GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / mtd / nand / raw / arasan-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/iopoll.h>
21 #include <linux/module.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/partitions.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #define PKT_REG                         0x00
30 #define   PKT_SIZE(x)                   FIELD_PREP(GENMASK(10, 0), (x))
31 #define   PKT_STEPS(x)                  FIELD_PREP(GENMASK(23, 12), (x))
32
33 #define MEM_ADDR1_REG                   0x04
34
35 #define MEM_ADDR2_REG                   0x08
36 #define   ADDR2_STRENGTH(x)             FIELD_PREP(GENMASK(27, 25), (x))
37 #define   ADDR2_CS(x)                   FIELD_PREP(GENMASK(31, 30), (x))
38
39 #define CMD_REG                         0x0C
40 #define   CMD_1(x)                      FIELD_PREP(GENMASK(7, 0), (x))
41 #define   CMD_2(x)                      FIELD_PREP(GENMASK(15, 8), (x))
42 #define   CMD_PAGE_SIZE(x)              FIELD_PREP(GENMASK(25, 23), (x))
43 #define   CMD_DMA_ENABLE                BIT(27)
44 #define   CMD_NADDRS(x)                 FIELD_PREP(GENMASK(30, 28), (x))
45 #define   CMD_ECC_ENABLE                BIT(31)
46
47 #define PROG_REG                        0x10
48 #define   PROG_PGRD                     BIT(0)
49 #define   PROG_ERASE                    BIT(2)
50 #define   PROG_STATUS                   BIT(3)
51 #define   PROG_PGPROG                   BIT(4)
52 #define   PROG_RDID                     BIT(6)
53 #define   PROG_RDPARAM                  BIT(7)
54 #define   PROG_RST                      BIT(8)
55 #define   PROG_GET_FEATURE              BIT(9)
56 #define   PROG_SET_FEATURE              BIT(10)
57 #define   PROG_CHG_RD_COL_ENH           BIT(14)
58
59 #define INTR_STS_EN_REG                 0x14
60 #define INTR_SIG_EN_REG                 0x18
61 #define INTR_STS_REG                    0x1C
62 #define   WRITE_READY                   BIT(0)
63 #define   READ_READY                    BIT(1)
64 #define   XFER_COMPLETE                 BIT(2)
65 #define   DMA_BOUNDARY                  BIT(6)
66 #define   EVENT_MASK                    GENMASK(7, 0)
67
68 #define READY_STS_REG                   0x20
69
70 #define DMA_ADDR0_REG                   0x50
71 #define DMA_ADDR1_REG                   0x24
72
73 #define FLASH_STS_REG                   0x28
74
75 #define TIMING_REG                      0x2C
76 #define   TCCS_TIME_500NS               0
77 #define   TCCS_TIME_300NS               3
78 #define   TCCS_TIME_200NS               2
79 #define   TCCS_TIME_100NS               1
80 #define   FAST_TCAD                     BIT(2)
81 #define   DQS_BUFF_SEL_IN(x)            FIELD_PREP(GENMASK(6, 3), (x))
82 #define   DQS_BUFF_SEL_OUT(x)           FIELD_PREP(GENMASK(18, 15), (x))
83
84 #define DATA_PORT_REG                   0x30
85
86 #define ECC_CONF_REG                    0x34
87 #define   ECC_CONF_COL(x)               FIELD_PREP(GENMASK(15, 0), (x))
88 #define   ECC_CONF_LEN(x)               FIELD_PREP(GENMASK(26, 16), (x))
89 #define   ECC_CONF_BCH_EN               BIT(27)
90
91 #define ECC_ERR_CNT_REG                 0x38
92 #define   GET_PKT_ERR_CNT(x)            FIELD_GET(GENMASK(7, 0), (x))
93 #define   GET_PAGE_ERR_CNT(x)           FIELD_GET(GENMASK(16, 8), (x))
94
95 #define ECC_SP_REG                      0x3C
96 #define   ECC_SP_CMD1(x)                FIELD_PREP(GENMASK(7, 0), (x))
97 #define   ECC_SP_CMD2(x)                FIELD_PREP(GENMASK(15, 8), (x))
98 #define   ECC_SP_ADDRS(x)               FIELD_PREP(GENMASK(30, 28), (x))
99
100 #define ECC_1ERR_CNT_REG                0x40
101 #define ECC_2ERR_CNT_REG                0x44
102
103 #define DATA_INTERFACE_REG              0x6C
104 #define   DIFACE_SDR_MODE(x)            FIELD_PREP(GENMASK(2, 0), (x))
105 #define   DIFACE_DDR_MODE(x)            FIELD_PREP(GENMASK(5, 3), (x))
106 #define   DIFACE_SDR                    0
107 #define   DIFACE_NVDDR                  BIT(9)
108
109 #define ANFC_MAX_CS                     2
110 #define ANFC_DFLT_TIMEOUT_US            1000000
111 #define ANFC_MAX_CHUNK_SIZE             SZ_1M
112 #define ANFC_MAX_PARAM_SIZE             SZ_4K
113 #define ANFC_MAX_STEPS                  SZ_2K
114 #define ANFC_MAX_PKT_SIZE               (SZ_2K - 1)
115 #define ANFC_MAX_ADDR_CYC               5U
116 #define ANFC_RSVD_ECC_BYTES             21
117
118 #define ANFC_XLNX_SDR_DFLT_CORE_CLK     100000000
119 #define ANFC_XLNX_SDR_HS_CORE_CLK       80000000
120
121 static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
122
123 /**
124  * struct anfc_op - Defines how to execute an operation
125  * @pkt_reg: Packet register
126  * @addr1_reg: Memory address 1 register
127  * @addr2_reg: Memory address 2 register
128  * @cmd_reg: Command register
129  * @prog_reg: Program register
130  * @steps: Number of "packets" to read/write
131  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
132  * @len: Data transfer length
133  * @read: Data transfer direction from the controller point of view
134  * @buf: Data buffer
135  */
136 struct anfc_op {
137         u32 pkt_reg;
138         u32 addr1_reg;
139         u32 addr2_reg;
140         u32 cmd_reg;
141         u32 prog_reg;
142         int steps;
143         unsigned int rdy_timeout_ms;
144         unsigned int len;
145         bool read;
146         u8 *buf;
147 };
148
149 /**
150  * struct anand - Defines the NAND chip related information
151  * @node:               Used to store NAND chips into a list
152  * @chip:               NAND chip information structure
153  * @rb:                 Ready-busy line
154  * @page_sz:            Register value of the page_sz field to use
155  * @clk:                Expected clock frequency to use
156  * @data_iface:         Data interface timing mode to use
157  * @timings:            NV-DDR specific timings to use
158  * @ecc_conf:           Hardware ECC configuration value
159  * @strength:           Register value of the ECC strength
160  * @raddr_cycles:       Row address cycle information
161  * @caddr_cycles:       Column address cycle information
162  * @ecc_bits:           Exact number of ECC bits per syndrome
163  * @ecc_total:          Total number of ECC bytes
164  * @errloc:             Array of errors located with soft BCH
165  * @hw_ecc:             Buffer to store syndromes computed by hardware
166  * @bch:                BCH structure
167  * @cs_idx:             Array of chip-select for this device, values are indexes
168  *                      of the controller structure @gpio_cs array
169  * @ncs_idx:            Size of the @cs_idx array
170  */
171 struct anand {
172         struct list_head node;
173         struct nand_chip chip;
174         unsigned int rb;
175         unsigned int page_sz;
176         unsigned long clk;
177         u32 data_iface;
178         u32 timings;
179         u32 ecc_conf;
180         u32 strength;
181         u16 raddr_cycles;
182         u16 caddr_cycles;
183         unsigned int ecc_bits;
184         unsigned int ecc_total;
185         unsigned int *errloc;
186         u8 *hw_ecc;
187         struct bch_control *bch;
188         int *cs_idx;
189         int ncs_idx;
190 };
191
192 /**
193  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
194  * @dev:                Pointer to the device structure
195  * @base:               Remapped register area
196  * @controller_clk:             Pointer to the system clock
197  * @bus_clk:            Pointer to the flash clock
198  * @controller:         Base controller structure
199  * @chips:              List of all NAND chips attached to the controller
200  * @cur_clk:            Current clock rate
201  * @cs_array:           CS array. Native CS are left empty, the other cells are
202  *                      populated with their corresponding GPIO descriptor.
203  * @ncs:                Size of @cs_array
204  * @cur_cs:             Index in @cs_array of the currently in use CS
205  * @native_cs:          Currently selected native CS
206  * @spare_cs:           Native CS that is not wired (may be selected when a GPIO
207  *                      CS is in use)
208  */
209 struct arasan_nfc {
210         struct device *dev;
211         void __iomem *base;
212         struct clk *controller_clk;
213         struct clk *bus_clk;
214         struct nand_controller controller;
215         struct list_head chips;
216         unsigned int cur_clk;
217         struct gpio_desc **cs_array;
218         unsigned int ncs;
219         int cur_cs;
220         unsigned int native_cs;
221         unsigned int spare_cs;
222 };
223
224 static struct anand *to_anand(struct nand_chip *nand)
225 {
226         return container_of(nand, struct anand, chip);
227 }
228
229 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
230 {
231         return container_of(ctrl, struct arasan_nfc, controller);
232 }
233
234 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
235 {
236         u32 val;
237         int ret;
238
239         ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
240                                          val & event, 0,
241                                          ANFC_DFLT_TIMEOUT_US);
242         if (ret) {
243                 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
244                 return -ETIMEDOUT;
245         }
246
247         writel_relaxed(event, nfc->base + INTR_STS_REG);
248
249         return 0;
250 }
251
252 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
253                             unsigned int timeout_ms)
254 {
255         struct anand *anand = to_anand(chip);
256         u32 val;
257         int ret;
258
259         /* There is no R/B interrupt, we must poll a register */
260         ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
261                                          val & BIT(anand->rb),
262                                          1, timeout_ms * 1000);
263         if (ret) {
264                 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
265                         readl_relaxed(nfc->base + READY_STS_REG));
266                 return -ETIMEDOUT;
267         }
268
269         return 0;
270 }
271
272 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
273 {
274         writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
275         writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
276         writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
277         writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
278         writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
279 }
280
281 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
282                                unsigned int *pktsize)
283 {
284         unsigned int nb, sz;
285
286         for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
287                 sz = len / nb;
288                 if (sz <= ANFC_MAX_PKT_SIZE)
289                         break;
290         }
291
292         if (sz * nb != len)
293                 return -ENOTSUPP;
294
295         if (steps)
296                 *steps = nb;
297
298         if (pktsize)
299                 *pktsize = sz;
300
301         return 0;
302 }
303
304 static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
305 {
306         return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
307 }
308
309 static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
310 {
311         return anand->cs_idx[num];
312 }
313
314 static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
315 {
316         /* CS did not change: do nothing */
317         if (nfc->cur_cs == nfc_cs_idx)
318                 return;
319
320         /* Deassert the previous CS if it was a GPIO */
321         if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
322                 gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
323
324         /* Assert the new one */
325         if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
326                 nfc->native_cs = nfc->spare_cs;
327                 gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
328         } else {
329                 nfc->native_cs = nfc_cs_idx;
330         }
331
332         nfc->cur_cs = nfc_cs_idx;
333 }
334
335 static int anfc_select_target(struct nand_chip *chip, int target)
336 {
337         struct anand *anand = to_anand(chip);
338         struct arasan_nfc *nfc = to_anfc(chip->controller);
339         unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
340         int ret;
341
342         anfc_assert_cs(nfc, nfc_cs_idx);
343
344         /* Update the controller timings and the potential ECC configuration */
345         writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
346         writel_relaxed(anand->timings, nfc->base + TIMING_REG);
347
348         /* Update clock frequency */
349         if (nfc->cur_clk != anand->clk) {
350                 clk_disable_unprepare(nfc->controller_clk);
351                 ret = clk_set_rate(nfc->controller_clk, anand->clk);
352                 if (ret) {
353                         dev_err(nfc->dev, "Failed to change clock rate\n");
354                         return ret;
355                 }
356
357                 ret = clk_prepare_enable(nfc->controller_clk);
358                 if (ret) {
359                         dev_err(nfc->dev,
360                                 "Failed to re-enable the controller clock\n");
361                         return ret;
362                 }
363
364                 nfc->cur_clk = anand->clk;
365         }
366
367         return 0;
368 }
369
370 /*
371  * When using the embedded hardware ECC engine, the controller is in charge of
372  * feeding the engine with, first, the ECC residue present in the data array.
373  * A typical read operation is:
374  * 1/ Assert the read operation by sending the relevant command/address cycles
375  *    but targeting the column of the first ECC bytes in the OOB area instead of
376  *    the main data directly.
377  * 2/ After having read the relevant number of ECC bytes, the controller uses
378  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
379  *    Register" to move the pointer back at the beginning of the main data.
380  * 3/ It will read the content of the main area for a given size (pktsize) and
381  *    will feed the ECC engine with this buffer again.
382  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
383  *    with the ones already received. It eventually trigger status flags and
384  *    then set the "Buffer Read Ready" flag.
385  * 5/ The corrected data is then available for reading from the data port
386  *    register.
387  *
388  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
389  * reports uncorrectable errors. Because of this bug, we have to use the
390  * software BCH implementation in the read path.
391  */
392 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
393                                  int oob_required, int page)
394 {
395         struct arasan_nfc *nfc = to_anfc(chip->controller);
396         struct mtd_info *mtd = nand_to_mtd(chip);
397         struct anand *anand = to_anand(chip);
398         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
399         unsigned int max_bitflips = 0;
400         dma_addr_t dma_addr;
401         int step, ret;
402         struct anfc_op nfc_op = {
403                 .pkt_reg =
404                         PKT_SIZE(chip->ecc.size) |
405                         PKT_STEPS(chip->ecc.steps),
406                 .addr1_reg =
407                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
408                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
409                 .addr2_reg =
410                         ((page >> 16) & 0xFF) |
411                         ADDR2_STRENGTH(anand->strength) |
412                         ADDR2_CS(nfc->native_cs),
413                 .cmd_reg =
414                         CMD_1(NAND_CMD_READ0) |
415                         CMD_2(NAND_CMD_READSTART) |
416                         CMD_PAGE_SIZE(anand->page_sz) |
417                         CMD_DMA_ENABLE |
418                         CMD_NADDRS(anand->caddr_cycles +
419                                    anand->raddr_cycles),
420                 .prog_reg = PROG_PGRD,
421         };
422
423         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
424         if (dma_mapping_error(nfc->dev, dma_addr)) {
425                 dev_err(nfc->dev, "Buffer mapping error");
426                 return -EIO;
427         }
428
429         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
430         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
431
432         anfc_trigger_op(nfc, &nfc_op);
433
434         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
435         dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
436         if (ret) {
437                 dev_err(nfc->dev, "Error reading page %d\n", page);
438                 return ret;
439         }
440
441         /* Store the raw OOB bytes as well */
442         ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
443                                          mtd->oobsize, 0);
444         if (ret)
445                 return ret;
446
447         /*
448          * For each step, compute by softare the BCH syndrome over the raw data.
449          * Compare the theoretical amount of errors and compare with the
450          * hardware engine feedback.
451          */
452         for (step = 0; step < chip->ecc.steps; step++) {
453                 u8 *raw_buf = &buf[step * chip->ecc.size];
454                 unsigned int bit, byte;
455                 int bf, i;
456
457                 /* Extract the syndrome, it is not necessarily aligned */
458                 memset(anand->hw_ecc, 0, chip->ecc.bytes);
459                 nand_extract_bits(anand->hw_ecc, 0,
460                                   &chip->oob_poi[mtd->oobsize - anand->ecc_total],
461                                   anand->ecc_bits * step, anand->ecc_bits);
462
463                 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
464                                 anand->hw_ecc, NULL, NULL, anand->errloc);
465                 if (!bf) {
466                         continue;
467                 } else if (bf > 0) {
468                         for (i = 0; i < bf; i++) {
469                                 /* Only correct the data, not the syndrome */
470                                 if (anand->errloc[i] < (chip->ecc.size * 8)) {
471                                         bit = BIT(anand->errloc[i] & 7);
472                                         byte = anand->errloc[i] >> 3;
473                                         raw_buf[byte] ^= bit;
474                                 }
475                         }
476
477                         mtd->ecc_stats.corrected += bf;
478                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
479
480                         continue;
481                 }
482
483                 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
484                                                  NULL, 0, NULL, 0,
485                                                  chip->ecc.strength);
486                 if (bf > 0) {
487                         mtd->ecc_stats.corrected += bf;
488                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
489                         memset(raw_buf, 0xFF, chip->ecc.size);
490                 } else if (bf < 0) {
491                         mtd->ecc_stats.failed++;
492                 }
493         }
494
495         return 0;
496 }
497
498 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
499                                      int oob_required, int page)
500 {
501         int ret;
502
503         ret = anfc_select_target(chip, chip->cur_cs);
504         if (ret)
505                 return ret;
506
507         return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
508 };
509
510 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
511                                   int oob_required, int page)
512 {
513         struct anand *anand = to_anand(chip);
514         struct arasan_nfc *nfc = to_anfc(chip->controller);
515         struct mtd_info *mtd = nand_to_mtd(chip);
516         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
517         dma_addr_t dma_addr;
518         int ret;
519         struct anfc_op nfc_op = {
520                 .pkt_reg =
521                         PKT_SIZE(chip->ecc.size) |
522                         PKT_STEPS(chip->ecc.steps),
523                 .addr1_reg =
524                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
525                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
526                 .addr2_reg =
527                         ((page >> 16) & 0xFF) |
528                         ADDR2_STRENGTH(anand->strength) |
529                         ADDR2_CS(nfc->native_cs),
530                 .cmd_reg =
531                         CMD_1(NAND_CMD_SEQIN) |
532                         CMD_2(NAND_CMD_PAGEPROG) |
533                         CMD_PAGE_SIZE(anand->page_sz) |
534                         CMD_DMA_ENABLE |
535                         CMD_NADDRS(anand->caddr_cycles +
536                                    anand->raddr_cycles) |
537                         CMD_ECC_ENABLE,
538                 .prog_reg = PROG_PGPROG,
539         };
540
541         writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
542         writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
543                        ECC_SP_ADDRS(anand->caddr_cycles),
544                        nfc->base + ECC_SP_REG);
545
546         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
547         if (dma_mapping_error(nfc->dev, dma_addr)) {
548                 dev_err(nfc->dev, "Buffer mapping error");
549                 return -EIO;
550         }
551
552         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
553         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
554
555         anfc_trigger_op(nfc, &nfc_op);
556         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
557         dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
558         if (ret) {
559                 dev_err(nfc->dev, "Error writing page %d\n", page);
560                 return ret;
561         }
562
563         /* Spare data is not protected */
564         if (oob_required)
565                 ret = nand_write_oob_std(chip, page);
566
567         return ret;
568 }
569
570 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
571                                       int oob_required, int page)
572 {
573         int ret;
574
575         ret = anfc_select_target(chip, chip->cur_cs);
576         if (ret)
577                 return ret;
578
579         return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
580 };
581
582 /* NAND framework ->exec_op() hooks and related helpers */
583 static int anfc_parse_instructions(struct nand_chip *chip,
584                                    const struct nand_subop *subop,
585                                    struct anfc_op *nfc_op)
586 {
587         struct arasan_nfc *nfc = to_anfc(chip->controller);
588         struct anand *anand = to_anand(chip);
589         const struct nand_op_instr *instr = NULL;
590         bool first_cmd = true;
591         unsigned int op_id;
592         int ret, i;
593
594         memset(nfc_op, 0, sizeof(*nfc_op));
595         nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
596         nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
597
598         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
599                 unsigned int offset, naddrs, pktsize;
600                 const u8 *addrs;
601                 u8 *buf;
602
603                 instr = &subop->instrs[op_id];
604
605                 switch (instr->type) {
606                 case NAND_OP_CMD_INSTR:
607                         if (first_cmd)
608                                 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
609                         else
610                                 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
611
612                         first_cmd = false;
613                         break;
614
615                 case NAND_OP_ADDR_INSTR:
616                         offset = nand_subop_get_addr_start_off(subop, op_id);
617                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
618                         addrs = &instr->ctx.addr.addrs[offset];
619                         nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
620
621                         for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
622                                 if (i < 4)
623                                         nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
624                                 else
625                                         nfc_op->addr2_reg |= addrs[i];
626                         }
627
628                         break;
629                 case NAND_OP_DATA_IN_INSTR:
630                         nfc_op->read = true;
631                         fallthrough;
632                 case NAND_OP_DATA_OUT_INSTR:
633                         offset = nand_subop_get_data_start_off(subop, op_id);
634                         buf = instr->ctx.data.buf.in;
635                         nfc_op->buf = &buf[offset];
636                         nfc_op->len = nand_subop_get_data_len(subop, op_id);
637                         ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
638                                                   &pktsize);
639                         if (ret)
640                                 return ret;
641
642                         /*
643                          * Number of DATA cycles must be aligned on 4, this
644                          * means the controller might read/write more than
645                          * requested. This is harmless most of the time as extra
646                          * DATA are discarded in the write path and read pointer
647                          * adjusted in the read path.
648                          *
649                          * FIXME: The core should mark operations where
650                          * reading/writing more is allowed so the exec_op()
651                          * implementation can take the right decision when the
652                          * alignment constraint is not met: adjust the number of
653                          * DATA cycles when it's allowed, reject the operation
654                          * otherwise.
655                          */
656                         nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
657                                            PKT_STEPS(nfc_op->steps);
658                         break;
659                 case NAND_OP_WAITRDY_INSTR:
660                         nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
661                         break;
662                 }
663         }
664
665         return 0;
666 }
667
668 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
669 {
670         unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
671         unsigned int last_len = nfc_op->len % 4;
672         unsigned int offset, dir;
673         u8 *buf = nfc_op->buf;
674         int ret, i;
675
676         for (i = 0; i < nfc_op->steps; i++) {
677                 dir = nfc_op->read ? READ_READY : WRITE_READY;
678                 ret = anfc_wait_for_event(nfc, dir);
679                 if (ret) {
680                         dev_err(nfc->dev, "PIO %s ready signal not received\n",
681                                 nfc_op->read ? "Read" : "Write");
682                         return ret;
683                 }
684
685                 offset = i * (dwords * 4);
686                 if (nfc_op->read)
687                         ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
688                                      dwords);
689                 else
690                         iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
691                                       dwords);
692         }
693
694         if (last_len) {
695                 u32 remainder;
696
697                 offset = nfc_op->len - last_len;
698
699                 if (nfc_op->read) {
700                         remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
701                         memcpy(&buf[offset], &remainder, last_len);
702                 } else {
703                         memcpy(&remainder, &buf[offset], last_len);
704                         writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
705                 }
706         }
707
708         return anfc_wait_for_event(nfc, XFER_COMPLETE);
709 }
710
711 static int anfc_misc_data_type_exec(struct nand_chip *chip,
712                                     const struct nand_subop *subop,
713                                     u32 prog_reg)
714 {
715         struct arasan_nfc *nfc = to_anfc(chip->controller);
716         struct anfc_op nfc_op = {};
717         int ret;
718
719         ret = anfc_parse_instructions(chip, subop, &nfc_op);
720         if (ret)
721                 return ret;
722
723         nfc_op.prog_reg = prog_reg;
724         anfc_trigger_op(nfc, &nfc_op);
725
726         if (nfc_op.rdy_timeout_ms) {
727                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
728                 if (ret)
729                         return ret;
730         }
731
732         return anfc_rw_pio_op(nfc, &nfc_op);
733 }
734
735 static int anfc_param_read_type_exec(struct nand_chip *chip,
736                                      const struct nand_subop *subop)
737 {
738         return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
739 }
740
741 static int anfc_data_read_type_exec(struct nand_chip *chip,
742                                     const struct nand_subop *subop)
743 {
744         u32 prog_reg = PROG_PGRD;
745
746         /*
747          * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
748          * command through the READ PAGE "type" always works fine, when in
749          * NV-DDR mode the same command simply fails. However, it was also
750          * spotted that any CHANGE READ COLUMN command sent through the CHANGE
751          * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
752          * and NV-DDR). So, for simplicity, let's program the controller with
753          * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
754          * perform a CHANGE READ COLUMN operation.
755          */
756         if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
757             subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
758                 prog_reg = PROG_CHG_RD_COL_ENH;
759
760         return anfc_misc_data_type_exec(chip, subop, prog_reg);
761 }
762
763 static int anfc_param_write_type_exec(struct nand_chip *chip,
764                                       const struct nand_subop *subop)
765 {
766         return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
767 }
768
769 static int anfc_data_write_type_exec(struct nand_chip *chip,
770                                      const struct nand_subop *subop)
771 {
772         return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
773 }
774
775 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
776                                        const struct nand_subop *subop,
777                                        u32 prog_reg)
778 {
779         struct arasan_nfc *nfc = to_anfc(chip->controller);
780         struct anfc_op nfc_op = {};
781         int ret;
782
783         ret = anfc_parse_instructions(chip, subop, &nfc_op);
784         if (ret)
785                 return ret;
786
787         nfc_op.prog_reg = prog_reg;
788         anfc_trigger_op(nfc, &nfc_op);
789
790         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
791         if (ret)
792                 return ret;
793
794         if (nfc_op.rdy_timeout_ms)
795                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
796
797         return ret;
798 }
799
800 static int anfc_status_type_exec(struct nand_chip *chip,
801                                  const struct nand_subop *subop)
802 {
803         struct arasan_nfc *nfc = to_anfc(chip->controller);
804         u32 tmp;
805         int ret;
806
807         /* See anfc_check_op() for details about this constraint */
808         if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
809                 return -ENOTSUPP;
810
811         ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
812         if (ret)
813                 return ret;
814
815         tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
816         memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
817
818         return 0;
819 }
820
821 static int anfc_reset_type_exec(struct nand_chip *chip,
822                                 const struct nand_subop *subop)
823 {
824         return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
825 }
826
827 static int anfc_erase_type_exec(struct nand_chip *chip,
828                                 const struct nand_subop *subop)
829 {
830         return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
831 }
832
833 static int anfc_wait_type_exec(struct nand_chip *chip,
834                                const struct nand_subop *subop)
835 {
836         struct arasan_nfc *nfc = to_anfc(chip->controller);
837         struct anfc_op nfc_op = {};
838         int ret;
839
840         ret = anfc_parse_instructions(chip, subop, &nfc_op);
841         if (ret)
842                 return ret;
843
844         return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
845 }
846
847 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
848         NAND_OP_PARSER_PATTERN(
849                 anfc_param_read_type_exec,
850                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
851                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
852                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
853                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
854         NAND_OP_PARSER_PATTERN(
855                 anfc_param_write_type_exec,
856                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
857                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
858                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
859         NAND_OP_PARSER_PATTERN(
860                 anfc_data_read_type_exec,
861                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
862                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
863                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
864                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
865                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
866         NAND_OP_PARSER_PATTERN(
867                 anfc_data_write_type_exec,
868                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
869                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
870                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
871                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
872         NAND_OP_PARSER_PATTERN(
873                 anfc_reset_type_exec,
874                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
875                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
876         NAND_OP_PARSER_PATTERN(
877                 anfc_erase_type_exec,
878                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
879                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
880                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
881                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
882         NAND_OP_PARSER_PATTERN(
883                 anfc_status_type_exec,
884                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
885                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
886         NAND_OP_PARSER_PATTERN(
887                 anfc_wait_type_exec,
888                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
889         );
890
891 static int anfc_check_op(struct nand_chip *chip,
892                          const struct nand_operation *op)
893 {
894         const struct nand_op_instr *instr;
895         int op_id;
896
897         /*
898          * The controller abstracts all the NAND operations and do not support
899          * data only operations.
900          *
901          * TODO: The nand_op_parser framework should be extended to
902          * support custom checks on DATA instructions.
903          */
904         for (op_id = 0; op_id < op->ninstrs; op_id++) {
905                 instr = &op->instrs[op_id];
906
907                 switch (instr->type) {
908                 case NAND_OP_ADDR_INSTR:
909                         if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
910                                 return -ENOTSUPP;
911
912                         break;
913                 case NAND_OP_DATA_IN_INSTR:
914                 case NAND_OP_DATA_OUT_INSTR:
915                         if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
916                                 return -ENOTSUPP;
917
918                         if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
919                                 return -ENOTSUPP;
920
921                         break;
922                 default:
923                         break;
924                 }
925         }
926
927         /*
928          * The controller does not allow to proceed with a CMD+DATA_IN cycle
929          * manually on the bus by reading data from the data register. Instead,
930          * the controller abstract a status read operation with its own status
931          * register after ordering a read status operation. Hence, we cannot
932          * support any CMD+DATA_IN operation other than a READ STATUS.
933          *
934          * TODO: The nand_op_parser() framework should be extended to describe
935          * fixed patterns instead of open-coding this check here.
936          */
937         if (op->ninstrs == 2 &&
938             op->instrs[0].type == NAND_OP_CMD_INSTR &&
939             op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
940             op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
941                 return -ENOTSUPP;
942
943         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
944 }
945
946 static int anfc_exec_op(struct nand_chip *chip,
947                         const struct nand_operation *op,
948                         bool check_only)
949 {
950         int ret;
951
952         if (check_only)
953                 return anfc_check_op(chip, op);
954
955         ret = anfc_select_target(chip, op->cs);
956         if (ret)
957                 return ret;
958
959         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
960 }
961
962 static int anfc_setup_interface(struct nand_chip *chip, int target,
963                                 const struct nand_interface_config *conf)
964 {
965         struct anand *anand = to_anand(chip);
966         struct arasan_nfc *nfc = to_anfc(chip->controller);
967         struct device_node *np = nfc->dev->of_node;
968         const struct nand_sdr_timings *sdr;
969         const struct nand_nvddr_timings *nvddr;
970         unsigned int tccs_min, dqs_mode, fast_tcad;
971
972         if (nand_interface_is_nvddr(conf)) {
973                 nvddr = nand_get_nvddr_timings(conf);
974                 if (IS_ERR(nvddr))
975                         return PTR_ERR(nvddr);
976
977                 /*
978                  * The controller only supports data payload requests which are
979                  * a multiple of 4. In practice, most data accesses are 4-byte
980                  * aligned and this is not an issue. However, rounding up will
981                  * simply be refused by the controller if we reached the end of
982                  * the device *and* we are using the NV-DDR interface(!). In
983                  * this situation, unaligned data requests ending at the device
984                  * boundary will confuse the controller and cannot be performed.
985                  *
986                  * This is something that happens in nand_read_subpage() when
987                  * selecting software ECC support and must be avoided.
988                  */
989                 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
990                         return -ENOTSUPP;
991         } else {
992                 sdr = nand_get_sdr_timings(conf);
993                 if (IS_ERR(sdr))
994                         return PTR_ERR(sdr);
995         }
996
997         if (target < 0)
998                 return 0;
999
1000         if (nand_interface_is_sdr(conf)) {
1001                 anand->data_iface = DIFACE_SDR |
1002                                     DIFACE_SDR_MODE(conf->timings.mode);
1003                 anand->timings = 0;
1004         } else {
1005                 anand->data_iface = DIFACE_NVDDR |
1006                                     DIFACE_DDR_MODE(conf->timings.mode);
1007
1008                 if (conf->timings.nvddr.tCCS_min <= 100000)
1009                         tccs_min = TCCS_TIME_100NS;
1010                 else if (conf->timings.nvddr.tCCS_min <= 200000)
1011                         tccs_min = TCCS_TIME_200NS;
1012                 else if (conf->timings.nvddr.tCCS_min <= 300000)
1013                         tccs_min = TCCS_TIME_300NS;
1014                 else
1015                         tccs_min = TCCS_TIME_500NS;
1016
1017                 fast_tcad = 0;
1018                 if (conf->timings.nvddr.tCAD_min < 45000)
1019                         fast_tcad = FAST_TCAD;
1020
1021                 switch (conf->timings.mode) {
1022                 case 5:
1023                 case 4:
1024                         dqs_mode = 2;
1025                         break;
1026                 case 3:
1027                         dqs_mode = 3;
1028                         break;
1029                 case 2:
1030                         dqs_mode = 4;
1031                         break;
1032                 case 1:
1033                         dqs_mode = 5;
1034                         break;
1035                 case 0:
1036                 default:
1037                         dqs_mode = 6;
1038                         break;
1039                 }
1040
1041                 anand->timings = tccs_min | fast_tcad |
1042                                  DQS_BUFF_SEL_IN(dqs_mode) |
1043                                  DQS_BUFF_SEL_OUT(dqs_mode);
1044         }
1045
1046         anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
1047
1048         /*
1049          * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
1050          * with f > 90MHz (default clock is 100MHz) but signals are unstable
1051          * with higher modes. Hence we decrease a little bit the clock rate to
1052          * 80MHz when using SDR modes 2-5 with this SoC.
1053          */
1054         if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
1055             nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
1056                 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
1057
1058         return 0;
1059 }
1060
1061 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
1062 {
1063         unsigned int bch_gf_mag, ecc_bits;
1064
1065         switch (step_size) {
1066         case SZ_512:
1067                 bch_gf_mag = 13;
1068                 break;
1069         case SZ_1K:
1070                 bch_gf_mag = 14;
1071                 break;
1072         default:
1073                 return -EINVAL;
1074         }
1075
1076         ecc_bits = bch_gf_mag * strength;
1077
1078         return DIV_ROUND_UP(ecc_bits, 8);
1079 }
1080
1081 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
1082
1083 static const int anfc_hw_ecc_1024_strengths[] = {24};
1084
1085 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
1086         {
1087                 .stepsize = SZ_512,
1088                 .strengths = anfc_hw_ecc_512_strengths,
1089                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
1090         },
1091         {
1092                 .stepsize = SZ_1K,
1093                 .strengths = anfc_hw_ecc_1024_strengths,
1094                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
1095         },
1096 };
1097
1098 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
1099         .stepinfos = anfc_hw_ecc_step_infos,
1100         .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
1101         .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
1102 };
1103
1104 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1105                                        struct nand_chip *chip)
1106 {
1107         struct anand *anand = to_anand(chip);
1108         struct mtd_info *mtd = nand_to_mtd(chip);
1109         struct nand_ecc_ctrl *ecc = &chip->ecc;
1110         unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1111         int ret;
1112
1113         switch (mtd->writesize) {
1114         case SZ_512:
1115         case SZ_2K:
1116         case SZ_4K:
1117         case SZ_8K:
1118         case SZ_16K:
1119                 break;
1120         default:
1121                 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1122                 return -EINVAL;
1123         }
1124
1125         ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1126         if (ret)
1127                 return ret;
1128
1129         switch (ecc->strength) {
1130         case 12:
1131                 anand->strength = 0x1;
1132                 break;
1133         case 8:
1134                 anand->strength = 0x2;
1135                 break;
1136         case 4:
1137                 anand->strength = 0x3;
1138                 break;
1139         case 24:
1140                 anand->strength = 0x4;
1141                 break;
1142         default:
1143                 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1144                 return -EINVAL;
1145         }
1146
1147         switch (ecc->size) {
1148         case SZ_512:
1149                 bch_gf_mag = 13;
1150                 bch_prim_poly = 0x201b;
1151                 break;
1152         case SZ_1K:
1153                 bch_gf_mag = 14;
1154                 bch_prim_poly = 0x4443;
1155                 break;
1156         default:
1157                 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1158                 return -EINVAL;
1159         }
1160
1161         mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1162
1163         ecc->steps = mtd->writesize / ecc->size;
1164         ecc->algo = NAND_ECC_ALGO_BCH;
1165         anand->ecc_bits = bch_gf_mag * ecc->strength;
1166         ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1167         anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1168         ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1169         anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1170                           ECC_CONF_LEN(anand->ecc_total) |
1171                           ECC_CONF_BCH_EN;
1172
1173         anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1174                                            sizeof(*anand->errloc), GFP_KERNEL);
1175         if (!anand->errloc)
1176                 return -ENOMEM;
1177
1178         anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1179         if (!anand->hw_ecc)
1180                 return -ENOMEM;
1181
1182         /* Enforce bit swapping to fit the hardware */
1183         anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1184         if (!anand->bch)
1185                 return -EINVAL;
1186
1187         ecc->read_page = anfc_sel_read_page_hw_ecc;
1188         ecc->write_page = anfc_sel_write_page_hw_ecc;
1189
1190         return 0;
1191 }
1192
1193 static int anfc_attach_chip(struct nand_chip *chip)
1194 {
1195         struct anand *anand = to_anand(chip);
1196         struct arasan_nfc *nfc = to_anfc(chip->controller);
1197         struct mtd_info *mtd = nand_to_mtd(chip);
1198         int ret = 0;
1199
1200         if (mtd->writesize <= SZ_512)
1201                 anand->caddr_cycles = 1;
1202         else
1203                 anand->caddr_cycles = 2;
1204
1205         if (chip->options & NAND_ROW_ADDR_3)
1206                 anand->raddr_cycles = 3;
1207         else
1208                 anand->raddr_cycles = 2;
1209
1210         switch (mtd->writesize) {
1211         case 512:
1212                 anand->page_sz = 0;
1213                 break;
1214         case 1024:
1215                 anand->page_sz = 5;
1216                 break;
1217         case 2048:
1218                 anand->page_sz = 1;
1219                 break;
1220         case 4096:
1221                 anand->page_sz = 2;
1222                 break;
1223         case 8192:
1224                 anand->page_sz = 3;
1225                 break;
1226         case 16384:
1227                 anand->page_sz = 4;
1228                 break;
1229         default:
1230                 return -EINVAL;
1231         }
1232
1233         /* These hooks are valid for all ECC providers */
1234         chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1235         chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1236
1237         switch (chip->ecc.engine_type) {
1238         case NAND_ECC_ENGINE_TYPE_NONE:
1239         case NAND_ECC_ENGINE_TYPE_SOFT:
1240         case NAND_ECC_ENGINE_TYPE_ON_DIE:
1241                 break;
1242         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1243                 ret = anfc_init_hw_ecc_controller(nfc, chip);
1244                 break;
1245         default:
1246                 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1247                         chip->ecc.engine_type);
1248                 return -EINVAL;
1249         }
1250
1251         return ret;
1252 }
1253
1254 static void anfc_detach_chip(struct nand_chip *chip)
1255 {
1256         struct anand *anand = to_anand(chip);
1257
1258         if (anand->bch)
1259                 bch_free(anand->bch);
1260 }
1261
1262 static const struct nand_controller_ops anfc_ops = {
1263         .exec_op = anfc_exec_op,
1264         .setup_interface = anfc_setup_interface,
1265         .attach_chip = anfc_attach_chip,
1266         .detach_chip = anfc_detach_chip,
1267 };
1268
1269 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1270 {
1271         struct anand *anand;
1272         struct nand_chip *chip;
1273         struct mtd_info *mtd;
1274         int rb, ret, i;
1275
1276         anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1277         if (!anand)
1278                 return -ENOMEM;
1279
1280         /* Chip-select init */
1281         anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1282         if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
1283                 dev_err(nfc->dev, "Invalid reg property\n");
1284                 return -EINVAL;
1285         }
1286
1287         anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
1288                                      sizeof(*anand->cs_idx), GFP_KERNEL);
1289         if (!anand->cs_idx)
1290                 return -ENOMEM;
1291
1292         for (i = 0; i < anand->ncs_idx; i++) {
1293                 ret = of_property_read_u32_index(np, "reg", i,
1294                                                  &anand->cs_idx[i]);
1295                 if (ret) {
1296                         dev_err(nfc->dev, "invalid CS property: %d\n", ret);
1297                         return ret;
1298                 }
1299         }
1300
1301         /* Ready-busy init */
1302         ret = of_property_read_u32(np, "nand-rb", &rb);
1303         if (ret)
1304                 return ret;
1305
1306         if (rb >= ANFC_MAX_CS) {
1307                 dev_err(nfc->dev, "Wrong RB %d\n", rb);
1308                 return -EINVAL;
1309         }
1310
1311         anand->rb = rb;
1312
1313         chip = &anand->chip;
1314         mtd = nand_to_mtd(chip);
1315         mtd->dev.parent = nfc->dev;
1316         chip->controller = &nfc->controller;
1317         chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1318                         NAND_USES_DMA;
1319
1320         nand_set_flash_node(chip, np);
1321         if (!mtd->name) {
1322                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1323                 return -EINVAL;
1324         }
1325
1326         ret = nand_scan(chip, anand->ncs_idx);
1327         if (ret) {
1328                 dev_err(nfc->dev, "Scan operation failed\n");
1329                 return ret;
1330         }
1331
1332         ret = mtd_device_register(mtd, NULL, 0);
1333         if (ret) {
1334                 nand_cleanup(chip);
1335                 return ret;
1336         }
1337
1338         list_add_tail(&anand->node, &nfc->chips);
1339
1340         return 0;
1341 }
1342
1343 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1344 {
1345         struct anand *anand, *tmp;
1346         struct nand_chip *chip;
1347         int ret;
1348
1349         list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1350                 chip = &anand->chip;
1351                 ret = mtd_device_unregister(nand_to_mtd(chip));
1352                 WARN_ON(ret);
1353                 nand_cleanup(chip);
1354                 list_del(&anand->node);
1355         }
1356 }
1357
1358 static int anfc_chips_init(struct arasan_nfc *nfc)
1359 {
1360         struct device_node *np = nfc->dev->of_node, *nand_np;
1361         int nchips = of_get_child_count(np);
1362         int ret;
1363
1364         if (!nchips) {
1365                 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1366                         nchips);
1367                 return -EINVAL;
1368         }
1369
1370         for_each_child_of_node(np, nand_np) {
1371                 ret = anfc_chip_init(nfc, nand_np);
1372                 if (ret) {
1373                         of_node_put(nand_np);
1374                         anfc_chips_cleanup(nfc);
1375                         break;
1376                 }
1377         }
1378
1379         return ret;
1380 }
1381
1382 static void anfc_reset(struct arasan_nfc *nfc)
1383 {
1384         /* Disable interrupt signals */
1385         writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1386
1387         /* Enable interrupt status */
1388         writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1389
1390         nfc->cur_cs = -1;
1391 }
1392
1393 static int anfc_parse_cs(struct arasan_nfc *nfc)
1394 {
1395         int ret;
1396
1397         /* Check the gpio-cs property */
1398         ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
1399         if (ret)
1400                 return ret;
1401
1402         /*
1403          * The controller native CS cannot be both disabled at the same time.
1404          * Hence, only one native CS can be used if GPIO CS are needed, so that
1405          * the other is selected when a non-native CS must be asserted (not
1406          * wired physically or configured as GPIO instead of NAND CS). In this
1407          * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
1408          * whenever a GPIO CS must be asserted.
1409          */
1410         if (nfc->cs_array && nfc->ncs > 2) {
1411                 if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
1412                         dev_err(nfc->dev,
1413                                 "Assign a single native CS when using GPIOs\n");
1414                         return -EINVAL;
1415                 }
1416
1417                 if (nfc->cs_array[0])
1418                         nfc->spare_cs = 0;
1419                 else
1420                         nfc->spare_cs = 1;
1421         }
1422
1423         if (!nfc->cs_array) {
1424                 nfc->cs_array = anfc_default_cs_array;
1425                 nfc->ncs = ANFC_MAX_CS;
1426                 return 0;
1427         }
1428
1429         return 0;
1430 }
1431
1432 static int anfc_probe(struct platform_device *pdev)
1433 {
1434         struct arasan_nfc *nfc;
1435         int ret;
1436
1437         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1438         if (!nfc)
1439                 return -ENOMEM;
1440
1441         nfc->dev = &pdev->dev;
1442         nand_controller_init(&nfc->controller);
1443         nfc->controller.ops = &anfc_ops;
1444         INIT_LIST_HEAD(&nfc->chips);
1445
1446         nfc->base = devm_platform_ioremap_resource(pdev, 0);
1447         if (IS_ERR(nfc->base))
1448                 return PTR_ERR(nfc->base);
1449
1450         anfc_reset(nfc);
1451
1452         nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1453         if (IS_ERR(nfc->controller_clk))
1454                 return PTR_ERR(nfc->controller_clk);
1455
1456         nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1457         if (IS_ERR(nfc->bus_clk))
1458                 return PTR_ERR(nfc->bus_clk);
1459
1460         ret = clk_prepare_enable(nfc->controller_clk);
1461         if (ret)
1462                 return ret;
1463
1464         ret = clk_prepare_enable(nfc->bus_clk);
1465         if (ret)
1466                 goto disable_controller_clk;
1467
1468         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1469         if (ret)
1470                 goto disable_bus_clk;
1471
1472         ret = anfc_parse_cs(nfc);
1473         if (ret)
1474                 goto disable_bus_clk;
1475
1476         ret = anfc_chips_init(nfc);
1477         if (ret)
1478                 goto disable_bus_clk;
1479
1480         platform_set_drvdata(pdev, nfc);
1481
1482         return 0;
1483
1484 disable_bus_clk:
1485         clk_disable_unprepare(nfc->bus_clk);
1486
1487 disable_controller_clk:
1488         clk_disable_unprepare(nfc->controller_clk);
1489
1490         return ret;
1491 }
1492
1493 static int anfc_remove(struct platform_device *pdev)
1494 {
1495         struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1496
1497         anfc_chips_cleanup(nfc);
1498
1499         clk_disable_unprepare(nfc->bus_clk);
1500         clk_disable_unprepare(nfc->controller_clk);
1501
1502         return 0;
1503 }
1504
1505 static const struct of_device_id anfc_ids[] = {
1506         {
1507                 .compatible = "xlnx,zynqmp-nand-controller",
1508         },
1509         {
1510                 .compatible = "arasan,nfc-v3p10",
1511         },
1512         {}
1513 };
1514 MODULE_DEVICE_TABLE(of, anfc_ids);
1515
1516 static struct platform_driver anfc_driver = {
1517         .driver = {
1518                 .name = "arasan-nand-controller",
1519                 .of_match_table = anfc_ids,
1520         },
1521         .probe = anfc_probe,
1522         .remove = anfc_remove,
1523 };
1524 module_platform_driver(anfc_driver);
1525
1526 MODULE_LICENSE("GPL v2");
1527 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1528 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1529 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1530 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");