GNU Linux-libre 4.9.315-gnu1
[releases.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2  * drivers/mtd/nand/pxa3xx_nand.c
3  *
4  * Copyright © 2005 Intel Corporation
5  * Copyright © 2006 Marvell International Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma/pxa-dma.h>
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/nand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_data/mtd-nand-pxa3xx.h>
33
34 #define CHIP_DELAY_TIMEOUT      msecs_to_jiffies(200)
35 #define NAND_STOP_DELAY         msecs_to_jiffies(40)
36 #define PAGE_CHUNK_SIZE         (2048)
37
38 /*
39  * Define a buffer size for the initial command that detects the flash device:
40  * STATUS, READID and PARAM.
41  * ONFI param page is 256 bytes, and there are three redundant copies
42  * to be read. JEDEC param page is 512 bytes, and there are also three
43  * redundant copies to be read.
44  * Hence this buffer should be at least 512 x 3. Let's pick 2048.
45  */
46 #define INIT_BUFFER_SIZE        2048
47
48 /* registers and bit definitions */
49 #define NDCR            (0x00) /* Control register */
50 #define NDTR0CS0        (0x04) /* Timing Parameter 0 for CS0 */
51 #define NDTR1CS0        (0x0C) /* Timing Parameter 1 for CS0 */
52 #define NDSR            (0x14) /* Status Register */
53 #define NDPCR           (0x18) /* Page Count Register */
54 #define NDBDR0          (0x1C) /* Bad Block Register 0 */
55 #define NDBDR1          (0x20) /* Bad Block Register 1 */
56 #define NDECCCTRL       (0x28) /* ECC control */
57 #define NDDB            (0x40) /* Data Buffer */
58 #define NDCB0           (0x48) /* Command Buffer0 */
59 #define NDCB1           (0x4C) /* Command Buffer1 */
60 #define NDCB2           (0x50) /* Command Buffer2 */
61
62 #define NDCR_SPARE_EN           (0x1 << 31)
63 #define NDCR_ECC_EN             (0x1 << 30)
64 #define NDCR_DMA_EN             (0x1 << 29)
65 #define NDCR_ND_RUN             (0x1 << 28)
66 #define NDCR_DWIDTH_C           (0x1 << 27)
67 #define NDCR_DWIDTH_M           (0x1 << 26)
68 #define NDCR_PAGE_SZ            (0x1 << 24)
69 #define NDCR_NCSX               (0x1 << 23)
70 #define NDCR_ND_MODE            (0x3 << 21)
71 #define NDCR_NAND_MODE          (0x0)
72 #define NDCR_CLR_PG_CNT         (0x1 << 20)
73 #define NFCV1_NDCR_ARB_CNTL     (0x1 << 19)
74 #define NFCV2_NDCR_STOP_ON_UNCOR        (0x1 << 19)
75 #define NDCR_RD_ID_CNT_MASK     (0x7 << 16)
76 #define NDCR_RD_ID_CNT(x)       (((x) << 16) & NDCR_RD_ID_CNT_MASK)
77
78 #define NDCR_RA_START           (0x1 << 15)
79 #define NDCR_PG_PER_BLK         (0x1 << 14)
80 #define NDCR_ND_ARB_EN          (0x1 << 12)
81 #define NDCR_INT_MASK           (0xFFF)
82
83 #define NDSR_MASK               (0xfff)
84 #define NDSR_ERR_CNT_OFF        (16)
85 #define NDSR_ERR_CNT_MASK       (0x1f)
86 #define NDSR_ERR_CNT(sr)        ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
87 #define NDSR_RDY                (0x1 << 12)
88 #define NDSR_FLASH_RDY          (0x1 << 11)
89 #define NDSR_CS0_PAGED          (0x1 << 10)
90 #define NDSR_CS1_PAGED          (0x1 << 9)
91 #define NDSR_CS0_CMDD           (0x1 << 8)
92 #define NDSR_CS1_CMDD           (0x1 << 7)
93 #define NDSR_CS0_BBD            (0x1 << 6)
94 #define NDSR_CS1_BBD            (0x1 << 5)
95 #define NDSR_UNCORERR           (0x1 << 4)
96 #define NDSR_CORERR             (0x1 << 3)
97 #define NDSR_WRDREQ             (0x1 << 2)
98 #define NDSR_RDDREQ             (0x1 << 1)
99 #define NDSR_WRCMDREQ           (0x1)
100
101 #define NDCB0_LEN_OVRD          (0x1 << 28)
102 #define NDCB0_ST_ROW_EN         (0x1 << 26)
103 #define NDCB0_AUTO_RS           (0x1 << 25)
104 #define NDCB0_CSEL              (0x1 << 24)
105 #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
106 #define NDCB0_EXT_CMD_TYPE(x)   (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
107 #define NDCB0_CMD_TYPE_MASK     (0x7 << 21)
108 #define NDCB0_CMD_TYPE(x)       (((x) << 21) & NDCB0_CMD_TYPE_MASK)
109 #define NDCB0_NC                (0x1 << 20)
110 #define NDCB0_DBC               (0x1 << 19)
111 #define NDCB0_ADDR_CYC_MASK     (0x7 << 16)
112 #define NDCB0_ADDR_CYC(x)       (((x) << 16) & NDCB0_ADDR_CYC_MASK)
113 #define NDCB0_CMD2_MASK         (0xff << 8)
114 #define NDCB0_CMD1_MASK         (0xff)
115 #define NDCB0_ADDR_CYC_SHIFT    (16)
116
117 #define EXT_CMD_TYPE_DISPATCH   6 /* Command dispatch */
118 #define EXT_CMD_TYPE_NAKED_RW   5 /* Naked read or Naked write */
119 #define EXT_CMD_TYPE_READ       4 /* Read */
120 #define EXT_CMD_TYPE_DISP_WR    4 /* Command dispatch with write */
121 #define EXT_CMD_TYPE_FINAL      3 /* Final command */
122 #define EXT_CMD_TYPE_LAST_RW    1 /* Last naked read/write */
123 #define EXT_CMD_TYPE_MONO       0 /* Monolithic read/write */
124
125 /*
126  * This should be large enough to read 'ONFI' and 'JEDEC'.
127  * Let's use 7 bytes, which is the maximum ID count supported
128  * by the controller (see NDCR_RD_ID_CNT_MASK).
129  */
130 #define READ_ID_BYTES           7
131
132 /* macros for registers read/write */
133 #define nand_writel(info, off, val)                                     \
134         do {                                                            \
135                 dev_vdbg(&info->pdev->dev,                              \
136                          "%s():%d nand_writel(0x%x, 0x%04x)\n",         \
137                          __func__, __LINE__, (val), (off));             \
138                 writel_relaxed((val), (info)->mmio_base + (off));       \
139         } while (0)
140
141 #define nand_readl(info, off)                                           \
142         ({                                                              \
143                 unsigned int _v;                                        \
144                 _v = readl_relaxed((info)->mmio_base + (off));          \
145                 dev_vdbg(&info->pdev->dev,                              \
146                          "%s():%d nand_readl(0x%04x) = 0x%x\n",         \
147                          __func__, __LINE__, (off), _v);                \
148                 _v;                                                     \
149         })
150
151 /* error code and state */
152 enum {
153         ERR_NONE        = 0,
154         ERR_DMABUSERR   = -1,
155         ERR_SENDCMD     = -2,
156         ERR_UNCORERR    = -3,
157         ERR_BBERR       = -4,
158         ERR_CORERR      = -5,
159 };
160
161 enum {
162         STATE_IDLE = 0,
163         STATE_PREPARED,
164         STATE_CMD_HANDLE,
165         STATE_DMA_READING,
166         STATE_DMA_WRITING,
167         STATE_DMA_DONE,
168         STATE_PIO_READING,
169         STATE_PIO_WRITING,
170         STATE_CMD_DONE,
171         STATE_READY,
172 };
173
174 enum pxa3xx_nand_variant {
175         PXA3XX_NAND_VARIANT_PXA,
176         PXA3XX_NAND_VARIANT_ARMADA370,
177 };
178
179 struct pxa3xx_nand_host {
180         struct nand_chip        chip;
181         void                    *info_data;
182
183         /* page size of attached chip */
184         int                     use_ecc;
185         int                     cs;
186
187         /* calculated from pxa3xx_nand_flash data */
188         unsigned int            col_addr_cycles;
189         unsigned int            row_addr_cycles;
190 };
191
192 struct pxa3xx_nand_info {
193         struct nand_hw_control  controller;
194         struct platform_device   *pdev;
195
196         struct clk              *clk;
197         void __iomem            *mmio_base;
198         unsigned long           mmio_phys;
199         struct completion       cmd_complete, dev_ready;
200
201         unsigned int            buf_start;
202         unsigned int            buf_count;
203         unsigned int            buf_size;
204         unsigned int            data_buff_pos;
205         unsigned int            oob_buff_pos;
206
207         /* DMA information */
208         struct scatterlist      sg;
209         enum dma_data_direction dma_dir;
210         struct dma_chan         *dma_chan;
211         dma_cookie_t            dma_cookie;
212         int                     drcmr_dat;
213
214         unsigned char           *data_buff;
215         unsigned char           *oob_buff;
216         dma_addr_t              data_buff_phys;
217         int                     data_dma_ch;
218
219         struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
220         unsigned int            state;
221
222         /*
223          * This driver supports NFCv1 (as found in PXA SoC)
224          * and NFCv2 (as found in Armada 370/XP SoC).
225          */
226         enum pxa3xx_nand_variant variant;
227
228         int                     cs;
229         int                     use_ecc;        /* use HW ECC ? */
230         int                     ecc_bch;        /* using BCH ECC? */
231         int                     use_dma;        /* use DMA ? */
232         int                     use_spare;      /* use spare ? */
233         int                     need_wait;
234
235         /* Amount of real data per full chunk */
236         unsigned int            chunk_size;
237
238         /* Amount of spare data per full chunk */
239         unsigned int            spare_size;
240
241         /* Number of full chunks (i.e chunk_size + spare_size) */
242         unsigned int            nfullchunks;
243
244         /*
245          * Total number of chunks. If equal to nfullchunks, then there
246          * are only full chunks. Otherwise, there is one last chunk of
247          * size (last_chunk_size + last_spare_size)
248          */
249         unsigned int            ntotalchunks;
250
251         /* Amount of real data in the last chunk */
252         unsigned int            last_chunk_size;
253
254         /* Amount of spare data in the last chunk */
255         unsigned int            last_spare_size;
256
257         unsigned int            ecc_size;
258         unsigned int            ecc_err_cnt;
259         unsigned int            max_bitflips;
260         int                     retcode;
261
262         /*
263          * Variables only valid during command
264          * execution. step_chunk_size and step_spare_size is the
265          * amount of real data and spare data in the current
266          * chunk. cur_chunk is the current chunk being
267          * read/programmed.
268          */
269         unsigned int            step_chunk_size;
270         unsigned int            step_spare_size;
271         unsigned int            cur_chunk;
272
273         /* cached register value */
274         uint32_t                reg_ndcr;
275         uint32_t                ndtr0cs0;
276         uint32_t                ndtr1cs0;
277
278         /* generated NDCBx register values */
279         uint32_t                ndcb0;
280         uint32_t                ndcb1;
281         uint32_t                ndcb2;
282         uint32_t                ndcb3;
283 };
284
285 static bool use_dma = 1;
286 module_param(use_dma, bool, 0444);
287 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
288
289 struct pxa3xx_nand_timing {
290         unsigned int    tCH;  /* Enable signal hold time */
291         unsigned int    tCS;  /* Enable signal setup time */
292         unsigned int    tWH;  /* ND_nWE high duration */
293         unsigned int    tWP;  /* ND_nWE pulse time */
294         unsigned int    tRH;  /* ND_nRE high duration */
295         unsigned int    tRP;  /* ND_nRE pulse width */
296         unsigned int    tR;   /* ND_nWE high to ND_nRE low for read */
297         unsigned int    tWHR; /* ND_nWE high to ND_nRE low for status read */
298         unsigned int    tAR;  /* ND_ALE low to ND_nRE low delay */
299 };
300
301 struct pxa3xx_nand_flash {
302         uint32_t        chip_id;
303         unsigned int    flash_width;    /* Width of Flash memory (DWIDTH_M) */
304         unsigned int    dfc_width;      /* Width of flash controller(DWIDTH_C) */
305         struct pxa3xx_nand_timing *timing;      /* NAND Flash timing */
306 };
307
308 static struct pxa3xx_nand_timing timing[] = {
309         { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
310         { 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
311         { 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
312         { 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
313 };
314
315 static struct pxa3xx_nand_flash builtin_flash_types[] = {
316         { 0x46ec, 16, 16, &timing[1] },
317         { 0xdaec,  8,  8, &timing[1] },
318         { 0xd7ec,  8,  8, &timing[1] },
319         { 0xa12c,  8,  8, &timing[2] },
320         { 0xb12c, 16, 16, &timing[2] },
321         { 0xdc2c,  8,  8, &timing[2] },
322         { 0xcc2c, 16, 16, &timing[2] },
323         { 0xba20, 16, 16, &timing[3] },
324 };
325
326 static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section,
327                                 struct mtd_oob_region *oobregion)
328 {
329         struct nand_chip *chip = mtd_to_nand(mtd);
330         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
331         struct pxa3xx_nand_info *info = host->info_data;
332         int nchunks = mtd->writesize / info->chunk_size;
333
334         if (section >= nchunks)
335                 return -ERANGE;
336
337         oobregion->offset = ((info->ecc_size + info->spare_size) * section) +
338                             info->spare_size;
339         oobregion->length = info->ecc_size;
340
341         return 0;
342 }
343
344 static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section,
345                                  struct mtd_oob_region *oobregion)
346 {
347         struct nand_chip *chip = mtd_to_nand(mtd);
348         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
349         struct pxa3xx_nand_info *info = host->info_data;
350         int nchunks = mtd->writesize / info->chunk_size;
351
352         if (section >= nchunks)
353                 return -ERANGE;
354
355         if (!info->spare_size)
356                 return 0;
357
358         oobregion->offset = section * (info->ecc_size + info->spare_size);
359         oobregion->length = info->spare_size;
360         if (!section) {
361                 /*
362                  * Bootrom looks in bytes 0 & 5 for bad blocks for the
363                  * 4KB page / 4bit BCH combination.
364                  */
365                 if (mtd->writesize == 4096 && info->chunk_size == 2048) {
366                         oobregion->offset += 6;
367                         oobregion->length -= 6;
368                 } else {
369                         oobregion->offset += 2;
370                         oobregion->length -= 2;
371                 }
372         }
373
374         return 0;
375 }
376
377 static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = {
378         .ecc = pxa3xx_ooblayout_ecc,
379         .free = pxa3xx_ooblayout_free,
380 };
381
382 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
383 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
384
385 static struct nand_bbt_descr bbt_main_descr = {
386         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
387                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
388         .offs = 8,
389         .len = 6,
390         .veroffs = 14,
391         .maxblocks = 8,         /* Last 8 blocks in each chip */
392         .pattern = bbt_pattern
393 };
394
395 static struct nand_bbt_descr bbt_mirror_descr = {
396         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
397                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
398         .offs = 8,
399         .len = 6,
400         .veroffs = 14,
401         .maxblocks = 8,         /* Last 8 blocks in each chip */
402         .pattern = bbt_mirror_pattern
403 };
404
405 #define NDTR0_tCH(c)    (min((c), 7) << 19)
406 #define NDTR0_tCS(c)    (min((c), 7) << 16)
407 #define NDTR0_tWH(c)    (min((c), 7) << 11)
408 #define NDTR0_tWP(c)    (min((c), 7) << 8)
409 #define NDTR0_tRH(c)    (min((c), 7) << 3)
410 #define NDTR0_tRP(c)    (min((c), 7) << 0)
411
412 #define NDTR1_tR(c)     (min((c), 65535) << 16)
413 #define NDTR1_tWHR(c)   (min((c), 15) << 4)
414 #define NDTR1_tAR(c)    (min((c), 15) << 0)
415
416 /* convert nano-seconds to nand flash controller clock cycles */
417 #define ns2cycle(ns, clk)       (int)((ns) * (clk / 1000000) / 1000)
418
419 static const struct of_device_id pxa3xx_nand_dt_ids[] = {
420         {
421                 .compatible = "marvell,pxa3xx-nand",
422                 .data       = (void *)PXA3XX_NAND_VARIANT_PXA,
423         },
424         {
425                 .compatible = "marvell,armada370-nand",
426                 .data       = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
427         },
428         {}
429 };
430 MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
431
432 static enum pxa3xx_nand_variant
433 pxa3xx_nand_get_variant(struct platform_device *pdev)
434 {
435         const struct of_device_id *of_id =
436                         of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
437         if (!of_id)
438                 return PXA3XX_NAND_VARIANT_PXA;
439         return (enum pxa3xx_nand_variant)of_id->data;
440 }
441
442 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
443                                    const struct pxa3xx_nand_timing *t)
444 {
445         struct pxa3xx_nand_info *info = host->info_data;
446         unsigned long nand_clk = clk_get_rate(info->clk);
447         uint32_t ndtr0, ndtr1;
448
449         ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
450                 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
451                 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
452                 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
453                 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
454                 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
455
456         ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
457                 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
458                 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
459
460         info->ndtr0cs0 = ndtr0;
461         info->ndtr1cs0 = ndtr1;
462         nand_writel(info, NDTR0CS0, ndtr0);
463         nand_writel(info, NDTR1CS0, ndtr1);
464 }
465
466 static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
467                                        const struct nand_sdr_timings *t)
468 {
469         struct pxa3xx_nand_info *info = host->info_data;
470         struct nand_chip *chip = &host->chip;
471         unsigned long nand_clk = clk_get_rate(info->clk);
472         uint32_t ndtr0, ndtr1;
473
474         u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
475         u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
476         u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
477         u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
478         u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
479         u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
480         u32 tR = chip->chip_delay * 1000;
481         u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
482         u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
483
484         /* fallback to a default value if tR = 0 */
485         if (!tR)
486                 tR = 20000;
487
488         ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
489                 NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
490                 NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
491                 NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
492                 NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
493                 NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
494
495         ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
496                 NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
497                 NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
498
499         info->ndtr0cs0 = ndtr0;
500         info->ndtr1cs0 = ndtr1;
501         nand_writel(info, NDTR0CS0, ndtr0);
502         nand_writel(info, NDTR1CS0, ndtr1);
503 }
504
505 static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host,
506                                            unsigned int *flash_width,
507                                            unsigned int *dfc_width)
508 {
509         struct nand_chip *chip = &host->chip;
510         struct pxa3xx_nand_info *info = host->info_data;
511         const struct pxa3xx_nand_flash *f = NULL;
512         struct mtd_info *mtd = nand_to_mtd(&host->chip);
513         int i, id, ntypes;
514
515         ntypes = ARRAY_SIZE(builtin_flash_types);
516
517         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
518
519         id = chip->read_byte(mtd);
520         id |= chip->read_byte(mtd) << 0x8;
521
522         for (i = 0; i < ntypes; i++) {
523                 f = &builtin_flash_types[i];
524
525                 if (f->chip_id == id)
526                         break;
527         }
528
529         if (i == ntypes) {
530                 dev_err(&info->pdev->dev, "Error: timings not found\n");
531                 return -EINVAL;
532         }
533
534         pxa3xx_nand_set_timing(host, f->timing);
535
536         *flash_width = f->flash_width;
537         *dfc_width = f->dfc_width;
538
539         return 0;
540 }
541
542 static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host,
543                                          int mode)
544 {
545         const struct nand_sdr_timings *timings;
546
547         mode = fls(mode) - 1;
548         if (mode < 0)
549                 mode = 0;
550
551         timings = onfi_async_timing_mode_to_sdr_timings(mode);
552         if (IS_ERR(timings))
553                 return PTR_ERR(timings);
554
555         pxa3xx_nand_set_sdr_timing(host, timings);
556
557         return 0;
558 }
559
560 static int pxa3xx_nand_init(struct pxa3xx_nand_host *host)
561 {
562         struct nand_chip *chip = &host->chip;
563         struct pxa3xx_nand_info *info = host->info_data;
564         unsigned int flash_width = 0, dfc_width = 0;
565         int mode, err;
566
567         mode = onfi_get_async_timing_mode(chip);
568         if (mode == ONFI_TIMING_MODE_UNKNOWN) {
569                 err = pxa3xx_nand_init_timings_compat(host, &flash_width,
570                                                       &dfc_width);
571                 if (err)
572                         return err;
573
574                 if (flash_width == 16) {
575                         info->reg_ndcr |= NDCR_DWIDTH_M;
576                         chip->options |= NAND_BUSWIDTH_16;
577                 }
578
579                 info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0;
580         } else {
581                 err = pxa3xx_nand_init_timings_onfi(host, mode);
582                 if (err)
583                         return err;
584         }
585
586         return 0;
587 }
588
589 /**
590  * NOTE: it is a must to set ND_RUN firstly, then write
591  * command buffer, otherwise, it does not work.
592  * We enable all the interrupt at the same time, and
593  * let pxa3xx_nand_irq to handle all logic.
594  */
595 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
596 {
597         uint32_t ndcr;
598
599         ndcr = info->reg_ndcr;
600
601         if (info->use_ecc) {
602                 ndcr |= NDCR_ECC_EN;
603                 if (info->ecc_bch)
604                         nand_writel(info, NDECCCTRL, 0x1);
605         } else {
606                 ndcr &= ~NDCR_ECC_EN;
607                 if (info->ecc_bch)
608                         nand_writel(info, NDECCCTRL, 0x0);
609         }
610
611         if (info->use_dma)
612                 ndcr |= NDCR_DMA_EN;
613         else
614                 ndcr &= ~NDCR_DMA_EN;
615
616         if (info->use_spare)
617                 ndcr |= NDCR_SPARE_EN;
618         else
619                 ndcr &= ~NDCR_SPARE_EN;
620
621         ndcr |= NDCR_ND_RUN;
622
623         /* clear status bits and run */
624         nand_writel(info, NDSR, NDSR_MASK);
625         nand_writel(info, NDCR, 0);
626         nand_writel(info, NDCR, ndcr);
627 }
628
629 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
630 {
631         uint32_t ndcr;
632         int timeout = NAND_STOP_DELAY;
633
634         /* wait RUN bit in NDCR become 0 */
635         ndcr = nand_readl(info, NDCR);
636         while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
637                 ndcr = nand_readl(info, NDCR);
638                 udelay(1);
639         }
640
641         if (timeout <= 0) {
642                 ndcr &= ~NDCR_ND_RUN;
643                 nand_writel(info, NDCR, ndcr);
644         }
645         if (info->dma_chan)
646                 dmaengine_terminate_all(info->dma_chan);
647
648         /* clear status bits */
649         nand_writel(info, NDSR, NDSR_MASK);
650 }
651
652 static void __maybe_unused
653 enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
654 {
655         uint32_t ndcr;
656
657         ndcr = nand_readl(info, NDCR);
658         nand_writel(info, NDCR, ndcr & ~int_mask);
659 }
660
661 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
662 {
663         uint32_t ndcr;
664
665         ndcr = nand_readl(info, NDCR);
666         nand_writel(info, NDCR, ndcr | int_mask);
667 }
668
669 static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
670 {
671         if (info->ecc_bch) {
672                 u32 val;
673                 int ret;
674
675                 /*
676                  * According to the datasheet, when reading from NDDB
677                  * with BCH enabled, after each 32 bytes reads, we
678                  * have to make sure that the NDSR.RDDREQ bit is set.
679                  *
680                  * Drain the FIFO 8 32 bits reads at a time, and skip
681                  * the polling on the last read.
682                  */
683                 while (len > 8) {
684                         ioread32_rep(info->mmio_base + NDDB, data, 8);
685
686                         ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val,
687                                                          val & NDSR_RDDREQ, 1000, 5000);
688                         if (ret) {
689                                 dev_err(&info->pdev->dev,
690                                         "Timeout on RDDREQ while draining the FIFO\n");
691                                 return;
692                         }
693
694                         data += 32;
695                         len -= 8;
696                 }
697         }
698
699         ioread32_rep(info->mmio_base + NDDB, data, len);
700 }
701
702 static void handle_data_pio(struct pxa3xx_nand_info *info)
703 {
704         switch (info->state) {
705         case STATE_PIO_WRITING:
706                 if (info->step_chunk_size)
707                         writesl(info->mmio_base + NDDB,
708                                 info->data_buff + info->data_buff_pos,
709                                 DIV_ROUND_UP(info->step_chunk_size, 4));
710
711                 if (info->step_spare_size)
712                         writesl(info->mmio_base + NDDB,
713                                 info->oob_buff + info->oob_buff_pos,
714                                 DIV_ROUND_UP(info->step_spare_size, 4));
715                 break;
716         case STATE_PIO_READING:
717                 if (info->step_chunk_size)
718                         drain_fifo(info,
719                                    info->data_buff + info->data_buff_pos,
720                                    DIV_ROUND_UP(info->step_chunk_size, 4));
721
722                 if (info->step_spare_size)
723                         drain_fifo(info,
724                                    info->oob_buff + info->oob_buff_pos,
725                                    DIV_ROUND_UP(info->step_spare_size, 4));
726                 break;
727         default:
728                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
729                                 info->state);
730                 BUG();
731         }
732
733         /* Update buffer pointers for multi-page read/write */
734         info->data_buff_pos += info->step_chunk_size;
735         info->oob_buff_pos += info->step_spare_size;
736 }
737
738 static void pxa3xx_nand_data_dma_irq(void *data)
739 {
740         struct pxa3xx_nand_info *info = data;
741         struct dma_tx_state state;
742         enum dma_status status;
743
744         status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state);
745         if (likely(status == DMA_COMPLETE)) {
746                 info->state = STATE_DMA_DONE;
747         } else {
748                 dev_err(&info->pdev->dev, "DMA error on data channel\n");
749                 info->retcode = ERR_DMABUSERR;
750         }
751         dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
752
753         nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
754         enable_int(info, NDCR_INT_MASK);
755 }
756
757 static void start_data_dma(struct pxa3xx_nand_info *info)
758 {
759         enum dma_transfer_direction direction;
760         struct dma_async_tx_descriptor *tx;
761
762         switch (info->state) {
763         case STATE_DMA_WRITING:
764                 info->dma_dir = DMA_TO_DEVICE;
765                 direction = DMA_MEM_TO_DEV;
766                 break;
767         case STATE_DMA_READING:
768                 info->dma_dir = DMA_FROM_DEVICE;
769                 direction = DMA_DEV_TO_MEM;
770                 break;
771         default:
772                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
773                                 info->state);
774                 BUG();
775         }
776         info->sg.length = info->chunk_size;
777         if (info->use_spare)
778                 info->sg.length += info->spare_size + info->ecc_size;
779         dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
780
781         tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction,
782                                      DMA_PREP_INTERRUPT);
783         if (!tx) {
784                 dev_err(&info->pdev->dev, "prep_slave_sg() failed\n");
785                 return;
786         }
787         tx->callback = pxa3xx_nand_data_dma_irq;
788         tx->callback_param = info;
789         info->dma_cookie = dmaengine_submit(tx);
790         dma_async_issue_pending(info->dma_chan);
791         dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n",
792                 __func__, direction, info->dma_cookie, info->sg.length);
793 }
794
795 static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data)
796 {
797         struct pxa3xx_nand_info *info = data;
798
799         handle_data_pio(info);
800
801         info->state = STATE_CMD_DONE;
802         nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
803
804         return IRQ_HANDLED;
805 }
806
807 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
808 {
809         struct pxa3xx_nand_info *info = devid;
810         unsigned int status, is_completed = 0, is_ready = 0;
811         unsigned int ready, cmd_done;
812         irqreturn_t ret = IRQ_HANDLED;
813
814         if (info->cs == 0) {
815                 ready           = NDSR_FLASH_RDY;
816                 cmd_done        = NDSR_CS0_CMDD;
817         } else {
818                 ready           = NDSR_RDY;
819                 cmd_done        = NDSR_CS1_CMDD;
820         }
821
822         status = nand_readl(info, NDSR);
823
824         if (status & NDSR_UNCORERR)
825                 info->retcode = ERR_UNCORERR;
826         if (status & NDSR_CORERR) {
827                 info->retcode = ERR_CORERR;
828                 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
829                     info->ecc_bch)
830                         info->ecc_err_cnt = NDSR_ERR_CNT(status);
831                 else
832                         info->ecc_err_cnt = 1;
833
834                 /*
835                  * Each chunk composing a page is corrected independently,
836                  * and we need to store maximum number of corrected bitflips
837                  * to return it to the MTD layer in ecc.read_page().
838                  */
839                 info->max_bitflips = max_t(unsigned int,
840                                            info->max_bitflips,
841                                            info->ecc_err_cnt);
842         }
843         if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
844                 /* whether use dma to transfer data */
845                 if (info->use_dma) {
846                         disable_int(info, NDCR_INT_MASK);
847                         info->state = (status & NDSR_RDDREQ) ?
848                                       STATE_DMA_READING : STATE_DMA_WRITING;
849                         start_data_dma(info);
850                         goto NORMAL_IRQ_EXIT;
851                 } else {
852                         info->state = (status & NDSR_RDDREQ) ?
853                                       STATE_PIO_READING : STATE_PIO_WRITING;
854                         ret = IRQ_WAKE_THREAD;
855                         goto NORMAL_IRQ_EXIT;
856                 }
857         }
858         if (status & cmd_done) {
859                 info->state = STATE_CMD_DONE;
860                 is_completed = 1;
861         }
862         if (status & ready) {
863                 info->state = STATE_READY;
864                 is_ready = 1;
865         }
866
867         /*
868          * Clear all status bit before issuing the next command, which
869          * can and will alter the status bits and will deserve a new
870          * interrupt on its own. This lets the controller exit the IRQ
871          */
872         nand_writel(info, NDSR, status);
873
874         if (status & NDSR_WRCMDREQ) {
875                 status &= ~NDSR_WRCMDREQ;
876                 info->state = STATE_CMD_HANDLE;
877
878                 /*
879                  * Command buffer registers NDCB{0-2} (and optionally NDCB3)
880                  * must be loaded by writing directly either 12 or 16
881                  * bytes directly to NDCB0, four bytes at a time.
882                  *
883                  * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
884                  * but each NDCBx register can be read.
885                  */
886                 nand_writel(info, NDCB0, info->ndcb0);
887                 nand_writel(info, NDCB0, info->ndcb1);
888                 nand_writel(info, NDCB0, info->ndcb2);
889
890                 /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
891                 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
892                         nand_writel(info, NDCB0, info->ndcb3);
893         }
894
895         if (is_completed)
896                 complete(&info->cmd_complete);
897         if (is_ready)
898                 complete(&info->dev_ready);
899 NORMAL_IRQ_EXIT:
900         return ret;
901 }
902
903 static inline int is_buf_blank(uint8_t *buf, size_t len)
904 {
905         for (; len > 0; len--)
906                 if (*buf++ != 0xff)
907                         return 0;
908         return 1;
909 }
910
911 static void set_command_address(struct pxa3xx_nand_info *info,
912                 unsigned int page_size, uint16_t column, int page_addr)
913 {
914         /* small page addr setting */
915         if (page_size < PAGE_CHUNK_SIZE) {
916                 info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
917                                 | (column & 0xFF);
918
919                 info->ndcb2 = 0;
920         } else {
921                 info->ndcb1 = ((page_addr & 0xFFFF) << 16)
922                                 | (column & 0xFFFF);
923
924                 if (page_addr & 0xFF0000)
925                         info->ndcb2 = (page_addr & 0xFF0000) >> 16;
926                 else
927                         info->ndcb2 = 0;
928         }
929 }
930
931 static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
932 {
933         struct pxa3xx_nand_host *host = info->host[info->cs];
934         struct mtd_info *mtd = nand_to_mtd(&host->chip);
935
936         /* reset data and oob column point to handle data */
937         info->buf_start         = 0;
938         info->buf_count         = 0;
939         info->data_buff_pos     = 0;
940         info->oob_buff_pos      = 0;
941         info->step_chunk_size   = 0;
942         info->step_spare_size   = 0;
943         info->cur_chunk         = 0;
944         info->use_ecc           = 0;
945         info->use_spare         = 1;
946         info->retcode           = ERR_NONE;
947         info->ecc_err_cnt       = 0;
948         info->ndcb3             = 0;
949         info->need_wait         = 0;
950
951         switch (command) {
952         case NAND_CMD_READ0:
953         case NAND_CMD_READOOB:
954         case NAND_CMD_PAGEPROG:
955                 info->use_ecc = 1;
956                 break;
957         case NAND_CMD_PARAM:
958                 info->use_spare = 0;
959                 break;
960         default:
961                 info->ndcb1 = 0;
962                 info->ndcb2 = 0;
963                 break;
964         }
965
966         /*
967          * If we are about to issue a read command, or about to set
968          * the write address, then clean the data buffer.
969          */
970         if (command == NAND_CMD_READ0 ||
971             command == NAND_CMD_READOOB ||
972             command == NAND_CMD_SEQIN) {
973
974                 info->buf_count = mtd->writesize + mtd->oobsize;
975                 memset(info->data_buff, 0xFF, info->buf_count);
976         }
977
978 }
979
980 static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
981                 int ext_cmd_type, uint16_t column, int page_addr)
982 {
983         int addr_cycle, exec_cmd;
984         struct pxa3xx_nand_host *host;
985         struct mtd_info *mtd;
986
987         host = info->host[info->cs];
988         mtd = nand_to_mtd(&host->chip);
989         addr_cycle = 0;
990         exec_cmd = 1;
991
992         if (info->cs != 0)
993                 info->ndcb0 = NDCB0_CSEL;
994         else
995                 info->ndcb0 = 0;
996
997         if (command == NAND_CMD_SEQIN)
998                 exec_cmd = 0;
999
1000         addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
1001                                     + host->col_addr_cycles);
1002
1003         switch (command) {
1004         case NAND_CMD_READOOB:
1005         case NAND_CMD_READ0:
1006                 info->buf_start = column;
1007                 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1008                                 | addr_cycle
1009                                 | NAND_CMD_READ0;
1010
1011                 if (command == NAND_CMD_READOOB)
1012                         info->buf_start += mtd->writesize;
1013
1014                 if (info->cur_chunk < info->nfullchunks) {
1015                         info->step_chunk_size = info->chunk_size;
1016                         info->step_spare_size = info->spare_size;
1017                 } else {
1018                         info->step_chunk_size = info->last_chunk_size;
1019                         info->step_spare_size = info->last_spare_size;
1020                 }
1021
1022                 /*
1023                  * Multiple page read needs an 'extended command type' field,
1024                  * which is either naked-read or last-read according to the
1025                  * state.
1026                  */
1027                 if (mtd->writesize == PAGE_CHUNK_SIZE) {
1028                         info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
1029                 } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
1030                         info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
1031                                         | NDCB0_LEN_OVRD
1032                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1033                         info->ndcb3 = info->step_chunk_size +
1034                                 info->step_spare_size;
1035                 }
1036
1037                 set_command_address(info, mtd->writesize, column, page_addr);
1038                 break;
1039
1040         case NAND_CMD_SEQIN:
1041
1042                 info->buf_start = column;
1043                 set_command_address(info, mtd->writesize, 0, page_addr);
1044
1045                 /*
1046                  * Multiple page programming needs to execute the initial
1047                  * SEQIN command that sets the page address.
1048                  */
1049                 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1050                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1051                                 | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1052                                 | addr_cycle
1053                                 | command;
1054                         exec_cmd = 1;
1055                 }
1056                 break;
1057
1058         case NAND_CMD_PAGEPROG:
1059                 if (is_buf_blank(info->data_buff,
1060                                         (mtd->writesize + mtd->oobsize))) {
1061                         exec_cmd = 0;
1062                         break;
1063                 }
1064
1065                 if (info->cur_chunk < info->nfullchunks) {
1066                         info->step_chunk_size = info->chunk_size;
1067                         info->step_spare_size = info->spare_size;
1068                 } else {
1069                         info->step_chunk_size = info->last_chunk_size;
1070                         info->step_spare_size = info->last_spare_size;
1071                 }
1072
1073                 /* Second command setting for large pages */
1074                 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1075                         /*
1076                          * Multiple page write uses the 'extended command'
1077                          * field. This can be used to issue a command dispatch
1078                          * or a naked-write depending on the current stage.
1079                          */
1080                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1081                                         | NDCB0_LEN_OVRD
1082                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1083                         info->ndcb3 = info->step_chunk_size +
1084                                       info->step_spare_size;
1085
1086                         /*
1087                          * This is the command dispatch that completes a chunked
1088                          * page program operation.
1089                          */
1090                         if (info->cur_chunk == info->ntotalchunks) {
1091                                 info->ndcb0 = NDCB0_CMD_TYPE(0x1)
1092                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1093                                         | command;
1094                                 info->ndcb1 = 0;
1095                                 info->ndcb2 = 0;
1096                                 info->ndcb3 = 0;
1097                         }
1098                 } else {
1099                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1100                                         | NDCB0_AUTO_RS
1101                                         | NDCB0_ST_ROW_EN
1102                                         | NDCB0_DBC
1103                                         | (NAND_CMD_PAGEPROG << 8)
1104                                         | NAND_CMD_SEQIN
1105                                         | addr_cycle;
1106                 }
1107                 break;
1108
1109         case NAND_CMD_PARAM:
1110                 info->buf_count = INIT_BUFFER_SIZE;
1111                 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1112                                 | NDCB0_ADDR_CYC(1)
1113                                 | NDCB0_LEN_OVRD
1114                                 | command;
1115                 info->ndcb1 = (column & 0xFF);
1116                 info->ndcb3 = INIT_BUFFER_SIZE;
1117                 info->step_chunk_size = INIT_BUFFER_SIZE;
1118                 break;
1119
1120         case NAND_CMD_READID:
1121                 info->buf_count = READ_ID_BYTES;
1122                 info->ndcb0 |= NDCB0_CMD_TYPE(3)
1123                                 | NDCB0_ADDR_CYC(1)
1124                                 | command;
1125                 info->ndcb1 = (column & 0xFF);
1126
1127                 info->step_chunk_size = 8;
1128                 break;
1129         case NAND_CMD_STATUS:
1130                 info->buf_count = 1;
1131                 info->ndcb0 |= NDCB0_CMD_TYPE(4)
1132                                 | NDCB0_ADDR_CYC(1)
1133                                 | command;
1134
1135                 info->step_chunk_size = 8;
1136                 break;
1137
1138         case NAND_CMD_ERASE1:
1139                 info->ndcb0 |= NDCB0_CMD_TYPE(2)
1140                                 | NDCB0_AUTO_RS
1141                                 | NDCB0_ADDR_CYC(3)
1142                                 | NDCB0_DBC
1143                                 | (NAND_CMD_ERASE2 << 8)
1144                                 | NAND_CMD_ERASE1;
1145                 info->ndcb1 = page_addr;
1146                 info->ndcb2 = 0;
1147
1148                 break;
1149         case NAND_CMD_RESET:
1150                 info->ndcb0 |= NDCB0_CMD_TYPE(5)
1151                                 | command;
1152
1153                 break;
1154
1155         case NAND_CMD_ERASE2:
1156                 exec_cmd = 0;
1157                 break;
1158
1159         default:
1160                 exec_cmd = 0;
1161                 dev_err(&info->pdev->dev, "non-supported command %x\n",
1162                                 command);
1163                 break;
1164         }
1165
1166         return exec_cmd;
1167 }
1168
1169 static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
1170                          int column, int page_addr)
1171 {
1172         struct nand_chip *chip = mtd_to_nand(mtd);
1173         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1174         struct pxa3xx_nand_info *info = host->info_data;
1175         int exec_cmd;
1176
1177         /*
1178          * if this is a x16 device ,then convert the input
1179          * "byte" address into a "word" address appropriate
1180          * for indexing a word-oriented device
1181          */
1182         if (info->reg_ndcr & NDCR_DWIDTH_M)
1183                 column /= 2;
1184
1185         /*
1186          * There may be different NAND chip hooked to
1187          * different chip select, so check whether
1188          * chip select has been changed, if yes, reset the timing
1189          */
1190         if (info->cs != host->cs) {
1191                 info->cs = host->cs;
1192                 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1193                 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1194         }
1195
1196         prepare_start_command(info, command);
1197
1198         info->state = STATE_PREPARED;
1199         exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
1200
1201         if (exec_cmd) {
1202                 init_completion(&info->cmd_complete);
1203                 init_completion(&info->dev_ready);
1204                 info->need_wait = 1;
1205                 pxa3xx_nand_start(info);
1206
1207                 if (!wait_for_completion_timeout(&info->cmd_complete,
1208                     CHIP_DELAY_TIMEOUT)) {
1209                         dev_err(&info->pdev->dev, "Wait time out!!!\n");
1210                         /* Stop State Machine for next command cycle */
1211                         pxa3xx_nand_stop(info);
1212                 }
1213         }
1214         info->state = STATE_IDLE;
1215 }
1216
1217 static void nand_cmdfunc_extended(struct mtd_info *mtd,
1218                                   const unsigned command,
1219                                   int column, int page_addr)
1220 {
1221         struct nand_chip *chip = mtd_to_nand(mtd);
1222         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1223         struct pxa3xx_nand_info *info = host->info_data;
1224         int exec_cmd, ext_cmd_type;
1225
1226         /*
1227          * if this is a x16 device then convert the input
1228          * "byte" address into a "word" address appropriate
1229          * for indexing a word-oriented device
1230          */
1231         if (info->reg_ndcr & NDCR_DWIDTH_M)
1232                 column /= 2;
1233
1234         /*
1235          * There may be different NAND chip hooked to
1236          * different chip select, so check whether
1237          * chip select has been changed, if yes, reset the timing
1238          */
1239         if (info->cs != host->cs) {
1240                 info->cs = host->cs;
1241                 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1242                 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1243         }
1244
1245         /* Select the extended command for the first command */
1246         switch (command) {
1247         case NAND_CMD_READ0:
1248         case NAND_CMD_READOOB:
1249                 ext_cmd_type = EXT_CMD_TYPE_MONO;
1250                 break;
1251         case NAND_CMD_SEQIN:
1252                 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1253                 break;
1254         case NAND_CMD_PAGEPROG:
1255                 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1256                 break;
1257         default:
1258                 ext_cmd_type = 0;
1259                 break;
1260         }
1261
1262         prepare_start_command(info, command);
1263
1264         /*
1265          * Prepare the "is ready" completion before starting a command
1266          * transaction sequence. If the command is not executed the
1267          * completion will be completed, see below.
1268          *
1269          * We can do that inside the loop because the command variable
1270          * is invariant and thus so is the exec_cmd.
1271          */
1272         info->need_wait = 1;
1273         init_completion(&info->dev_ready);
1274         do {
1275                 info->state = STATE_PREPARED;
1276
1277                 exec_cmd = prepare_set_command(info, command, ext_cmd_type,
1278                                                column, page_addr);
1279                 if (!exec_cmd) {
1280                         info->need_wait = 0;
1281                         complete(&info->dev_ready);
1282                         break;
1283                 }
1284
1285                 init_completion(&info->cmd_complete);
1286                 pxa3xx_nand_start(info);
1287
1288                 if (!wait_for_completion_timeout(&info->cmd_complete,
1289                     CHIP_DELAY_TIMEOUT)) {
1290                         dev_err(&info->pdev->dev, "Wait time out!!!\n");
1291                         /* Stop State Machine for next command cycle */
1292                         pxa3xx_nand_stop(info);
1293                         break;
1294                 }
1295
1296                 /* Only a few commands need several steps */
1297                 if (command != NAND_CMD_PAGEPROG &&
1298                     command != NAND_CMD_READ0    &&
1299                     command != NAND_CMD_READOOB)
1300                         break;
1301
1302                 info->cur_chunk++;
1303
1304                 /* Check if the sequence is complete */
1305                 if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG)
1306                         break;
1307
1308                 /*
1309                  * After a splitted program command sequence has issued
1310                  * the command dispatch, the command sequence is complete.
1311                  */
1312                 if (info->cur_chunk == (info->ntotalchunks + 1) &&
1313                     command == NAND_CMD_PAGEPROG &&
1314                     ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
1315                         break;
1316
1317                 if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
1318                         /* Last read: issue a 'last naked read' */
1319                         if (info->cur_chunk == info->ntotalchunks - 1)
1320                                 ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
1321                         else
1322                                 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1323
1324                 /*
1325                  * If a splitted program command has no more data to transfer,
1326                  * the command dispatch must be issued to complete.
1327                  */
1328                 } else if (command == NAND_CMD_PAGEPROG &&
1329                            info->cur_chunk == info->ntotalchunks) {
1330                                 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1331                 }
1332         } while (1);
1333
1334         info->state = STATE_IDLE;
1335 }
1336
1337 static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
1338                 struct nand_chip *chip, const uint8_t *buf, int oob_required,
1339                 int page)
1340 {
1341         chip->write_buf(mtd, buf, mtd->writesize);
1342         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1343
1344         return 0;
1345 }
1346
1347 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
1348                 struct nand_chip *chip, uint8_t *buf, int oob_required,
1349                 int page)
1350 {
1351         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1352         struct pxa3xx_nand_info *info = host->info_data;
1353
1354         chip->read_buf(mtd, buf, mtd->writesize);
1355         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1356
1357         if (info->retcode == ERR_CORERR && info->use_ecc) {
1358                 mtd->ecc_stats.corrected += info->ecc_err_cnt;
1359
1360         } else if (info->retcode == ERR_UNCORERR) {
1361                 /*
1362                  * for blank page (all 0xff), HW will calculate its ECC as
1363                  * 0, which is different from the ECC information within
1364                  * OOB, ignore such uncorrectable errors
1365                  */
1366                 if (is_buf_blank(buf, mtd->writesize))
1367                         info->retcode = ERR_NONE;
1368                 else
1369                         mtd->ecc_stats.failed++;
1370         }
1371
1372         return info->max_bitflips;
1373 }
1374
1375 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
1376 {
1377         struct nand_chip *chip = mtd_to_nand(mtd);
1378         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1379         struct pxa3xx_nand_info *info = host->info_data;
1380         char retval = 0xFF;
1381
1382         if (info->buf_start < info->buf_count)
1383                 /* Has just send a new command? */
1384                 retval = info->data_buff[info->buf_start++];
1385
1386         return retval;
1387 }
1388
1389 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
1390 {
1391         struct nand_chip *chip = mtd_to_nand(mtd);
1392         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1393         struct pxa3xx_nand_info *info = host->info_data;
1394         u16 retval = 0xFFFF;
1395
1396         if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
1397                 retval = *((u16 *)(info->data_buff+info->buf_start));
1398                 info->buf_start += 2;
1399         }
1400         return retval;
1401 }
1402
1403 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1404 {
1405         struct nand_chip *chip = mtd_to_nand(mtd);
1406         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1407         struct pxa3xx_nand_info *info = host->info_data;
1408         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1409
1410         memcpy(buf, info->data_buff + info->buf_start, real_len);
1411         info->buf_start += real_len;
1412 }
1413
1414 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
1415                 const uint8_t *buf, int len)
1416 {
1417         struct nand_chip *chip = mtd_to_nand(mtd);
1418         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1419         struct pxa3xx_nand_info *info = host->info_data;
1420         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1421
1422         memcpy(info->data_buff + info->buf_start, buf, real_len);
1423         info->buf_start += real_len;
1424 }
1425
1426 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
1427 {
1428         return;
1429 }
1430
1431 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1432 {
1433         struct nand_chip *chip = mtd_to_nand(mtd);
1434         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1435         struct pxa3xx_nand_info *info = host->info_data;
1436
1437         if (info->need_wait) {
1438                 info->need_wait = 0;
1439                 if (!wait_for_completion_timeout(&info->dev_ready,
1440                     CHIP_DELAY_TIMEOUT)) {
1441                         dev_err(&info->pdev->dev, "Ready time out!!!\n");
1442                         return NAND_STATUS_FAIL;
1443                 }
1444         }
1445
1446         /* pxa3xx_nand_send_command has waited for command complete */
1447         if (this->state == FL_WRITING || this->state == FL_ERASING) {
1448                 if (info->retcode == ERR_NONE)
1449                         return 0;
1450                 else
1451                         return NAND_STATUS_FAIL;
1452         }
1453
1454         return NAND_STATUS_READY;
1455 }
1456
1457 static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
1458 {
1459         struct pxa3xx_nand_host *host = info->host[info->cs];
1460         struct platform_device *pdev = info->pdev;
1461         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1462         const struct nand_sdr_timings *timings;
1463
1464         /* Configure default flash values */
1465         info->chunk_size = PAGE_CHUNK_SIZE;
1466         info->reg_ndcr = 0x0; /* enable all interrupts */
1467         info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1468         info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
1469         info->reg_ndcr |= NDCR_SPARE_EN;
1470
1471         /* use the common timing to make a try */
1472         timings = onfi_async_timing_mode_to_sdr_timings(0);
1473         if (IS_ERR(timings))
1474                 return PTR_ERR(timings);
1475
1476         pxa3xx_nand_set_sdr_timing(host, timings);
1477         return 0;
1478 }
1479
1480 static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
1481 {
1482         struct pxa3xx_nand_host *host = info->host[info->cs];
1483         struct nand_chip *chip = &host->chip;
1484         struct mtd_info *mtd = nand_to_mtd(chip);
1485
1486         info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
1487         info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
1488         info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
1489 }
1490
1491 static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
1492 {
1493         struct platform_device *pdev = info->pdev;
1494         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1495         uint32_t ndcr = nand_readl(info, NDCR);
1496
1497         /* Set an initial chunk size */
1498         info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
1499         info->reg_ndcr = ndcr &
1500                 ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
1501         info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1502         info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
1503         info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
1504 }
1505
1506 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
1507 {
1508         struct platform_device *pdev = info->pdev;
1509         struct dma_slave_config config;
1510         dma_cap_mask_t mask;
1511         struct pxad_param param;
1512         int ret;
1513
1514         info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1515         if (info->data_buff == NULL)
1516                 return -ENOMEM;
1517         if (use_dma == 0)
1518                 return 0;
1519
1520         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1521         if (ret)
1522                 return ret;
1523
1524         sg_init_one(&info->sg, info->data_buff, info->buf_size);
1525         dma_cap_zero(mask);
1526         dma_cap_set(DMA_SLAVE, mask);
1527         param.prio = PXAD_PRIO_LOWEST;
1528         param.drcmr = info->drcmr_dat;
1529         info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn,
1530                                                           &param, &pdev->dev,
1531                                                           "data");
1532         if (!info->dma_chan) {
1533                 dev_err(&pdev->dev, "unable to request data dma channel\n");
1534                 return -ENODEV;
1535         }
1536
1537         memset(&config, 0, sizeof(config));
1538         config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1539         config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1540         config.src_addr = info->mmio_phys + NDDB;
1541         config.dst_addr = info->mmio_phys + NDDB;
1542         config.src_maxburst = 32;
1543         config.dst_maxburst = 32;
1544         ret = dmaengine_slave_config(info->dma_chan, &config);
1545         if (ret < 0) {
1546                 dev_err(&info->pdev->dev,
1547                         "dma channel configuration failed: %d\n",
1548                         ret);
1549                 return ret;
1550         }
1551
1552         /*
1553          * Now that DMA buffers are allocated we turn on
1554          * DMA proper for I/O operations.
1555          */
1556         info->use_dma = 1;
1557         return 0;
1558 }
1559
1560 static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
1561 {
1562         if (info->use_dma) {
1563                 dmaengine_terminate_all(info->dma_chan);
1564                 dma_release_channel(info->dma_chan);
1565         }
1566         kfree(info->data_buff);
1567 }
1568
1569 static int pxa_ecc_init(struct pxa3xx_nand_info *info,
1570                         struct mtd_info *mtd,
1571                         int strength, int ecc_stepsize, int page_size)
1572 {
1573         struct nand_chip *chip = mtd_to_nand(mtd);
1574         struct nand_ecc_ctrl *ecc = &chip->ecc;
1575
1576         if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
1577                 info->nfullchunks = 1;
1578                 info->ntotalchunks = 1;
1579                 info->chunk_size = 2048;
1580                 info->spare_size = 40;
1581                 info->ecc_size = 24;
1582                 ecc->mode = NAND_ECC_HW;
1583                 ecc->size = 512;
1584                 ecc->strength = 1;
1585
1586         } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
1587                 info->nfullchunks = 1;
1588                 info->ntotalchunks = 1;
1589                 info->chunk_size = 512;
1590                 info->spare_size = 8;
1591                 info->ecc_size = 8;
1592                 ecc->mode = NAND_ECC_HW;
1593                 ecc->size = 512;
1594                 ecc->strength = 1;
1595
1596         /*
1597          * Required ECC: 4-bit correction per 512 bytes
1598          * Select: 16-bit correction per 2048 bytes
1599          */
1600         } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
1601                 info->ecc_bch = 1;
1602                 info->nfullchunks = 1;
1603                 info->ntotalchunks = 1;
1604                 info->chunk_size = 2048;
1605                 info->spare_size = 32;
1606                 info->ecc_size = 32;
1607                 ecc->mode = NAND_ECC_HW;
1608                 ecc->size = info->chunk_size;
1609                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1610                 ecc->strength = 16;
1611
1612         } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
1613                 info->ecc_bch = 1;
1614                 info->nfullchunks = 2;
1615                 info->ntotalchunks = 2;
1616                 info->chunk_size = 2048;
1617                 info->spare_size = 32;
1618                 info->ecc_size = 32;
1619                 ecc->mode = NAND_ECC_HW;
1620                 ecc->size = info->chunk_size;
1621                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1622                 ecc->strength = 16;
1623
1624         /*
1625          * Required ECC: 8-bit correction per 512 bytes
1626          * Select: 16-bit correction per 1024 bytes
1627          */
1628         } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
1629                 info->ecc_bch = 1;
1630                 info->nfullchunks = 4;
1631                 info->ntotalchunks = 5;
1632                 info->chunk_size = 1024;
1633                 info->spare_size = 0;
1634                 info->last_chunk_size = 0;
1635                 info->last_spare_size = 64;
1636                 info->ecc_size = 32;
1637                 ecc->mode = NAND_ECC_HW;
1638                 ecc->size = info->chunk_size;
1639                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1640                 ecc->strength = 16;
1641         } else {
1642                 dev_err(&info->pdev->dev,
1643                         "ECC strength %d at page size %d is not supported\n",
1644                         strength, page_size);
1645                 return -ENODEV;
1646         }
1647
1648         dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
1649                  ecc->strength, ecc->size);
1650         return 0;
1651 }
1652
1653 static int pxa3xx_nand_scan(struct mtd_info *mtd)
1654 {
1655         struct nand_chip *chip = mtd_to_nand(mtd);
1656         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1657         struct pxa3xx_nand_info *info = host->info_data;
1658         struct platform_device *pdev = info->pdev;
1659         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1660         int ret;
1661         uint16_t ecc_strength, ecc_step;
1662
1663         if (pdata->keep_config) {
1664                 pxa3xx_nand_detect_config(info);
1665         } else {
1666                 ret = pxa3xx_nand_config_ident(info);
1667                 if (ret)
1668                         return ret;
1669         }
1670
1671         if (info->reg_ndcr & NDCR_DWIDTH_M)
1672                 chip->options |= NAND_BUSWIDTH_16;
1673
1674         /* Device detection must be done with ECC disabled */
1675         if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
1676                 nand_writel(info, NDECCCTRL, 0x0);
1677
1678         if (pdata->flash_bbt)
1679                 chip->bbt_options |= NAND_BBT_USE_FLASH;
1680
1681         chip->ecc.strength = pdata->ecc_strength;
1682         chip->ecc.size = pdata->ecc_step_size;
1683
1684         if (nand_scan_ident(mtd, 1, NULL))
1685                 return -ENODEV;
1686
1687         if (!pdata->keep_config) {
1688                 ret = pxa3xx_nand_init(host);
1689                 if (ret) {
1690                         dev_err(&info->pdev->dev, "Failed to init nand: %d\n",
1691                                 ret);
1692                         return ret;
1693                 }
1694         }
1695
1696         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1697                 /*
1698                  * We'll use a bad block table stored in-flash and don't
1699                  * allow writing the bad block marker to the flash.
1700                  */
1701                 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
1702                 chip->bbt_td = &bbt_main_descr;
1703                 chip->bbt_md = &bbt_mirror_descr;
1704         }
1705
1706         /*
1707          * If the page size is bigger than the FIFO size, let's check
1708          * we are given the right variant and then switch to the extended
1709          * (aka splitted) command handling,
1710          */
1711         if (mtd->writesize > PAGE_CHUNK_SIZE) {
1712                 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
1713                         chip->cmdfunc = nand_cmdfunc_extended;
1714                 } else {
1715                         dev_err(&info->pdev->dev,
1716                                 "unsupported page size on this variant\n");
1717                         return -ENODEV;
1718                 }
1719         }
1720
1721         ecc_strength = chip->ecc.strength;
1722         ecc_step = chip->ecc.size;
1723         if (!ecc_strength || !ecc_step) {
1724                 ecc_strength = chip->ecc_strength_ds;
1725                 ecc_step = chip->ecc_step_ds;
1726         }
1727
1728         /* Set default ECC strength requirements on non-ONFI devices */
1729         if (ecc_strength < 1 && ecc_step < 1) {
1730                 ecc_strength = 1;
1731                 ecc_step = 512;
1732         }
1733
1734         ret = pxa_ecc_init(info, mtd, ecc_strength,
1735                            ecc_step, mtd->writesize);
1736         if (ret)
1737                 return ret;
1738
1739         /* calculate addressing information */
1740         if (mtd->writesize >= 2048)
1741                 host->col_addr_cycles = 2;
1742         else
1743                 host->col_addr_cycles = 1;
1744
1745         /* release the initial buffer */
1746         kfree(info->data_buff);
1747
1748         /* allocate the real data + oob buffer */
1749         info->buf_size = mtd->writesize + mtd->oobsize;
1750         ret = pxa3xx_nand_init_buff(info);
1751         if (ret)
1752                 return ret;
1753         info->oob_buff = info->data_buff + mtd->writesize;
1754
1755         if ((mtd->size >> chip->page_shift) > 65536)
1756                 host->row_addr_cycles = 3;
1757         else
1758                 host->row_addr_cycles = 2;
1759
1760         if (!pdata->keep_config)
1761                 pxa3xx_nand_config_tail(info);
1762
1763         return nand_scan_tail(mtd);
1764 }
1765
1766 static int alloc_nand_resource(struct platform_device *pdev)
1767 {
1768         struct device_node *np = pdev->dev.of_node;
1769         struct pxa3xx_nand_platform_data *pdata;
1770         struct pxa3xx_nand_info *info;
1771         struct pxa3xx_nand_host *host;
1772         struct nand_chip *chip = NULL;
1773         struct mtd_info *mtd;
1774         struct resource *r;
1775         int ret, irq, cs;
1776
1777         pdata = dev_get_platdata(&pdev->dev);
1778         if (pdata->num_cs <= 0)
1779                 return -ENODEV;
1780         info = devm_kzalloc(&pdev->dev,
1781                             sizeof(*info) + sizeof(*host) * pdata->num_cs,
1782                             GFP_KERNEL);
1783         if (!info)
1784                 return -ENOMEM;
1785
1786         info->pdev = pdev;
1787         info->variant = pxa3xx_nand_get_variant(pdev);
1788         for (cs = 0; cs < pdata->num_cs; cs++) {
1789                 host = (void *)&info[1] + sizeof(*host) * cs;
1790                 chip = &host->chip;
1791                 nand_set_controller_data(chip, host);
1792                 mtd = nand_to_mtd(chip);
1793                 info->host[cs] = host;
1794                 host->cs = cs;
1795                 host->info_data = info;
1796                 mtd->dev.parent = &pdev->dev;
1797                 /* FIXME: all chips use the same device tree partitions */
1798                 nand_set_flash_node(chip, np);
1799
1800                 nand_set_controller_data(chip, host);
1801                 chip->ecc.read_page     = pxa3xx_nand_read_page_hwecc;
1802                 chip->ecc.write_page    = pxa3xx_nand_write_page_hwecc;
1803                 chip->controller        = &info->controller;
1804                 chip->waitfunc          = pxa3xx_nand_waitfunc;
1805                 chip->select_chip       = pxa3xx_nand_select_chip;
1806                 chip->read_word         = pxa3xx_nand_read_word;
1807                 chip->read_byte         = pxa3xx_nand_read_byte;
1808                 chip->read_buf          = pxa3xx_nand_read_buf;
1809                 chip->write_buf         = pxa3xx_nand_write_buf;
1810                 chip->options           |= NAND_NO_SUBPAGE_WRITE;
1811                 chip->cmdfunc           = nand_cmdfunc;
1812         }
1813
1814         nand_hw_control_init(chip->controller);
1815         info->clk = devm_clk_get(&pdev->dev, NULL);
1816         if (IS_ERR(info->clk)) {
1817                 dev_err(&pdev->dev, "failed to get nand clock\n");
1818                 return PTR_ERR(info->clk);
1819         }
1820         ret = clk_prepare_enable(info->clk);
1821         if (ret < 0)
1822                 return ret;
1823
1824         if (!np && use_dma) {
1825                 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1826                 if (r == NULL) {
1827                         dev_err(&pdev->dev,
1828                                 "no resource defined for data DMA\n");
1829                         ret = -ENXIO;
1830                         goto fail_disable_clk;
1831                 }
1832                 info->drcmr_dat = r->start;
1833         }
1834
1835         irq = platform_get_irq(pdev, 0);
1836         if (irq < 0) {
1837                 dev_err(&pdev->dev, "no IRQ resource defined\n");
1838                 ret = -ENXIO;
1839                 goto fail_disable_clk;
1840         }
1841
1842         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1843         info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
1844         if (IS_ERR(info->mmio_base)) {
1845                 ret = PTR_ERR(info->mmio_base);
1846                 goto fail_disable_clk;
1847         }
1848         info->mmio_phys = r->start;
1849
1850         /* Allocate a buffer to allow flash detection */
1851         info->buf_size = INIT_BUFFER_SIZE;
1852         info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1853         if (info->data_buff == NULL) {
1854                 ret = -ENOMEM;
1855                 goto fail_disable_clk;
1856         }
1857
1858         /* initialize all interrupts to be disabled */
1859         disable_int(info, NDSR_MASK);
1860
1861         ret = request_threaded_irq(irq, pxa3xx_nand_irq,
1862                                    pxa3xx_nand_irq_thread, IRQF_ONESHOT,
1863                                    pdev->name, info);
1864         if (ret < 0) {
1865                 dev_err(&pdev->dev, "failed to request IRQ\n");
1866                 goto fail_free_buf;
1867         }
1868
1869         platform_set_drvdata(pdev, info);
1870
1871         return 0;
1872
1873 fail_free_buf:
1874         free_irq(irq, info);
1875         kfree(info->data_buff);
1876 fail_disable_clk:
1877         clk_disable_unprepare(info->clk);
1878         return ret;
1879 }
1880
1881 static int pxa3xx_nand_remove(struct platform_device *pdev)
1882 {
1883         struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1884         struct pxa3xx_nand_platform_data *pdata;
1885         int irq, cs;
1886
1887         if (!info)
1888                 return 0;
1889
1890         pdata = dev_get_platdata(&pdev->dev);
1891
1892         irq = platform_get_irq(pdev, 0);
1893         if (irq >= 0)
1894                 free_irq(irq, info);
1895         pxa3xx_nand_free_buff(info);
1896
1897         /*
1898          * In the pxa3xx case, the DFI bus is shared between the SMC and NFC.
1899          * In order to prevent a lockup of the system bus, the DFI bus
1900          * arbitration is granted to SMC upon driver removal. This is done by
1901          * setting the x_ARB_CNTL bit, which also prevents the NAND to have
1902          * access to the bus anymore.
1903          */
1904         nand_writel(info, NDCR,
1905                     (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) |
1906                     NFCV1_NDCR_ARB_CNTL);
1907         clk_disable_unprepare(info->clk);
1908
1909         for (cs = 0; cs < pdata->num_cs; cs++)
1910                 nand_release(&info->host[cs]->chip);
1911         return 0;
1912 }
1913
1914 static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1915 {
1916         struct pxa3xx_nand_platform_data *pdata;
1917         struct device_node *np = pdev->dev.of_node;
1918         const struct of_device_id *of_id =
1919                         of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1920
1921         if (!of_id)
1922                 return 0;
1923
1924         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1925         if (!pdata)
1926                 return -ENOMEM;
1927
1928         if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1929                 pdata->enable_arbiter = 1;
1930         if (of_get_property(np, "marvell,nand-keep-config", NULL))
1931                 pdata->keep_config = 1;
1932         of_property_read_u32(np, "num-cs", &pdata->num_cs);
1933
1934         pdev->dev.platform_data = pdata;
1935
1936         return 0;
1937 }
1938
1939 static int pxa3xx_nand_probe(struct platform_device *pdev)
1940 {
1941         struct pxa3xx_nand_platform_data *pdata;
1942         struct pxa3xx_nand_info *info;
1943         int ret, cs, probe_success, dma_available;
1944
1945         dma_available = IS_ENABLED(CONFIG_ARM) &&
1946                 (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP));
1947         if (use_dma && !dma_available) {
1948                 use_dma = 0;
1949                 dev_warn(&pdev->dev,
1950                          "This platform can't do DMA on this device\n");
1951         }
1952
1953         ret = pxa3xx_nand_probe_dt(pdev);
1954         if (ret)
1955                 return ret;
1956
1957         pdata = dev_get_platdata(&pdev->dev);
1958         if (!pdata) {
1959                 dev_err(&pdev->dev, "no platform data defined\n");
1960                 return -ENODEV;
1961         }
1962
1963         ret = alloc_nand_resource(pdev);
1964         if (ret) {
1965                 dev_err(&pdev->dev, "alloc nand resource failed\n");
1966                 return ret;
1967         }
1968
1969         info = platform_get_drvdata(pdev);
1970         probe_success = 0;
1971         for (cs = 0; cs < pdata->num_cs; cs++) {
1972                 struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
1973
1974                 /*
1975                  * The mtd name matches the one used in 'mtdparts' kernel
1976                  * parameter. This name cannot be changed or otherwise
1977                  * user's mtd partitions configuration would get broken.
1978                  */
1979                 mtd->name = "pxa3xx_nand-0";
1980                 info->cs = cs;
1981                 ret = pxa3xx_nand_scan(mtd);
1982                 if (ret) {
1983                         dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1984                                 cs);
1985                         continue;
1986                 }
1987
1988                 ret = mtd_device_register(mtd, pdata->parts[cs],
1989                                           pdata->nr_parts[cs]);
1990                 if (!ret)
1991                         probe_success = 1;
1992         }
1993
1994         if (!probe_success) {
1995                 pxa3xx_nand_remove(pdev);
1996                 return -ENODEV;
1997         }
1998
1999         return 0;
2000 }
2001
2002 #ifdef CONFIG_PM
2003 static int pxa3xx_nand_suspend(struct device *dev)
2004 {
2005         struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2006
2007         if (info->state) {
2008                 dev_err(dev, "driver busy, state = %d\n", info->state);
2009                 return -EAGAIN;
2010         }
2011
2012         clk_disable(info->clk);
2013         return 0;
2014 }
2015
2016 static int pxa3xx_nand_resume(struct device *dev)
2017 {
2018         struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2019         int ret;
2020
2021         ret = clk_enable(info->clk);
2022         if (ret < 0)
2023                 return ret;
2024
2025         /* We don't want to handle interrupt without calling mtd routine */
2026         disable_int(info, NDCR_INT_MASK);
2027
2028         /*
2029          * Directly set the chip select to a invalid value,
2030          * then the driver would reset the timing according
2031          * to current chip select at the beginning of cmdfunc
2032          */
2033         info->cs = 0xff;
2034
2035         /*
2036          * As the spec says, the NDSR would be updated to 0x1800 when
2037          * doing the nand_clk disable/enable.
2038          * To prevent it damaging state machine of the driver, clear
2039          * all status before resume
2040          */
2041         nand_writel(info, NDSR, NDSR_MASK);
2042
2043         return 0;
2044 }
2045 #else
2046 #define pxa3xx_nand_suspend     NULL
2047 #define pxa3xx_nand_resume      NULL
2048 #endif
2049
2050 static const struct dev_pm_ops pxa3xx_nand_pm_ops = {
2051         .suspend        = pxa3xx_nand_suspend,
2052         .resume         = pxa3xx_nand_resume,
2053 };
2054
2055 static struct platform_driver pxa3xx_nand_driver = {
2056         .driver = {
2057                 .name   = "pxa3xx-nand",
2058                 .of_match_table = pxa3xx_nand_dt_ids,
2059                 .pm     = &pxa3xx_nand_pm_ops,
2060         },
2061         .probe          = pxa3xx_nand_probe,
2062         .remove         = pxa3xx_nand_remove,
2063 };
2064
2065 module_platform_driver(pxa3xx_nand_driver);
2066
2067 MODULE_LICENSE("GPL");
2068 MODULE_DESCRIPTION("PXA3xx NAND controller driver");