GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / davinci_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4  *
5  * Copyright © 2006 Texas Instruments.
6  *
7  * Port to 2.6.23 Copyright © 2008 by:
8  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
9  *   Troy Kisky <troy.kisky@boundarydevices.com>
10  *   Dirk Behme <Dirk.Behme@gmail.com>
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28  * This is a device driver for the NAND flash controller found on the
29  * various DaVinci family chips.  It handles up to four SoC chipselects,
30  * and some flavors of secondary chipselect (e.g. based on A12) as used
31  * with multichip packages.
32  *
33  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34  * available on chips like the DM355 and OMAP-L137 and needed with the
35  * more error-prone MLC NAND chips.
36  *
37  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38  * outputs in a "wire-AND" configuration, with no per-chip signals.
39  */
40 struct davinci_nand_info {
41         struct nand_controller  controller;
42         struct nand_chip        chip;
43
44         struct platform_device  *pdev;
45
46         bool                    is_readmode;
47
48         void __iomem            *base;
49         void __iomem            *vaddr;
50
51         void __iomem            *current_cs;
52
53         uint32_t                mask_chipsel;
54         uint32_t                mask_ale;
55         uint32_t                mask_cle;
56
57         uint32_t                core_chipsel;
58
59         struct davinci_aemif_timing     *timing;
60 };
61
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
64
65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66 {
67         return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68 }
69
70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71                 int offset)
72 {
73         return __raw_readl(info->base + offset);
74 }
75
76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77                 int offset, unsigned long value)
78 {
79         __raw_writel(value, info->base + offset);
80 }
81
82 /*----------------------------------------------------------------------*/
83
84 /*
85  * 1-bit hardware ECC ... context maintained for each core chipselect
86  */
87
88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89 {
90         struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92         return davinci_nand_readl(info, NANDF1ECC_OFFSET
93                         + 4 * info->core_chipsel);
94 }
95
96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 {
98         struct davinci_nand_info *info;
99         uint32_t nandcfr;
100         unsigned long flags;
101
102         info = to_davinci_nand(nand_to_mtd(chip));
103
104         /* Reset ECC hardware */
105         nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107         spin_lock_irqsave(&davinci_nand_lock, flags);
108
109         /* Restart ECC hardware */
110         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111         nandcfr |= BIT(8 + info->core_chipsel);
112         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114         spin_unlock_irqrestore(&davinci_nand_lock, flags);
115 }
116
117 /*
118  * Read hardware ECC value and pack into three bytes
119  */
120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121                                        const u_char *dat, u_char *ecc_code)
122 {
123         unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126         /* invert so that erased block ecc is correct */
127         ecc24 = ~ecc24;
128         ecc_code[0] = (u_char)(ecc24);
129         ecc_code[1] = (u_char)(ecc24 >> 8);
130         ecc_code[2] = (u_char)(ecc24 >> 16);
131
132         return 0;
133 }
134
135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136                                      u_char *read_ecc, u_char *calc_ecc)
137 {
138         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139                                           (read_ecc[2] << 16);
140         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141                                           (calc_ecc[2] << 16);
142         uint32_t diff = eccCalc ^ eccNand;
143
144         if (diff) {
145                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146                         /* Correctable error */
147                         if ((diff >> (12 + 3)) < chip->ecc.size) {
148                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149                                 return 1;
150                         } else {
151                                 return -EBADMSG;
152                         }
153                 } else if (!(diff & (diff - 1))) {
154                         /* Single bit ECC error in the ECC itself,
155                          * nothing to fix */
156                         return 1;
157                 } else {
158                         /* Uncorrectable error */
159                         return -EBADMSG;
160                 }
161
162         }
163         return 0;
164 }
165
166 /*----------------------------------------------------------------------*/
167
168 /*
169  * 4-bit hardware ECC ... context maintained over entire AEMIF
170  *
171  * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172  * since that forces use of a problematic "infix OOB" layout.
173  * Among other things, it trashes manufacturer bad block markers.
174  * Also, and specific to this hardware, it ECC-protects the "prepad"
175  * in the OOB ... while having ECC protection for parts of OOB would
176  * seem useful, the current MTD stack sometimes wants to update the
177  * OOB without recomputing ECC.
178  */
179
180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181 {
182         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183         unsigned long flags;
184         u32 val;
185
186         /* Reset ECC hardware */
187         davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189         spin_lock_irqsave(&davinci_nand_lock, flags);
190
191         /* Start 4-bit ECC calculation for read/write */
192         val = davinci_nand_readl(info, NANDFCR_OFFSET);
193         val &= ~(0x03 << 4);
194         val |= (info->core_chipsel << 4) | BIT(12);
195         davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197         info->is_readmode = (mode == NAND_ECC_READ);
198
199         spin_unlock_irqrestore(&davinci_nand_lock, flags);
200 }
201
202 /* Read raw ECC code after writing to NAND. */
203 static void
204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205 {
206         const u32 mask = 0x03ff03ff;
207
208         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212 }
213
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216                                        const u_char *dat, u_char *ecc_code)
217 {
218         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219         u32 raw_ecc[4], *p;
220         unsigned i;
221
222         /* After a read, terminate ECC calculation by a dummy read
223          * of some 4-bit ECC register.  ECC covers everything that
224          * was read; correct() just uses the hardware state, so
225          * ecc_code is not needed.
226          */
227         if (info->is_readmode) {
228                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229                 return 0;
230         }
231
232         /* Pack eight raw 10-bit ecc values into ten bytes, making
233          * two passes which each convert four values (in upper and
234          * lower halves of two 32-bit words) into five bytes.  The
235          * ROM boot loader uses this same packing scheme.
236          */
237         nand_davinci_readecc_4bit(info, raw_ecc);
238         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239                 *ecc_code++ =   p[0]        & 0xff;
240                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
241                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
242                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243                 *ecc_code++ =  (p[1] >> 18) & 0xff;
244         }
245
246         return 0;
247 }
248
249 /* Correct up to 4 bits in data we just read, using state left in the
250  * hardware plus the ecc_code computed when it was first written.
251  */
252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253                                      u_char *ecc_code, u_char *null)
254 {
255         int i;
256         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257         unsigned short ecc10[8];
258         unsigned short *ecc16;
259         u32 syndrome[4];
260         u32 ecc_state;
261         unsigned num_errors, corrected;
262         unsigned long timeo;
263
264         /* Unpack ten bytes into eight 10 bit values.  We know we're
265          * little-endian, and use type punning for less shifting/masking.
266          */
267         if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268                 return -EINVAL;
269         ecc16 = (unsigned short *)ecc_code;
270
271         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
272         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
274         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
275         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
276         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
277         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
278         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
279
280         /* Tell ECC controller about the expected ECC codes. */
281         for (i = 7; i >= 0; i--)
282                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284         /* Allow time for syndrome calculation ... then read it.
285          * A syndrome of all zeroes 0 means no detected errors.
286          */
287         davinci_nand_readl(info, NANDFSR_OFFSET);
288         nand_davinci_readecc_4bit(info, syndrome);
289         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290                 return 0;
291
292         /*
293          * Clear any previous address calculation by doing a dummy read of an
294          * error address register.
295          */
296         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298         /* Start address calculation, and wait for it to complete.
299          * We _could_ start reading more data while this is working,
300          * to speed up the overall page read.
301          */
302         davinci_nand_writel(info, NANDFCR_OFFSET,
303                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305         /*
306          * ECC_STATE field reads 0x3 (Error correction complete) immediately
307          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308          * begin trying to poll for the state, you may fall right out of your
309          * loop without any of the correction calculations having taken place.
310          * The recommendation from the hardware team is to initially delay as
311          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312          * correction state.
313          */
314         timeo = jiffies + usecs_to_jiffies(100);
315         do {
316                 ecc_state = (davinci_nand_readl(info,
317                                 NANDFSR_OFFSET) >> 8) & 0x0f;
318                 cpu_relax();
319         } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321         for (;;) {
322                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324                 switch ((fsr >> 8) & 0x0f) {
325                 case 0:         /* no error, should not happen */
326                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327                         return 0;
328                 case 1:         /* five or more errors detected */
329                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330                         return -EBADMSG;
331                 case 2:         /* error addresses computed */
332                 case 3:
333                         num_errors = 1 + ((fsr >> 16) & 0x03);
334                         goto correct;
335                 default:        /* still working on it */
336                         cpu_relax();
337                         continue;
338                 }
339         }
340
341 correct:
342         /* correct each error */
343         for (i = 0, corrected = 0; i < num_errors; i++) {
344                 int error_address, error_value;
345
346                 if (i > 1) {
347                         error_address = davinci_nand_readl(info,
348                                                 NAND_ERR_ADD2_OFFSET);
349                         error_value = davinci_nand_readl(info,
350                                                 NAND_ERR_ERRVAL2_OFFSET);
351                 } else {
352                         error_address = davinci_nand_readl(info,
353                                                 NAND_ERR_ADD1_OFFSET);
354                         error_value = davinci_nand_readl(info,
355                                                 NAND_ERR_ERRVAL1_OFFSET);
356                 }
357
358                 if (i & 1) {
359                         error_address >>= 16;
360                         error_value >>= 16;
361                 }
362                 error_address &= 0x3ff;
363                 error_address = (512 + 7) - error_address;
364
365                 if (error_address < 512) {
366                         data[error_address] ^= error_value;
367                         corrected++;
368                 }
369         }
370
371         return corrected;
372 }
373
374 /**
375  * nand_davinci_read_page_hwecc_oob_first - Hardware ECC page read with ECC
376  *                                          data read from OOB area
377  * @chip: nand chip info structure
378  * @buf: buffer to store read data
379  * @oob_required: caller requires OOB data read to chip->oob_poi
380  * @page: page number to read
381  *
382  * Hardware ECC for large page chips, which requires the ECC data to be
383  * extracted from the OOB before the actual data is read.
384  */
385 static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
386                                                   uint8_t *buf,
387                                                   int oob_required, int page)
388 {
389         struct mtd_info *mtd = nand_to_mtd(chip);
390         int i, eccsize = chip->ecc.size, ret;
391         int eccbytes = chip->ecc.bytes;
392         int eccsteps = chip->ecc.steps;
393         uint8_t *p = buf;
394         uint8_t *ecc_code = chip->ecc.code_buf;
395         unsigned int max_bitflips = 0;
396
397         /* Read the OOB area first */
398         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
399         if (ret)
400                 return ret;
401
402         /* Move read cursor to start of page */
403         ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
404         if (ret)
405                 return ret;
406
407         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
408                                          chip->ecc.total);
409         if (ret)
410                 return ret;
411
412         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
413                 int stat;
414
415                 chip->ecc.hwctl(chip, NAND_ECC_READ);
416
417                 ret = nand_read_data_op(chip, p, eccsize, false, false);
418                 if (ret)
419                         return ret;
420
421                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
422                 if (stat == -EBADMSG &&
423                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
424                         /* check for empty pages with bitflips */
425                         stat = nand_check_erased_ecc_chunk(p, eccsize,
426                                                            &ecc_code[i],
427                                                            eccbytes, NULL, 0,
428                                                            chip->ecc.strength);
429                 }
430
431                 if (stat < 0) {
432                         mtd->ecc_stats.failed++;
433                 } else {
434                         mtd->ecc_stats.corrected += stat;
435                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
436                 }
437         }
438         return max_bitflips;
439 }
440
441 /*----------------------------------------------------------------------*/
442
443 /* An ECC layout for using 4-bit ECC with small-page flash, storing
444  * ten ECC bytes plus the manufacturer's bad block marker byte, and
445  * and not overlapping the default BBT markers.
446  */
447 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
448                                       struct mtd_oob_region *oobregion)
449 {
450         if (section > 2)
451                 return -ERANGE;
452
453         if (!section) {
454                 oobregion->offset = 0;
455                 oobregion->length = 5;
456         } else if (section == 1) {
457                 oobregion->offset = 6;
458                 oobregion->length = 2;
459         } else {
460                 oobregion->offset = 13;
461                 oobregion->length = 3;
462         }
463
464         return 0;
465 }
466
467 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
468                                        struct mtd_oob_region *oobregion)
469 {
470         if (section > 1)
471                 return -ERANGE;
472
473         if (!section) {
474                 oobregion->offset = 8;
475                 oobregion->length = 5;
476         } else {
477                 oobregion->offset = 16;
478                 oobregion->length = mtd->oobsize - 16;
479         }
480
481         return 0;
482 }
483
484 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
485         .ecc = hwecc4_ooblayout_small_ecc,
486         .free = hwecc4_ooblayout_small_free,
487 };
488
489 #if defined(CONFIG_OF)
490 static const struct of_device_id davinci_nand_of_match[] = {
491         {.compatible = "ti,davinci-nand", },
492         {.compatible = "ti,keystone-nand", },
493         {},
494 };
495 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
496
497 static struct davinci_nand_pdata
498         *nand_davinci_get_pdata(struct platform_device *pdev)
499 {
500         if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
501                 struct davinci_nand_pdata *pdata;
502                 const char *mode;
503                 u32 prop;
504
505                 pdata =  devm_kzalloc(&pdev->dev,
506                                 sizeof(struct davinci_nand_pdata),
507                                 GFP_KERNEL);
508                 pdev->dev.platform_data = pdata;
509                 if (!pdata)
510                         return ERR_PTR(-ENOMEM);
511                 if (!of_property_read_u32(pdev->dev.of_node,
512                         "ti,davinci-chipselect", &prop))
513                         pdata->core_chipsel = prop;
514                 else
515                         return ERR_PTR(-EINVAL);
516
517                 if (!of_property_read_u32(pdev->dev.of_node,
518                         "ti,davinci-mask-ale", &prop))
519                         pdata->mask_ale = prop;
520                 if (!of_property_read_u32(pdev->dev.of_node,
521                         "ti,davinci-mask-cle", &prop))
522                         pdata->mask_cle = prop;
523                 if (!of_property_read_u32(pdev->dev.of_node,
524                         "ti,davinci-mask-chipsel", &prop))
525                         pdata->mask_chipsel = prop;
526                 if (!of_property_read_string(pdev->dev.of_node,
527                         "ti,davinci-ecc-mode", &mode)) {
528                         if (!strncmp("none", mode, 4))
529                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
530                         if (!strncmp("soft", mode, 4))
531                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
532                         if (!strncmp("hw", mode, 2))
533                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
534                 }
535                 if (!of_property_read_u32(pdev->dev.of_node,
536                         "ti,davinci-ecc-bits", &prop))
537                         pdata->ecc_bits = prop;
538
539                 if (!of_property_read_u32(pdev->dev.of_node,
540                         "ti,davinci-nand-buswidth", &prop) && prop == 16)
541                         pdata->options |= NAND_BUSWIDTH_16;
542
543                 if (of_property_read_bool(pdev->dev.of_node,
544                         "ti,davinci-nand-use-bbt"))
545                         pdata->bbt_options = NAND_BBT_USE_FLASH;
546
547                 /*
548                  * Since kernel v4.8, this driver has been fixed to enable
549                  * use of 4-bit hardware ECC with subpages and verified on
550                  * TI's keystone EVMs (K2L, K2HK and K2E).
551                  * However, in the interest of not breaking systems using
552                  * existing UBI partitions, sub-page writes are not being
553                  * (re)enabled. If you want to use subpage writes on Keystone
554                  * platforms (i.e. do not have any existing UBI partitions),
555                  * then use "ti,davinci-nand" as the compatible in your
556                  * device-tree file.
557                  */
558                 if (of_device_is_compatible(pdev->dev.of_node,
559                                             "ti,keystone-nand")) {
560                         pdata->options |= NAND_NO_SUBPAGE_WRITE;
561                 }
562         }
563
564         return dev_get_platdata(&pdev->dev);
565 }
566 #else
567 static struct davinci_nand_pdata
568         *nand_davinci_get_pdata(struct platform_device *pdev)
569 {
570         return dev_get_platdata(&pdev->dev);
571 }
572 #endif
573
574 static int davinci_nand_attach_chip(struct nand_chip *chip)
575 {
576         struct mtd_info *mtd = nand_to_mtd(chip);
577         struct davinci_nand_info *info = to_davinci_nand(mtd);
578         struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
579         int ret = 0;
580
581         if (IS_ERR(pdata))
582                 return PTR_ERR(pdata);
583
584         /* Use board-specific ECC config */
585         info->chip.ecc.engine_type = pdata->engine_type;
586         info->chip.ecc.placement = pdata->ecc_placement;
587
588         switch (info->chip.ecc.engine_type) {
589         case NAND_ECC_ENGINE_TYPE_NONE:
590                 pdata->ecc_bits = 0;
591                 break;
592         case NAND_ECC_ENGINE_TYPE_SOFT:
593                 pdata->ecc_bits = 0;
594                 /*
595                  * This driver expects Hamming based ECC when engine_type is set
596                  * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
597                  * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
598                  * field to davinci_nand_pdata.
599                  */
600                 info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
601                 break;
602         case NAND_ECC_ENGINE_TYPE_ON_HOST:
603                 if (pdata->ecc_bits == 4) {
604                         int chunks = mtd->writesize / 512;
605
606                         if (!chunks || mtd->oobsize < 16) {
607                                 dev_dbg(&info->pdev->dev, "too small\n");
608                                 return -EINVAL;
609                         }
610
611                         /*
612                          * No sanity checks:  CPUs must support this,
613                          * and the chips may not use NAND_BUSWIDTH_16.
614                          */
615
616                         /* No sharing 4-bit hardware between chipselects yet */
617                         spin_lock_irq(&davinci_nand_lock);
618                         if (ecc4_busy)
619                                 ret = -EBUSY;
620                         else
621                                 ecc4_busy = true;
622                         spin_unlock_irq(&davinci_nand_lock);
623
624                         if (ret == -EBUSY)
625                                 return ret;
626
627                         info->chip.ecc.calculate = nand_davinci_calculate_4bit;
628                         info->chip.ecc.correct = nand_davinci_correct_4bit;
629                         info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
630                         info->chip.ecc.bytes = 10;
631                         info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
632                         info->chip.ecc.algo = NAND_ECC_ALGO_BCH;
633
634                         /*
635                          * Update ECC layout if needed ... for 1-bit HW ECC, the
636                          * default is OK, but it allocates 6 bytes when only 3
637                          * are needed (for each 512 bytes). For 4-bit HW ECC,
638                          * the default is not usable: 10 bytes needed, not 6.
639                          *
640                          * For small page chips, preserve the manufacturer's
641                          * badblock marking data ... and make sure a flash BBT
642                          * table marker fits in the free bytes.
643                          */
644                         if (chunks == 1) {
645                                 mtd_set_ooblayout(mtd,
646                                                   &hwecc4_small_ooblayout_ops);
647                         } else if (chunks == 4 || chunks == 8) {
648                                 mtd_set_ooblayout(mtd,
649                                                   nand_get_large_page_ooblayout());
650                                 info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
651                         } else {
652                                 return -EIO;
653                         }
654                 } else {
655                         /* 1bit ecc hamming */
656                         info->chip.ecc.calculate = nand_davinci_calculate_1bit;
657                         info->chip.ecc.correct = nand_davinci_correct_1bit;
658                         info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
659                         info->chip.ecc.bytes = 3;
660                         info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
661                 }
662                 info->chip.ecc.size = 512;
663                 info->chip.ecc.strength = pdata->ecc_bits;
664                 break;
665         default:
666                 return -EINVAL;
667         }
668
669         return ret;
670 }
671
672 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
673                                  unsigned int len, bool force_8bit)
674 {
675         u32 alignment = ((uintptr_t)buf | len) & 3;
676
677         if (force_8bit || (alignment & 1))
678                 ioread8_rep(info->current_cs, buf, len);
679         else if (alignment & 3)
680                 ioread16_rep(info->current_cs, buf, len >> 1);
681         else
682                 ioread32_rep(info->current_cs, buf, len >> 2);
683 }
684
685 static void nand_davinci_data_out(struct davinci_nand_info *info,
686                                   const void *buf, unsigned int len,
687                                   bool force_8bit)
688 {
689         u32 alignment = ((uintptr_t)buf | len) & 3;
690
691         if (force_8bit || (alignment & 1))
692                 iowrite8_rep(info->current_cs, buf, len);
693         else if (alignment & 3)
694                 iowrite16_rep(info->current_cs, buf, len >> 1);
695         else
696                 iowrite32_rep(info->current_cs, buf, len >> 2);
697 }
698
699 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
700                                    const struct nand_op_instr *instr)
701 {
702         unsigned int i, timeout_us;
703         u32 status;
704         int ret;
705
706         switch (instr->type) {
707         case NAND_OP_CMD_INSTR:
708                 iowrite8(instr->ctx.cmd.opcode,
709                          info->current_cs + info->mask_cle);
710                 break;
711
712         case NAND_OP_ADDR_INSTR:
713                 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
714                         iowrite8(instr->ctx.addr.addrs[i],
715                                  info->current_cs + info->mask_ale);
716                 }
717                 break;
718
719         case NAND_OP_DATA_IN_INSTR:
720                 nand_davinci_data_in(info, instr->ctx.data.buf.in,
721                                      instr->ctx.data.len,
722                                      instr->ctx.data.force_8bit);
723                 break;
724
725         case NAND_OP_DATA_OUT_INSTR:
726                 nand_davinci_data_out(info, instr->ctx.data.buf.out,
727                                       instr->ctx.data.len,
728                                       instr->ctx.data.force_8bit);
729                 break;
730
731         case NAND_OP_WAITRDY_INSTR:
732                 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
733                 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
734                                                  status, status & BIT(0), 100,
735                                                  timeout_us);
736                 if (ret)
737                         return ret;
738
739                 break;
740         }
741
742         if (instr->delay_ns)
743                 ndelay(instr->delay_ns);
744
745         return 0;
746 }
747
748 static int davinci_nand_exec_op(struct nand_chip *chip,
749                                 const struct nand_operation *op,
750                                 bool check_only)
751 {
752         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
753         unsigned int i;
754
755         if (check_only)
756                 return 0;
757
758         info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
759
760         for (i = 0; i < op->ninstrs; i++) {
761                 int ret;
762
763                 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
764                 if (ret)
765                         return ret;
766         }
767
768         return 0;
769 }
770
771 static const struct nand_controller_ops davinci_nand_controller_ops = {
772         .attach_chip = davinci_nand_attach_chip,
773         .exec_op = davinci_nand_exec_op,
774 };
775
776 static int nand_davinci_probe(struct platform_device *pdev)
777 {
778         struct davinci_nand_pdata       *pdata;
779         struct davinci_nand_info        *info;
780         struct resource                 *res1;
781         struct resource                 *res2;
782         void __iomem                    *vaddr;
783         void __iomem                    *base;
784         int                             ret;
785         uint32_t                        val;
786         struct mtd_info                 *mtd;
787
788         pdata = nand_davinci_get_pdata(pdev);
789         if (IS_ERR(pdata))
790                 return PTR_ERR(pdata);
791
792         /* insist on board-specific configuration */
793         if (!pdata)
794                 return -ENODEV;
795
796         /* which external chipselect will we be managing? */
797         if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
798                 return -ENODEV;
799
800         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
801         if (!info)
802                 return -ENOMEM;
803
804         platform_set_drvdata(pdev, info);
805
806         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
807         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
808         if (!res1 || !res2) {
809                 dev_err(&pdev->dev, "resource missing\n");
810                 return -EINVAL;
811         }
812
813         vaddr = devm_ioremap_resource(&pdev->dev, res1);
814         if (IS_ERR(vaddr))
815                 return PTR_ERR(vaddr);
816
817         /*
818          * This registers range is used to setup NAND settings. In case with
819          * TI AEMIF driver, the same memory address range is requested already
820          * by AEMIF, so we cannot request it twice, just ioremap.
821          * The AEMIF and NAND drivers not use the same registers in this range.
822          */
823         base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
824         if (!base) {
825                 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
826                 return -EADDRNOTAVAIL;
827         }
828
829         info->pdev              = pdev;
830         info->base              = base;
831         info->vaddr             = vaddr;
832
833         mtd                     = nand_to_mtd(&info->chip);
834         mtd->dev.parent         = &pdev->dev;
835         nand_set_flash_node(&info->chip, pdev->dev.of_node);
836
837         /* options such as NAND_BBT_USE_FLASH */
838         info->chip.bbt_options  = pdata->bbt_options;
839         /* options such as 16-bit widths */
840         info->chip.options      = pdata->options;
841         info->chip.bbt_td       = pdata->bbt_td;
842         info->chip.bbt_md       = pdata->bbt_md;
843         info->timing            = pdata->timing;
844
845         info->current_cs        = info->vaddr;
846         info->core_chipsel      = pdata->core_chipsel;
847         info->mask_chipsel      = pdata->mask_chipsel;
848
849         /* use nandboot-capable ALE/CLE masks by default */
850         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
851         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
852
853         spin_lock_irq(&davinci_nand_lock);
854
855         /* put CSxNAND into NAND mode */
856         val = davinci_nand_readl(info, NANDFCR_OFFSET);
857         val |= BIT(info->core_chipsel);
858         davinci_nand_writel(info, NANDFCR_OFFSET, val);
859
860         spin_unlock_irq(&davinci_nand_lock);
861
862         /* Scan to find existence of the device(s) */
863         nand_controller_init(&info->controller);
864         info->controller.ops = &davinci_nand_controller_ops;
865         info->chip.controller = &info->controller;
866         ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
867         if (ret < 0) {
868                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
869                 return ret;
870         }
871
872         if (pdata->parts)
873                 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
874         else
875                 ret = mtd_device_register(mtd, NULL, 0);
876         if (ret < 0)
877                 goto err_cleanup_nand;
878
879         val = davinci_nand_readl(info, NRCSR_OFFSET);
880         dev_info(&pdev->dev, "controller rev. %d.%d\n",
881                (val >> 8) & 0xff, val & 0xff);
882
883         return 0;
884
885 err_cleanup_nand:
886         nand_cleanup(&info->chip);
887
888         return ret;
889 }
890
891 static int nand_davinci_remove(struct platform_device *pdev)
892 {
893         struct davinci_nand_info *info = platform_get_drvdata(pdev);
894         struct nand_chip *chip = &info->chip;
895         int ret;
896
897         spin_lock_irq(&davinci_nand_lock);
898         if (info->chip.ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
899                 ecc4_busy = false;
900         spin_unlock_irq(&davinci_nand_lock);
901
902         ret = mtd_device_unregister(nand_to_mtd(chip));
903         WARN_ON(ret);
904         nand_cleanup(chip);
905
906         return 0;
907 }
908
909 static struct platform_driver nand_davinci_driver = {
910         .probe          = nand_davinci_probe,
911         .remove         = nand_davinci_remove,
912         .driver         = {
913                 .name   = "davinci_nand",
914                 .of_match_table = of_match_ptr(davinci_nand_of_match),
915         },
916 };
917 MODULE_ALIAS("platform:davinci_nand");
918
919 module_platform_driver(nand_davinci_driver);
920
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Texas Instruments");
923 MODULE_DESCRIPTION("Davinci NAND flash driver");
924