .get_dev_status = get_dev_status_v1_v2,
1495         .check_int = check_int_v1_v2,
1496         .irq_control = irq_control_v1_v2,
1497         .get_ecc_status = get_ecc_status_v1,
1498         .ooblayout = &mxc_v1_ooblayout_ops,
1499         .select_chip = mxc_nand_select_chip_v1_v3,
1500         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1501         .irqpending_quirk = 0,
1502         .needs_ip = 0,
1503         .regs_offset = 0xe00,
1504         .spare0_offset = 0x800,
1505         .axi_offset = 0,
1506         .spare_len = 16,
1507         .eccbytes = 3,
1508         .eccsize = 1,
1509 };
1510
1511 /* v21: i.MX25, i.MX35 */
1512 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1513         .preset = preset_v2,
1514         .read_page = mxc_nand_read_page_v2_v3,
1515         .send_cmd = send_cmd_v1_v2,
1516         .send_addr = send_addr_v1_v2,
1517         .send_page = send_page_v2,
1518         .send_read_id = send_read_id_v1_v2,
1519         .get_dev_status = get_dev_status_v1_v2,
1520         .check_int = check_int_v1_v2,
1521         .irq_control = irq_control_v1_v2,
1522         .get_ecc_status = get_ecc_status_v2,
1523         .ooblayout = &mxc_v2_ooblayout_ops,
1524         .select_chip = mxc_nand_select_chip_v2,
1525         .setup_interface = mxc_nand_v2_setup_interface,
1526         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1527         .irqpending_quirk = 0,
1528         .needs_ip = 0,
1529         .regs_offset = 0x1e00,
1530         .spare0_offset = 0x1000,
1531         .axi_offset = 0,
1532         .spare_len = 64,
1533         .eccbytes = 9,
1534         .eccsize = 0,
1535 };
1536
1537 /* v3.2a: i.MX51 */
1538 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1539         .preset = preset_v3,
1540         .read_page = mxc_nand_read_page_v2_v3,
1541         .send_cmd = send_cmd_v3,
1542         .send_addr = send_addr_v3,
1543         .send_page = send_page_v3,
1544         .send_read_id = send_read_id_v3,
1545         .get_dev_status = get_dev_status_v3,
1546         .check_int = check_int_v3,
1547         .irq_control = irq_control_v3,
1548         .get_ecc_status = get_ecc_status_v3,
1549         .ooblayout = &mxc_v2_ooblayout_ops,
1550         .select_chip = mxc_nand_select_chip_v1_v3,
1551         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1552         .irqpending_quirk = 0,
1553         .needs_ip = 1,
1554         .regs_offset = 0,
1555         .spare0_offset = 0x1000,
1556         .axi_offset = 0x1e00,
1557         .spare_len = 64,
1558         .eccbytes = 0,
1559         .eccsize = 0,
1560         .ppb_shift = 7,
1561 };
1562
1563 /* v3.2b: i.MX53 */
1564 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1565         .preset = preset_v3,
1566         .read_page = mxc_nand_read_page_v2_v3,
1567         .send_cmd = send_cmd_v3,
1568         .send_addr = send_addr_v3,
1569         .send_page = send_page_v3,
1570         .send_read_id = send_read_id_v3,
1571         .get_dev_status = get_dev_status_v3,
1572         .check_int = check_int_v3,
1573         .irq_control = irq_control_v3,
1574         .get_ecc_status = get_ecc_status_v3,
1575         .ooblayout = &mxc_v2_ooblayout_ops,
1576         .select_chip = mxc_nand_select_chip_v1_v3,
1577         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1578         .irqpending_quirk = 0,
1579         .needs_ip = 1,
1580         .regs_offset = 0,
1581         .spare0_offset = 0x1000,
1582         .axi_offset = 0x1e00,
1583         .spare_len = 64,
1584         .eccbytes = 0,
1585         .eccsize = 0,
1586         .ppb_shift = 8,
1587 };
1588
1589 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1590 {
1591         return host->devtype_data == &imx21_nand_devtype_data;
1592 }
1593
1594 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1595 {
1596         return host->devtype_data == &imx27_nand_devtype_data;
1597 }
1598
1599 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1600 {
1601         return host->devtype_data == &imx25_nand_devtype_data;
1602 }
1603
1604 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1605 {
1606         return host->devtype_data == &imx51_nand_devtype_data;
1607 }
1608
1609 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1610 {
1611         return host->devtype_data == &imx53_nand_devtype_data;
1612 }
1613
1614 static const struct platform_device_id mxcnd_devtype[] = {
1615         {
1616                 .name = "imx21-nand",
1617                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1618         }, {
1619                 .name = "imx27-nand",
1620                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1621         }, {
1622                 .name = "imx25-nand",
1623                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1624         }, {
1625                 .name = "imx51-nand",
1626                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1627         }, {
1628                 .name = "imx53-nand",
1629                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1630         }, {
1631                 /* sentinel */
1632         }
1633 };
1634 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1635
1636 #ifdef CONFIG_OF
1637 static const struct of_device_id mxcnd_dt_ids[] = {
1638         {
1639                 .compatible = "fsl,imx21-nand",
1640                 .data = &imx21_nand_devtype_data,
1641         }, {
1642                 .compatible = "fsl,imx27-nand",
1643                 .data = &imx27_nand_devtype_data,
1644         }, {
1645                 .compatible = "fsl,imx25-nand",
1646                 .data = &imx25_nand_devtype_data,
1647         }, {
1648                 .compatible = "fsl,imx51-nand",
1649                 .data = &imx51_nand_devtype_data,
1650         }, {
1651                 .compatible = "fsl,imx53-nand",
1652                 .data = &imx53_nand_devtype_data,
1653         },
1654         { /* sentinel */ }
1655 };
1656 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1657
1658 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1659 {
1660         struct device_node *np = host->dev->of_node;
1661         const struct of_device_id *of_id =
1662                 of_match_device(mxcnd_dt_ids, host->dev);
1663
1664         if (!np)
1665                 return 1;
1666
1667         host->devtype_data = of_id->data;
1668
1669         return 0;
1670 }
1671 #else
1672 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1673 {
1674         return 1;
1675 }
1676 #endif
1677
1678 static int mxcnd_attach_chip(struct nand_chip *chip)
1679 {
1680         struct mtd_info *mtd = nand_to_mtd(chip);
1681         struct mxc_nand_host *host = nand_get_controller_data(chip);
1682         struct device *dev = mtd->dev.parent;
1683
1684         chip->ecc.bytes = host->devtype_data->eccbytes;
1685         host->eccsize = host->devtype_data->eccsize;
1686         chip->ecc.size = 512;
1687         mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1688
1689         switch (chip->ecc.engine_type) {
1690         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1691                 chip->ecc.read_page = mxc_nand_read_page;
1692                 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1693                 chip->ecc.read_oob = mxc_nand_read_oob;
1694                 chip->ecc.write_page = mxc_nand_write_page_ecc;
1695                 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1696                 chip->ecc.write_oob = mxc_nand_write_oob;
1697                 break;
1698
1699         case NAND_ECC_ENGINE_TYPE_SOFT:
1700                 break;
1701
1702         default:
1703                 return -EINVAL;
1704         }
1705
1706         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1707                 chip->bbt_td = &bbt_main_descr;
1708                 chip->bbt_md = &bbt_mirror_descr;
1709         }
1710
1711         /* Allocate the right size buffer now */
1712         devm_kfree(dev, (void *)host->data_buf);
1713         host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1714                                       GFP_KERNEL);
1715         if (!host->data_buf)
1716                 return -ENOMEM;
1717
1718         /* Call preset again, with correct writesize chip time */
1719         host->devtype_data->preset(mtd);
1720
1721         if (!chip->ecc.bytes) {
1722                 if (host->eccsize == 8)
1723                         chip->ecc.bytes = 18;
1724                 else if (host->eccsize == 4)
1725                         chip->ecc.bytes = 9;
1726         }
1727
1728         /*
1729          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1730          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1731          * into copying invalid data to/from the spare IO buffer, as this
1732          * might cause ECC data corruption when doing sub-page write to a
1733          * partially written page.
1734          */
1735         host->used_oobsize = min(mtd->oobsize, 218U);
1736
1737         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1738                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1739                         chip->ecc.strength = 1;
1740                 else
1741                         chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1742         }
1743
1744         return 0;
1745 }
1746
1747 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1748                                  const struct nand_interface_config *conf)
1749 {
1750         struct mxc_nand_host *host = nand_get_controller_data(chip);
1751
1752         return host->devtype_data->setup_interface(chip, chipnr, conf);
1753 }
1754
1755 static const struct nand_controller_ops mxcnd_controller_ops = {
1756         .attach_chip = mxcnd_attach_chip,
1757         .setup_interface = mxcnd_setup_interface,
1758 };
1759
1760 static int mxcnd_probe(struct platform_device *pdev)
1761 {
1762         struct nand_chip *this;
1763         struct mtd_info *mtd;
1764         struct mxc_nand_host *host;
1765         struct resource *res;
1766         int err = 0;
1767
1768         /* Allocate memory for MTD device structure and private data */
1769         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1770                         GFP_KERNEL);
1771         if (!host)
1772                 return -ENOMEM;
1773
1774         /* allocate a temporary buffer for the nand_scan_ident() */
1775         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1776         if (!host->data_buf)
1777                 return -ENOMEM;
1778
1779         host->dev = &pdev->dev;
1780         /* structures must be linked */
1781         this = &host->nand;
1782         mtd = nand_to_mtd(this);
1783         mtd->dev.parent = &pdev->dev;
1784         mtd->name = DRIVER_NAME;
1785
1786         /* 50 us command delay time */
1787         this->legacy.chip_delay = 5;
1788
1789         nand_set_controller_data(this, host);
1790         nand_set_flash_node(this, pdev->dev.of_node),
1791         this->legacy.dev_ready = mxc_nand_dev_ready;
1792         this->legacy.cmdfunc = mxc_nand_command;
1793         this->legacy.read_byte = mxc_nand_read_byte;
1794         this->legacy.write_buf = mxc_nand_write_buf;
1795         this->legacy.read_buf = mxc_nand_read_buf;
1796         this->legacy.set_features = mxc_nand_set_features;
1797         this->legacy.get_features = mxc_nand_get_features;
1798
1799         host->clk = devm_clk_get(&pdev->dev, NULL);
1800         if (IS_ERR(host->clk))
1801                 return PTR_ERR(host->clk);
1802
1803         err = mxcnd_probe_dt(host);
1804         if (err > 0) {
1805                 struct mxc_nand_platform_data *pdata =
1806                                         dev_get_platdata(&pdev->dev);
1807                 if (pdata) {
1808                         host->pdata = *pdata;
1809                         host->devtype_data = (struct mxc_nand_devtype_data *)
1810                                                 pdev->id_entry->driver_data;
1811                 } else {
1812                         err = -ENODEV;
1813                 }
1814         }
1815         if (err < 0)
1816                 return err;
1817
1818         if (!host->devtype_data->setup_interface)
1819                 this->options |= NAND_KEEP_TIMINGS;
1820
1821         if (host->devtype_data->needs_ip) {
1822                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1824                 if (IS_ERR(host->regs_ip))
1825                         return PTR_ERR(host->regs_ip);
1826
1827                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1828         } else {
1829                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1830         }
1831
1832         host->base = devm_ioremap_resource(&pdev->dev, res);
1833         if (IS_ERR(host->base))
1834                 return PTR_ERR(host->base);
1835
1836         host->main_area0 = host->base;
1837
1838         if (host->devtype_data->regs_offset)
1839                 host->regs = host->base + host->devtype_data->regs_offset;
1840         host->spare0 = host->base + host->devtype_data->spare0_offset;
1841         if (host->devtype_data->axi_offset)
1842                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1843
1844         this->legacy.select_chip = host->devtype_data->select_chip;
1845
1846         /* NAND bus width determines access functions used by upper layer */
1847         if (host->pdata.width == 2)
1848                 this->options |= NAND_BUSWIDTH_16;
1849
1850         /* update flash based bbt */
1851         if (host->pdata.flash_bbt)
1852                 this->bbt_options |= NAND_BBT_USE_FLASH;
1853
1854         init_completion(&host->op_completion);
1855
1856         host->irq = platform_get_irq(pdev, 0);
1857         if (host->irq < 0)
1858                 return host->irq;
1859
1860         /*
1861          * Use host->devtype_data->irq_control() here instead of irq_control()
1862          * because we must not disable_irq_nosync without having requested the
1863          * irq.
1864          */
1865         host->devtype_data->irq_control(host, 0);
1866
1867         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1868                         0, DRIVER_NAME, host);
1869         if (err)
1870                 return err;
1871
1872         err = clk_prepare_enable(host->clk);
1873         if (err)
1874                 return err;
1875         host->clk_act = 1;
1876
1877         /*
1878          * Now that we "own" the interrupt make sure the interrupt mask bit is
1879          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1880          * on this machine.
1881          */
1882         if (host->devtype_data->irqpending_quirk) {
1883                 disable_irq_nosync(host->irq);
1884                 host->devtype_data->irq_control(host, 1);
1885         }
1886
1887         /* Scan the NAND device */
1888         this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1889         err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1890         if (err)
1891                 goto escan;
1892
1893         /* Register the partitions */
1894         err = mtd_device_parse_register(mtd, part_probes, NULL,
1895                                         host->pdata.parts,
1896                                         host->pdata.nr_parts);
1897         if (err)
1898                 goto cleanup_nand;
1899
1900         platform_set_drvdata(pdev, host);
1901
1902         return 0;
1903
1904 cleanup_nand:
1905         nand_cleanup(this);
1906 escan:
1907         if (host->clk_act)
1908                 clk_disable_unprepare(host->clk);
1909
1910         return err;
1911 }
1912
1913 static int mxcnd_remove(struct platform_device *pdev)
1914 {
1915         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1916         struct nand_chip *chip = &host->nand;
1917         int ret;
1918
1919         ret = mtd_device_unregister(nand_to_mtd(chip));
1920         WARN_ON(ret);
1921         nand_cleanup(chip);
1922         if (host->clk_act)
1923                 clk_disable_unprepare(host->clk);
1924
1925         return 0;
1926 }
1927
1928 static struct platform_driver mxcnd_driver = {
1929         .driver = {
1930                    .name = DRIVER_NAME,
1931                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1932         },
1933         .id_table = mxcnd_devtype,
1934         .probe = mxcnd_probe,
1935         .remove = mxcnd_remove,
1936 };
1937 module_platform_driver(mxcnd_driver);
1938
1939 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1940 MODULE_DESCRIPTION("MXC NAND MTD driver");
1941 MODULE_LICENSE("GPL");