GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / arasan-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27
28 #define PKT_REG                         0x00
29 #define   PKT_SIZE(x)                   FIELD_PREP(GENMASK(10, 0), (x))
30 #define   PKT_STEPS(x)                  FIELD_PREP(GENMASK(23, 12), (x))
31
32 #define MEM_ADDR1_REG                   0x04
33
34 #define MEM_ADDR2_REG                   0x08
35 #define   ADDR2_STRENGTH(x)             FIELD_PREP(GENMASK(27, 25), (x))
36 #define   ADDR2_CS(x)                   FIELD_PREP(GENMASK(31, 30), (x))
37
38 #define CMD_REG                         0x0C
39 #define   CMD_1(x)                      FIELD_PREP(GENMASK(7, 0), (x))
40 #define   CMD_2(x)                      FIELD_PREP(GENMASK(15, 8), (x))
41 #define   CMD_PAGE_SIZE(x)              FIELD_PREP(GENMASK(25, 23), (x))
42 #define   CMD_DMA_ENABLE                BIT(27)
43 #define   CMD_NADDRS(x)                 FIELD_PREP(GENMASK(30, 28), (x))
44 #define   CMD_ECC_ENABLE                BIT(31)
45
46 #define PROG_REG                        0x10
47 #define   PROG_PGRD                     BIT(0)
48 #define   PROG_ERASE                    BIT(2)
49 #define   PROG_STATUS                   BIT(3)
50 #define   PROG_PGPROG                   BIT(4)
51 #define   PROG_RDID                     BIT(6)
52 #define   PROG_RDPARAM                  BIT(7)
53 #define   PROG_RST                      BIT(8)
54 #define   PROG_GET_FEATURE              BIT(9)
55 #define   PROG_SET_FEATURE              BIT(10)
56
57 #define INTR_STS_EN_REG                 0x14
58 #define INTR_SIG_EN_REG                 0x18
59 #define INTR_STS_REG                    0x1C
60 #define   WRITE_READY                   BIT(0)
61 #define   READ_READY                    BIT(1)
62 #define   XFER_COMPLETE                 BIT(2)
63 #define   DMA_BOUNDARY                  BIT(6)
64 #define   EVENT_MASK                    GENMASK(7, 0)
65
66 #define READY_STS_REG                   0x20
67
68 #define DMA_ADDR0_REG                   0x50
69 #define DMA_ADDR1_REG                   0x24
70
71 #define FLASH_STS_REG                   0x28
72
73 #define DATA_PORT_REG                   0x30
74
75 #define ECC_CONF_REG                    0x34
76 #define   ECC_CONF_COL(x)               FIELD_PREP(GENMASK(15, 0), (x))
77 #define   ECC_CONF_LEN(x)               FIELD_PREP(GENMASK(26, 16), (x))
78 #define   ECC_CONF_BCH_EN               BIT(27)
79
80 #define ECC_ERR_CNT_REG                 0x38
81 #define   GET_PKT_ERR_CNT(x)            FIELD_GET(GENMASK(7, 0), (x))
82 #define   GET_PAGE_ERR_CNT(x)           FIELD_GET(GENMASK(16, 8), (x))
83
84 #define ECC_SP_REG                      0x3C
85 #define   ECC_SP_CMD1(x)                FIELD_PREP(GENMASK(7, 0), (x))
86 #define   ECC_SP_CMD2(x)                FIELD_PREP(GENMASK(15, 8), (x))
87 #define   ECC_SP_ADDRS(x)               FIELD_PREP(GENMASK(30, 28), (x))
88
89 #define ECC_1ERR_CNT_REG                0x40
90 #define ECC_2ERR_CNT_REG                0x44
91
92 #define DATA_INTERFACE_REG              0x6C
93 #define   DIFACE_SDR_MODE(x)            FIELD_PREP(GENMASK(2, 0), (x))
94 #define   DIFACE_DDR_MODE(x)            FIELD_PREP(GENMASK(5, 3), (x))
95 #define   DIFACE_SDR                    0
96 #define   DIFACE_NVDDR                  BIT(9)
97
98 #define ANFC_MAX_CS                     2
99 #define ANFC_DFLT_TIMEOUT_US            1000000
100 #define ANFC_MAX_CHUNK_SIZE             SZ_1M
101 #define ANFC_MAX_PARAM_SIZE             SZ_4K
102 #define ANFC_MAX_STEPS                  SZ_2K
103 #define ANFC_MAX_PKT_SIZE               (SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC               5U
105 #define ANFC_RSVD_ECC_BYTES             21
106
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK     100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK       80000000
109
110 /**
111  * struct anfc_op - Defines how to execute an operation
112  * @pkt_reg: Packet register
113  * @addr1_reg: Memory address 1 register
114  * @addr2_reg: Memory address 2 register
115  * @cmd_reg: Command register
116  * @prog_reg: Program register
117  * @steps: Number of "packets" to read/write
118  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119  * @len: Data transfer length
120  * @read: Data transfer direction from the controller point of view
121  */
122 struct anfc_op {
123         u32 pkt_reg;
124         u32 addr1_reg;
125         u32 addr2_reg;
126         u32 cmd_reg;
127         u32 prog_reg;
128         int steps;
129         unsigned int rdy_timeout_ms;
130         unsigned int len;
131         bool read;
132         u8 *buf;
133 };
134
135 /**
136  * struct anand - Defines the NAND chip related information
137  * @node:               Used to store NAND chips into a list
138  * @chip:               NAND chip information structure
139  * @cs:                 Chip select line
140  * @rb:                 Ready-busy line
141  * @page_sz:            Register value of the page_sz field to use
142  * @clk:                Expected clock frequency to use
143  * @timings:            Data interface timing mode to use
144  * @ecc_conf:           Hardware ECC configuration value
145  * @strength:           Register value of the ECC strength
146  * @raddr_cycles:       Row address cycle information
147  * @caddr_cycles:       Column address cycle information
148  * @ecc_bits:           Exact number of ECC bits per syndrome
149  * @ecc_total:          Total number of ECC bytes
150  * @errloc:             Array of errors located with soft BCH
151  * @hw_ecc:             Buffer to store syndromes computed by hardware
152  * @bch:                BCH structure
153  */
154 struct anand {
155         struct list_head node;
156         struct nand_chip chip;
157         unsigned int cs;
158         unsigned int rb;
159         unsigned int page_sz;
160         unsigned long clk;
161         u32 timings;
162         u32 ecc_conf;
163         u32 strength;
164         u16 raddr_cycles;
165         u16 caddr_cycles;
166         unsigned int ecc_bits;
167         unsigned int ecc_total;
168         unsigned int *errloc;
169         u8 *hw_ecc;
170         struct bch_control *bch;
171 };
172
173 /**
174  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
175  * @dev:                Pointer to the device structure
176  * @base:               Remapped register area
177  * @controller_clk:             Pointer to the system clock
178  * @bus_clk:            Pointer to the flash clock
179  * @controller:         Base controller structure
180  * @chips:              List of all NAND chips attached to the controller
181  * @assigned_cs:        Bitmask describing already assigned CS lines
182  * @cur_clk:            Current clock rate
183  */
184 struct arasan_nfc {
185         struct device *dev;
186         void __iomem *base;
187         struct clk *controller_clk;
188         struct clk *bus_clk;
189         struct nand_controller controller;
190         struct list_head chips;
191         unsigned long assigned_cs;
192         unsigned int cur_clk;
193 };
194
195 static struct anand *to_anand(struct nand_chip *nand)
196 {
197         return container_of(nand, struct anand, chip);
198 }
199
200 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
201 {
202         return container_of(ctrl, struct arasan_nfc, controller);
203 }
204
205 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
206 {
207         u32 val;
208         int ret;
209
210         ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
211                                          val & event, 0,
212                                          ANFC_DFLT_TIMEOUT_US);
213         if (ret) {
214                 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
215                 return -ETIMEDOUT;
216         }
217
218         writel_relaxed(event, nfc->base + INTR_STS_REG);
219
220         return 0;
221 }
222
223 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
224                             unsigned int timeout_ms)
225 {
226         struct anand *anand = to_anand(chip);
227         u32 val;
228         int ret;
229
230         /* There is no R/B interrupt, we must poll a register */
231         ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
232                                          val & BIT(anand->rb),
233                                          1, timeout_ms * 1000);
234         if (ret) {
235                 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
236                         readl_relaxed(nfc->base + READY_STS_REG));
237                 return -ETIMEDOUT;
238         }
239
240         return 0;
241 }
242
243 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
244 {
245         writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
246         writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
247         writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
248         writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
249         writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
250 }
251
252 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
253                                unsigned int *pktsize)
254 {
255         unsigned int nb, sz;
256
257         for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
258                 sz = len / nb;
259                 if (sz <= ANFC_MAX_PKT_SIZE)
260                         break;
261         }
262
263         if (sz * nb != len)
264                 return -ENOTSUPP;
265
266         if (steps)
267                 *steps = nb;
268
269         if (pktsize)
270                 *pktsize = sz;
271
272         return 0;
273 }
274
275 static int anfc_select_target(struct nand_chip *chip, int target)
276 {
277         struct anand *anand = to_anand(chip);
278         struct arasan_nfc *nfc = to_anfc(chip->controller);
279         int ret;
280
281         /* Update the controller timings and the potential ECC configuration */
282         writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
283
284         /* Update clock frequency */
285         if (nfc->cur_clk != anand->clk) {
286                 clk_disable_unprepare(nfc->bus_clk);
287                 ret = clk_set_rate(nfc->bus_clk, anand->clk);
288                 if (ret) {
289                         dev_err(nfc->dev, "Failed to change clock rate\n");
290                         return ret;
291                 }
292
293                 ret = clk_prepare_enable(nfc->bus_clk);
294                 if (ret) {
295                         dev_err(nfc->dev,
296                                 "Failed to re-enable the bus clock\n");
297                         return ret;
298                 }
299
300                 nfc->cur_clk = anand->clk;
301         }
302
303         return 0;
304 }
305
306 /*
307  * When using the embedded hardware ECC engine, the controller is in charge of
308  * feeding the engine with, first, the ECC residue present in the data array.
309  * A typical read operation is:
310  * 1/ Assert the read operation by sending the relevant command/address cycles
311  *    but targeting the column of the first ECC bytes in the OOB area instead of
312  *    the main data directly.
313  * 2/ After having read the relevant number of ECC bytes, the controller uses
314  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
315  *    Register" to move the pointer back at the beginning of the main data.
316  * 3/ It will read the content of the main area for a given size (pktsize) and
317  *    will feed the ECC engine with this buffer again.
318  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
319  *    with the ones already received. It eventually trigger status flags and
320  *    then set the "Buffer Read Ready" flag.
321  * 5/ The corrected data is then available for reading from the data port
322  *    register.
323  *
324  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
325  * reports uncorrectable errors. Because of this bug, we have to use the
326  * software BCH implementation in the read path.
327  */
328 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
329                                  int oob_required, int page)
330 {
331         struct arasan_nfc *nfc = to_anfc(chip->controller);
332         struct mtd_info *mtd = nand_to_mtd(chip);
333         struct anand *anand = to_anand(chip);
334         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
335         unsigned int max_bitflips = 0;
336         dma_addr_t dma_addr;
337         int step, ret;
338         struct anfc_op nfc_op = {
339                 .pkt_reg =
340                         PKT_SIZE(chip->ecc.size) |
341                         PKT_STEPS(chip->ecc.steps),
342                 .addr1_reg =
343                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
344                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
345                 .addr2_reg =
346                         ((page >> 16) & 0xFF) |
347                         ADDR2_STRENGTH(anand->strength) |
348                         ADDR2_CS(anand->cs),
349                 .cmd_reg =
350                         CMD_1(NAND_CMD_READ0) |
351                         CMD_2(NAND_CMD_READSTART) |
352                         CMD_PAGE_SIZE(anand->page_sz) |
353                         CMD_DMA_ENABLE |
354                         CMD_NADDRS(anand->caddr_cycles +
355                                    anand->raddr_cycles),
356                 .prog_reg = PROG_PGRD,
357         };
358
359         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
360         if (dma_mapping_error(nfc->dev, dma_addr)) {
361                 dev_err(nfc->dev, "Buffer mapping error");
362                 return -EIO;
363         }
364
365         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
366         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
367
368         anfc_trigger_op(nfc, &nfc_op);
369
370         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
371         dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
372         if (ret) {
373                 dev_err(nfc->dev, "Error reading page %d\n", page);
374                 return ret;
375         }
376
377         /* Store the raw OOB bytes as well */
378         ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
379                                          mtd->oobsize, 0);
380         if (ret)
381                 return ret;
382
383         /*
384          * For each step, compute by softare the BCH syndrome over the raw data.
385          * Compare the theoretical amount of errors and compare with the
386          * hardware engine feedback.
387          */
388         for (step = 0; step < chip->ecc.steps; step++) {
389                 u8 *raw_buf = &buf[step * chip->ecc.size];
390                 unsigned int bit, byte;
391                 int bf, i;
392
393                 /* Extract the syndrome, it is not necessarily aligned */
394                 memset(anand->hw_ecc, 0, chip->ecc.bytes);
395                 nand_extract_bits(anand->hw_ecc, 0,
396                                   &chip->oob_poi[mtd->oobsize - anand->ecc_total],
397                                   anand->ecc_bits * step, anand->ecc_bits);
398
399                 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
400                                 anand->hw_ecc, NULL, NULL, anand->errloc);
401                 if (!bf) {
402                         continue;
403                 } else if (bf > 0) {
404                         for (i = 0; i < bf; i++) {
405                                 /* Only correct the data, not the syndrome */
406                                 if (anand->errloc[i] < (chip->ecc.size * 8)) {
407                                         bit = BIT(anand->errloc[i] & 7);
408                                         byte = anand->errloc[i] >> 3;
409                                         raw_buf[byte] ^= bit;
410                                 }
411                         }
412
413                         mtd->ecc_stats.corrected += bf;
414                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
415
416                         continue;
417                 }
418
419                 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
420                                                  NULL, 0, NULL, 0,
421                                                  chip->ecc.strength);
422                 if (bf > 0) {
423                         mtd->ecc_stats.corrected += bf;
424                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
425                         memset(raw_buf, 0xFF, chip->ecc.size);
426                 } else if (bf < 0) {
427                         mtd->ecc_stats.failed++;
428                 }
429         }
430
431         return 0;
432 }
433
434 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
435                                      int oob_required, int page)
436 {
437         int ret;
438
439         ret = anfc_select_target(chip, chip->cur_cs);
440         if (ret)
441                 return ret;
442
443         return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
444 };
445
446 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
447                                   int oob_required, int page)
448 {
449         struct anand *anand = to_anand(chip);
450         struct arasan_nfc *nfc = to_anfc(chip->controller);
451         struct mtd_info *mtd = nand_to_mtd(chip);
452         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
453         dma_addr_t dma_addr;
454         u8 status;
455         int ret;
456         struct anfc_op nfc_op = {
457                 .pkt_reg =
458                         PKT_SIZE(chip->ecc.size) |
459                         PKT_STEPS(chip->ecc.steps),
460                 .addr1_reg =
461                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
462                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
463                 .addr2_reg =
464                         ((page >> 16) & 0xFF) |
465                         ADDR2_STRENGTH(anand->strength) |
466                         ADDR2_CS(anand->cs),
467                 .cmd_reg =
468                         CMD_1(NAND_CMD_SEQIN) |
469                         CMD_2(NAND_CMD_PAGEPROG) |
470                         CMD_PAGE_SIZE(anand->page_sz) |
471                         CMD_DMA_ENABLE |
472                         CMD_NADDRS(anand->caddr_cycles +
473                                    anand->raddr_cycles) |
474                         CMD_ECC_ENABLE,
475                 .prog_reg = PROG_PGPROG,
476         };
477
478         writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
479         writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
480                        ECC_SP_ADDRS(anand->caddr_cycles),
481                        nfc->base + ECC_SP_REG);
482
483         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
484         if (dma_mapping_error(nfc->dev, dma_addr)) {
485                 dev_err(nfc->dev, "Buffer mapping error");
486                 return -EIO;
487         }
488
489         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
490         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
491
492         anfc_trigger_op(nfc, &nfc_op);
493         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
494         dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
495         if (ret) {
496                 dev_err(nfc->dev, "Error writing page %d\n", page);
497                 return ret;
498         }
499
500         /* Spare data is not protected */
501         if (oob_required) {
502                 ret = nand_write_oob_std(chip, page);
503                 if (ret)
504                         return ret;
505         }
506
507         /* Check write status on the chip side */
508         ret = nand_status_op(chip, &status);
509         if (ret)
510                 return ret;
511
512         if (status & NAND_STATUS_FAIL)
513                 return -EIO;
514
515         return 0;
516 }
517
518 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
519                                       int oob_required, int page)
520 {
521         int ret;
522
523         ret = anfc_select_target(chip, chip->cur_cs);
524         if (ret)
525                 return ret;
526
527         return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
528 };
529
530 /* NAND framework ->exec_op() hooks and related helpers */
531 static int anfc_parse_instructions(struct nand_chip *chip,
532                                    const struct nand_subop *subop,
533                                    struct anfc_op *nfc_op)
534 {
535         struct anand *anand = to_anand(chip);
536         const struct nand_op_instr *instr = NULL;
537         bool first_cmd = true;
538         unsigned int op_id;
539         int ret, i;
540
541         memset(nfc_op, 0, sizeof(*nfc_op));
542         nfc_op->addr2_reg = ADDR2_CS(anand->cs);
543         nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
544
545         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
546                 unsigned int offset, naddrs, pktsize;
547                 const u8 *addrs;
548                 u8 *buf;
549
550                 instr = &subop->instrs[op_id];
551
552                 switch (instr->type) {
553                 case NAND_OP_CMD_INSTR:
554                         if (first_cmd)
555                                 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
556                         else
557                                 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
558
559                         first_cmd = false;
560                         break;
561
562                 case NAND_OP_ADDR_INSTR:
563                         offset = nand_subop_get_addr_start_off(subop, op_id);
564                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
565                         addrs = &instr->ctx.addr.addrs[offset];
566                         nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
567
568                         for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
569                                 if (i < 4)
570                                         nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
571                                 else
572                                         nfc_op->addr2_reg |= addrs[i];
573                         }
574
575                         break;
576                 case NAND_OP_DATA_IN_INSTR:
577                         nfc_op->read = true;
578                         fallthrough;
579                 case NAND_OP_DATA_OUT_INSTR:
580                         offset = nand_subop_get_data_start_off(subop, op_id);
581                         buf = instr->ctx.data.buf.in;
582                         nfc_op->buf = &buf[offset];
583                         nfc_op->len = nand_subop_get_data_len(subop, op_id);
584                         ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
585                                                   &pktsize);
586                         if (ret)
587                                 return ret;
588
589                         /*
590                          * Number of DATA cycles must be aligned on 4, this
591                          * means the controller might read/write more than
592                          * requested. This is harmless most of the time as extra
593                          * DATA are discarded in the write path and read pointer
594                          * adjusted in the read path.
595                          *
596                          * FIXME: The core should mark operations where
597                          * reading/writing more is allowed so the exec_op()
598                          * implementation can take the right decision when the
599                          * alignment constraint is not met: adjust the number of
600                          * DATA cycles when it's allowed, reject the operation
601                          * otherwise.
602                          */
603                         nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
604                                            PKT_STEPS(nfc_op->steps);
605                         break;
606                 case NAND_OP_WAITRDY_INSTR:
607                         nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
608                         break;
609                 }
610         }
611
612         return 0;
613 }
614
615 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
616 {
617         unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
618         unsigned int last_len = nfc_op->len % 4;
619         unsigned int offset, dir;
620         u8 *buf = nfc_op->buf;
621         int ret, i;
622
623         for (i = 0; i < nfc_op->steps; i++) {
624                 dir = nfc_op->read ? READ_READY : WRITE_READY;
625                 ret = anfc_wait_for_event(nfc, dir);
626                 if (ret) {
627                         dev_err(nfc->dev, "PIO %s ready signal not received\n",
628                                 nfc_op->read ? "Read" : "Write");
629                         return ret;
630                 }
631
632                 offset = i * (dwords * 4);
633                 if (nfc_op->read)
634                         ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
635                                      dwords);
636                 else
637                         iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
638                                       dwords);
639         }
640
641         if (last_len) {
642                 u32 remainder;
643
644                 offset = nfc_op->len - last_len;
645
646                 if (nfc_op->read) {
647                         remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
648                         memcpy(&buf[offset], &remainder, last_len);
649                 } else {
650                         memcpy(&remainder, &buf[offset], last_len);
651                         writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
652                 }
653         }
654
655         return anfc_wait_for_event(nfc, XFER_COMPLETE);
656 }
657
658 static int anfc_misc_data_type_exec(struct nand_chip *chip,
659                                     const struct nand_subop *subop,
660                                     u32 prog_reg)
661 {
662         struct arasan_nfc *nfc = to_anfc(chip->controller);
663         struct anfc_op nfc_op = {};
664         int ret;
665
666         ret = anfc_parse_instructions(chip, subop, &nfc_op);
667         if (ret)
668                 return ret;
669
670         nfc_op.prog_reg = prog_reg;
671         anfc_trigger_op(nfc, &nfc_op);
672
673         if (nfc_op.rdy_timeout_ms) {
674                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
675                 if (ret)
676                         return ret;
677         }
678
679         return anfc_rw_pio_op(nfc, &nfc_op);
680 }
681
682 static int anfc_param_read_type_exec(struct nand_chip *chip,
683                                      const struct nand_subop *subop)
684 {
685         return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
686 }
687
688 static int anfc_data_read_type_exec(struct nand_chip *chip,
689                                     const struct nand_subop *subop)
690 {
691         return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
692 }
693
694 static int anfc_param_write_type_exec(struct nand_chip *chip,
695                                       const struct nand_subop *subop)
696 {
697         return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
698 }
699
700 static int anfc_data_write_type_exec(struct nand_chip *chip,
701                                      const struct nand_subop *subop)
702 {
703         return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
704 }
705
706 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
707                                        const struct nand_subop *subop,
708                                        u32 prog_reg)
709 {
710         struct arasan_nfc *nfc = to_anfc(chip->controller);
711         struct anfc_op nfc_op = {};
712         int ret;
713
714         ret = anfc_parse_instructions(chip, subop, &nfc_op);
715         if (ret)
716                 return ret;
717
718         nfc_op.prog_reg = prog_reg;
719         anfc_trigger_op(nfc, &nfc_op);
720
721         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
722         if (ret)
723                 return ret;
724
725         if (nfc_op.rdy_timeout_ms)
726                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
727
728         return ret;
729 }
730
731 static int anfc_status_type_exec(struct nand_chip *chip,
732                                  const struct nand_subop *subop)
733 {
734         struct arasan_nfc *nfc = to_anfc(chip->controller);
735         u32 tmp;
736         int ret;
737
738         /* See anfc_check_op() for details about this constraint */
739         if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
740                 return -ENOTSUPP;
741
742         ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
743         if (ret)
744                 return ret;
745
746         tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
747         memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
748
749         return 0;
750 }
751
752 static int anfc_reset_type_exec(struct nand_chip *chip,
753                                 const struct nand_subop *subop)
754 {
755         return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
756 }
757
758 static int anfc_erase_type_exec(struct nand_chip *chip,
759                                 const struct nand_subop *subop)
760 {
761         return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
762 }
763
764 static int anfc_wait_type_exec(struct nand_chip *chip,
765                                const struct nand_subop *subop)
766 {
767         struct arasan_nfc *nfc = to_anfc(chip->controller);
768         struct anfc_op nfc_op = {};
769         int ret;
770
771         ret = anfc_parse_instructions(chip, subop, &nfc_op);
772         if (ret)
773                 return ret;
774
775         return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
776 }
777
778 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
779         NAND_OP_PARSER_PATTERN(
780                 anfc_param_read_type_exec,
781                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
782                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
783                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
784                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
785         NAND_OP_PARSER_PATTERN(
786                 anfc_param_write_type_exec,
787                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
788                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
789                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
790         NAND_OP_PARSER_PATTERN(
791                 anfc_data_read_type_exec,
792                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
793                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
794                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
795                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
796                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
797         NAND_OP_PARSER_PATTERN(
798                 anfc_data_write_type_exec,
799                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
800                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
801                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
802                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
803         NAND_OP_PARSER_PATTERN(
804                 anfc_reset_type_exec,
805                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
806                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
807         NAND_OP_PARSER_PATTERN(
808                 anfc_erase_type_exec,
809                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
810                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
811                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
812                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
813         NAND_OP_PARSER_PATTERN(
814                 anfc_status_type_exec,
815                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
816                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
817         NAND_OP_PARSER_PATTERN(
818                 anfc_wait_type_exec,
819                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
820         );
821
822 static int anfc_check_op(struct nand_chip *chip,
823                          const struct nand_operation *op)
824 {
825         const struct nand_op_instr *instr;
826         int op_id;
827
828         /*
829          * The controller abstracts all the NAND operations and do not support
830          * data only operations.
831          *
832          * TODO: The nand_op_parser framework should be extended to
833          * support custom checks on DATA instructions.
834          */
835         for (op_id = 0; op_id < op->ninstrs; op_id++) {
836                 instr = &op->instrs[op_id];
837
838                 switch (instr->type) {
839                 case NAND_OP_ADDR_INSTR:
840                         if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
841                                 return -ENOTSUPP;
842
843                         break;
844                 case NAND_OP_DATA_IN_INSTR:
845                 case NAND_OP_DATA_OUT_INSTR:
846                         if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
847                                 return -ENOTSUPP;
848
849                         if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
850                                 return -ENOTSUPP;
851
852                         break;
853                 default:
854                         break;
855                 }
856         }
857
858         /*
859          * The controller does not allow to proceed with a CMD+DATA_IN cycle
860          * manually on the bus by reading data from the data register. Instead,
861          * the controller abstract a status read operation with its own status
862          * register after ordering a read status operation. Hence, we cannot
863          * support any CMD+DATA_IN operation other than a READ STATUS.
864          *
865          * TODO: The nand_op_parser() framework should be extended to describe
866          * fixed patterns instead of open-coding this check here.
867          */
868         if (op->ninstrs == 2 &&
869             op->instrs[0].type == NAND_OP_CMD_INSTR &&
870             op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
871             op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
872                 return -ENOTSUPP;
873
874         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
875 }
876
877 static int anfc_exec_op(struct nand_chip *chip,
878                         const struct nand_operation *op,
879                         bool check_only)
880 {
881         int ret;
882
883         if (check_only)
884                 return anfc_check_op(chip, op);
885
886         ret = anfc_select_target(chip, op->cs);
887         if (ret)
888                 return ret;
889
890         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
891 }
892
893 static int anfc_setup_interface(struct nand_chip *chip, int target,
894                                 const struct nand_interface_config *conf)
895 {
896         struct anand *anand = to_anand(chip);
897         struct arasan_nfc *nfc = to_anfc(chip->controller);
898         struct device_node *np = nfc->dev->of_node;
899         const struct nand_sdr_timings *sdr;
900         const struct nand_nvddr_timings *nvddr;
901
902         if (nand_interface_is_nvddr(conf)) {
903                 nvddr = nand_get_nvddr_timings(conf);
904                 if (IS_ERR(nvddr))
905                         return PTR_ERR(nvddr);
906
907                 /*
908                  * The controller only supports data payload requests which are
909                  * a multiple of 4. In practice, most data accesses are 4-byte
910                  * aligned and this is not an issue. However, rounding up will
911                  * simply be refused by the controller if we reached the end of
912                  * the device *and* we are using the NV-DDR interface(!). In
913                  * this situation, unaligned data requests ending at the device
914                  * boundary will confuse the controller and cannot be performed.
915                  *
916                  * This is something that happens in nand_read_subpage() when
917                  * selecting software ECC support and must be avoided.
918                  */
919                 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
920                         return -ENOTSUPP;
921         } else {
922                 sdr = nand_get_sdr_timings(conf);
923                 if (IS_ERR(sdr))
924                         return PTR_ERR(sdr);
925         }
926
927         if (target < 0)
928                 return 0;
929
930         if (nand_interface_is_sdr(conf))
931                 anand->timings = DIFACE_SDR |
932                                  DIFACE_SDR_MODE(conf->timings.mode);
933         else
934                 anand->timings = DIFACE_NVDDR |
935                                  DIFACE_DDR_MODE(conf->timings.mode);
936
937         if (nand_interface_is_sdr(conf)) {
938                 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
939         } else {
940                 /* ONFI timings are defined in picoseconds */
941                 anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
942                                      conf->timings.nvddr.tCK_min);
943         }
944
945         /*
946          * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
947          * with f > 90MHz (default clock is 100MHz) but signals are unstable
948          * with higher modes. Hence we decrease a little bit the clock rate to
949          * 80MHz when using SDR modes 2-5 with this SoC.
950          */
951         if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
952             nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
953                 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
954
955         return 0;
956 }
957
958 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
959 {
960         unsigned int bch_gf_mag, ecc_bits;
961
962         switch (step_size) {
963         case SZ_512:
964                 bch_gf_mag = 13;
965                 break;
966         case SZ_1K:
967                 bch_gf_mag = 14;
968                 break;
969         default:
970                 return -EINVAL;
971         }
972
973         ecc_bits = bch_gf_mag * strength;
974
975         return DIV_ROUND_UP(ecc_bits, 8);
976 }
977
978 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
979
980 static const int anfc_hw_ecc_1024_strengths[] = {24};
981
982 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
983         {
984                 .stepsize = SZ_512,
985                 .strengths = anfc_hw_ecc_512_strengths,
986                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
987         },
988         {
989                 .stepsize = SZ_1K,
990                 .strengths = anfc_hw_ecc_1024_strengths,
991                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
992         },
993 };
994
995 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
996         .stepinfos = anfc_hw_ecc_step_infos,
997         .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
998         .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
999 };
1000
1001 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1002                                        struct nand_chip *chip)
1003 {
1004         struct anand *anand = to_anand(chip);
1005         struct mtd_info *mtd = nand_to_mtd(chip);
1006         struct nand_ecc_ctrl *ecc = &chip->ecc;
1007         unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1008         int ret;
1009
1010         switch (mtd->writesize) {
1011         case SZ_512:
1012         case SZ_2K:
1013         case SZ_4K:
1014         case SZ_8K:
1015         case SZ_16K:
1016                 break;
1017         default:
1018                 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1019                 return -EINVAL;
1020         }
1021
1022         ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1023         if (ret)
1024                 return ret;
1025
1026         switch (ecc->strength) {
1027         case 12:
1028                 anand->strength = 0x1;
1029                 break;
1030         case 8:
1031                 anand->strength = 0x2;
1032                 break;
1033         case 4:
1034                 anand->strength = 0x3;
1035                 break;
1036         case 24:
1037                 anand->strength = 0x4;
1038                 break;
1039         default:
1040                 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1041                 return -EINVAL;
1042         }
1043
1044         switch (ecc->size) {
1045         case SZ_512:
1046                 bch_gf_mag = 13;
1047                 bch_prim_poly = 0x201b;
1048                 break;
1049         case SZ_1K:
1050                 bch_gf_mag = 14;
1051                 bch_prim_poly = 0x4443;
1052                 break;
1053         default:
1054                 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1055                 return -EINVAL;
1056         }
1057
1058         mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1059
1060         ecc->steps = mtd->writesize / ecc->size;
1061         ecc->algo = NAND_ECC_ALGO_BCH;
1062         anand->ecc_bits = bch_gf_mag * ecc->strength;
1063         ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1064         anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1065         ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1066         anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1067                           ECC_CONF_LEN(anand->ecc_total) |
1068                           ECC_CONF_BCH_EN;
1069
1070         anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1071                                            sizeof(*anand->errloc), GFP_KERNEL);
1072         if (!anand->errloc)
1073                 return -ENOMEM;
1074
1075         anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1076         if (!anand->hw_ecc)
1077                 return -ENOMEM;
1078
1079         /* Enforce bit swapping to fit the hardware */
1080         anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1081         if (!anand->bch)
1082                 return -EINVAL;
1083
1084         ecc->read_page = anfc_sel_read_page_hw_ecc;
1085         ecc->write_page = anfc_sel_write_page_hw_ecc;
1086
1087         return 0;
1088 }
1089
1090 static int anfc_attach_chip(struct nand_chip *chip)
1091 {
1092         struct anand *anand = to_anand(chip);
1093         struct arasan_nfc *nfc = to_anfc(chip->controller);
1094         struct mtd_info *mtd = nand_to_mtd(chip);
1095         int ret = 0;
1096
1097         if (mtd->writesize <= SZ_512)
1098                 anand->caddr_cycles = 1;
1099         else
1100                 anand->caddr_cycles = 2;
1101
1102         if (chip->options & NAND_ROW_ADDR_3)
1103                 anand->raddr_cycles = 3;
1104         else
1105                 anand->raddr_cycles = 2;
1106
1107         switch (mtd->writesize) {
1108         case 512:
1109                 anand->page_sz = 0;
1110                 break;
1111         case 1024:
1112                 anand->page_sz = 5;
1113                 break;
1114         case 2048:
1115                 anand->page_sz = 1;
1116                 break;
1117         case 4096:
1118                 anand->page_sz = 2;
1119                 break;
1120         case 8192:
1121                 anand->page_sz = 3;
1122                 break;
1123         case 16384:
1124                 anand->page_sz = 4;
1125                 break;
1126         default:
1127                 return -EINVAL;
1128         }
1129
1130         /* These hooks are valid for all ECC providers */
1131         chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1132         chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1133
1134         switch (chip->ecc.engine_type) {
1135         case NAND_ECC_ENGINE_TYPE_NONE:
1136         case NAND_ECC_ENGINE_TYPE_SOFT:
1137         case NAND_ECC_ENGINE_TYPE_ON_DIE:
1138                 break;
1139         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1140                 ret = anfc_init_hw_ecc_controller(nfc, chip);
1141                 break;
1142         default:
1143                 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1144                         chip->ecc.engine_type);
1145                 return -EINVAL;
1146         }
1147
1148         return ret;
1149 }
1150
1151 static void anfc_detach_chip(struct nand_chip *chip)
1152 {
1153         struct anand *anand = to_anand(chip);
1154
1155         if (anand->bch)
1156                 bch_free(anand->bch);
1157 }
1158
1159 static const struct nand_controller_ops anfc_ops = {
1160         .exec_op = anfc_exec_op,
1161         .setup_interface = anfc_setup_interface,
1162         .attach_chip = anfc_attach_chip,
1163         .detach_chip = anfc_detach_chip,
1164 };
1165
1166 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1167 {
1168         struct anand *anand;
1169         struct nand_chip *chip;
1170         struct mtd_info *mtd;
1171         int cs, rb, ret;
1172
1173         anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1174         if (!anand)
1175                 return -ENOMEM;
1176
1177         /* We do not support multiple CS per chip yet */
1178         if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1179                 dev_err(nfc->dev, "Invalid reg property\n");
1180                 return -EINVAL;
1181         }
1182
1183         ret = of_property_read_u32(np, "reg", &cs);
1184         if (ret)
1185                 return ret;
1186
1187         ret = of_property_read_u32(np, "nand-rb", &rb);
1188         if (ret)
1189                 return ret;
1190
1191         if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1192                 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1193                 return -EINVAL;
1194         }
1195
1196         if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1197                 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1198                 return -EINVAL;
1199         }
1200
1201         anand->cs = cs;
1202         anand->rb = rb;
1203
1204         chip = &anand->chip;
1205         mtd = nand_to_mtd(chip);
1206         mtd->dev.parent = nfc->dev;
1207         chip->controller = &nfc->controller;
1208         chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1209                         NAND_USES_DMA;
1210
1211         nand_set_flash_node(chip, np);
1212         if (!mtd->name) {
1213                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1214                 return -EINVAL;
1215         }
1216
1217         ret = nand_scan(chip, 1);
1218         if (ret) {
1219                 dev_err(nfc->dev, "Scan operation failed\n");
1220                 return ret;
1221         }
1222
1223         ret = mtd_device_register(mtd, NULL, 0);
1224         if (ret) {
1225                 nand_cleanup(chip);
1226                 return ret;
1227         }
1228
1229         list_add_tail(&anand->node, &nfc->chips);
1230
1231         return 0;
1232 }
1233
1234 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1235 {
1236         struct anand *anand, *tmp;
1237         struct nand_chip *chip;
1238         int ret;
1239
1240         list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1241                 chip = &anand->chip;
1242                 ret = mtd_device_unregister(nand_to_mtd(chip));
1243                 WARN_ON(ret);
1244                 nand_cleanup(chip);
1245                 list_del(&anand->node);
1246         }
1247 }
1248
1249 static int anfc_chips_init(struct arasan_nfc *nfc)
1250 {
1251         struct device_node *np = nfc->dev->of_node, *nand_np;
1252         int nchips = of_get_child_count(np);
1253         int ret;
1254
1255         if (!nchips || nchips > ANFC_MAX_CS) {
1256                 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1257                         nchips);
1258                 return -EINVAL;
1259         }
1260
1261         for_each_child_of_node(np, nand_np) {
1262                 ret = anfc_chip_init(nfc, nand_np);
1263                 if (ret) {
1264                         of_node_put(nand_np);
1265                         anfc_chips_cleanup(nfc);
1266                         break;
1267                 }
1268         }
1269
1270         return ret;
1271 }
1272
1273 static void anfc_reset(struct arasan_nfc *nfc)
1274 {
1275         /* Disable interrupt signals */
1276         writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1277
1278         /* Enable interrupt status */
1279         writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1280 }
1281
1282 static int anfc_probe(struct platform_device *pdev)
1283 {
1284         struct arasan_nfc *nfc;
1285         int ret;
1286
1287         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1288         if (!nfc)
1289                 return -ENOMEM;
1290
1291         nfc->dev = &pdev->dev;
1292         nand_controller_init(&nfc->controller);
1293         nfc->controller.ops = &anfc_ops;
1294         INIT_LIST_HEAD(&nfc->chips);
1295
1296         nfc->base = devm_platform_ioremap_resource(pdev, 0);
1297         if (IS_ERR(nfc->base))
1298                 return PTR_ERR(nfc->base);
1299
1300         anfc_reset(nfc);
1301
1302         nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1303         if (IS_ERR(nfc->controller_clk))
1304                 return PTR_ERR(nfc->controller_clk);
1305
1306         nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1307         if (IS_ERR(nfc->bus_clk))
1308                 return PTR_ERR(nfc->bus_clk);
1309
1310         ret = clk_prepare_enable(nfc->controller_clk);
1311         if (ret)
1312                 return ret;
1313
1314         ret = clk_prepare_enable(nfc->bus_clk);
1315         if (ret)
1316                 goto disable_controller_clk;
1317
1318         ret = anfc_chips_init(nfc);
1319         if (ret)
1320                 goto disable_bus_clk;
1321
1322         platform_set_drvdata(pdev, nfc);
1323
1324         return 0;
1325
1326 disable_bus_clk:
1327         clk_disable_unprepare(nfc->bus_clk);
1328
1329 disable_controller_clk:
1330         clk_disable_unprepare(nfc->controller_clk);
1331
1332         return ret;
1333 }
1334
1335 static int anfc_remove(struct platform_device *pdev)
1336 {
1337         struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1338
1339         anfc_chips_cleanup(nfc);
1340
1341         clk_disable_unprepare(nfc->bus_clk);
1342         clk_disable_unprepare(nfc->controller_clk);
1343
1344         return 0;
1345 }
1346
1347 static const struct of_device_id anfc_ids[] = {
1348         {
1349                 .compatible = "xlnx,zynqmp-nand-controller",
1350         },
1351         {
1352                 .compatible = "arasan,nfc-v3p10",
1353         },
1354         {}
1355 };
1356 MODULE_DEVICE_TABLE(of, anfc_ids);
1357
1358 static struct platform_driver anfc_driver = {
1359         .driver = {
1360                 .name = "arasan-nand-controller",
1361                 .of_match_table = anfc_ids,
1362         },
1363         .probe = anfc_probe,
1364         .remove = anfc_remove,
1365 };
1366 module_platform_driver(anfc_driver);
1367
1368 MODULE_LICENSE("GPL v2");
1369 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1370 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1371 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1372 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");