GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <vipin.kumar@st.com>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/delay.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/resource.h>
26 #include <linux/sched.h>
27 #include <linux/types.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/mtd/nand_ecc.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/io.h>
35 #include <linux/slab.h>
36 #include <linux/amba/bus.h>
37 #include <mtd/mtd-abi.h>
38
39 /* fsmc controller registers for NOR flash */
40 #define CTRL                    0x0
41         /* ctrl register definitions */
42         #define BANK_ENABLE             BIT(0)
43         #define MUXED                   BIT(1)
44         #define NOR_DEV                 (2 << 2)
45         #define WIDTH_16                BIT(4)
46         #define RSTPWRDWN               BIT(6)
47         #define WPROT                   BIT(7)
48         #define WRT_ENABLE              BIT(12)
49         #define WAIT_ENB                BIT(13)
50
51 #define CTRL_TIM                0x4
52         /* ctrl_tim register definitions */
53
54 #define FSMC_NOR_BANK_SZ        0x8
55 #define FSMC_NOR_REG_SIZE       0x40
56
57 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
58                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
59                                          (reg))
60
61 /* fsmc controller registers for NAND flash */
62 #define FSMC_PC                 0x00
63         /* pc register definitions */
64         #define FSMC_RESET              BIT(0)
65         #define FSMC_WAITON             BIT(1)
66         #define FSMC_ENABLE             BIT(2)
67         #define FSMC_DEVTYPE_NAND       BIT(3)
68         #define FSMC_DEVWID_16          BIT(4)
69         #define FSMC_ECCEN              BIT(6)
70         #define FSMC_ECCPLEN_256        BIT(7)
71         #define FSMC_TCLR_SHIFT         (9)
72         #define FSMC_TCLR_MASK          (0xF)
73         #define FSMC_TAR_SHIFT          (13)
74         #define FSMC_TAR_MASK           (0xF)
75 #define STS                     0x04
76         /* sts register definitions */
77         #define FSMC_CODE_RDY           BIT(15)
78 #define COMM                    0x08
79         /* comm register definitions */
80         #define FSMC_TSET_SHIFT         0
81         #define FSMC_TSET_MASK          0xFF
82         #define FSMC_TWAIT_SHIFT        8
83         #define FSMC_TWAIT_MASK         0xFF
84         #define FSMC_THOLD_SHIFT        16
85         #define FSMC_THOLD_MASK         0xFF
86         #define FSMC_THIZ_SHIFT         24
87         #define FSMC_THIZ_MASK          0xFF
88 #define ATTRIB                  0x0C
89 #define IOATA                   0x10
90 #define ECC1                    0x14
91 #define ECC2                    0x18
92 #define ECC3                    0x1C
93 #define FSMC_NAND_BANK_SZ       0x20
94
95 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
96
97 /*
98  * According to SPEAr300 Reference Manual (RM0082)
99  *  TOUDEL = 7ns (Output delay from the flip-flops to the board)
100  *  TINDEL = 5ns (Input delay from the board to the flipflop)
101  */
102 #define TOUTDEL 7000
103 #define TINDEL  5000
104
105 struct fsmc_nand_timings {
106         u8 tclr;
107         u8 tar;
108         u8 thiz;
109         u8 thold;
110         u8 twait;
111         u8 tset;
112 };
113
114 enum access_mode {
115         USE_DMA_ACCESS = 1,
116         USE_WORD_ACCESS,
117 };
118
119 /**
120  * struct fsmc_nand_data - structure for FSMC NAND device state
121  *
122  * @base:               Inherit from the nand_controller struct
123  * @pid:                Part ID on the AMBA PrimeCell format
124  * @nand:               Chip related info for a NAND flash.
125  *
126  * @bank:               Bank number for probed device.
127  * @dev:                Parent device
128  * @mode:               Access mode
129  * @clk:                Clock structure for FSMC.
130  *
131  * @read_dma_chan:      DMA channel for read access
132  * @write_dma_chan:     DMA channel for write access to NAND
133  * @dma_access_complete: Completion structure
134  *
135  * @dev_timings:        NAND timings
136  *
137  * @data_pa:            NAND Physical port for Data.
138  * @data_va:            NAND port for Data.
139  * @cmd_va:             NAND port for Command.
140  * @addr_va:            NAND port for Address.
141  * @regs_va:            Registers base address for a given bank.
142  */
143 struct fsmc_nand_data {
144         struct nand_controller  base;
145         u32                     pid;
146         struct nand_chip        nand;
147
148         unsigned int            bank;
149         struct device           *dev;
150         enum access_mode        mode;
151         struct clk              *clk;
152
153         /* DMA related objects */
154         struct dma_chan         *read_dma_chan;
155         struct dma_chan         *write_dma_chan;
156         struct completion       dma_access_complete;
157
158         struct fsmc_nand_timings *dev_timings;
159
160         dma_addr_t              data_pa;
161         void __iomem            *data_va;
162         void __iomem            *cmd_va;
163         void __iomem            *addr_va;
164         void __iomem            *regs_va;
165 };
166
167 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
168                                    struct mtd_oob_region *oobregion)
169 {
170         struct nand_chip *chip = mtd_to_nand(mtd);
171
172         if (section >= chip->ecc.steps)
173                 return -ERANGE;
174
175         oobregion->offset = (section * 16) + 2;
176         oobregion->length = 3;
177
178         return 0;
179 }
180
181 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
182                                     struct mtd_oob_region *oobregion)
183 {
184         struct nand_chip *chip = mtd_to_nand(mtd);
185
186         if (section >= chip->ecc.steps)
187                 return -ERANGE;
188
189         oobregion->offset = (section * 16) + 8;
190
191         if (section < chip->ecc.steps - 1)
192                 oobregion->length = 8;
193         else
194                 oobregion->length = mtd->oobsize - oobregion->offset;
195
196         return 0;
197 }
198
199 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
200         .ecc = fsmc_ecc1_ooblayout_ecc,
201         .free = fsmc_ecc1_ooblayout_free,
202 };
203
204 /*
205  * ECC placement definitions in oobfree type format.
206  * There are 13 bytes of ecc for every 512 byte block and it has to be read
207  * consecutively and immediately after the 512 byte data block for hardware to
208  * generate the error bit offsets in 512 byte data.
209  */
210 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
211                                    struct mtd_oob_region *oobregion)
212 {
213         struct nand_chip *chip = mtd_to_nand(mtd);
214
215         if (section >= chip->ecc.steps)
216                 return -ERANGE;
217
218         oobregion->length = chip->ecc.bytes;
219
220         if (!section && mtd->writesize <= 512)
221                 oobregion->offset = 0;
222         else
223                 oobregion->offset = (section * 16) + 2;
224
225         return 0;
226 }
227
228 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
229                                     struct mtd_oob_region *oobregion)
230 {
231         struct nand_chip *chip = mtd_to_nand(mtd);
232
233         if (section >= chip->ecc.steps)
234                 return -ERANGE;
235
236         oobregion->offset = (section * 16) + 15;
237
238         if (section < chip->ecc.steps - 1)
239                 oobregion->length = 3;
240         else
241                 oobregion->length = mtd->oobsize - oobregion->offset;
242
243         return 0;
244 }
245
246 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
247         .ecc = fsmc_ecc4_ooblayout_ecc,
248         .free = fsmc_ecc4_ooblayout_free,
249 };
250
251 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
252 {
253         return container_of(chip, struct fsmc_nand_data, nand);
254 }
255
256 /*
257  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
258  *
259  * This routine initializes timing parameters related to NAND memory access in
260  * FSMC registers
261  */
262 static void fsmc_nand_setup(struct fsmc_nand_data *host,
263                             struct fsmc_nand_timings *tims)
264 {
265         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
266         u32 tclr, tar, thiz, thold, twait, tset;
267
268         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
269         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
270         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
271         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
272         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
273         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
274
275         if (host->nand.options & NAND_BUSWIDTH_16)
276                 value |= FSMC_DEVWID_16;
277
278         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
279         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
280         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
281 }
282
283 static int fsmc_calc_timings(struct fsmc_nand_data *host,
284                              const struct nand_sdr_timings *sdrt,
285                              struct fsmc_nand_timings *tims)
286 {
287         unsigned long hclk = clk_get_rate(host->clk);
288         unsigned long hclkn = NSEC_PER_SEC / hclk;
289         u32 thiz, thold, twait, tset, twait_min;
290
291         if (sdrt->tRC_min < 30000)
292                 return -EOPNOTSUPP;
293
294         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
295         if (tims->tar > FSMC_TAR_MASK)
296                 tims->tar = FSMC_TAR_MASK;
297         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
298         if (tims->tclr > FSMC_TCLR_MASK)
299                 tims->tclr = FSMC_TCLR_MASK;
300
301         thiz = sdrt->tCS_min - sdrt->tWP_min;
302         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
303
304         thold = sdrt->tDH_min;
305         if (thold < sdrt->tCH_min)
306                 thold = sdrt->tCH_min;
307         if (thold < sdrt->tCLH_min)
308                 thold = sdrt->tCLH_min;
309         if (thold < sdrt->tWH_min)
310                 thold = sdrt->tWH_min;
311         if (thold < sdrt->tALH_min)
312                 thold = sdrt->tALH_min;
313         if (thold < sdrt->tREH_min)
314                 thold = sdrt->tREH_min;
315         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
316         if (tims->thold == 0)
317                 tims->thold = 1;
318         else if (tims->thold > FSMC_THOLD_MASK)
319                 tims->thold = FSMC_THOLD_MASK;
320
321         tset = max(sdrt->tCS_min - sdrt->tWP_min,
322                    sdrt->tCEA_max - sdrt->tREA_max);
323         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
324         if (tims->tset == 0)
325                 tims->tset = 1;
326         else if (tims->tset > FSMC_TSET_MASK)
327                 tims->tset = FSMC_TSET_MASK;
328
329         /*
330          * According to SPEAr300 Reference Manual (RM0082) which gives more
331          * information related to FSMSC timings than the SPEAr600 one (RM0305),
332          *   twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL
333          */
334         twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000)
335                     + TOUTDEL + TINDEL;
336         twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min);
337
338         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
339         if (tims->twait == 0)
340                 tims->twait = 1;
341         else if (tims->twait > FSMC_TWAIT_MASK)
342                 tims->twait = FSMC_TWAIT_MASK;
343
344         return 0;
345 }
346
347 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
348                                 const struct nand_interface_config *conf)
349 {
350         struct fsmc_nand_data *host = nand_to_fsmc(nand);
351         struct fsmc_nand_timings tims;
352         const struct nand_sdr_timings *sdrt;
353         int ret;
354
355         sdrt = nand_get_sdr_timings(conf);
356         if (IS_ERR(sdrt))
357                 return PTR_ERR(sdrt);
358
359         ret = fsmc_calc_timings(host, sdrt, &tims);
360         if (ret)
361                 return ret;
362
363         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
364                 return 0;
365
366         fsmc_nand_setup(host, &tims);
367
368         return 0;
369 }
370
371 /*
372  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
373  */
374 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
375 {
376         struct fsmc_nand_data *host = nand_to_fsmc(chip);
377
378         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
379                        host->regs_va + FSMC_PC);
380         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
381                        host->regs_va + FSMC_PC);
382         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
383                        host->regs_va + FSMC_PC);
384 }
385
386 /*
387  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
388  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
389  * max of 8-bits)
390  */
391 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
392                                 u8 *ecc)
393 {
394         struct fsmc_nand_data *host = nand_to_fsmc(chip);
395         u32 ecc_tmp;
396         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
397
398         do {
399                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
400                         break;
401
402                 cond_resched();
403         } while (!time_after_eq(jiffies, deadline));
404
405         if (time_after_eq(jiffies, deadline)) {
406                 dev_err(host->dev, "calculate ecc timed out\n");
407                 return -ETIMEDOUT;
408         }
409
410         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
411         ecc[0] = ecc_tmp;
412         ecc[1] = ecc_tmp >> 8;
413         ecc[2] = ecc_tmp >> 16;
414         ecc[3] = ecc_tmp >> 24;
415
416         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
417         ecc[4] = ecc_tmp;
418         ecc[5] = ecc_tmp >> 8;
419         ecc[6] = ecc_tmp >> 16;
420         ecc[7] = ecc_tmp >> 24;
421
422         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
423         ecc[8] = ecc_tmp;
424         ecc[9] = ecc_tmp >> 8;
425         ecc[10] = ecc_tmp >> 16;
426         ecc[11] = ecc_tmp >> 24;
427
428         ecc_tmp = readl_relaxed(host->regs_va + STS);
429         ecc[12] = ecc_tmp >> 16;
430
431         return 0;
432 }
433
434 /*
435  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
436  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
437  * max of 1-bit)
438  */
439 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
440                                 u8 *ecc)
441 {
442         struct fsmc_nand_data *host = nand_to_fsmc(chip);
443         u32 ecc_tmp;
444
445         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
446         ecc[0] = ecc_tmp;
447         ecc[1] = ecc_tmp >> 8;
448         ecc[2] = ecc_tmp >> 16;
449
450         return 0;
451 }
452
453 /* Count the number of 0's in buff upto a max of max_bits */
454 static int count_written_bits(u8 *buff, int size, int max_bits)
455 {
456         int k, written_bits = 0;
457
458         for (k = 0; k < size; k++) {
459                 written_bits += hweight8(~buff[k]);
460                 if (written_bits > max_bits)
461                         break;
462         }
463
464         return written_bits;
465 }
466
467 static void dma_complete(void *param)
468 {
469         struct fsmc_nand_data *host = param;
470
471         complete(&host->dma_access_complete);
472 }
473
474 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
475                     enum dma_data_direction direction)
476 {
477         struct dma_chan *chan;
478         struct dma_device *dma_dev;
479         struct dma_async_tx_descriptor *tx;
480         dma_addr_t dma_dst, dma_src, dma_addr;
481         dma_cookie_t cookie;
482         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
483         int ret;
484         unsigned long time_left;
485
486         if (direction == DMA_TO_DEVICE)
487                 chan = host->write_dma_chan;
488         else if (direction == DMA_FROM_DEVICE)
489                 chan = host->read_dma_chan;
490         else
491                 return -EINVAL;
492
493         dma_dev = chan->device;
494         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
495
496         if (direction == DMA_TO_DEVICE) {
497                 dma_src = dma_addr;
498                 dma_dst = host->data_pa;
499         } else {
500                 dma_src = host->data_pa;
501                 dma_dst = dma_addr;
502         }
503
504         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
505                         len, flags);
506         if (!tx) {
507                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
508                 ret = -EIO;
509                 goto unmap_dma;
510         }
511
512         tx->callback = dma_complete;
513         tx->callback_param = host;
514         cookie = tx->tx_submit(tx);
515
516         ret = dma_submit_error(cookie);
517         if (ret) {
518                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
519                 goto unmap_dma;
520         }
521
522         dma_async_issue_pending(chan);
523
524         time_left =
525         wait_for_completion_timeout(&host->dma_access_complete,
526                                     msecs_to_jiffies(3000));
527         if (time_left == 0) {
528                 dmaengine_terminate_all(chan);
529                 dev_err(host->dev, "wait_for_completion_timeout\n");
530                 ret = -ETIMEDOUT;
531                 goto unmap_dma;
532         }
533
534         ret = 0;
535
536 unmap_dma:
537         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
538
539         return ret;
540 }
541
542 /*
543  * fsmc_write_buf - write buffer to chip
544  * @host:       FSMC NAND controller
545  * @buf:        data buffer
546  * @len:        number of bytes to write
547  */
548 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
549                            int len)
550 {
551         int i;
552
553         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
554             IS_ALIGNED(len, sizeof(u32))) {
555                 u32 *p = (u32 *)buf;
556
557                 len = len >> 2;
558                 for (i = 0; i < len; i++)
559                         writel_relaxed(p[i], host->data_va);
560         } else {
561                 for (i = 0; i < len; i++)
562                         writeb_relaxed(buf[i], host->data_va);
563         }
564 }
565
566 /*
567  * fsmc_read_buf - read chip data into buffer
568  * @host:       FSMC NAND controller
569  * @buf:        buffer to store date
570  * @len:        number of bytes to read
571  */
572 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
573 {
574         int i;
575
576         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
577             IS_ALIGNED(len, sizeof(u32))) {
578                 u32 *p = (u32 *)buf;
579
580                 len = len >> 2;
581                 for (i = 0; i < len; i++)
582                         p[i] = readl_relaxed(host->data_va);
583         } else {
584                 for (i = 0; i < len; i++)
585                         buf[i] = readb_relaxed(host->data_va);
586         }
587 }
588
589 /*
590  * fsmc_read_buf_dma - read chip data into buffer
591  * @host:       FSMC NAND controller
592  * @buf:        buffer to store date
593  * @len:        number of bytes to read
594  */
595 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
596                               int len)
597 {
598         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
599 }
600
601 /*
602  * fsmc_write_buf_dma - write buffer to chip
603  * @host:       FSMC NAND controller
604  * @buf:        data buffer
605  * @len:        number of bytes to write
606  */
607 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
608                                int len)
609 {
610         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
611 }
612
613 /*
614  * fsmc_exec_op - hook called by the core to execute NAND operations
615  *
616  * This controller is simple enough and thus does not need to use the parser
617  * provided by the core, instead, handle every situation here.
618  */
619 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
620                         bool check_only)
621 {
622         struct fsmc_nand_data *host = nand_to_fsmc(chip);
623         const struct nand_op_instr *instr = NULL;
624         int ret = 0;
625         unsigned int op_id;
626         int i;
627
628         if (check_only)
629                 return 0;
630
631         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
632
633         for (op_id = 0; op_id < op->ninstrs; op_id++) {
634                 instr = &op->instrs[op_id];
635
636                 nand_op_trace("  ", instr);
637
638                 switch (instr->type) {
639                 case NAND_OP_CMD_INSTR:
640                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
641                         break;
642
643                 case NAND_OP_ADDR_INSTR:
644                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
645                                 writeb_relaxed(instr->ctx.addr.addrs[i],
646                                                host->addr_va);
647                         break;
648
649                 case NAND_OP_DATA_IN_INSTR:
650                         if (host->mode == USE_DMA_ACCESS)
651                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
652                                                   instr->ctx.data.len);
653                         else
654                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
655                                               instr->ctx.data.len);
656                         break;
657
658                 case NAND_OP_DATA_OUT_INSTR:
659                         if (host->mode == USE_DMA_ACCESS)
660                                 fsmc_write_buf_dma(host,
661                                                    instr->ctx.data.buf.out,
662                                                    instr->ctx.data.len);
663                         else
664                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
665                                                instr->ctx.data.len);
666                         break;
667
668                 case NAND_OP_WAITRDY_INSTR:
669                         ret = nand_soft_waitrdy(chip,
670                                                 instr->ctx.waitrdy.timeout_ms);
671                         break;
672                 }
673
674                 if (instr->delay_ns)
675                         ndelay(instr->delay_ns);
676         }
677
678         return ret;
679 }
680
681 /*
682  * fsmc_read_page_hwecc
683  * @chip:       nand chip info structure
684  * @buf:        buffer to store read data
685  * @oob_required:       caller expects OOB data read to chip->oob_poi
686  * @page:       page number to read
687  *
688  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
689  * performed in a strict sequence as follows:
690  * data(512 byte) -> ecc(13 byte)
691  * After this read, fsmc hardware generates and reports error data bits(up to a
692  * max of 8 bits)
693  */
694 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
695                                 int oob_required, int page)
696 {
697         struct mtd_info *mtd = nand_to_mtd(chip);
698         int i, j, s, stat, eccsize = chip->ecc.size;
699         int eccbytes = chip->ecc.bytes;
700         int eccsteps = chip->ecc.steps;
701         u8 *p = buf;
702         u8 *ecc_calc = chip->ecc.calc_buf;
703         u8 *ecc_code = chip->ecc.code_buf;
704         int off, len, ret, group = 0;
705         /*
706          * ecc_oob is intentionally taken as u16. In 16bit devices, we
707          * end up reading 14 bytes (7 words) from oob. The local array is
708          * to maintain word alignment
709          */
710         u16 ecc_oob[7];
711         u8 *oob = (u8 *)&ecc_oob[0];
712         unsigned int max_bitflips = 0;
713
714         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
715                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
716                 chip->ecc.hwctl(chip, NAND_ECC_READ);
717                 ret = nand_read_data_op(chip, p, eccsize, false, false);
718                 if (ret)
719                         return ret;
720
721                 for (j = 0; j < eccbytes;) {
722                         struct mtd_oob_region oobregion;
723
724                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
725                         if (ret)
726                                 return ret;
727
728                         off = oobregion.offset;
729                         len = oobregion.length;
730
731                         /*
732                          * length is intentionally kept a higher multiple of 2
733                          * to read at least 13 bytes even in case of 16 bit NAND
734                          * devices
735                          */
736                         if (chip->options & NAND_BUSWIDTH_16)
737                                 len = roundup(len, 2);
738
739                         nand_read_oob_op(chip, page, off, oob + j, len);
740                         j += len;
741                 }
742
743                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
744                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
745
746                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
747                 if (stat < 0) {
748                         mtd->ecc_stats.failed++;
749                 } else {
750                         mtd->ecc_stats.corrected += stat;
751                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
752                 }
753         }
754
755         return max_bitflips;
756 }
757
758 /*
759  * fsmc_bch8_correct_data
760  * @mtd:        mtd info structure
761  * @dat:        buffer of read data
762  * @read_ecc:   ecc read from device spare area
763  * @calc_ecc:   ecc calculated from read data
764  *
765  * calc_ecc is a 104 bit information containing maximum of 8 error
766  * offset information of 13 bits each in 512 bytes of read data.
767  */
768 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
769                                   u8 *read_ecc, u8 *calc_ecc)
770 {
771         struct fsmc_nand_data *host = nand_to_fsmc(chip);
772         u32 err_idx[8];
773         u32 num_err, i;
774         u32 ecc1, ecc2, ecc3, ecc4;
775
776         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
777
778         /* no bit flipping */
779         if (likely(num_err == 0))
780                 return 0;
781
782         /* too many errors */
783         if (unlikely(num_err > 8)) {
784                 /*
785                  * This is a temporary erase check. A newly erased page read
786                  * would result in an ecc error because the oob data is also
787                  * erased to FF and the calculated ecc for an FF data is not
788                  * FF..FF.
789                  * This is a workaround to skip performing correction in case
790                  * data is FF..FF
791                  *
792                  * Logic:
793                  * For every page, each bit written as 0 is counted until these
794                  * number of bits are greater than 8 (the maximum correction
795                  * capability of FSMC for each 512 + 13 bytes)
796                  */
797
798                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
799                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
800
801                 if ((bits_ecc + bits_data) <= 8) {
802                         if (bits_data)
803                                 memset(dat, 0xff, chip->ecc.size);
804                         return bits_data;
805                 }
806
807                 return -EBADMSG;
808         }
809
810         /*
811          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
812          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
813          *
814          * calc_ecc is a 104 bit information containing maximum of 8 error
815          * offset information of 13 bits each. calc_ecc is copied into a
816          * u64 array and error offset indexes are populated in err_idx
817          * array
818          */
819         ecc1 = readl_relaxed(host->regs_va + ECC1);
820         ecc2 = readl_relaxed(host->regs_va + ECC2);
821         ecc3 = readl_relaxed(host->regs_va + ECC3);
822         ecc4 = readl_relaxed(host->regs_va + STS);
823
824         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
825         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
826         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
827         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
828         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
829         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
830         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
831         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
832
833         i = 0;
834         while (num_err--) {
835                 err_idx[i] ^= 3;
836
837                 if (err_idx[i] < chip->ecc.size * 8) {
838                         int err = err_idx[i];
839
840                         dat[err >> 3] ^= BIT(err & 7);
841                         i++;
842                 }
843         }
844         return i;
845 }
846
847 static bool filter(struct dma_chan *chan, void *slave)
848 {
849         chan->private = slave;
850         return true;
851 }
852
853 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
854                                      struct fsmc_nand_data *host,
855                                      struct nand_chip *nand)
856 {
857         struct device_node *np = pdev->dev.of_node;
858         u32 val;
859         int ret;
860
861         nand->options = 0;
862
863         if (!of_property_read_u32(np, "bank-width", &val)) {
864                 if (val == 2) {
865                         nand->options |= NAND_BUSWIDTH_16;
866                 } else if (val != 1) {
867                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
868                         return -EINVAL;
869                 }
870         }
871
872         if (of_get_property(np, "nand-skip-bbtscan", NULL))
873                 nand->options |= NAND_SKIP_BBTSCAN;
874
875         host->dev_timings = devm_kzalloc(&pdev->dev,
876                                          sizeof(*host->dev_timings),
877                                          GFP_KERNEL);
878         if (!host->dev_timings)
879                 return -ENOMEM;
880
881         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
882                                         sizeof(*host->dev_timings));
883         if (ret)
884                 host->dev_timings = NULL;
885
886         /* Set default NAND bank to 0 */
887         host->bank = 0;
888         if (!of_property_read_u32(np, "bank", &val)) {
889                 if (val > 3) {
890                         dev_err(&pdev->dev, "invalid bank %u\n", val);
891                         return -EINVAL;
892                 }
893                 host->bank = val;
894         }
895         return 0;
896 }
897
898 static int fsmc_nand_attach_chip(struct nand_chip *nand)
899 {
900         struct mtd_info *mtd = nand_to_mtd(nand);
901         struct fsmc_nand_data *host = nand_to_fsmc(nand);
902
903         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
904                 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
905
906         if (!nand->ecc.size)
907                 nand->ecc.size = 512;
908
909         if (AMBA_REV_BITS(host->pid) >= 8) {
910                 nand->ecc.read_page = fsmc_read_page_hwecc;
911                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
912                 nand->ecc.correct = fsmc_bch8_correct_data;
913                 nand->ecc.bytes = 13;
914                 nand->ecc.strength = 8;
915         }
916
917         if (AMBA_REV_BITS(host->pid) >= 8) {
918                 switch (mtd->oobsize) {
919                 case 16:
920                 case 64:
921                 case 128:
922                 case 224:
923                 case 256:
924                         break;
925                 default:
926                         dev_warn(host->dev,
927                                  "No oob scheme defined for oobsize %d\n",
928                                  mtd->oobsize);
929                         return -EINVAL;
930                 }
931
932                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
933
934                 return 0;
935         }
936
937         switch (nand->ecc.engine_type) {
938         case NAND_ECC_ENGINE_TYPE_ON_HOST:
939                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
940                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
941                 nand->ecc.correct = nand_correct_data;
942                 nand->ecc.hwctl = fsmc_enable_hwecc;
943                 nand->ecc.bytes = 3;
944                 nand->ecc.strength = 1;
945                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
946                 break;
947
948         case NAND_ECC_ENGINE_TYPE_SOFT:
949                 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
950                         dev_info(host->dev,
951                                  "Using 4-bit SW BCH ECC scheme\n");
952                         break;
953                 }
954
955         case NAND_ECC_ENGINE_TYPE_ON_DIE:
956                 break;
957
958         default:
959                 dev_err(host->dev, "Unsupported ECC mode!\n");
960                 return -ENOTSUPP;
961         }
962
963         /*
964          * Don't set layout for BCH4 SW ECC. This will be
965          * generated later in nand_bch_init() later.
966          */
967         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
968                 switch (mtd->oobsize) {
969                 case 16:
970                 case 64:
971                 case 128:
972                         mtd_set_ooblayout(mtd,
973                                           &fsmc_ecc1_ooblayout_ops);
974                         break;
975                 default:
976                         dev_warn(host->dev,
977                                  "No oob scheme defined for oobsize %d\n",
978                                  mtd->oobsize);
979                         return -EINVAL;
980                 }
981         }
982
983         return 0;
984 }
985
986 static const struct nand_controller_ops fsmc_nand_controller_ops = {
987         .attach_chip = fsmc_nand_attach_chip,
988         .exec_op = fsmc_exec_op,
989         .setup_interface = fsmc_setup_interface,
990 };
991
992 /**
993  * fsmc_nand_disable() - Disables the NAND bank
994  * @host: The instance to disable
995  */
996 static void fsmc_nand_disable(struct fsmc_nand_data *host)
997 {
998         u32 val;
999
1000         val = readl(host->regs_va + FSMC_PC);
1001         val &= ~FSMC_ENABLE;
1002         writel(val, host->regs_va + FSMC_PC);
1003 }
1004
1005 /*
1006  * fsmc_nand_probe - Probe function
1007  * @pdev:       platform device structure
1008  */
1009 static int __init fsmc_nand_probe(struct platform_device *pdev)
1010 {
1011         struct fsmc_nand_data *host;
1012         struct mtd_info *mtd;
1013         struct nand_chip *nand;
1014         struct resource *res;
1015         void __iomem *base;
1016         dma_cap_mask_t mask;
1017         int ret = 0;
1018         u32 pid;
1019         int i;
1020
1021         /* Allocate memory for the device structure (and zero it) */
1022         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1023         if (!host)
1024                 return -ENOMEM;
1025
1026         nand = &host->nand;
1027
1028         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1029         if (ret)
1030                 return ret;
1031
1032         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1033         host->data_va = devm_ioremap_resource(&pdev->dev, res);
1034         if (IS_ERR(host->data_va))
1035                 return PTR_ERR(host->data_va);
1036
1037         host->data_pa = (dma_addr_t)res->start;
1038
1039         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1040         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1041         if (IS_ERR(host->addr_va))
1042                 return PTR_ERR(host->addr_va);
1043
1044         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1045         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1046         if (IS_ERR(host->cmd_va))
1047                 return PTR_ERR(host->cmd_va);
1048
1049         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1050         base = devm_ioremap_resource(&pdev->dev, res);
1051         if (IS_ERR(base))
1052                 return PTR_ERR(base);
1053
1054         host->regs_va = base + FSMC_NOR_REG_SIZE +
1055                 (host->bank * FSMC_NAND_BANK_SZ);
1056
1057         host->clk = devm_clk_get(&pdev->dev, NULL);
1058         if (IS_ERR(host->clk)) {
1059                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1060                 return PTR_ERR(host->clk);
1061         }
1062
1063         ret = clk_prepare_enable(host->clk);
1064         if (ret)
1065                 return ret;
1066
1067         /*
1068          * This device ID is actually a common AMBA ID as used on the
1069          * AMBA PrimeCell bus. However it is not a PrimeCell.
1070          */
1071         for (pid = 0, i = 0; i < 4; i++)
1072                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1073                         255) << (i * 8);
1074
1075         host->pid = pid;
1076
1077         dev_info(&pdev->dev,
1078                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1079                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1080                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1081
1082         host->dev = &pdev->dev;
1083
1084         if (host->mode == USE_DMA_ACCESS)
1085                 init_completion(&host->dma_access_complete);
1086
1087         /* Link all private pointers */
1088         mtd = nand_to_mtd(&host->nand);
1089         nand_set_flash_node(nand, pdev->dev.of_node);
1090
1091         mtd->dev.parent = &pdev->dev;
1092
1093         nand->badblockbits = 7;
1094
1095         if (host->mode == USE_DMA_ACCESS) {
1096                 dma_cap_zero(mask);
1097                 dma_cap_set(DMA_MEMCPY, mask);
1098                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1099                 if (!host->read_dma_chan) {
1100                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1101                         ret = -ENODEV;
1102                         goto disable_clk;
1103                 }
1104                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1105                 if (!host->write_dma_chan) {
1106                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1107                         ret = -ENODEV;
1108                         goto release_dma_read_chan;
1109                 }
1110         }
1111
1112         if (host->dev_timings) {
1113                 fsmc_nand_setup(host, host->dev_timings);
1114                 nand->options |= NAND_KEEP_TIMINGS;
1115         }
1116
1117         nand_controller_init(&host->base);
1118         host->base.ops = &fsmc_nand_controller_ops;
1119         nand->controller = &host->base;
1120
1121         /*
1122          * Scan to find existence of the device
1123          */
1124         ret = nand_scan(nand, 1);
1125         if (ret)
1126                 goto release_dma_write_chan;
1127
1128         mtd->name = "nand";
1129         ret = mtd_device_register(mtd, NULL, 0);
1130         if (ret)
1131                 goto cleanup_nand;
1132
1133         platform_set_drvdata(pdev, host);
1134         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1135
1136         return 0;
1137
1138 cleanup_nand:
1139         nand_cleanup(nand);
1140 release_dma_write_chan:
1141         if (host->mode == USE_DMA_ACCESS)
1142                 dma_release_channel(host->write_dma_chan);
1143 release_dma_read_chan:
1144         if (host->mode == USE_DMA_ACCESS)
1145                 dma_release_channel(host->read_dma_chan);
1146 disable_clk:
1147         fsmc_nand_disable(host);
1148         clk_disable_unprepare(host->clk);
1149
1150         return ret;
1151 }
1152
1153 /*
1154  * Clean up routine
1155  */
1156 static int fsmc_nand_remove(struct platform_device *pdev)
1157 {
1158         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1159
1160         if (host) {
1161                 struct nand_chip *chip = &host->nand;
1162                 int ret;
1163
1164                 ret = mtd_device_unregister(nand_to_mtd(chip));
1165                 WARN_ON(ret);
1166                 nand_cleanup(chip);
1167                 fsmc_nand_disable(host);
1168
1169                 if (host->mode == USE_DMA_ACCESS) {
1170                         dma_release_channel(host->write_dma_chan);
1171                         dma_release_channel(host->read_dma_chan);
1172                 }
1173                 clk_disable_unprepare(host->clk);
1174         }
1175
1176         return 0;
1177 }
1178
1179 #ifdef CONFIG_PM_SLEEP
1180 static int fsmc_nand_suspend(struct device *dev)
1181 {
1182         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1183
1184         if (host)
1185                 clk_disable_unprepare(host->clk);
1186
1187         return 0;
1188 }
1189
1190 static int fsmc_nand_resume(struct device *dev)
1191 {
1192         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1193         int ret;
1194
1195         if (host) {
1196                 ret = clk_prepare_enable(host->clk);
1197                 if (ret) {
1198                         dev_err(dev, "failed to enable clk\n");
1199                         return ret;
1200                 }
1201                 if (host->dev_timings)
1202                         fsmc_nand_setup(host, host->dev_timings);
1203                 nand_reset(&host->nand, 0);
1204         }
1205
1206         return 0;
1207 }
1208 #endif
1209
1210 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1211
1212 static const struct of_device_id fsmc_nand_id_table[] = {
1213         { .compatible = "st,spear600-fsmc-nand" },
1214         { .compatible = "stericsson,fsmc-nand" },
1215         {}
1216 };
1217 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1218
1219 static struct platform_driver fsmc_nand_driver = {
1220         .remove = fsmc_nand_remove,
1221         .driver = {
1222                 .name = "fsmc-nand",
1223                 .of_match_table = fsmc_nand_id_table,
1224                 .pm = &fsmc_nand_pm_ops,
1225         },
1226 };
1227
1228 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1229
1230 MODULE_LICENSE("GPL v2");
1231 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1232 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");