GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / mtd / nand / raw / davinci_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4  *
5  * Copyright © 2006 Texas Instruments.
6  *
7  * Port to 2.6.23 Copyright © 2008 by:
8  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
9  *   Troy Kisky <troy.kisky@boundarydevices.com>
10  *   Dirk Behme <Dirk.Behme@gmail.com>
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28  * This is a device driver for the NAND flash controller found on the
29  * various DaVinci family chips.  It handles up to four SoC chipselects,
30  * and some flavors of secondary chipselect (e.g. based on A12) as used
31  * with multichip packages.
32  *
33  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34  * available on chips like the DM355 and OMAP-L137 and needed with the
35  * more error-prone MLC NAND chips.
36  *
37  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38  * outputs in a "wire-AND" configuration, with no per-chip signals.
39  */
40 struct davinci_nand_info {
41         struct nand_controller  controller;
42         struct nand_chip        chip;
43
44         struct platform_device  *pdev;
45
46         bool                    is_readmode;
47
48         void __iomem            *base;
49         void __iomem            *vaddr;
50
51         void __iomem            *current_cs;
52
53         uint32_t                mask_chipsel;
54         uint32_t                mask_ale;
55         uint32_t                mask_cle;
56
57         uint32_t                core_chipsel;
58
59         struct davinci_aemif_timing     *timing;
60 };
61
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
64
65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66 {
67         return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68 }
69
70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71                 int offset)
72 {
73         return __raw_readl(info->base + offset);
74 }
75
76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77                 int offset, unsigned long value)
78 {
79         __raw_writel(value, info->base + offset);
80 }
81
82 /*----------------------------------------------------------------------*/
83
84 /*
85  * 1-bit hardware ECC ... context maintained for each core chipselect
86  */
87
88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89 {
90         struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92         return davinci_nand_readl(info, NANDF1ECC_OFFSET
93                         + 4 * info->core_chipsel);
94 }
95
96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 {
98         struct davinci_nand_info *info;
99         uint32_t nandcfr;
100         unsigned long flags;
101
102         info = to_davinci_nand(nand_to_mtd(chip));
103
104         /* Reset ECC hardware */
105         nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107         spin_lock_irqsave(&davinci_nand_lock, flags);
108
109         /* Restart ECC hardware */
110         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111         nandcfr |= BIT(8 + info->core_chipsel);
112         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114         spin_unlock_irqrestore(&davinci_nand_lock, flags);
115 }
116
117 /*
118  * Read hardware ECC value and pack into three bytes
119  */
120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121                                        const u_char *dat, u_char *ecc_code)
122 {
123         unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126         /* invert so that erased block ecc is correct */
127         ecc24 = ~ecc24;
128         ecc_code[0] = (u_char)(ecc24);
129         ecc_code[1] = (u_char)(ecc24 >> 8);
130         ecc_code[2] = (u_char)(ecc24 >> 16);
131
132         return 0;
133 }
134
135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136                                      u_char *read_ecc, u_char *calc_ecc)
137 {
138         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139                                           (read_ecc[2] << 16);
140         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141                                           (calc_ecc[2] << 16);
142         uint32_t diff = eccCalc ^ eccNand;
143
144         if (diff) {
145                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146                         /* Correctable error */
147                         if ((diff >> (12 + 3)) < chip->ecc.size) {
148                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149                                 return 1;
150                         } else {
151                                 return -EBADMSG;
152                         }
153                 } else if (!(diff & (diff - 1))) {
154                         /* Single bit ECC error in the ECC itself,
155                          * nothing to fix */
156                         return 1;
157                 } else {
158                         /* Uncorrectable error */
159                         return -EBADMSG;
160                 }
161
162         }
163         return 0;
164 }
165
166 /*----------------------------------------------------------------------*/
167
168 /*
169  * 4-bit hardware ECC ... context maintained over entire AEMIF
170  *
171  * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172  * since that forces use of a problematic "infix OOB" layout.
173  * Among other things, it trashes manufacturer bad block markers.
174  * Also, and specific to this hardware, it ECC-protects the "prepad"
175  * in the OOB ... while having ECC protection for parts of OOB would
176  * seem useful, the current MTD stack sometimes wants to update the
177  * OOB without recomputing ECC.
178  */
179
180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181 {
182         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183         unsigned long flags;
184         u32 val;
185
186         /* Reset ECC hardware */
187         davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189         spin_lock_irqsave(&davinci_nand_lock, flags);
190
191         /* Start 4-bit ECC calculation for read/write */
192         val = davinci_nand_readl(info, NANDFCR_OFFSET);
193         val &= ~(0x03 << 4);
194         val |= (info->core_chipsel << 4) | BIT(12);
195         davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197         info->is_readmode = (mode == NAND_ECC_READ);
198
199         spin_unlock_irqrestore(&davinci_nand_lock, flags);
200 }
201
202 /* Read raw ECC code after writing to NAND. */
203 static void
204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205 {
206         const u32 mask = 0x03ff03ff;
207
208         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212 }
213
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216                                        const u_char *dat, u_char *ecc_code)
217 {
218         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219         u32 raw_ecc[4], *p;
220         unsigned i;
221
222         /* After a read, terminate ECC calculation by a dummy read
223          * of some 4-bit ECC register.  ECC covers everything that
224          * was read; correct() just uses the hardware state, so
225          * ecc_code is not needed.
226          */
227         if (info->is_readmode) {
228                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229                 return 0;
230         }
231
232         /* Pack eight raw 10-bit ecc values into ten bytes, making
233          * two passes which each convert four values (in upper and
234          * lower halves of two 32-bit words) into five bytes.  The
235          * ROM boot loader uses this same packing scheme.
236          */
237         nand_davinci_readecc_4bit(info, raw_ecc);
238         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239                 *ecc_code++ =   p[0]        & 0xff;
240                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
241                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
242                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243                 *ecc_code++ =  (p[1] >> 18) & 0xff;
244         }
245
246         return 0;
247 }
248
249 /* Correct up to 4 bits in data we just read, using state left in the
250  * hardware plus the ecc_code computed when it was first written.
251  */
252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253                                      u_char *ecc_code, u_char *null)
254 {
255         int i;
256         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257         unsigned short ecc10[8];
258         unsigned short *ecc16;
259         u32 syndrome[4];
260         u32 ecc_state;
261         unsigned num_errors, corrected;
262         unsigned long timeo;
263
264         /* Unpack ten bytes into eight 10 bit values.  We know we're
265          * little-endian, and use type punning for less shifting/masking.
266          */
267         if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268                 return -EINVAL;
269         ecc16 = (unsigned short *)ecc_code;
270
271         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
272         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
274         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
275         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
276         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
277         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
278         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
279
280         /* Tell ECC controller about the expected ECC codes. */
281         for (i = 7; i >= 0; i--)
282                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284         /* Allow time for syndrome calculation ... then read it.
285          * A syndrome of all zeroes 0 means no detected errors.
286          */
287         davinci_nand_readl(info, NANDFSR_OFFSET);
288         nand_davinci_readecc_4bit(info, syndrome);
289         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290                 return 0;
291
292         /*
293          * Clear any previous address calculation by doing a dummy read of an
294          * error address register.
295          */
296         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298         /* Start address calculation, and wait for it to complete.
299          * We _could_ start reading more data while this is working,
300          * to speed up the overall page read.
301          */
302         davinci_nand_writel(info, NANDFCR_OFFSET,
303                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305         /*
306          * ECC_STATE field reads 0x3 (Error correction complete) immediately
307          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308          * begin trying to poll for the state, you may fall right out of your
309          * loop without any of the correction calculations having taken place.
310          * The recommendation from the hardware team is to initially delay as
311          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312          * correction state.
313          */
314         timeo = jiffies + usecs_to_jiffies(100);
315         do {
316                 ecc_state = (davinci_nand_readl(info,
317                                 NANDFSR_OFFSET) >> 8) & 0x0f;
318                 cpu_relax();
319         } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321         for (;;) {
322                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324                 switch ((fsr >> 8) & 0x0f) {
325                 case 0:         /* no error, should not happen */
326                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327                         return 0;
328                 case 1:         /* five or more errors detected */
329                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330                         return -EBADMSG;
331                 case 2:         /* error addresses computed */
332                 case 3:
333                         num_errors = 1 + ((fsr >> 16) & 0x03);
334                         goto correct;
335                 default:        /* still working on it */
336                         cpu_relax();
337                         continue;
338                 }
339         }
340
341 correct:
342         /* correct each error */
343         for (i = 0, corrected = 0; i < num_errors; i++) {
344                 int error_address, error_value;
345
346                 if (i > 1) {
347                         error_address = davinci_nand_readl(info,
348                                                 NAND_ERR_ADD2_OFFSET);
349                         error_value = davinci_nand_readl(info,
350                                                 NAND_ERR_ERRVAL2_OFFSET);
351                 } else {
352                         error_address = davinci_nand_readl(info,
353                                                 NAND_ERR_ADD1_OFFSET);
354                         error_value = davinci_nand_readl(info,
355                                                 NAND_ERR_ERRVAL1_OFFSET);
356                 }
357
358                 if (i & 1) {
359                         error_address >>= 16;
360                         error_value >>= 16;
361                 }
362                 error_address &= 0x3ff;
363                 error_address = (512 + 7) - error_address;
364
365                 if (error_address < 512) {
366                         data[error_address] ^= error_value;
367                         corrected++;
368                 }
369         }
370
371         return corrected;
372 }
373
374 /*----------------------------------------------------------------------*/
375
376 /* An ECC layout for using 4-bit ECC with small-page flash, storing
377  * ten ECC bytes plus the manufacturer's bad block marker byte, and
378  * and not overlapping the default BBT markers.
379  */
380 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
381                                       struct mtd_oob_region *oobregion)
382 {
383         if (section > 2)
384                 return -ERANGE;
385
386         if (!section) {
387                 oobregion->offset = 0;
388                 oobregion->length = 5;
389         } else if (section == 1) {
390                 oobregion->offset = 6;
391                 oobregion->length = 2;
392         } else {
393                 oobregion->offset = 13;
394                 oobregion->length = 3;
395         }
396
397         return 0;
398 }
399
400 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
401                                        struct mtd_oob_region *oobregion)
402 {
403         if (section > 1)
404                 return -ERANGE;
405
406         if (!section) {
407                 oobregion->offset = 8;
408                 oobregion->length = 5;
409         } else {
410                 oobregion->offset = 16;
411                 oobregion->length = mtd->oobsize - 16;
412         }
413
414         return 0;
415 }
416
417 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
418         .ecc = hwecc4_ooblayout_small_ecc,
419         .free = hwecc4_ooblayout_small_free,
420 };
421
422 #if defined(CONFIG_OF)
423 static const struct of_device_id davinci_nand_of_match[] = {
424         {.compatible = "ti,davinci-nand", },
425         {.compatible = "ti,keystone-nand", },
426         {},
427 };
428 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
429
430 static struct davinci_nand_pdata
431         *nand_davinci_get_pdata(struct platform_device *pdev)
432 {
433         if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
434                 struct davinci_nand_pdata *pdata;
435                 const char *mode;
436                 u32 prop;
437
438                 pdata =  devm_kzalloc(&pdev->dev,
439                                 sizeof(struct davinci_nand_pdata),
440                                 GFP_KERNEL);
441                 pdev->dev.platform_data = pdata;
442                 if (!pdata)
443                         return ERR_PTR(-ENOMEM);
444                 if (!of_property_read_u32(pdev->dev.of_node,
445                         "ti,davinci-chipselect", &prop))
446                         pdata->core_chipsel = prop;
447                 else
448                         return ERR_PTR(-EINVAL);
449
450                 if (!of_property_read_u32(pdev->dev.of_node,
451                         "ti,davinci-mask-ale", &prop))
452                         pdata->mask_ale = prop;
453                 if (!of_property_read_u32(pdev->dev.of_node,
454                         "ti,davinci-mask-cle", &prop))
455                         pdata->mask_cle = prop;
456                 if (!of_property_read_u32(pdev->dev.of_node,
457                         "ti,davinci-mask-chipsel", &prop))
458                         pdata->mask_chipsel = prop;
459                 if (!of_property_read_string(pdev->dev.of_node,
460                         "ti,davinci-ecc-mode", &mode)) {
461                         if (!strncmp("none", mode, 4))
462                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
463                         if (!strncmp("soft", mode, 4))
464                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
465                         if (!strncmp("hw", mode, 2))
466                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
467                 }
468                 if (!of_property_read_u32(pdev->dev.of_node,
469                         "ti,davinci-ecc-bits", &prop))
470                         pdata->ecc_bits = prop;
471
472                 if (!of_property_read_u32(pdev->dev.of_node,
473                         "ti,davinci-nand-buswidth", &prop) && prop == 16)
474                         pdata->options |= NAND_BUSWIDTH_16;
475
476                 if (of_property_read_bool(pdev->dev.of_node,
477                         "ti,davinci-nand-use-bbt"))
478                         pdata->bbt_options = NAND_BBT_USE_FLASH;
479
480                 /*
481                  * Since kernel v4.8, this driver has been fixed to enable
482                  * use of 4-bit hardware ECC with subpages and verified on
483                  * TI's keystone EVMs (K2L, K2HK and K2E).
484                  * However, in the interest of not breaking systems using
485                  * existing UBI partitions, sub-page writes are not being
486                  * (re)enabled. If you want to use subpage writes on Keystone
487                  * platforms (i.e. do not have any existing UBI partitions),
488                  * then use "ti,davinci-nand" as the compatible in your
489                  * device-tree file.
490                  */
491                 if (of_device_is_compatible(pdev->dev.of_node,
492                                             "ti,keystone-nand")) {
493                         pdata->options |= NAND_NO_SUBPAGE_WRITE;
494                 }
495         }
496
497         return dev_get_platdata(&pdev->dev);
498 }
499 #else
500 static struct davinci_nand_pdata
501         *nand_davinci_get_pdata(struct platform_device *pdev)
502 {
503         return dev_get_platdata(&pdev->dev);
504 }
505 #endif
506
507 static int davinci_nand_attach_chip(struct nand_chip *chip)
508 {
509         struct mtd_info *mtd = nand_to_mtd(chip);
510         struct davinci_nand_info *info = to_davinci_nand(mtd);
511         struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
512         int ret = 0;
513
514         if (IS_ERR(pdata))
515                 return PTR_ERR(pdata);
516
517         /* Use board-specific ECC config */
518         chip->ecc.engine_type = pdata->engine_type;
519         chip->ecc.placement = pdata->ecc_placement;
520
521         switch (chip->ecc.engine_type) {
522         case NAND_ECC_ENGINE_TYPE_NONE:
523                 pdata->ecc_bits = 0;
524                 break;
525         case NAND_ECC_ENGINE_TYPE_SOFT:
526                 pdata->ecc_bits = 0;
527                 /*
528                  * This driver expects Hamming based ECC when engine_type is set
529                  * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
530                  * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
531                  * field to davinci_nand_pdata.
532                  */
533                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
534                 break;
535         case NAND_ECC_ENGINE_TYPE_ON_HOST:
536                 if (pdata->ecc_bits == 4) {
537                         int chunks = mtd->writesize / 512;
538
539                         if (!chunks || mtd->oobsize < 16) {
540                                 dev_dbg(&info->pdev->dev, "too small\n");
541                                 return -EINVAL;
542                         }
543
544                         /*
545                          * No sanity checks:  CPUs must support this,
546                          * and the chips may not use NAND_BUSWIDTH_16.
547                          */
548
549                         /* No sharing 4-bit hardware between chipselects yet */
550                         spin_lock_irq(&davinci_nand_lock);
551                         if (ecc4_busy)
552                                 ret = -EBUSY;
553                         else
554                                 ecc4_busy = true;
555                         spin_unlock_irq(&davinci_nand_lock);
556
557                         if (ret == -EBUSY)
558                                 return ret;
559
560                         chip->ecc.calculate = nand_davinci_calculate_4bit;
561                         chip->ecc.correct = nand_davinci_correct_4bit;
562                         chip->ecc.hwctl = nand_davinci_hwctl_4bit;
563                         chip->ecc.bytes = 10;
564                         chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
565                         chip->ecc.algo = NAND_ECC_ALGO_BCH;
566
567                         /*
568                          * Update ECC layout if needed ... for 1-bit HW ECC, the
569                          * default is OK, but it allocates 6 bytes when only 3
570                          * are needed (for each 512 bytes). For 4-bit HW ECC,
571                          * the default is not usable: 10 bytes needed, not 6.
572                          *
573                          * For small page chips, preserve the manufacturer's
574                          * badblock marking data ... and make sure a flash BBT
575                          * table marker fits in the free bytes.
576                          */
577                         if (chunks == 1) {
578                                 mtd_set_ooblayout(mtd,
579                                                   &hwecc4_small_ooblayout_ops);
580                         } else if (chunks == 4 || chunks == 8) {
581                                 mtd_set_ooblayout(mtd,
582                                                   nand_get_large_page_ooblayout());
583                                 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
584                         } else {
585                                 return -EIO;
586                         }
587                 } else {
588                         /* 1bit ecc hamming */
589                         chip->ecc.calculate = nand_davinci_calculate_1bit;
590                         chip->ecc.correct = nand_davinci_correct_1bit;
591                         chip->ecc.hwctl = nand_davinci_hwctl_1bit;
592                         chip->ecc.bytes = 3;
593                         chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
594                 }
595                 chip->ecc.size = 512;
596                 chip->ecc.strength = pdata->ecc_bits;
597                 break;
598         default:
599                 return -EINVAL;
600         }
601
602         return ret;
603 }
604
605 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
606                                  unsigned int len, bool force_8bit)
607 {
608         u32 alignment = ((uintptr_t)buf | len) & 3;
609
610         if (force_8bit || (alignment & 1))
611                 ioread8_rep(info->current_cs, buf, len);
612         else if (alignment & 3)
613                 ioread16_rep(info->current_cs, buf, len >> 1);
614         else
615                 ioread32_rep(info->current_cs, buf, len >> 2);
616 }
617
618 static void nand_davinci_data_out(struct davinci_nand_info *info,
619                                   const void *buf, unsigned int len,
620                                   bool force_8bit)
621 {
622         u32 alignment = ((uintptr_t)buf | len) & 3;
623
624         if (force_8bit || (alignment & 1))
625                 iowrite8_rep(info->current_cs, buf, len);
626         else if (alignment & 3)
627                 iowrite16_rep(info->current_cs, buf, len >> 1);
628         else
629                 iowrite32_rep(info->current_cs, buf, len >> 2);
630 }
631
632 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
633                                    const struct nand_op_instr *instr)
634 {
635         unsigned int i, timeout_us;
636         u32 status;
637         int ret;
638
639         switch (instr->type) {
640         case NAND_OP_CMD_INSTR:
641                 iowrite8(instr->ctx.cmd.opcode,
642                          info->current_cs + info->mask_cle);
643                 break;
644
645         case NAND_OP_ADDR_INSTR:
646                 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
647                         iowrite8(instr->ctx.addr.addrs[i],
648                                  info->current_cs + info->mask_ale);
649                 }
650                 break;
651
652         case NAND_OP_DATA_IN_INSTR:
653                 nand_davinci_data_in(info, instr->ctx.data.buf.in,
654                                      instr->ctx.data.len,
655                                      instr->ctx.data.force_8bit);
656                 break;
657
658         case NAND_OP_DATA_OUT_INSTR:
659                 nand_davinci_data_out(info, instr->ctx.data.buf.out,
660                                       instr->ctx.data.len,
661                                       instr->ctx.data.force_8bit);
662                 break;
663
664         case NAND_OP_WAITRDY_INSTR:
665                 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
666                 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
667                                                  status, status & BIT(0), 100,
668                                                  timeout_us);
669                 if (ret)
670                         return ret;
671
672                 break;
673         }
674
675         if (instr->delay_ns)
676                 ndelay(instr->delay_ns);
677
678         return 0;
679 }
680
681 static int davinci_nand_exec_op(struct nand_chip *chip,
682                                 const struct nand_operation *op,
683                                 bool check_only)
684 {
685         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
686         unsigned int i;
687
688         if (check_only)
689                 return 0;
690
691         info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
692
693         for (i = 0; i < op->ninstrs; i++) {
694                 int ret;
695
696                 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
697                 if (ret)
698                         return ret;
699         }
700
701         return 0;
702 }
703
704 static const struct nand_controller_ops davinci_nand_controller_ops = {
705         .attach_chip = davinci_nand_attach_chip,
706         .exec_op = davinci_nand_exec_op,
707 };
708
709 static int nand_davinci_probe(struct platform_device *pdev)
710 {
711         struct davinci_nand_pdata       *pdata;
712         struct davinci_nand_info        *info;
713         struct resource                 *res1;
714         struct resource                 *res2;
715         void __iomem                    *vaddr;
716         void __iomem                    *base;
717         int                             ret;
718         uint32_t                        val;
719         struct mtd_info                 *mtd;
720
721         pdata = nand_davinci_get_pdata(pdev);
722         if (IS_ERR(pdata))
723                 return PTR_ERR(pdata);
724
725         /* insist on board-specific configuration */
726         if (!pdata)
727                 return -ENODEV;
728
729         /* which external chipselect will we be managing? */
730         if (pdata->core_chipsel > 3)
731                 return -ENODEV;
732
733         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
734         if (!info)
735                 return -ENOMEM;
736
737         platform_set_drvdata(pdev, info);
738
739         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
740         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
741         if (!res1 || !res2) {
742                 dev_err(&pdev->dev, "resource missing\n");
743                 return -EINVAL;
744         }
745
746         vaddr = devm_ioremap_resource(&pdev->dev, res1);
747         if (IS_ERR(vaddr))
748                 return PTR_ERR(vaddr);
749
750         /*
751          * This registers range is used to setup NAND settings. In case with
752          * TI AEMIF driver, the same memory address range is requested already
753          * by AEMIF, so we cannot request it twice, just ioremap.
754          * The AEMIF and NAND drivers not use the same registers in this range.
755          */
756         base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
757         if (!base) {
758                 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
759                 return -EADDRNOTAVAIL;
760         }
761
762         info->pdev              = pdev;
763         info->base              = base;
764         info->vaddr             = vaddr;
765
766         mtd                     = nand_to_mtd(&info->chip);
767         mtd->dev.parent         = &pdev->dev;
768         nand_set_flash_node(&info->chip, pdev->dev.of_node);
769
770         /* options such as NAND_BBT_USE_FLASH */
771         info->chip.bbt_options  = pdata->bbt_options;
772         /* options such as 16-bit widths */
773         info->chip.options      = pdata->options;
774         info->chip.bbt_td       = pdata->bbt_td;
775         info->chip.bbt_md       = pdata->bbt_md;
776         info->timing            = pdata->timing;
777
778         info->current_cs        = info->vaddr;
779         info->core_chipsel      = pdata->core_chipsel;
780         info->mask_chipsel      = pdata->mask_chipsel;
781
782         /* use nandboot-capable ALE/CLE masks by default */
783         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
784         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
785
786         spin_lock_irq(&davinci_nand_lock);
787
788         /* put CSxNAND into NAND mode */
789         val = davinci_nand_readl(info, NANDFCR_OFFSET);
790         val |= BIT(info->core_chipsel);
791         davinci_nand_writel(info, NANDFCR_OFFSET, val);
792
793         spin_unlock_irq(&davinci_nand_lock);
794
795         /* Scan to find existence of the device(s) */
796         nand_controller_init(&info->controller);
797         info->controller.ops = &davinci_nand_controller_ops;
798         info->chip.controller = &info->controller;
799         ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
800         if (ret < 0) {
801                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
802                 return ret;
803         }
804
805         if (pdata->parts)
806                 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
807         else
808                 ret = mtd_device_register(mtd, NULL, 0);
809         if (ret < 0)
810                 goto err_cleanup_nand;
811
812         val = davinci_nand_readl(info, NRCSR_OFFSET);
813         dev_info(&pdev->dev, "controller rev. %d.%d\n",
814                (val >> 8) & 0xff, val & 0xff);
815
816         return 0;
817
818 err_cleanup_nand:
819         nand_cleanup(&info->chip);
820
821         return ret;
822 }
823
824 static int nand_davinci_remove(struct platform_device *pdev)
825 {
826         struct davinci_nand_info *info = platform_get_drvdata(pdev);
827         struct nand_chip *chip = &info->chip;
828         int ret;
829
830         spin_lock_irq(&davinci_nand_lock);
831         if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
832                 ecc4_busy = false;
833         spin_unlock_irq(&davinci_nand_lock);
834
835         ret = mtd_device_unregister(nand_to_mtd(chip));
836         WARN_ON(ret);
837         nand_cleanup(chip);
838
839         return 0;
840 }
841
842 static struct platform_driver nand_davinci_driver = {
843         .probe          = nand_davinci_probe,
844         .remove         = nand_davinci_remove,
845         .driver         = {
846                 .name   = "davinci_nand",
847                 .of_match_table = of_match_ptr(davinci_nand_of_match),
848         },
849 };
850 MODULE_ALIAS("platform:davinci_nand");
851
852 module_platform_driver(nand_davinci_driver);
853
854 MODULE_LICENSE("GPL");
855 MODULE_AUTHOR("Texas Instruments");
856 MODULE_DESCRIPTION("Davinci NAND flash driver");
857