GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / lpc32xx_mlc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for NAND MLC Controller in LPC32xx
4  *
5  * Author: Roland Stigge <stigge@antcom.de>
6  *
7  * Copyright © 2011 WORK Microwave GmbH
8  * Copyright © 2011, 2012 Roland Stigge
9  *
10  * NAND Flash Controller Operation:
11  * - Read: Auto Decode
12  * - Write: Auto Encode
13  * - Tested Page Sizes: 2048, 4096
14  */
15
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/clk.h>
23 #include <linux/err.h>
24 #include <linux/delay.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29 #include <linux/mtd/lpc32xx_mlc.h>
30 #include <linux/io.h>
31 #include <linux/mm.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34 #include <linux/mtd/nand_ecc.h>
35
36 #define DRV_NAME "lpc32xx_mlc"
37
38 /**********************************************************************
39 * MLC NAND controller register offsets
40 **********************************************************************/
41
42 #define MLC_BUFF(x)                     (x + 0x00000)
43 #define MLC_DATA(x)                     (x + 0x08000)
44 #define MLC_CMD(x)                      (x + 0x10000)
45 #define MLC_ADDR(x)                     (x + 0x10004)
46 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
47 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
48 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
49 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
50 #define MLC_RPR(x)                      (x + 0x10018)
51 #define MLC_WPR(x)                      (x + 0x1001C)
52 #define MLC_RUBP(x)                     (x + 0x10020)
53 #define MLC_ROBP(x)                     (x + 0x10024)
54 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
55 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
56 #define MLC_ICR(x)                      (x + 0x10030)
57 #define MLC_TIME_REG(x)                 (x + 0x10034)
58 #define MLC_IRQ_MR(x)                   (x + 0x10038)
59 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
60 #define MLC_LOCK_PR(x)                  (x + 0x10044)
61 #define MLC_ISR(x)                      (x + 0x10048)
62 #define MLC_CEH(x)                      (x + 0x1004C)
63
64 /**********************************************************************
65 * MLC_CMD bit definitions
66 **********************************************************************/
67 #define MLCCMD_RESET                    0xFF
68
69 /**********************************************************************
70 * MLC_ICR bit definitions
71 **********************************************************************/
72 #define MLCICR_WPROT                    (1 << 3)
73 #define MLCICR_LARGEBLOCK               (1 << 2)
74 #define MLCICR_LONGADDR                 (1 << 1)
75 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
76
77 /**********************************************************************
78 * MLC_TIME_REG bit definitions
79 **********************************************************************/
80 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
81 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
82 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
83 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
84 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
85 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
86 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
87
88 /**********************************************************************
89 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
90 **********************************************************************/
91 #define MLCIRQ_NAND_READY               (1 << 5)
92 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
93 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
94 #define MLCIRQ_DECODE_ERROR             (1 << 2)
95 #define MLCIRQ_ECC_READY                (1 << 1)
96 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
97
98 /**********************************************************************
99 * MLC_LOCK_PR bit definitions
100 **********************************************************************/
101 #define MLCLOCKPR_MAGIC                 0xA25E
102
103 /**********************************************************************
104 * MLC_ISR bit definitions
105 **********************************************************************/
106 #define MLCISR_DECODER_FAILURE          (1 << 6)
107 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
108 #define MLCISR_ERRORS_DETECTED          (1 << 3)
109 #define MLCISR_ECC_READY                (1 << 2)
110 #define MLCISR_CONTROLLER_READY         (1 << 1)
111 #define MLCISR_NAND_READY               (1 << 0)
112
113 /**********************************************************************
114 * MLC_CEH bit definitions
115 **********************************************************************/
116 #define MLCCEH_NORMAL                   (1 << 0)
117
118 struct lpc32xx_nand_cfg_mlc {
119         uint32_t tcea_delay;
120         uint32_t busy_delay;
121         uint32_t nand_ta;
122         uint32_t rd_high;
123         uint32_t rd_low;
124         uint32_t wr_high;
125         uint32_t wr_low;
126         int wp_gpio;
127         struct mtd_partition *parts;
128         unsigned num_parts;
129 };
130
131 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
132                                  struct mtd_oob_region *oobregion)
133 {
134         struct nand_chip *nand_chip = mtd_to_nand(mtd);
135
136         if (section >= nand_chip->ecc.steps)
137                 return -ERANGE;
138
139         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
140         oobregion->length = nand_chip->ecc.bytes;
141
142         return 0;
143 }
144
145 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
146                                   struct mtd_oob_region *oobregion)
147 {
148         struct nand_chip *nand_chip = mtd_to_nand(mtd);
149
150         if (section >= nand_chip->ecc.steps)
151                 return -ERANGE;
152
153         oobregion->offset = 16 * section;
154         oobregion->length = 16 - nand_chip->ecc.bytes;
155
156         return 0;
157 }
158
159 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
160         .ecc = lpc32xx_ooblayout_ecc,
161         .free = lpc32xx_ooblayout_free,
162 };
163
164 static struct nand_bbt_descr lpc32xx_nand_bbt = {
165         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
166                    NAND_BBT_WRITE,
167         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
168 };
169
170 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
171         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
172                    NAND_BBT_WRITE,
173         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
174 };
175
176 struct lpc32xx_nand_host {
177         struct platform_device  *pdev;
178         struct nand_chip        nand_chip;
179         struct lpc32xx_mlc_platform_data *pdata;
180         struct clk              *clk;
181         void __iomem            *io_base;
182         int                     irq;
183         struct lpc32xx_nand_cfg_mlc     *ncfg;
184         struct completion       comp_nand;
185         struct completion       comp_controller;
186         uint32_t llptr;
187         /*
188          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
189          */
190         dma_addr_t              oob_buf_phy;
191         /*
192          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
193          */
194         uint8_t                 *oob_buf;
195         /* Physical address of DMA base address */
196         dma_addr_t              io_base_phy;
197
198         struct completion       comp_dma;
199         struct dma_chan         *dma_chan;
200         struct dma_slave_config dma_slave_config;
201         struct scatterlist      sgl;
202         uint8_t                 *dma_buf;
203         uint8_t                 *dummy_buf;
204         int                     mlcsubpages; /* number of 512bytes-subpages */
205 };
206
207 /*
208  * Activate/Deactivate DMA Operation:
209  *
210  * Using the PL080 DMA Controller for transferring the 512 byte subpages
211  * instead of doing readl() / writel() in a loop slows it down significantly.
212  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
213  *
214  * - readl() of 128 x 32 bits in a loop: ~20us
215  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
216  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
217  *
218  * This applies to the transfer itself. In the DMA case: only the
219  * wait_for_completion() (DMA setup _not_ included).
220  *
221  * Note that the 512 bytes subpage transfer is done directly from/to a
222  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
223  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
224  * controller transferring data between its internal buffer to/from the NAND
225  * chip.)
226  *
227  * Therefore, using the PL080 DMA is disabled by default, for now.
228  *
229  */
230 static int use_dma;
231
232 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
233 {
234         uint32_t clkrate, tmp;
235
236         /* Reset MLC controller */
237         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
238         udelay(1000);
239
240         /* Get base clock for MLC block */
241         clkrate = clk_get_rate(host->clk);
242         if (clkrate == 0)
243                 clkrate = 104000000;
244
245         /* Unlock MLC_ICR
246          * (among others, will be locked again automatically) */
247         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
248
249         /* Configure MLC Controller: Large Block, 5 Byte Address */
250         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
251         writel(tmp, MLC_ICR(host->io_base));
252
253         /* Unlock MLC_TIME_REG
254          * (among others, will be locked again automatically) */
255         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
256
257         /* Compute clock setup values, see LPC and NAND manual */
258         tmp = 0;
259         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
260         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
261         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
262         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
263         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
264         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
265         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
266         writel(tmp, MLC_TIME_REG(host->io_base));
267
268         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
269         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
270                         MLC_IRQ_MR(host->io_base));
271
272         /* Normal nCE operation: nCE controlled by controller */
273         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
274 }
275
276 /*
277  * Hardware specific access to control lines
278  */
279 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
280                                   unsigned int ctrl)
281 {
282         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
283
284         if (cmd != NAND_CMD_NONE) {
285                 if (ctrl & NAND_CLE)
286                         writel(cmd, MLC_CMD(host->io_base));
287                 else
288                         writel(cmd, MLC_ADDR(host->io_base));
289         }
290 }
291
292 /*
293  * Read Device Ready (NAND device _and_ controller ready)
294  */
295 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
296 {
297         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
298
299         if ((readb(MLC_ISR(host->io_base)) &
300              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
301             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
302                 return  1;
303
304         return 0;
305 }
306
307 static irqreturn_t lpc3xxx_nand_irq(int irq, void *data)
308 {
309         struct lpc32xx_nand_host *host = data;
310         uint8_t sr;
311
312         /* Clear interrupt flag by reading status */
313         sr = readb(MLC_IRQ_SR(host->io_base));
314         if (sr & MLCIRQ_NAND_READY)
315                 complete(&host->comp_nand);
316         if (sr & MLCIRQ_CONTROLLER_READY)
317                 complete(&host->comp_controller);
318
319         return IRQ_HANDLED;
320 }
321
322 static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
323 {
324         struct mtd_info *mtd = nand_to_mtd(chip);
325         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
326
327         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
328                 goto exit;
329
330         wait_for_completion(&host->comp_nand);
331
332         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
333                 /* Seems to be delayed sometimes by controller */
334                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
335                 cpu_relax();
336         }
337
338 exit:
339         return NAND_STATUS_READY;
340 }
341
342 static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
343 {
344         struct mtd_info *mtd = nand_to_mtd(chip);
345         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
346
347         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
348                 goto exit;
349
350         wait_for_completion(&host->comp_controller);
351
352         while (!(readb(MLC_ISR(host->io_base)) &
353                  MLCISR_CONTROLLER_READY)) {
354                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
355                 cpu_relax();
356         }
357
358 exit:
359         return NAND_STATUS_READY;
360 }
361
362 static int lpc32xx_waitfunc(struct nand_chip *chip)
363 {
364         lpc32xx_waitfunc_nand(chip);
365         lpc32xx_waitfunc_controller(chip);
366
367         return NAND_STATUS_READY;
368 }
369
370 /*
371  * Enable NAND write protect
372  */
373 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
374 {
375         if (gpio_is_valid(host->ncfg->wp_gpio))
376                 gpio_set_value(host->ncfg->wp_gpio, 0);
377 }
378
379 /*
380  * Disable NAND write protect
381  */
382 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
383 {
384         if (gpio_is_valid(host->ncfg->wp_gpio))
385                 gpio_set_value(host->ncfg->wp_gpio, 1);
386 }
387
388 static void lpc32xx_dma_complete_func(void *completion)
389 {
390         complete(completion);
391 }
392
393 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
394                             enum dma_transfer_direction dir)
395 {
396         struct nand_chip *chip = mtd_to_nand(mtd);
397         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
398         struct dma_async_tx_descriptor *desc;
399         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
400         int res;
401
402         sg_init_one(&host->sgl, mem, len);
403
404         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
405                          DMA_BIDIRECTIONAL);
406         if (res != 1) {
407                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
408                 return -ENXIO;
409         }
410         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
411                                        flags);
412         if (!desc) {
413                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
414                 goto out1;
415         }
416
417         init_completion(&host->comp_dma);
418         desc->callback = lpc32xx_dma_complete_func;
419         desc->callback_param = &host->comp_dma;
420
421         dmaengine_submit(desc);
422         dma_async_issue_pending(host->dma_chan);
423
424         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
425
426         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
427                      DMA_BIDIRECTIONAL);
428         return 0;
429 out1:
430         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
431                      DMA_BIDIRECTIONAL);
432         return -ENXIO;
433 }
434
435 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
436                              int oob_required, int page)
437 {
438         struct mtd_info *mtd = nand_to_mtd(chip);
439         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
440         int i, j;
441         uint8_t *oobbuf = chip->oob_poi;
442         uint32_t mlc_isr;
443         int res;
444         uint8_t *dma_buf;
445         bool dma_mapped;
446
447         if ((void *)buf <= high_memory) {
448                 dma_buf = buf;
449                 dma_mapped = true;
450         } else {
451                 dma_buf = host->dma_buf;
452                 dma_mapped = false;
453         }
454
455         /* Writing Command and Address */
456         nand_read_page_op(chip, page, 0, NULL, 0);
457
458         /* For all sub-pages */
459         for (i = 0; i < host->mlcsubpages; i++) {
460                 /* Start Auto Decode Command */
461                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
462
463                 /* Wait for Controller Ready */
464                 lpc32xx_waitfunc_controller(chip);
465
466                 /* Check ECC Error status */
467                 mlc_isr = readl(MLC_ISR(host->io_base));
468                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
469                         mtd->ecc_stats.failed++;
470                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
471                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
472                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
473                 }
474
475                 /* Read 512 + 16 Bytes */
476                 if (use_dma) {
477                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
478                                                DMA_DEV_TO_MEM);
479                         if (res)
480                                 return res;
481                 } else {
482                         for (j = 0; j < (512 >> 2); j++) {
483                                 *((uint32_t *)(buf)) =
484                                         readl(MLC_BUFF(host->io_base));
485                                 buf += 4;
486                         }
487                 }
488                 for (j = 0; j < (16 >> 2); j++) {
489                         *((uint32_t *)(oobbuf)) =
490                                 readl(MLC_BUFF(host->io_base));
491                         oobbuf += 4;
492                 }
493         }
494
495         if (use_dma && !dma_mapped)
496                 memcpy(buf, dma_buf, mtd->writesize);
497
498         return 0;
499 }
500
501 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
502                                        const uint8_t *buf, int oob_required,
503                                        int page)
504 {
505         struct mtd_info *mtd = nand_to_mtd(chip);
506         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
507         const uint8_t *oobbuf = chip->oob_poi;
508         uint8_t *dma_buf = (uint8_t *)buf;
509         int res;
510         int i, j;
511
512         if (use_dma && (void *)buf >= high_memory) {
513                 dma_buf = host->dma_buf;
514                 memcpy(dma_buf, buf, mtd->writesize);
515         }
516
517         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
518
519         for (i = 0; i < host->mlcsubpages; i++) {
520                 /* Start Encode */
521                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
522
523                 /* Write 512 + 6 Bytes to Buffer */
524                 if (use_dma) {
525                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
526                                                DMA_MEM_TO_DEV);
527                         if (res)
528                                 return res;
529                 } else {
530                         for (j = 0; j < (512 >> 2); j++) {
531                                 writel(*((uint32_t *)(buf)),
532                                        MLC_BUFF(host->io_base));
533                                 buf += 4;
534                         }
535                 }
536                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
537                 oobbuf += 4;
538                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
539                 oobbuf += 12;
540
541                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
542                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
543
544                 /* Wait for Controller Ready */
545                 lpc32xx_waitfunc_controller(chip);
546         }
547
548         return nand_prog_page_end_op(chip);
549 }
550
551 static int lpc32xx_read_oob(struct nand_chip *chip, int page)
552 {
553         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
554
555         /* Read whole page - necessary with MLC controller! */
556         lpc32xx_read_page(chip, host->dummy_buf, 1, page);
557
558         return 0;
559 }
560
561 static int lpc32xx_write_oob(struct nand_chip *chip, int page)
562 {
563         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
564         return 0;
565 }
566
567 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
568 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
569 {
570         /* Always enabled! */
571 }
572
573 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
574 {
575         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
576         dma_cap_mask_t mask;
577
578         if (!host->pdata || !host->pdata->dma_filter) {
579                 dev_err(mtd->dev.parent, "no DMA platform data\n");
580                 return -ENOENT;
581         }
582
583         dma_cap_zero(mask);
584         dma_cap_set(DMA_SLAVE, mask);
585         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
586                                              "nand-mlc");
587         if (!host->dma_chan) {
588                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
589                 return -EBUSY;
590         }
591
592         /*
593          * Set direction to a sensible value even if the dmaengine driver
594          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
595          * driver criticizes it as "alien transfer direction".
596          */
597         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
598         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
600         host->dma_slave_config.src_maxburst = 128;
601         host->dma_slave_config.dst_maxburst = 128;
602         /* DMA controller does flow control: */
603         host->dma_slave_config.device_fc = false;
604         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
605         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
606         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
607                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
608                 goto out1;
609         }
610
611         return 0;
612 out1:
613         dma_release_channel(host->dma_chan);
614         return -ENXIO;
615 }
616
617 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
618 {
619         struct lpc32xx_nand_cfg_mlc *ncfg;
620         struct device_node *np = dev->of_node;
621
622         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
623         if (!ncfg)
624                 return NULL;
625
626         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
627         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
628         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
629         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
630         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
631         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
632         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
633
634         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
635             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
636             !ncfg->wr_low) {
637                 dev_err(dev, "chip parameters not specified correctly\n");
638                 return NULL;
639         }
640
641         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
642
643         return ncfg;
644 }
645
646 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
647 {
648         struct mtd_info *mtd = nand_to_mtd(chip);
649         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
650         struct device *dev = &host->pdev->dev;
651
652         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
653                 return 0;
654
655         host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
656         if (!host->dma_buf)
657                 return -ENOMEM;
658
659         host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
660         if (!host->dummy_buf)
661                 return -ENOMEM;
662
663         chip->ecc.size = 512;
664         chip->ecc.hwctl = lpc32xx_ecc_enable;
665         chip->ecc.read_page_raw = lpc32xx_read_page;
666         chip->ecc.read_page = lpc32xx_read_page;
667         chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
668         chip->ecc.write_page = lpc32xx_write_page_lowlevel;
669         chip->ecc.write_oob = lpc32xx_write_oob;
670         chip->ecc.read_oob = lpc32xx_read_oob;
671         chip->ecc.strength = 4;
672         chip->ecc.bytes = 10;
673
674         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
675         host->mlcsubpages = mtd->writesize / 512;
676
677         return 0;
678 }
679
680 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
681         .attach_chip = lpc32xx_nand_attach_chip,
682 };
683
684 /*
685  * Probe for NAND controller
686  */
687 static int lpc32xx_nand_probe(struct platform_device *pdev)
688 {
689         struct lpc32xx_nand_host *host;
690         struct mtd_info *mtd;
691         struct nand_chip *nand_chip;
692         struct resource *rc;
693         int res;
694
695         /* Allocate memory for the device structure (and zero it) */
696         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
697         if (!host)
698                 return -ENOMEM;
699
700         host->pdev = pdev;
701
702         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
703         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
704         if (IS_ERR(host->io_base))
705                 return PTR_ERR(host->io_base);
706
707         host->io_base_phy = rc->start;
708
709         nand_chip = &host->nand_chip;
710         mtd = nand_to_mtd(nand_chip);
711         if (pdev->dev.of_node)
712                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
713         if (!host->ncfg) {
714                 dev_err(&pdev->dev,
715                         "Missing or bad NAND config from device tree\n");
716                 return -ENOENT;
717         }
718         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
719                 return -EPROBE_DEFER;
720         if (gpio_is_valid(host->ncfg->wp_gpio) &&
721                         gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
722                 dev_err(&pdev->dev, "GPIO not available\n");
723                 return -EBUSY;
724         }
725         lpc32xx_wp_disable(host);
726
727         host->pdata = dev_get_platdata(&pdev->dev);
728
729         /* link the private data structures */
730         nand_set_controller_data(nand_chip, host);
731         nand_set_flash_node(nand_chip, pdev->dev.of_node);
732         mtd->dev.parent = &pdev->dev;
733
734         /* Get NAND clock */
735         host->clk = clk_get(&pdev->dev, NULL);
736         if (IS_ERR(host->clk)) {
737                 dev_err(&pdev->dev, "Clock initialization failure\n");
738                 res = -ENOENT;
739                 goto free_gpio;
740         }
741         res = clk_prepare_enable(host->clk);
742         if (res)
743                 goto put_clk;
744
745         nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
746         nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
747         nand_chip->legacy.chip_delay = 25; /* us */
748         nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
749         nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
750
751         /* Init NAND controller */
752         lpc32xx_nand_setup(host);
753
754         platform_set_drvdata(pdev, host);
755
756         /* Initialize function pointers */
757         nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
758
759         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
760         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
761         nand_chip->bbt_td = &lpc32xx_nand_bbt;
762         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
763
764         if (use_dma) {
765                 res = lpc32xx_dma_setup(host);
766                 if (res) {
767                         res = -EIO;
768                         goto unprepare_clk;
769                 }
770         }
771
772         /* initially clear interrupt status */
773         readb(MLC_IRQ_SR(host->io_base));
774
775         init_completion(&host->comp_nand);
776         init_completion(&host->comp_controller);
777
778         host->irq = platform_get_irq(pdev, 0);
779         if (host->irq < 0) {
780                 res = -EINVAL;
781                 goto release_dma_chan;
782         }
783
784         if (request_irq(host->irq, &lpc3xxx_nand_irq,
785                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
786                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787                 res = -ENXIO;
788                 goto release_dma_chan;
789         }
790
791         /*
792          * Scan to find existence of the device and get the type of NAND device:
793          * SMALL block or LARGE block.
794          */
795         nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
796         res = nand_scan(nand_chip, 1);
797         if (res)
798                 goto free_irq;
799
800         mtd->name = DRV_NAME;
801
802         res = mtd_device_register(mtd, host->ncfg->parts,
803                                   host->ncfg->num_parts);
804         if (res)
805                 goto cleanup_nand;
806
807         return 0;
808
809 cleanup_nand:
810         nand_cleanup(nand_chip);
811 free_irq:
812         free_irq(host->irq, host);
813 release_dma_chan:
814         if (use_dma)
815                 dma_release_channel(host->dma_chan);
816 unprepare_clk:
817         clk_disable_unprepare(host->clk);
818 put_clk:
819         clk_put(host->clk);
820 free_gpio:
821         lpc32xx_wp_enable(host);
822         gpio_free(host->ncfg->wp_gpio);
823
824         return res;
825 }
826
827 /*
828  * Remove NAND device
829  */
830 static int lpc32xx_nand_remove(struct platform_device *pdev)
831 {
832         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
833         struct nand_chip *chip = &host->nand_chip;
834         int ret;
835
836         ret = mtd_device_unregister(nand_to_mtd(chip));
837         WARN_ON(ret);
838         nand_cleanup(chip);
839
840         free_irq(host->irq, host);
841         if (use_dma)
842                 dma_release_channel(host->dma_chan);
843
844         clk_disable_unprepare(host->clk);
845         clk_put(host->clk);
846
847         lpc32xx_wp_enable(host);
848         gpio_free(host->ncfg->wp_gpio);
849
850         return 0;
851 }
852
853 #ifdef CONFIG_PM
854 static int lpc32xx_nand_resume(struct platform_device *pdev)
855 {
856         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
857         int ret;
858
859         /* Re-enable NAND clock */
860         ret = clk_prepare_enable(host->clk);
861         if (ret)
862                 return ret;
863
864         /* Fresh init of NAND controller */
865         lpc32xx_nand_setup(host);
866
867         /* Disable write protect */
868         lpc32xx_wp_disable(host);
869
870         return 0;
871 }
872
873 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
874 {
875         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
876
877         /* Enable write protect for safety */
878         lpc32xx_wp_enable(host);
879
880         /* Disable clock */
881         clk_disable_unprepare(host->clk);
882         return 0;
883 }
884
885 #else
886 #define lpc32xx_nand_resume NULL
887 #define lpc32xx_nand_suspend NULL
888 #endif
889
890 static const struct of_device_id lpc32xx_nand_match[] = {
891         { .compatible = "nxp,lpc3220-mlc" },
892         { /* sentinel */ },
893 };
894 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
895
896 static struct platform_driver lpc32xx_nand_driver = {
897         .probe          = lpc32xx_nand_probe,
898         .remove         = lpc32xx_nand_remove,
899         .resume         = lpc32xx_nand_resume,
900         .suspend        = lpc32xx_nand_suspend,
901         .driver         = {
902                 .name   = DRV_NAME,
903                 .of_match_table = lpc32xx_nand_match,
904         },
905 };
906
907 module_platform_driver(lpc32xx_nand_driver);
908
909 MODULE_LICENSE("GPL");
910 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
911 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");