GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / onenand / onenand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *      auto-placement support, read-while load support, various fixes
11  *
12  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *      Flex-OneNAND support
14  *      Amul Kumar Saha <amul.saha at samsung.com>
15  *      OTP support
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29
30 #include <asm/io.h>
31
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
44                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45                                 "DIE_BDRY: SLC boundary of the die"
46                                 "LOCK: Locking information for SLC boundary"
47                                 "    : 0->Set boundary in unlocked status"
48                                 "    : 1->Set boundary in locked status");
49
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
55                         "Syntax : otp=LOCK_TYPE"
56                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57                         "          : 0 -> Default (No Blocks Locked)"
58                         "          : 1 -> OTP Block lock"
59                         "          : 2 -> 1st Block lock"
60                         "          : 3 -> BOTH OTP Block and 1st Block lock");
61
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67                                      struct mtd_oob_region *oobregion)
68 {
69         if (section > 7)
70                 return -ERANGE;
71
72         oobregion->offset = (section * 16) + 6;
73         oobregion->length = 10;
74
75         return 0;
76 }
77
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79                                       struct mtd_oob_region *oobregion)
80 {
81         if (section > 7)
82                 return -ERANGE;
83
84         oobregion->offset = (section * 16) + 2;
85         oobregion->length = 4;
86
87         return 0;
88 }
89
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91         .ecc = flexonenand_ooblayout_ecc,
92         .free = flexonenand_ooblayout_free,
93 };
94
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103                                      struct mtd_oob_region *oobregion)
104 {
105         if (section > 7)
106                 return -ERANGE;
107
108         oobregion->offset = (section * 16) + 7;
109         oobregion->length = 9;
110
111         return 0;
112 }
113
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115                                       struct mtd_oob_region *oobregion)
116 {
117         if (section >= 8)
118                 return -ERANGE;
119
120         /*
121          * free bytes are using the spare area fields marked as
122          * "Managed by internal ECC logic for Logical Sector Number area"
123          */
124         oobregion->offset = (section * 16) + 2;
125         oobregion->length = 3;
126
127         return 0;
128 }
129
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131         .ecc = onenand_ooblayout_128_ecc,
132         .free = onenand_ooblayout_128_free,
133 };
134
135 /**
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139                                        struct mtd_oob_region *oobregion)
140 {
141         if (section > 3)
142                 return -ERANGE;
143
144         oobregion->offset = (section * 16) + 8;
145         oobregion->length = 5;
146
147         return 0;
148 }
149
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151                                         struct mtd_oob_region *oobregion)
152 {
153         int sections = (mtd->oobsize / 32) * 2;
154
155         if (section >= sections)
156                 return -ERANGE;
157
158         if (section & 1) {
159                 oobregion->offset = ((section - 1) * 16) + 14;
160                 oobregion->length = 2;
161         } else  {
162                 oobregion->offset = (section * 16) + 2;
163                 oobregion->length = 3;
164         }
165
166         return 0;
167 }
168
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170         .ecc = onenand_ooblayout_32_64_ecc,
171         .free = onenand_ooblayout_32_64_free,
172 };
173
174 static const unsigned char ffchars[] = {
175         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
191 };
192
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @param addr          address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201         return readw(addr);
202 }
203
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @param value         value to write
207  * @param addr          address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213         writew(value, addr);
214 }
215
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @param this          onenand chip data structure
219  * @param block         the block
220  * @return              translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226         /* Device Flash Core select, NAND Flash Block Address */
227         if (block & this->density_mask)
228                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230         return block;
231 }
232
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @param this          onenand chip data structure
236  * @param block         the block
237  * @return              set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243         /* Device BufferRAM Select */
244         if (block & this->density_mask)
245                 return ONENAND_DDP_CHIP1;
246
247         return ONENAND_DDP_CHIP0;
248 }
249
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @param page          the page address
253  * @param sector        the sector address
254  * @return              combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260         /* Flash Page Address, Flash Sector Address */
261         int fpa, fsa;
262
263         fpa = page & ONENAND_FPA_MASK;
264         fsa = sector & ONENAND_FSA_MASK;
265
266         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @param dataram1      DataRAM index
272  * @param sectors       the sector address
273  * @param count         the number of sectors
274  * @return              the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280         int bsa, bsc;
281
282         /* BufferRAM Sector Address */
283         bsa = sectors & ONENAND_BSA_MASK;
284
285         if (dataram1)
286                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
287         else
288                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
289
290         /* BufferRAM Sector Count */
291         bsc = count & ONENAND_BSC_MASK;
292
293         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295
296 /**
297  * flexonenand_block- For given address return block number
298  * @param this         - OneNAND device structure
299  * @param addr          - Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303         unsigned boundary, blk, die = 0;
304
305         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306                 die = 1;
307                 addr -= this->diesize[0];
308         }
309
310         boundary = this->boundary[die];
311
312         blk = addr >> (this->erase_shift - 1);
313         if (blk > boundary)
314                 blk = (blk + boundary + 1) >> 1;
315
316         blk += die ? this->density_mask : 0;
317         return blk;
318 }
319
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322         if (!FLEXONENAND(this))
323                 return addr >> this->erase_shift;
324         return flexonenand_block(this, addr);
325 }
326
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:               OneNAND device structure
330  * @block:              Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336         loff_t ofs = 0;
337         int die = 0, boundary;
338
339         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340                 block -= this->density_mask;
341                 die = 1;
342                 ofs = this->diesize[0];
343         }
344
345         boundary = this->boundary[die];
346         ofs += (loff_t)block << (this->erase_shift - 1);
347         if (block > (boundary + 1))
348                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349         return ofs;
350 }
351
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354         if (!FLEXONENAND(this))
355                 return (loff_t)block << this->erase_shift;
356         return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @param dev_id        OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369         return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @param mtd           MTD device structure
375  * @param addr          address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379         int i;
380
381         for (i = 0; i < mtd->numeraseregions; i++)
382                 if (addr < mtd->eraseregions[i].offset)
383                         break;
384         return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @param mtd           MTD device structure
391  * @param cmd           the command to be sent
392  * @param addr          offset to read from or write to
393  * @param len           number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400         struct onenand_chip *this = mtd->priv;
401         int value, block, page;
402
403         /* Address translation */
404         switch (cmd) {
405         case ONENAND_CMD_UNLOCK:
406         case ONENAND_CMD_LOCK:
407         case ONENAND_CMD_LOCK_TIGHT:
408         case ONENAND_CMD_UNLOCK_ALL:
409                 block = -1;
410                 page = -1;
411                 break;
412
413         case FLEXONENAND_CMD_PI_ACCESS:
414                 /* addr contains die index */
415                 block = addr * this->density_mask;
416                 page = -1;
417                 break;
418
419         case ONENAND_CMD_ERASE:
420         case ONENAND_CMD_MULTIBLOCK_ERASE:
421         case ONENAND_CMD_ERASE_VERIFY:
422         case ONENAND_CMD_BUFFERRAM:
423         case ONENAND_CMD_OTP_ACCESS:
424                 block = onenand_block(this, addr);
425                 page = -1;
426                 break;
427
428         case FLEXONENAND_CMD_READ_PI:
429                 cmd = ONENAND_CMD_READ;
430                 block = addr * this->density_mask;
431                 page = 0;
432                 break;
433
434         default:
435                 block = onenand_block(this, addr);
436                 if (FLEXONENAND(this))
437                         page = (int) (addr - onenand_addr(this, block))>>\
438                                 this->page_shift;
439                 else
440                         page = (int) (addr >> this->page_shift);
441                 if (ONENAND_IS_2PLANE(this)) {
442                         /* Make the even block number */
443                         block &= ~1;
444                         /* Is it the odd plane? */
445                         if (addr & this->writesize)
446                                 block++;
447                         page >>= 1;
448                 }
449                 page &= this->page_mask;
450                 break;
451         }
452
453         /* NOTE: The setting order of the registers is very important! */
454         if (cmd == ONENAND_CMD_BUFFERRAM) {
455                 /* Select DataRAM for DDP */
456                 value = onenand_bufferram_address(this, block);
457                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460                         /* It is always BufferRAM0 */
461                         ONENAND_SET_BUFFERRAM0(this);
462                 else
463                         /* Switch to the next data buffer */
464                         ONENAND_SET_NEXT_BUFFERRAM(this);
465
466                 return 0;
467         }
468
469         if (block != -1) {
470                 /* Write 'DFS, FBA' of Flash */
471                 value = onenand_block_address(this, block);
472                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474                 /* Select DataRAM for DDP */
475                 value = onenand_bufferram_address(this, block);
476                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477         }
478
479         if (page != -1) {
480                 /* Now we use page size operation */
481                 int sectors = 0, count = 0;
482                 int dataram;
483
484                 switch (cmd) {
485                 case FLEXONENAND_CMD_RECOVER_LSB:
486                 case ONENAND_CMD_READ:
487                 case ONENAND_CMD_READOOB:
488                         if (ONENAND_IS_4KB_PAGE(this))
489                                 /* It is always BufferRAM0 */
490                                 dataram = ONENAND_SET_BUFFERRAM0(this);
491                         else
492                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493                         break;
494
495                 default:
496                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497                                 cmd = ONENAND_CMD_2X_PROG;
498                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
499                         break;
500                 }
501
502                 /* Write 'FPA, FSA' of Flash */
503                 value = onenand_page_address(page, sectors);
504                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506                 /* Write 'BSA, BSC' of DataRAM */
507                 value = onenand_buffer_address(dataram, sectors, count);
508                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509         }
510
511         /* Interrupt clear */
512         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514         /* Write command */
515         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517         return 0;
518 }
519
520 /**
521  * onenand_read_ecc - return ecc status
522  * @param this          onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526         int ecc, i, result = 0;
527
528         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531         for (i = 0; i < 4; i++) {
532                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533                 if (likely(!ecc))
534                         continue;
535                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536                         return ONENAND_ECC_2BIT_ALL;
537                 else
538                         result = ONENAND_ECC_1BIT_ALL;
539         }
540
541         return result;
542 }
543
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @param mtd           MTD device structure
547  * @param state         state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555         struct onenand_chip * this = mtd->priv;
556         unsigned long timeout;
557         unsigned int flags = ONENAND_INT_MASTER;
558         unsigned int interrupt = 0;
559         unsigned int ctrl;
560
561         /* The 20 msec is enough */
562         timeout = jiffies + msecs_to_jiffies(20);
563         while (time_before(jiffies, timeout)) {
564                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566                 if (interrupt & flags)
567                         break;
568
569                 if (state != FL_READING && state != FL_PREPARING_ERASE)
570                         cond_resched();
571         }
572         /* To get correct interrupt status in timeout case */
573         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577         /*
578          * In the Spec. it checks the controller status first
579          * However if you get the correct information in case of
580          * power off recovery (POR) test, it should read ECC status first
581          */
582         if (interrupt & ONENAND_INT_READ) {
583                 int ecc = onenand_read_ecc(this);
584                 if (ecc) {
585                         if (ecc & ONENAND_ECC_2BIT_ALL) {
586                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587                                         __func__, ecc);
588                                 mtd->ecc_stats.failed++;
589                                 return -EBADMSG;
590                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
591                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592                                         __func__, ecc);
593                                 mtd->ecc_stats.corrected++;
594                         }
595                 }
596         } else if (state == FL_READING) {
597                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598                         __func__, ctrl, interrupt);
599                 return -EIO;
600         }
601
602         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604                        __func__, ctrl, interrupt);
605                 return -EIO;
606         }
607
608         if (!(interrupt & ONENAND_INT_MASTER)) {
609                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610                        __func__, ctrl, interrupt);
611                 return -EIO;
612         }
613
614         /* If there's controller error, it's a real error */
615         if (ctrl & ONENAND_CTRL_ERROR) {
616                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
617                         __func__, ctrl);
618                 if (ctrl & ONENAND_CTRL_LOCK)
619                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
620                 return -EIO;
621         }
622
623         return 0;
624 }
625
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @param irq           onenand interrupt number
629  * @param dev_id        interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635         struct onenand_chip *this = data;
636
637         /* To handle shared interrupt */
638         if (!this->complete.done)
639                 complete(&this->complete);
640
641         return IRQ_HANDLED;
642 }
643
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @param mtd           MTD device structure
647  * @param state         state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653         struct onenand_chip *this = mtd->priv;
654
655         wait_for_completion(&this->complete);
656
657         return onenand_wait(mtd, state);
658 }
659
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @param mtd           MTD device structure
663  * @param state         state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669         struct onenand_chip *this = mtd->priv;
670         unsigned long remain, timeout;
671
672         /* We use interrupt wait first */
673         this->wait = onenand_interrupt_wait;
674
675         timeout = msecs_to_jiffies(100);
676         remain = wait_for_completion_timeout(&this->complete, timeout);
677         if (!remain) {
678                 printk(KERN_INFO "OneNAND: There's no interrupt. "
679                                 "We use the normal wait\n");
680
681                 /* Release the irq */
682                 free_irq(this->irq, this);
683
684                 this->wait = onenand_wait;
685         }
686
687         return onenand_wait(mtd, state);
688 }
689
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @param mtd           MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700         struct onenand_chip *this = mtd->priv;
701         int syscfg;
702
703         init_completion(&this->complete);
704
705         if (this->irq <= 0) {
706                 this->wait = onenand_wait;
707                 return;
708         }
709
710         if (request_irq(this->irq, &onenand_interrupt,
711                                 IRQF_SHARED, "onenand", this)) {
712                 /* If we can't get irq, use the normal wait */
713                 this->wait = onenand_wait;
714                 return;
715         }
716
717         /* Enable interrupt */
718         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719         syscfg |= ONENAND_SYS_CFG1_IOBE;
720         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722         this->wait = onenand_try_interrupt_wait;
723 }
724
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @param mtd           MTD data structure
728  * @param area          BufferRAM area
729  * @return              offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735         struct onenand_chip *this = mtd->priv;
736
737         if (ONENAND_CURRENT_BUFFERRAM(this)) {
738                 /* Note: the 'this->writesize' is a real page size */
739                 if (area == ONENAND_DATARAM)
740                         return this->writesize;
741                 if (area == ONENAND_SPARERAM)
742                         return mtd->oobsize;
743         }
744
745         return 0;
746 }
747
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @param mtd           MTD data structure
751  * @param area          BufferRAM area
752  * @param buffer        the databuffer to put/get data
753  * @param offset        offset to read from or write to
754  * @param count         number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759                 unsigned char *buffer, int offset, size_t count)
760 {
761         struct onenand_chip *this = mtd->priv;
762         void __iomem *bufferram;
763
764         bufferram = this->base + area;
765
766         bufferram += onenand_bufferram_offset(mtd, area);
767
768         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769                 unsigned short word;
770
771                 /* Align with word(16-bit) size */
772                 count--;
773
774                 /* Read word and save byte */
775                 word = this->read_word(bufferram + offset + count);
776                 buffer[count] = (word & 0xff);
777         }
778
779         memcpy(buffer, bufferram + offset, count);
780
781         return 0;
782 }
783
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @param mtd           MTD data structure
787  * @param area          BufferRAM area
788  * @param buffer        the databuffer to put/get data
789  * @param offset        offset to read from or write to
790  * @param count         number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795                 unsigned char *buffer, int offset, size_t count)
796 {
797         struct onenand_chip *this = mtd->priv;
798         void __iomem *bufferram;
799
800         bufferram = this->base + area;
801
802         bufferram += onenand_bufferram_offset(mtd, area);
803
804         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807                 unsigned short word;
808
809                 /* Align with word(16-bit) size */
810                 count--;
811
812                 /* Read word and save byte */
813                 word = this->read_word(bufferram + offset + count);
814                 buffer[count] = (word & 0xff);
815         }
816
817         memcpy(buffer, bufferram + offset, count);
818
819         this->mmcontrol(mtd, 0);
820
821         return 0;
822 }
823
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @param mtd           MTD data structure
827  * @param area          BufferRAM area
828  * @param buffer        the databuffer to put/get data
829  * @param offset        offset to read from or write to
830  * @param count         number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835                 const unsigned char *buffer, int offset, size_t count)
836 {
837         struct onenand_chip *this = mtd->priv;
838         void __iomem *bufferram;
839
840         bufferram = this->base + area;
841
842         bufferram += onenand_bufferram_offset(mtd, area);
843
844         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845                 unsigned short word;
846                 int byte_offset;
847
848                 /* Align with word(16-bit) size */
849                 count--;
850
851                 /* Calculate byte access offset */
852                 byte_offset = offset + count;
853
854                 /* Read word and save byte */
855                 word = this->read_word(bufferram + byte_offset);
856                 word = (word & ~0xff) | buffer[count];
857                 this->write_word(word, bufferram + byte_offset);
858         }
859
860         memcpy(bufferram + offset, buffer, count);
861
862         return 0;
863 }
864
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @param mtd           MTD data structure
868  * @param addr          address to check
869  * @return              blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875         struct onenand_chip *this = mtd->priv;
876         int blockpage, block, page;
877
878         /* Calculate the even block number */
879         block = (int) (addr >> this->erase_shift) & ~1;
880         /* Is it the odd plane? */
881         if (addr & this->writesize)
882                 block++;
883         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884         blockpage = (block << 7) | page;
885
886         return blockpage;
887 }
888
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @param mtd           MTD data structure
892  * @param addr          address to check
893  * @return              1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899         struct onenand_chip *this = mtd->priv;
900         int blockpage, found = 0;
901         unsigned int i;
902
903         if (ONENAND_IS_2PLANE(this))
904                 blockpage = onenand_get_2x_blockpage(mtd, addr);
905         else
906                 blockpage = (int) (addr >> this->page_shift);
907
908         /* Is there valid data? */
909         i = ONENAND_CURRENT_BUFFERRAM(this);
910         if (this->bufferram[i].blockpage == blockpage)
911                 found = 1;
912         else {
913                 /* Check another BufferRAM */
914                 i = ONENAND_NEXT_BUFFERRAM(this);
915                 if (this->bufferram[i].blockpage == blockpage) {
916                         ONENAND_SET_NEXT_BUFFERRAM(this);
917                         found = 1;
918                 }
919         }
920
921         if (found && ONENAND_IS_DDP(this)) {
922                 /* Select DataRAM for DDP */
923                 int block = onenand_block(this, addr);
924                 int value = onenand_bufferram_address(this, block);
925                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926         }
927
928         return found;
929 }
930
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @param mtd           MTD data structure
934  * @param addr          address to update
935  * @param valid         valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940                 int valid)
941 {
942         struct onenand_chip *this = mtd->priv;
943         int blockpage;
944         unsigned int i;
945
946         if (ONENAND_IS_2PLANE(this))
947                 blockpage = onenand_get_2x_blockpage(mtd, addr);
948         else
949                 blockpage = (int) (addr >> this->page_shift);
950
951         /* Invalidate another BufferRAM */
952         i = ONENAND_NEXT_BUFFERRAM(this);
953         if (this->bufferram[i].blockpage == blockpage)
954                 this->bufferram[i].blockpage = -1;
955
956         /* Update BufferRAM */
957         i = ONENAND_CURRENT_BUFFERRAM(this);
958         if (valid)
959                 this->bufferram[i].blockpage = blockpage;
960         else
961                 this->bufferram[i].blockpage = -1;
962 }
963
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @param mtd           MTD data structure
967  * @param addr          start address to invalidate
968  * @param len           length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973                 unsigned int len)
974 {
975         struct onenand_chip *this = mtd->priv;
976         int i;
977         loff_t end_addr = addr + len;
978
979         /* Invalidate BufferRAM */
980         for (i = 0; i < MAX_BUFFERRAM; i++) {
981                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982                 if (buf_addr >= addr && buf_addr < end_addr)
983                         this->bufferram[i].blockpage = -1;
984         }
985 }
986
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @param mtd           MTD device structure
990  * @param new_state     the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996         struct onenand_chip *this = mtd->priv;
997         DECLARE_WAITQUEUE(wait, current);
998
999         /*
1000          * Grab the lock and see if the device is available
1001          */
1002         while (1) {
1003                 spin_lock(&this->chip_lock);
1004                 if (this->state == FL_READY) {
1005                         this->state = new_state;
1006                         spin_unlock(&this->chip_lock);
1007                         if (new_state != FL_PM_SUSPENDED && this->enable)
1008                                 this->enable(mtd);
1009                         break;
1010                 }
1011                 if (new_state == FL_PM_SUSPENDED) {
1012                         spin_unlock(&this->chip_lock);
1013                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014                 }
1015                 set_current_state(TASK_UNINTERRUPTIBLE);
1016                 add_wait_queue(&this->wq, &wait);
1017                 spin_unlock(&this->chip_lock);
1018                 schedule();
1019                 remove_wait_queue(&this->wq, &wait);
1020         }
1021
1022         return 0;
1023 }
1024
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @param mtd           MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033         struct onenand_chip *this = mtd->priv;
1034
1035         if (this->state != FL_PM_SUSPENDED && this->disable)
1036                 this->disable(mtd);
1037         /* Release the chip */
1038         spin_lock(&this->chip_lock);
1039         this->state = FL_READY;
1040         wake_up(&this->wq);
1041         spin_unlock(&this->chip_lock);
1042 }
1043
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @param mtd           MTD device structure
1047  * @param buf           destination address
1048  * @param column        oob offset to read from
1049  * @param thislen       oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052                                 int thislen)
1053 {
1054         struct onenand_chip *this = mtd->priv;
1055
1056         this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057                              mtd->oobsize);
1058         return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059                                            column, thislen);
1060 }
1061
1062 /**
1063  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064  * @param mtd           MTD device structure
1065  * @param addr          address to recover
1066  * @param status        return value from onenand_wait / onenand_bbt_wait
1067  *
1068  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069  * lower page address and MSB page has higher page address in paired pages.
1070  * If power off occurs during MSB page program, the paired LSB page data can
1071  * become corrupt. LSB page recovery read is a way to read LSB page though page
1072  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073  * read after power up, issue LSB page recovery read.
1074  */
1075 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076 {
1077         struct onenand_chip *this = mtd->priv;
1078         int i;
1079
1080         /* Recovery is only for Flex-OneNAND */
1081         if (!FLEXONENAND(this))
1082                 return status;
1083
1084         /* check if we failed due to uncorrectable error */
1085         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086                 return status;
1087
1088         /* check if address lies in MLC region */
1089         i = flexonenand_region(mtd, addr);
1090         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091                 return status;
1092
1093         /* We are attempting to reread, so decrement stats.failed
1094          * which was incremented by onenand_wait due to read failure
1095          */
1096         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097                 __func__);
1098         mtd->ecc_stats.failed--;
1099
1100         /* Issue the LSB page recovery command */
1101         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102         return this->wait(mtd, FL_READING);
1103 }
1104
1105 /**
1106  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107  * @param mtd           MTD device structure
1108  * @param from          offset to read from
1109  * @param ops:          oob operation description structure
1110  *
1111  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112  * So, read-while-load is not present.
1113  */
1114 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115                                 struct mtd_oob_ops *ops)
1116 {
1117         struct onenand_chip *this = mtd->priv;
1118         struct mtd_ecc_stats stats;
1119         size_t len = ops->len;
1120         size_t ooblen = ops->ooblen;
1121         u_char *buf = ops->datbuf;
1122         u_char *oobbuf = ops->oobbuf;
1123         int read = 0, column, thislen;
1124         int oobread = 0, oobcolumn, thisooblen, oobsize;
1125         int ret = 0;
1126         int writesize = this->writesize;
1127
1128         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129                         (int)len);
1130
1131         oobsize = mtd_oobavail(mtd, ops);
1132         oobcolumn = from & (mtd->oobsize - 1);
1133
1134         /* Do not allow reads past end of device */
1135         if (from + len > mtd->size) {
1136                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137                         __func__);
1138                 ops->retlen = 0;
1139                 ops->oobretlen = 0;
1140                 return -EINVAL;
1141         }
1142
1143         stats = mtd->ecc_stats;
1144
1145         while (read < len) {
1146                 cond_resched();
1147
1148                 thislen = min_t(int, writesize, len - read);
1149
1150                 column = from & (writesize - 1);
1151                 if (column + thislen > writesize)
1152                         thislen = writesize - column;
1153
1154                 if (!onenand_check_bufferram(mtd, from)) {
1155                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157                         ret = this->wait(mtd, FL_READING);
1158                         if (unlikely(ret))
1159                                 ret = onenand_recover_lsb(mtd, from, ret);
1160                         onenand_update_bufferram(mtd, from, !ret);
1161                         if (mtd_is_eccerr(ret))
1162                                 ret = 0;
1163                         if (ret)
1164                                 break;
1165                 }
1166
1167                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168                 if (oobbuf) {
1169                         thisooblen = oobsize - oobcolumn;
1170                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172                         if (ops->mode == MTD_OPS_AUTO_OOB)
1173                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174                         else
1175                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176                         oobread += thisooblen;
1177                         oobbuf += thisooblen;
1178                         oobcolumn = 0;
1179                 }
1180
1181                 read += thislen;
1182                 if (read == len)
1183                         break;
1184
1185                 from += thislen;
1186                 buf += thislen;
1187         }
1188
1189         /*
1190          * Return success, if no ECC failures, else -EBADMSG
1191          * fs driver will take care of that, because
1192          * retlen == desired len and result == -EBADMSG
1193          */
1194         ops->retlen = read;
1195         ops->oobretlen = oobread;
1196
1197         if (ret)
1198                 return ret;
1199
1200         if (mtd->ecc_stats.failed - stats.failed)
1201                 return -EBADMSG;
1202
1203         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206
1207 /**
1208  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209  * @param mtd           MTD device structure
1210  * @param from          offset to read from
1211  * @param ops:          oob operation description structure
1212  *
1213  * OneNAND read main and/or out-of-band data
1214  */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216                                 struct mtd_oob_ops *ops)
1217 {
1218         struct onenand_chip *this = mtd->priv;
1219         struct mtd_ecc_stats stats;
1220         size_t len = ops->len;
1221         size_t ooblen = ops->ooblen;
1222         u_char *buf = ops->datbuf;
1223         u_char *oobbuf = ops->oobbuf;
1224         int read = 0, column, thislen;
1225         int oobread = 0, oobcolumn, thisooblen, oobsize;
1226         int ret = 0, boundary = 0;
1227         int writesize = this->writesize;
1228
1229         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230                         (int)len);
1231
1232         oobsize = mtd_oobavail(mtd, ops);
1233         oobcolumn = from & (mtd->oobsize - 1);
1234
1235         /* Do not allow reads past end of device */
1236         if ((from + len) > mtd->size) {
1237                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238                         __func__);
1239                 ops->retlen = 0;
1240                 ops->oobretlen = 0;
1241                 return -EINVAL;
1242         }
1243
1244         stats = mtd->ecc_stats;
1245
1246         /* Read-while-load method */
1247
1248         /* Do first load to bufferRAM */
1249         if (read < len) {
1250                 if (!onenand_check_bufferram(mtd, from)) {
1251                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252                         ret = this->wait(mtd, FL_READING);
1253                         onenand_update_bufferram(mtd, from, !ret);
1254                         if (mtd_is_eccerr(ret))
1255                                 ret = 0;
1256                 }
1257         }
1258
1259         thislen = min_t(int, writesize, len - read);
1260         column = from & (writesize - 1);
1261         if (column + thislen > writesize)
1262                 thislen = writesize - column;
1263
1264         while (!ret) {
1265                 /* If there is more to load then start next load */
1266                 from += thislen;
1267                 if (read + thislen < len) {
1268                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269                         /*
1270                          * Chip boundary handling in DDP
1271                          * Now we issued chip 1 read and pointed chip 1
1272                          * bufferram so we have to point chip 0 bufferram.
1273                          */
1274                         if (ONENAND_IS_DDP(this) &&
1275                             unlikely(from == (this->chipsize >> 1))) {
1276                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277                                 boundary = 1;
1278                         } else
1279                                 boundary = 0;
1280                         ONENAND_SET_PREV_BUFFERRAM(this);
1281                 }
1282                 /* While load is going, read from last bufferRAM */
1283                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285                 /* Read oob area if needed */
1286                 if (oobbuf) {
1287                         thisooblen = oobsize - oobcolumn;
1288                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290                         if (ops->mode == MTD_OPS_AUTO_OOB)
1291                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292                         else
1293                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294                         oobread += thisooblen;
1295                         oobbuf += thisooblen;
1296                         oobcolumn = 0;
1297                 }
1298
1299                 /* See if we are done */
1300                 read += thislen;
1301                 if (read == len)
1302                         break;
1303                 /* Set up for next read from bufferRAM */
1304                 if (unlikely(boundary))
1305                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306                 ONENAND_SET_NEXT_BUFFERRAM(this);
1307                 buf += thislen;
1308                 thislen = min_t(int, writesize, len - read);
1309                 column = 0;
1310                 cond_resched();
1311                 /* Now wait for load */
1312                 ret = this->wait(mtd, FL_READING);
1313                 onenand_update_bufferram(mtd, from, !ret);
1314                 if (mtd_is_eccerr(ret))
1315                         ret = 0;
1316         }
1317
1318         /*
1319          * Return success, if no ECC failures, else -EBADMSG
1320          * fs driver will take care of that, because
1321          * retlen == desired len and result == -EBADMSG
1322          */
1323         ops->retlen = read;
1324         ops->oobretlen = oobread;
1325
1326         if (ret)
1327                 return ret;
1328
1329         if (mtd->ecc_stats.failed - stats.failed)
1330                 return -EBADMSG;
1331
1332         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334 }
1335
1336 /**
1337  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338  * @param mtd           MTD device structure
1339  * @param from          offset to read from
1340  * @param ops:          oob operation description structure
1341  *
1342  * OneNAND read out-of-band data from the spare area
1343  */
1344 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345                         struct mtd_oob_ops *ops)
1346 {
1347         struct onenand_chip *this = mtd->priv;
1348         struct mtd_ecc_stats stats;
1349         int read = 0, thislen, column, oobsize;
1350         size_t len = ops->ooblen;
1351         unsigned int mode = ops->mode;
1352         u_char *buf = ops->oobbuf;
1353         int ret = 0, readcmd;
1354
1355         from += ops->ooboffs;
1356
1357         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358                         (int)len);
1359
1360         /* Initialize return length value */
1361         ops->oobretlen = 0;
1362
1363         if (mode == MTD_OPS_AUTO_OOB)
1364                 oobsize = mtd->oobavail;
1365         else
1366                 oobsize = mtd->oobsize;
1367
1368         column = from & (mtd->oobsize - 1);
1369
1370         if (unlikely(column >= oobsize)) {
1371                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372                         __func__);
1373                 return -EINVAL;
1374         }
1375
1376         stats = mtd->ecc_stats;
1377
1378         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380         while (read < len) {
1381                 cond_resched();
1382
1383                 thislen = oobsize - column;
1384                 thislen = min_t(int, thislen, len);
1385
1386                 this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388                 onenand_update_bufferram(mtd, from, 0);
1389
1390                 ret = this->wait(mtd, FL_READING);
1391                 if (unlikely(ret))
1392                         ret = onenand_recover_lsb(mtd, from, ret);
1393
1394                 if (ret && !mtd_is_eccerr(ret)) {
1395                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1396                                 __func__, ret);
1397                         break;
1398                 }
1399
1400                 if (mode == MTD_OPS_AUTO_OOB)
1401                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402                 else
1403                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405                 read += thislen;
1406
1407                 if (read == len)
1408                         break;
1409
1410                 buf += thislen;
1411
1412                 /* Read more? */
1413                 if (read < len) {
1414                         /* Page size */
1415                         from += mtd->writesize;
1416                         column = 0;
1417                 }
1418         }
1419
1420         ops->oobretlen = read;
1421
1422         if (ret)
1423                 return ret;
1424
1425         if (mtd->ecc_stats.failed - stats.failed)
1426                 return -EBADMSG;
1427
1428         return 0;
1429 }
1430
1431 /**
1432  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433  * @param mtd:          MTD device structure
1434  * @param from:         offset to read from
1435  * @param ops:          oob operation description structure
1436
1437  * Read main and/or out-of-band
1438  */
1439 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440                             struct mtd_oob_ops *ops)
1441 {
1442         struct onenand_chip *this = mtd->priv;
1443         int ret;
1444
1445         switch (ops->mode) {
1446         case MTD_OPS_PLACE_OOB:
1447         case MTD_OPS_AUTO_OOB:
1448                 break;
1449         case MTD_OPS_RAW:
1450                 /* Not implemented yet */
1451         default:
1452                 return -EINVAL;
1453         }
1454
1455         onenand_get_device(mtd, FL_READING);
1456         if (ops->datbuf)
1457                 ret = ONENAND_IS_4KB_PAGE(this) ?
1458                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459                         onenand_read_ops_nolock(mtd, from, ops);
1460         else
1461                 ret = onenand_read_oob_nolock(mtd, from, ops);
1462         onenand_release_device(mtd);
1463
1464         return ret;
1465 }
1466
1467 /**
1468  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469  * @param mtd           MTD device structure
1470  * @param state         state to select the max. timeout value
1471  *
1472  * Wait for command done.
1473  */
1474 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475 {
1476         struct onenand_chip *this = mtd->priv;
1477         unsigned long timeout;
1478         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479
1480         /* The 20 msec is enough */
1481         timeout = jiffies + msecs_to_jiffies(20);
1482         while (time_before(jiffies, timeout)) {
1483                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484                 if (interrupt & ONENAND_INT_MASTER)
1485                         break;
1486         }
1487         /* To get correct interrupt status in timeout case */
1488         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492
1493         if (interrupt & ONENAND_INT_READ) {
1494                 ecc = onenand_read_ecc(this);
1495                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1496                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1498                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1499                         return ONENAND_BBT_READ_ECC_ERROR;
1500                 }
1501         } else {
1502                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1504                        __func__, ctrl, interrupt, addr1, addr8);
1505                 return ONENAND_BBT_READ_FATAL_ERROR;
1506         }
1507
1508         /* Initial bad block case: 0x2400 or 0x0400 */
1509         if (ctrl & ONENAND_CTRL_ERROR) {
1510                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512                 return ONENAND_BBT_READ_ERROR;
1513         }
1514
1515         return 0;
1516 }
1517
1518 /**
1519  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520  * @param mtd           MTD device structure
1521  * @param from          offset to read from
1522  * @param ops           oob operation description structure
1523  *
1524  * OneNAND read out-of-band data from the spare area for bbt scan
1525  */
1526 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1527                             struct mtd_oob_ops *ops)
1528 {
1529         struct onenand_chip *this = mtd->priv;
1530         int read = 0, thislen, column;
1531         int ret = 0, readcmd;
1532         size_t len = ops->ooblen;
1533         u_char *buf = ops->oobbuf;
1534
1535         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536                         len);
1537
1538         /* Initialize return value */
1539         ops->oobretlen = 0;
1540
1541         /* Do not allow reads past end of device */
1542         if (unlikely((from + len) > mtd->size)) {
1543                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544                         __func__);
1545                 return ONENAND_BBT_READ_FATAL_ERROR;
1546         }
1547
1548         /* Grab the lock and see if the device is available */
1549         onenand_get_device(mtd, FL_READING);
1550
1551         column = from & (mtd->oobsize - 1);
1552
1553         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554
1555         while (read < len) {
1556                 cond_resched();
1557
1558                 thislen = mtd->oobsize - column;
1559                 thislen = min_t(int, thislen, len);
1560
1561                 this->command(mtd, readcmd, from, mtd->oobsize);
1562
1563                 onenand_update_bufferram(mtd, from, 0);
1564
1565                 ret = this->bbt_wait(mtd, FL_READING);
1566                 if (unlikely(ret))
1567                         ret = onenand_recover_lsb(mtd, from, ret);
1568
1569                 if (ret)
1570                         break;
1571
1572                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573                 read += thislen;
1574                 if (read == len)
1575                         break;
1576
1577                 buf += thislen;
1578
1579                 /* Read more? */
1580                 if (read < len) {
1581                         /* Update Page size */
1582                         from += this->writesize;
1583                         column = 0;
1584                 }
1585         }
1586
1587         /* Deselect and wake up anyone waiting on the device */
1588         onenand_release_device(mtd);
1589
1590         ops->oobretlen = read;
1591         return ret;
1592 }
1593
1594 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595 /**
1596  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597  * @param mtd           MTD device structure
1598  * @param buf           the databuffer to verify
1599  * @param to            offset to read from
1600  */
1601 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602 {
1603         struct onenand_chip *this = mtd->priv;
1604         u_char *oob_buf = this->oob_buf;
1605         int status, i, readcmd;
1606
1607         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608
1609         this->command(mtd, readcmd, to, mtd->oobsize);
1610         onenand_update_bufferram(mtd, to, 0);
1611         status = this->wait(mtd, FL_READING);
1612         if (status)
1613                 return status;
1614
1615         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616         for (i = 0; i < mtd->oobsize; i++)
1617                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618                         return -EBADMSG;
1619
1620         return 0;
1621 }
1622
1623 /**
1624  * onenand_verify - [GENERIC] verify the chip contents after a write
1625  * @param mtd          MTD device structure
1626  * @param buf          the databuffer to verify
1627  * @param addr         offset to read from
1628  * @param len          number of bytes to read and compare
1629  */
1630 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631 {
1632         struct onenand_chip *this = mtd->priv;
1633         int ret = 0;
1634         int thislen, column;
1635
1636         column = addr & (this->writesize - 1);
1637
1638         while (len != 0) {
1639                 thislen = min_t(int, this->writesize - column, len);
1640
1641                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642
1643                 onenand_update_bufferram(mtd, addr, 0);
1644
1645                 ret = this->wait(mtd, FL_READING);
1646                 if (ret)
1647                         return ret;
1648
1649                 onenand_update_bufferram(mtd, addr, 1);
1650
1651                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652
1653                 if (memcmp(buf, this->verify_buf + column, thislen))
1654                         return -EBADMSG;
1655
1656                 len -= thislen;
1657                 buf += thislen;
1658                 addr += thislen;
1659                 column = 0;
1660         }
1661
1662         return 0;
1663 }
1664 #else
1665 #define onenand_verify(...)             (0)
1666 #define onenand_verify_oob(...)         (0)
1667 #endif
1668
1669 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1670
1671 static void onenand_panic_wait(struct mtd_info *mtd)
1672 {
1673         struct onenand_chip *this = mtd->priv;
1674         unsigned int interrupt;
1675         int i;
1676         
1677         for (i = 0; i < 2000; i++) {
1678                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679                 if (interrupt & ONENAND_INT_MASTER)
1680                         break;
1681                 udelay(10);
1682         }
1683 }
1684
1685 /**
1686  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687  * @param mtd           MTD device structure
1688  * @param to            offset to write to
1689  * @param len           number of bytes to write
1690  * @param retlen        pointer to variable to store the number of written bytes
1691  * @param buf           the data to write
1692  *
1693  * Write with ECC
1694  */
1695 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696                          size_t *retlen, const u_char *buf)
1697 {
1698         struct onenand_chip *this = mtd->priv;
1699         int column, subpage;
1700         int written = 0;
1701
1702         if (this->state == FL_PM_SUSPENDED)
1703                 return -EBUSY;
1704
1705         /* Wait for any existing operation to clear */
1706         onenand_panic_wait(mtd);
1707
1708         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709                         (int)len);
1710
1711         /* Reject writes, which are not page aligned */
1712         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714                         __func__);
1715                 return -EINVAL;
1716         }
1717
1718         column = to & (mtd->writesize - 1);
1719
1720         /* Loop until all data write */
1721         while (written < len) {
1722                 int thislen = min_t(int, mtd->writesize - column, len - written);
1723                 u_char *wbuf = (u_char *) buf;
1724
1725                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726
1727                 /* Partial page write */
1728                 subpage = thislen < mtd->writesize;
1729                 if (subpage) {
1730                         memset(this->page_buf, 0xff, mtd->writesize);
1731                         memcpy(this->page_buf + column, buf, thislen);
1732                         wbuf = this->page_buf;
1733                 }
1734
1735                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737
1738                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739
1740                 onenand_panic_wait(mtd);
1741
1742                 /* In partial page write we don't update bufferram */
1743                 onenand_update_bufferram(mtd, to, !subpage);
1744                 if (ONENAND_IS_2PLANE(this)) {
1745                         ONENAND_SET_BUFFERRAM1(this);
1746                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747                 }
1748
1749                 written += thislen;
1750
1751                 if (written == len)
1752                         break;
1753
1754                 column = 0;
1755                 to += thislen;
1756                 buf += thislen;
1757         }
1758
1759         *retlen = written;
1760         return 0;
1761 }
1762
1763 /**
1764  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765  * @param mtd           MTD device structure
1766  * @param oob_buf       oob buffer
1767  * @param buf           source address
1768  * @param column        oob offset to write to
1769  * @param thislen       oob length to write
1770  */
1771 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772                                   const u_char *buf, int column, int thislen)
1773 {
1774         return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775 }
1776
1777 /**
1778  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779  * @param mtd           MTD device structure
1780  * @param to            offset to write to
1781  * @param ops           oob operation description structure
1782  *
1783  * Write main and/or oob with ECC
1784  */
1785 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786                                 struct mtd_oob_ops *ops)
1787 {
1788         struct onenand_chip *this = mtd->priv;
1789         int written = 0, column, thislen = 0, subpage = 0;
1790         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792         size_t len = ops->len;
1793         size_t ooblen = ops->ooblen;
1794         const u_char *buf = ops->datbuf;
1795         const u_char *oob = ops->oobbuf;
1796         u_char *oobbuf;
1797         int ret = 0, cmd;
1798
1799         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800                         (int)len);
1801
1802         /* Initialize retlen, in case of early exit */
1803         ops->retlen = 0;
1804         ops->oobretlen = 0;
1805
1806         /* Reject writes, which are not page aligned */
1807         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809                         __func__);
1810                 return -EINVAL;
1811         }
1812
1813         /* Check zero length */
1814         if (!len)
1815                 return 0;
1816         oobsize = mtd_oobavail(mtd, ops);
1817         oobcolumn = to & (mtd->oobsize - 1);
1818
1819         column = to & (mtd->writesize - 1);
1820
1821         /* Loop until all data write */
1822         while (1) {
1823                 if (written < len) {
1824                         u_char *wbuf = (u_char *) buf;
1825
1826                         thislen = min_t(int, mtd->writesize - column, len - written);
1827                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828
1829                         cond_resched();
1830
1831                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832
1833                         /* Partial page write */
1834                         subpage = thislen < mtd->writesize;
1835                         if (subpage) {
1836                                 memset(this->page_buf, 0xff, mtd->writesize);
1837                                 memcpy(this->page_buf + column, buf, thislen);
1838                                 wbuf = this->page_buf;
1839                         }
1840
1841                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842
1843                         if (oob) {
1844                                 oobbuf = this->oob_buf;
1845
1846                                 /* We send data to spare ram with oobsize
1847                                  * to prevent byte access */
1848                                 memset(oobbuf, 0xff, mtd->oobsize);
1849                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1850                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851                                 else
1852                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853
1854                                 oobwritten += thisooblen;
1855                                 oob += thisooblen;
1856                                 oobcolumn = 0;
1857                         } else
1858                                 oobbuf = (u_char *) ffchars;
1859
1860                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861                 } else
1862                         ONENAND_SET_NEXT_BUFFERRAM(this);
1863
1864                 /*
1865                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1866                  * write-while-program feature.
1867                  */
1868                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869                         ONENAND_SET_PREV_BUFFERRAM(this);
1870
1871                         ret = this->wait(mtd, FL_WRITING);
1872
1873                         /* In partial page write we don't update bufferram */
1874                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875                         if (ret) {
1876                                 written -= prevlen;
1877                                 printk(KERN_ERR "%s: write failed %d\n",
1878                                         __func__, ret);
1879                                 break;
1880                         }
1881
1882                         if (written == len) {
1883                                 /* Only check verify write turn on */
1884                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1885                                 if (ret)
1886                                         printk(KERN_ERR "%s: verify failed %d\n",
1887                                                 __func__, ret);
1888                                 break;
1889                         }
1890
1891                         ONENAND_SET_NEXT_BUFFERRAM(this);
1892                 }
1893
1894                 this->ongoing = 0;
1895                 cmd = ONENAND_CMD_PROG;
1896
1897                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1898                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899                     likely(onenand_block(this, to) != 0) &&
1900                     ONENAND_IS_4KB_PAGE(this) &&
1901                     ((written + thislen) < len)) {
1902                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1903                         this->ongoing = 1;
1904                 }
1905
1906                 this->command(mtd, cmd, to, mtd->writesize);
1907
1908                 /*
1909                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1910                  */
1911                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912                         ret = this->wait(mtd, FL_WRITING);
1913
1914                         /* In partial page write we don't update bufferram */
1915                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1916                         if (ret) {
1917                                 printk(KERN_ERR "%s: write failed %d\n",
1918                                         __func__, ret);
1919                                 break;
1920                         }
1921
1922                         /* Only check verify write turn on */
1923                         ret = onenand_verify(mtd, buf, to, thislen);
1924                         if (ret) {
1925                                 printk(KERN_ERR "%s: verify failed %d\n",
1926                                         __func__, ret);
1927                                 break;
1928                         }
1929
1930                         written += thislen;
1931
1932                         if (written == len)
1933                                 break;
1934
1935                 } else
1936                         written += thislen;
1937
1938                 column = 0;
1939                 prev_subpage = subpage;
1940                 prev = to;
1941                 prevlen = thislen;
1942                 to += thislen;
1943                 buf += thislen;
1944                 first = 0;
1945         }
1946
1947         /* In error case, clear all bufferrams */
1948         if (written != len)
1949                 onenand_invalidate_bufferram(mtd, 0, -1);
1950
1951         ops->retlen = written;
1952         ops->oobretlen = oobwritten;
1953
1954         return ret;
1955 }
1956
1957
1958 /**
1959  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960  * @param mtd           MTD device structure
1961  * @param to            offset to write to
1962  * @param len           number of bytes to write
1963  * @param retlen        pointer to variable to store the number of written bytes
1964  * @param buf           the data to write
1965  * @param mode          operation mode
1966  *
1967  * OneNAND write out-of-band
1968  */
1969 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1970                                     struct mtd_oob_ops *ops)
1971 {
1972         struct onenand_chip *this = mtd->priv;
1973         int column, ret = 0, oobsize;
1974         int written = 0, oobcmd;
1975         u_char *oobbuf;
1976         size_t len = ops->ooblen;
1977         const u_char *buf = ops->oobbuf;
1978         unsigned int mode = ops->mode;
1979
1980         to += ops->ooboffs;
1981
1982         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1983                         (int)len);
1984
1985         /* Initialize retlen, in case of early exit */
1986         ops->oobretlen = 0;
1987
1988         if (mode == MTD_OPS_AUTO_OOB)
1989                 oobsize = mtd->oobavail;
1990         else
1991                 oobsize = mtd->oobsize;
1992
1993         column = to & (mtd->oobsize - 1);
1994
1995         if (unlikely(column >= oobsize)) {
1996                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1997                         __func__);
1998                 return -EINVAL;
1999         }
2000
2001         /* For compatibility with NAND: Do not allow write past end of page */
2002         if (unlikely(column + len > oobsize)) {
2003                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2004                         __func__);
2005                 return -EINVAL;
2006         }
2007
2008         oobbuf = this->oob_buf;
2009
2010         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2011
2012         /* Loop until all data write */
2013         while (written < len) {
2014                 int thislen = min_t(int, oobsize, len - written);
2015
2016                 cond_resched();
2017
2018                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2019
2020                 /* We send data to spare ram with oobsize
2021                  * to prevent byte access */
2022                 memset(oobbuf, 0xff, mtd->oobsize);
2023                 if (mode == MTD_OPS_AUTO_OOB)
2024                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2025                 else
2026                         memcpy(oobbuf + column, buf, thislen);
2027                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2028
2029                 if (ONENAND_IS_4KB_PAGE(this)) {
2030                         /* Set main area of DataRAM to 0xff*/
2031                         memset(this->page_buf, 0xff, mtd->writesize);
2032                         this->write_bufferram(mtd, ONENAND_DATARAM,
2033                                          this->page_buf, 0, mtd->writesize);
2034                 }
2035
2036                 this->command(mtd, oobcmd, to, mtd->oobsize);
2037
2038                 onenand_update_bufferram(mtd, to, 0);
2039                 if (ONENAND_IS_2PLANE(this)) {
2040                         ONENAND_SET_BUFFERRAM1(this);
2041                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2042                 }
2043
2044                 ret = this->wait(mtd, FL_WRITING);
2045                 if (ret) {
2046                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2047                         break;
2048                 }
2049
2050                 ret = onenand_verify_oob(mtd, oobbuf, to);
2051                 if (ret) {
2052                         printk(KERN_ERR "%s: verify failed %d\n",
2053                                 __func__, ret);
2054                         break;
2055                 }
2056
2057                 written += thislen;
2058                 if (written == len)
2059                         break;
2060
2061                 to += mtd->writesize;
2062                 buf += thislen;
2063                 column = 0;
2064         }
2065
2066         ops->oobretlen = written;
2067
2068         return ret;
2069 }
2070
2071 /**
2072  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2073  * @param mtd:          MTD device structure
2074  * @param to:           offset to write
2075  * @param ops:          oob operation description structure
2076  */
2077 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2078                              struct mtd_oob_ops *ops)
2079 {
2080         int ret;
2081
2082         switch (ops->mode) {
2083         case MTD_OPS_PLACE_OOB:
2084         case MTD_OPS_AUTO_OOB:
2085                 break;
2086         case MTD_OPS_RAW:
2087                 /* Not implemented yet */
2088         default:
2089                 return -EINVAL;
2090         }
2091
2092         onenand_get_device(mtd, FL_WRITING);
2093         if (ops->datbuf)
2094                 ret = onenand_write_ops_nolock(mtd, to, ops);
2095         else
2096                 ret = onenand_write_oob_nolock(mtd, to, ops);
2097         onenand_release_device(mtd);
2098
2099         return ret;
2100 }
2101
2102 /**
2103  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2104  * @param mtd           MTD device structure
2105  * @param ofs           offset from device start
2106  * @param allowbbt      1, if its allowed to access the bbt area
2107  *
2108  * Check, if the block is bad. Either by reading the bad block table or
2109  * calling of the scan function.
2110  */
2111 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2112 {
2113         struct onenand_chip *this = mtd->priv;
2114         struct bbm_info *bbm = this->bbm;
2115
2116         /* Return info from the table */
2117         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2118 }
2119
2120
2121 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2122                                            struct erase_info *instr)
2123 {
2124         struct onenand_chip *this = mtd->priv;
2125         loff_t addr = instr->addr;
2126         int len = instr->len;
2127         unsigned int block_size = (1 << this->erase_shift);
2128         int ret = 0;
2129
2130         while (len) {
2131                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2132                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2133                 if (ret) {
2134                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2135                                __func__, onenand_block(this, addr));
2136                         instr->fail_addr = addr;
2137                         return -1;
2138                 }
2139                 len -= block_size;
2140                 addr += block_size;
2141         }
2142         return 0;
2143 }
2144
2145 /**
2146  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2147  * @param mtd           MTD device structure
2148  * @param instr         erase instruction
2149  * @param region        erase region
2150  *
2151  * Erase one or more blocks up to 64 block at a time
2152  */
2153 static int onenand_multiblock_erase(struct mtd_info *mtd,
2154                                     struct erase_info *instr,
2155                                     unsigned int block_size)
2156 {
2157         struct onenand_chip *this = mtd->priv;
2158         loff_t addr = instr->addr;
2159         int len = instr->len;
2160         int eb_count = 0;
2161         int ret = 0;
2162         int bdry_block = 0;
2163
2164         if (ONENAND_IS_DDP(this)) {
2165                 loff_t bdry_addr = this->chipsize >> 1;
2166                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2167                         bdry_block = bdry_addr >> this->erase_shift;
2168         }
2169
2170         /* Pre-check bbs */
2171         while (len) {
2172                 /* Check if we have a bad block, we do not erase bad blocks */
2173                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2174                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2175                                "at addr 0x%012llx\n",
2176                                __func__, (unsigned long long) addr);
2177                         return -EIO;
2178                 }
2179                 len -= block_size;
2180                 addr += block_size;
2181         }
2182
2183         len = instr->len;
2184         addr = instr->addr;
2185
2186         /* loop over 64 eb batches */
2187         while (len) {
2188                 struct erase_info verify_instr = *instr;
2189                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2190
2191                 verify_instr.addr = addr;
2192                 verify_instr.len = 0;
2193
2194                 /* do not cross chip boundary */
2195                 if (bdry_block) {
2196                         int this_block = (addr >> this->erase_shift);
2197
2198                         if (this_block < bdry_block) {
2199                                 max_eb_count = min(max_eb_count,
2200                                                    (bdry_block - this_block));
2201                         }
2202                 }
2203
2204                 eb_count = 0;
2205
2206                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2207                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2208                                       addr, block_size);
2209                         onenand_invalidate_bufferram(mtd, addr, block_size);
2210
2211                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2212                         if (ret) {
2213                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2214                                        "block %d\n", __func__,
2215                                        onenand_block(this, addr));
2216                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2217                                 return -EIO;
2218                         }
2219
2220                         len -= block_size;
2221                         addr += block_size;
2222                         eb_count++;
2223                 }
2224
2225                 /* last block of 64-eb series */
2226                 cond_resched();
2227                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2228                 onenand_invalidate_bufferram(mtd, addr, block_size);
2229
2230                 ret = this->wait(mtd, FL_ERASING);
2231                 /* Check if it is write protected */
2232                 if (ret) {
2233                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2234                                __func__, onenand_block(this, addr));
2235                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2236                         return -EIO;
2237                 }
2238
2239                 len -= block_size;
2240                 addr += block_size;
2241                 eb_count++;
2242
2243                 /* verify */
2244                 verify_instr.len = eb_count * block_size;
2245                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2246                         instr->fail_addr = verify_instr.fail_addr;
2247                         return -EIO;
2248                 }
2249
2250         }
2251         return 0;
2252 }
2253
2254
2255 /**
2256  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2257  * @param mtd           MTD device structure
2258  * @param instr         erase instruction
2259  * @param region        erase region
2260  * @param block_size    erase block size
2261  *
2262  * Erase one or more blocks one block at a time
2263  */
2264 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2265                                         struct erase_info *instr,
2266                                         struct mtd_erase_region_info *region,
2267                                         unsigned int block_size)
2268 {
2269         struct onenand_chip *this = mtd->priv;
2270         loff_t addr = instr->addr;
2271         int len = instr->len;
2272         loff_t region_end = 0;
2273         int ret = 0;
2274
2275         if (region) {
2276                 /* region is set for Flex-OneNAND */
2277                 region_end = region->offset + region->erasesize * region->numblocks;
2278         }
2279
2280         /* Loop through the blocks */
2281         while (len) {
2282                 cond_resched();
2283
2284                 /* Check if we have a bad block, we do not erase bad blocks */
2285                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2286                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2287                                         "at addr 0x%012llx\n",
2288                                         __func__, (unsigned long long) addr);
2289                         return -EIO;
2290                 }
2291
2292                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2293
2294                 onenand_invalidate_bufferram(mtd, addr, block_size);
2295
2296                 ret = this->wait(mtd, FL_ERASING);
2297                 /* Check, if it is write protected */
2298                 if (ret) {
2299                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2300                                 __func__, onenand_block(this, addr));
2301                         instr->fail_addr = addr;
2302                         return -EIO;
2303                 }
2304
2305                 len -= block_size;
2306                 addr += block_size;
2307
2308                 if (region && addr == region_end) {
2309                         if (!len)
2310                                 break;
2311                         region++;
2312
2313                         block_size = region->erasesize;
2314                         region_end = region->offset + region->erasesize * region->numblocks;
2315
2316                         if (len & (block_size - 1)) {
2317                                 /* FIXME: This should be handled at MTD partitioning level. */
2318                                 printk(KERN_ERR "%s: Unaligned address\n",
2319                                         __func__);
2320                                 return -EIO;
2321                         }
2322                 }
2323         }
2324         return 0;
2325 }
2326
2327 /**
2328  * onenand_erase - [MTD Interface] erase block(s)
2329  * @param mtd           MTD device structure
2330  * @param instr         erase instruction
2331  *
2332  * Erase one or more blocks
2333  */
2334 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2335 {
2336         struct onenand_chip *this = mtd->priv;
2337         unsigned int block_size;
2338         loff_t addr = instr->addr;
2339         loff_t len = instr->len;
2340         int ret = 0;
2341         struct mtd_erase_region_info *region = NULL;
2342         loff_t region_offset = 0;
2343
2344         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2345                         (unsigned long long)instr->addr,
2346                         (unsigned long long)instr->len);
2347
2348         if (FLEXONENAND(this)) {
2349                 /* Find the eraseregion of this address */
2350                 int i = flexonenand_region(mtd, addr);
2351
2352                 region = &mtd->eraseregions[i];
2353                 block_size = region->erasesize;
2354
2355                 /* Start address within region must align on block boundary.
2356                  * Erase region's start offset is always block start address.
2357                  */
2358                 region_offset = region->offset;
2359         } else
2360                 block_size = 1 << this->erase_shift;
2361
2362         /* Start address must align on block boundary */
2363         if (unlikely((addr - region_offset) & (block_size - 1))) {
2364                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2365                 return -EINVAL;
2366         }
2367
2368         /* Length must align on block boundary */
2369         if (unlikely(len & (block_size - 1))) {
2370                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2371                 return -EINVAL;
2372         }
2373
2374         /* Grab the lock and see if the device is available */
2375         onenand_get_device(mtd, FL_ERASING);
2376
2377         if (ONENAND_IS_4KB_PAGE(this) || region ||
2378             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2379                 /* region is set for Flex-OneNAND (no mb erase) */
2380                 ret = onenand_block_by_block_erase(mtd, instr,
2381                                                    region, block_size);
2382         } else {
2383                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2384         }
2385
2386         /* Deselect and wake up anyone waiting on the device */
2387         onenand_release_device(mtd);
2388
2389         return ret;
2390 }
2391
2392 /**
2393  * onenand_sync - [MTD Interface] sync
2394  * @param mtd           MTD device structure
2395  *
2396  * Sync is actually a wait for chip ready function
2397  */
2398 static void onenand_sync(struct mtd_info *mtd)
2399 {
2400         pr_debug("%s: called\n", __func__);
2401
2402         /* Grab the lock and see if the device is available */
2403         onenand_get_device(mtd, FL_SYNCING);
2404
2405         /* Release it and go back */
2406         onenand_release_device(mtd);
2407 }
2408
2409 /**
2410  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2411  * @param mtd           MTD device structure
2412  * @param ofs           offset relative to mtd start
2413  *
2414  * Check whether the block is bad
2415  */
2416 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2417 {
2418         int ret;
2419
2420         onenand_get_device(mtd, FL_READING);
2421         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2422         onenand_release_device(mtd);
2423         return ret;
2424 }
2425
2426 /**
2427  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2428  * @param mtd           MTD device structure
2429  * @param ofs           offset from device start
2430  *
2431  * This is the default implementation, which can be overridden by
2432  * a hardware specific driver.
2433  */
2434 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2435 {
2436         struct onenand_chip *this = mtd->priv;
2437         struct bbm_info *bbm = this->bbm;
2438         u_char buf[2] = {0, 0};
2439         struct mtd_oob_ops ops = {
2440                 .mode = MTD_OPS_PLACE_OOB,
2441                 .ooblen = 2,
2442                 .oobbuf = buf,
2443                 .ooboffs = 0,
2444         };
2445         int block;
2446
2447         /* Get block number */
2448         block = onenand_block(this, ofs);
2449         if (bbm->bbt)
2450                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2451
2452         /* We write two bytes, so we don't have to mess with 16-bit access */
2453         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2454         /* FIXME : What to do when marking SLC block in partition
2455          *         with MLC erasesize? For now, it is not advisable to
2456          *         create partitions containing both SLC and MLC regions.
2457          */
2458         return onenand_write_oob_nolock(mtd, ofs, &ops);
2459 }
2460
2461 /**
2462  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2463  * @param mtd           MTD device structure
2464  * @param ofs           offset relative to mtd start
2465  *
2466  * Mark the block as bad
2467  */
2468 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2469 {
2470         struct onenand_chip *this = mtd->priv;
2471         int ret;
2472
2473         ret = onenand_block_isbad(mtd, ofs);
2474         if (ret) {
2475                 /* If it was bad already, return success and do nothing */
2476                 if (ret > 0)
2477                         return 0;
2478                 return ret;
2479         }
2480
2481         onenand_get_device(mtd, FL_WRITING);
2482         ret = this->block_markbad(mtd, ofs);
2483         onenand_release_device(mtd);
2484         return ret;
2485 }
2486
2487 /**
2488  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2489  * @param mtd           MTD device structure
2490  * @param ofs           offset relative to mtd start
2491  * @param len           number of bytes to lock or unlock
2492  * @param cmd           lock or unlock command
2493  *
2494  * Lock or unlock one or more blocks
2495  */
2496 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2497 {
2498         struct onenand_chip *this = mtd->priv;
2499         int start, end, block, value, status;
2500         int wp_status_mask;
2501
2502         start = onenand_block(this, ofs);
2503         end = onenand_block(this, ofs + len) - 1;
2504
2505         if (cmd == ONENAND_CMD_LOCK)
2506                 wp_status_mask = ONENAND_WP_LS;
2507         else
2508                 wp_status_mask = ONENAND_WP_US;
2509
2510         /* Continuous lock scheme */
2511         if (this->options & ONENAND_HAS_CONT_LOCK) {
2512                 /* Set start block address */
2513                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2514                 /* Set end block address */
2515                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2516                 /* Write lock command */
2517                 this->command(mtd, cmd, 0, 0);
2518
2519                 /* There's no return value */
2520                 this->wait(mtd, FL_LOCKING);
2521
2522                 /* Sanity check */
2523                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2524                     & ONENAND_CTRL_ONGO)
2525                         continue;
2526
2527                 /* Check lock status */
2528                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2529                 if (!(status & wp_status_mask))
2530                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2531                                 __func__, status);
2532
2533                 return 0;
2534         }
2535
2536         /* Block lock scheme */
2537         for (block = start; block < end + 1; block++) {
2538                 /* Set block address */
2539                 value = onenand_block_address(this, block);
2540                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2541                 /* Select DataRAM for DDP */
2542                 value = onenand_bufferram_address(this, block);
2543                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2544                 /* Set start block address */
2545                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2546                 /* Write lock command */
2547                 this->command(mtd, cmd, 0, 0);
2548
2549                 /* There's no return value */
2550                 this->wait(mtd, FL_LOCKING);
2551
2552                 /* Sanity check */
2553                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2554                     & ONENAND_CTRL_ONGO)
2555                         continue;
2556
2557                 /* Check lock status */
2558                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2559                 if (!(status & wp_status_mask))
2560                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2561                                 __func__, block, status);
2562         }
2563
2564         return 0;
2565 }
2566
2567 /**
2568  * onenand_lock - [MTD Interface] Lock block(s)
2569  * @param mtd           MTD device structure
2570  * @param ofs           offset relative to mtd start
2571  * @param len           number of bytes to unlock
2572  *
2573  * Lock one or more blocks
2574  */
2575 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2576 {
2577         int ret;
2578
2579         onenand_get_device(mtd, FL_LOCKING);
2580         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2581         onenand_release_device(mtd);
2582         return ret;
2583 }
2584
2585 /**
2586  * onenand_unlock - [MTD Interface] Unlock block(s)
2587  * @param mtd           MTD device structure
2588  * @param ofs           offset relative to mtd start
2589  * @param len           number of bytes to unlock
2590  *
2591  * Unlock one or more blocks
2592  */
2593 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2594 {
2595         int ret;
2596
2597         onenand_get_device(mtd, FL_LOCKING);
2598         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2599         onenand_release_device(mtd);
2600         return ret;
2601 }
2602
2603 /**
2604  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2605  * @param this          onenand chip data structure
2606  *
2607  * Check lock status
2608  */
2609 static int onenand_check_lock_status(struct onenand_chip *this)
2610 {
2611         unsigned int value, block, status;
2612         unsigned int end;
2613
2614         end = this->chipsize >> this->erase_shift;
2615         for (block = 0; block < end; block++) {
2616                 /* Set block address */
2617                 value = onenand_block_address(this, block);
2618                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2619                 /* Select DataRAM for DDP */
2620                 value = onenand_bufferram_address(this, block);
2621                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2622                 /* Set start block address */
2623                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2624
2625                 /* Check lock status */
2626                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2627                 if (!(status & ONENAND_WP_US)) {
2628                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2629                                 __func__, block, status);
2630                         return 0;
2631                 }
2632         }
2633
2634         return 1;
2635 }
2636
2637 /**
2638  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2639  * @param mtd           MTD device structure
2640  *
2641  * Unlock all blocks
2642  */
2643 static void onenand_unlock_all(struct mtd_info *mtd)
2644 {
2645         struct onenand_chip *this = mtd->priv;
2646         loff_t ofs = 0;
2647         loff_t len = mtd->size;
2648
2649         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2650                 /* Set start block address */
2651                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2652                 /* Write unlock command */
2653                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2654
2655                 /* There's no return value */
2656                 this->wait(mtd, FL_LOCKING);
2657
2658                 /* Sanity check */
2659                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660                     & ONENAND_CTRL_ONGO)
2661                         continue;
2662
2663                 /* Don't check lock status */
2664                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2665                         return;
2666
2667                 /* Check lock status */
2668                 if (onenand_check_lock_status(this))
2669                         return;
2670
2671                 /* Workaround for all block unlock in DDP */
2672                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2673                         /* All blocks on another chip */
2674                         ofs = this->chipsize >> 1;
2675                         len = this->chipsize >> 1;
2676                 }
2677         }
2678
2679         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2680 }
2681
2682 #ifdef CONFIG_MTD_ONENAND_OTP
2683
2684 /**
2685  * onenand_otp_command - Send OTP specific command to OneNAND device
2686  * @param mtd    MTD device structure
2687  * @param cmd    the command to be sent
2688  * @param addr   offset to read from or write to
2689  * @param len    number of bytes to read or write
2690  */
2691 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2692                                 size_t len)
2693 {
2694         struct onenand_chip *this = mtd->priv;
2695         int value, block, page;
2696
2697         /* Address translation */
2698         switch (cmd) {
2699         case ONENAND_CMD_OTP_ACCESS:
2700                 block = (int) (addr >> this->erase_shift);
2701                 page = -1;
2702                 break;
2703
2704         default:
2705                 block = (int) (addr >> this->erase_shift);
2706                 page = (int) (addr >> this->page_shift);
2707
2708                 if (ONENAND_IS_2PLANE(this)) {
2709                         /* Make the even block number */
2710                         block &= ~1;
2711                         /* Is it the odd plane? */
2712                         if (addr & this->writesize)
2713                                 block++;
2714                         page >>= 1;
2715                 }
2716                 page &= this->page_mask;
2717                 break;
2718         }
2719
2720         if (block != -1) {
2721                 /* Write 'DFS, FBA' of Flash */
2722                 value = onenand_block_address(this, block);
2723                 this->write_word(value, this->base +
2724                                 ONENAND_REG_START_ADDRESS1);
2725         }
2726
2727         if (page != -1) {
2728                 /* Now we use page size operation */
2729                 int sectors = 4, count = 4;
2730                 int dataram;
2731
2732                 switch (cmd) {
2733                 default:
2734                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2735                                 cmd = ONENAND_CMD_2X_PROG;
2736                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2737                         break;
2738                 }
2739
2740                 /* Write 'FPA, FSA' of Flash */
2741                 value = onenand_page_address(page, sectors);
2742                 this->write_word(value, this->base +
2743                                 ONENAND_REG_START_ADDRESS8);
2744
2745                 /* Write 'BSA, BSC' of DataRAM */
2746                 value = onenand_buffer_address(dataram, sectors, count);
2747                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2748         }
2749
2750         /* Interrupt clear */
2751         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2752
2753         /* Write command */
2754         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2755
2756         return 0;
2757 }
2758
2759 /**
2760  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2761  * @param mtd           MTD device structure
2762  * @param to            offset to write to
2763  * @param len           number of bytes to write
2764  * @param retlen        pointer to variable to store the number of written bytes
2765  * @param buf           the data to write
2766  *
2767  * OneNAND write out-of-band only for OTP
2768  */
2769 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2770                                     struct mtd_oob_ops *ops)
2771 {
2772         struct onenand_chip *this = mtd->priv;
2773         int column, ret = 0, oobsize;
2774         int written = 0;
2775         u_char *oobbuf;
2776         size_t len = ops->ooblen;
2777         const u_char *buf = ops->oobbuf;
2778         int block, value, status;
2779
2780         to += ops->ooboffs;
2781
2782         /* Initialize retlen, in case of early exit */
2783         ops->oobretlen = 0;
2784
2785         oobsize = mtd->oobsize;
2786
2787         column = to & (mtd->oobsize - 1);
2788
2789         oobbuf = this->oob_buf;
2790
2791         /* Loop until all data write */
2792         while (written < len) {
2793                 int thislen = min_t(int, oobsize, len - written);
2794
2795                 cond_resched();
2796
2797                 block = (int) (to >> this->erase_shift);
2798                 /*
2799                  * Write 'DFS, FBA' of Flash
2800                  * Add: F100h DQ=DFS, FBA
2801                  */
2802
2803                 value = onenand_block_address(this, block);
2804                 this->write_word(value, this->base +
2805                                 ONENAND_REG_START_ADDRESS1);
2806
2807                 /*
2808                  * Select DataRAM for DDP
2809                  * Add: F101h DQ=DBS
2810                  */
2811
2812                 value = onenand_bufferram_address(this, block);
2813                 this->write_word(value, this->base +
2814                                 ONENAND_REG_START_ADDRESS2);
2815                 ONENAND_SET_NEXT_BUFFERRAM(this);
2816
2817                 /*
2818                  * Enter OTP access mode
2819                  */
2820                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2821                 this->wait(mtd, FL_OTPING);
2822
2823                 /* We send data to spare ram with oobsize
2824                  * to prevent byte access */
2825                 memcpy(oobbuf + column, buf, thislen);
2826
2827                 /*
2828                  * Write Data into DataRAM
2829                  * Add: 8th Word
2830                  * in sector0/spare/page0
2831                  * DQ=XXFCh
2832                  */
2833                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2834                                         oobbuf, 0, mtd->oobsize);
2835
2836                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2837                 onenand_update_bufferram(mtd, to, 0);
2838                 if (ONENAND_IS_2PLANE(this)) {
2839                         ONENAND_SET_BUFFERRAM1(this);
2840                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2841                 }
2842
2843                 ret = this->wait(mtd, FL_WRITING);
2844                 if (ret) {
2845                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2846                         break;
2847                 }
2848
2849                 /* Exit OTP access mode */
2850                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2851                 this->wait(mtd, FL_RESETTING);
2852
2853                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2854                 status &= 0x60;
2855
2856                 if (status == 0x60) {
2857                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2858                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2859                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2860                 } else if (status == 0x20) {
2861                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2862                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2863                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2864                 } else if (status == 0x40) {
2865                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2866                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2867                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2868                 } else {
2869                         printk(KERN_DEBUG "Reboot to check\n");
2870                 }
2871
2872                 written += thislen;
2873                 if (written == len)
2874                         break;
2875
2876                 to += mtd->writesize;
2877                 buf += thislen;
2878                 column = 0;
2879         }
2880
2881         ops->oobretlen = written;
2882
2883         return ret;
2884 }
2885
2886 /* Internal OTP operation */
2887 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2888                 size_t *retlen, u_char *buf);
2889
2890 /**
2891  * do_otp_read - [DEFAULT] Read OTP block area
2892  * @param mtd           MTD device structure
2893  * @param from          The offset to read
2894  * @param len           number of bytes to read
2895  * @param retlen        pointer to variable to store the number of readbytes
2896  * @param buf           the databuffer to put/get data
2897  *
2898  * Read OTP block area.
2899  */
2900 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2901                 size_t *retlen, u_char *buf)
2902 {
2903         struct onenand_chip *this = mtd->priv;
2904         struct mtd_oob_ops ops = {
2905                 .len    = len,
2906                 .ooblen = 0,
2907                 .datbuf = buf,
2908                 .oobbuf = NULL,
2909         };
2910         int ret;
2911
2912         /* Enter OTP access mode */
2913         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2914         this->wait(mtd, FL_OTPING);
2915
2916         ret = ONENAND_IS_4KB_PAGE(this) ?
2917                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2918                 onenand_read_ops_nolock(mtd, from, &ops);
2919
2920         /* Exit OTP access mode */
2921         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2922         this->wait(mtd, FL_RESETTING);
2923
2924         return ret;
2925 }
2926
2927 /**
2928  * do_otp_write - [DEFAULT] Write OTP block area
2929  * @param mtd           MTD device structure
2930  * @param to            The offset to write
2931  * @param len           number of bytes to write
2932  * @param retlen        pointer to variable to store the number of write bytes
2933  * @param buf           the databuffer to put/get data
2934  *
2935  * Write OTP block area.
2936  */
2937 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2938                 size_t *retlen, u_char *buf)
2939 {
2940         struct onenand_chip *this = mtd->priv;
2941         unsigned char *pbuf = buf;
2942         int ret;
2943         struct mtd_oob_ops ops;
2944
2945         /* Force buffer page aligned */
2946         if (len < mtd->writesize) {
2947                 memcpy(this->page_buf, buf, len);
2948                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2949                 pbuf = this->page_buf;
2950                 len = mtd->writesize;
2951         }
2952
2953         /* Enter OTP access mode */
2954         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2955         this->wait(mtd, FL_OTPING);
2956
2957         ops.len = len;
2958         ops.ooblen = 0;
2959         ops.datbuf = pbuf;
2960         ops.oobbuf = NULL;
2961         ret = onenand_write_ops_nolock(mtd, to, &ops);
2962         *retlen = ops.retlen;
2963
2964         /* Exit OTP access mode */
2965         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2966         this->wait(mtd, FL_RESETTING);
2967
2968         return ret;
2969 }
2970
2971 /**
2972  * do_otp_lock - [DEFAULT] Lock OTP block area
2973  * @param mtd           MTD device structure
2974  * @param from          The offset to lock
2975  * @param len           number of bytes to lock
2976  * @param retlen        pointer to variable to store the number of lock bytes
2977  * @param buf           the databuffer to put/get data
2978  *
2979  * Lock OTP block area.
2980  */
2981 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2982                 size_t *retlen, u_char *buf)
2983 {
2984         struct onenand_chip *this = mtd->priv;
2985         struct mtd_oob_ops ops;
2986         int ret;
2987
2988         if (FLEXONENAND(this)) {
2989
2990                 /* Enter OTP access mode */
2991                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2992                 this->wait(mtd, FL_OTPING);
2993                 /*
2994                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2995                  * main area of page 49.
2996                  */
2997                 ops.len = mtd->writesize;
2998                 ops.ooblen = 0;
2999                 ops.datbuf = buf;
3000                 ops.oobbuf = NULL;
3001                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3002                 *retlen = ops.retlen;
3003
3004                 /* Exit OTP access mode */
3005                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3006                 this->wait(mtd, FL_RESETTING);
3007         } else {
3008                 ops.mode = MTD_OPS_PLACE_OOB;
3009                 ops.ooblen = len;
3010                 ops.oobbuf = buf;
3011                 ops.ooboffs = 0;
3012                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3013                 *retlen = ops.oobretlen;
3014         }
3015
3016         return ret;
3017 }
3018
3019 /**
3020  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3021  * @param mtd           MTD device structure
3022  * @param from          The offset to read/write
3023  * @param len           number of bytes to read/write
3024  * @param retlen        pointer to variable to store the number of read bytes
3025  * @param buf           the databuffer to put/get data
3026  * @param action        do given action
3027  * @param mode          specify user and factory
3028  *
3029  * Handle OTP operation.
3030  */
3031 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3032                         size_t *retlen, u_char *buf,
3033                         otp_op_t action, int mode)
3034 {
3035         struct onenand_chip *this = mtd->priv;
3036         int otp_pages;
3037         int density;
3038         int ret = 0;
3039
3040         *retlen = 0;
3041
3042         density = onenand_get_density(this->device_id);
3043         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3044                 otp_pages = 20;
3045         else
3046                 otp_pages = 50;
3047
3048         if (mode == MTD_OTP_FACTORY) {
3049                 from += mtd->writesize * otp_pages;
3050                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3051         }
3052
3053         /* Check User/Factory boundary */
3054         if (mode == MTD_OTP_USER) {
3055                 if (mtd->writesize * otp_pages < from + len)
3056                         return 0;
3057         } else {
3058                 if (mtd->writesize * otp_pages <  len)
3059                         return 0;
3060         }
3061
3062         onenand_get_device(mtd, FL_OTPING);
3063         while (len > 0 && otp_pages > 0) {
3064                 if (!action) {  /* OTP Info functions */
3065                         struct otp_info *otpinfo;
3066
3067                         len -= sizeof(struct otp_info);
3068                         if (len <= 0) {
3069                                 ret = -ENOSPC;
3070                                 break;
3071                         }
3072
3073                         otpinfo = (struct otp_info *) buf;
3074                         otpinfo->start = from;
3075                         otpinfo->length = mtd->writesize;
3076                         otpinfo->locked = 0;
3077
3078                         from += mtd->writesize;
3079                         buf += sizeof(struct otp_info);
3080                         *retlen += sizeof(struct otp_info);
3081                 } else {
3082                         size_t tmp_retlen;
3083
3084                         ret = action(mtd, from, len, &tmp_retlen, buf);
3085                         if (ret)
3086                                 break;
3087
3088                         buf += tmp_retlen;
3089                         len -= tmp_retlen;
3090                         *retlen += tmp_retlen;
3091
3092                 }
3093                 otp_pages--;
3094         }
3095         onenand_release_device(mtd);
3096
3097         return ret;
3098 }
3099
3100 /**
3101  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3102  * @param mtd           MTD device structure
3103  * @param len           number of bytes to read
3104  * @param retlen        pointer to variable to store the number of read bytes
3105  * @param buf           the databuffer to put/get data
3106  *
3107  * Read factory OTP info.
3108  */
3109 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3110                                       size_t *retlen, struct otp_info *buf)
3111 {
3112         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3113                                 MTD_OTP_FACTORY);
3114 }
3115
3116 /**
3117  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3118  * @param mtd           MTD device structure
3119  * @param from          The offset to read
3120  * @param len           number of bytes to read
3121  * @param retlen        pointer to variable to store the number of read bytes
3122  * @param buf           the databuffer to put/get data
3123  *
3124  * Read factory OTP area.
3125  */
3126 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3127                         size_t len, size_t *retlen, u_char *buf)
3128 {
3129         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3130 }
3131
3132 /**
3133  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3134  * @param mtd           MTD device structure
3135  * @param retlen        pointer to variable to store the number of read bytes
3136  * @param len           number of bytes to read
3137  * @param buf           the databuffer to put/get data
3138  *
3139  * Read user OTP info.
3140  */
3141 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3142                                       size_t *retlen, struct otp_info *buf)
3143 {
3144         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3145                                 MTD_OTP_USER);
3146 }
3147
3148 /**
3149  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3150  * @param mtd           MTD device structure
3151  * @param from          The offset to read
3152  * @param len           number of bytes to read
3153  * @param retlen        pointer to variable to store the number of read bytes
3154  * @param buf           the databuffer to put/get data
3155  *
3156  * Read user OTP area.
3157  */
3158 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3159                         size_t len, size_t *retlen, u_char *buf)
3160 {
3161         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3162 }
3163
3164 /**
3165  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3166  * @param mtd           MTD device structure
3167  * @param from          The offset to write
3168  * @param len           number of bytes to write
3169  * @param retlen        pointer to variable to store the number of write bytes
3170  * @param buf           the databuffer to put/get data
3171  *
3172  * Write user OTP area.
3173  */
3174 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3175                         size_t len, size_t *retlen, u_char *buf)
3176 {
3177         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3178 }
3179
3180 /**
3181  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3182  * @param mtd           MTD device structure
3183  * @param from          The offset to lock
3184  * @param len           number of bytes to unlock
3185  *
3186  * Write lock mark on spare area in page 0 in OTP block
3187  */
3188 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3189                         size_t len)
3190 {
3191         struct onenand_chip *this = mtd->priv;
3192         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3193         size_t retlen;
3194         int ret;
3195         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3196
3197         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3198                                                  : mtd->oobsize);
3199         /*
3200          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3201          * We write 16 bytes spare area instead of 2 bytes.
3202          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3203          * main area of page 49.
3204          */
3205
3206         from = 0;
3207         len = FLEXONENAND(this) ? mtd->writesize : 16;
3208
3209         /*
3210          * Note: OTP lock operation
3211          *       OTP block : 0xXXFC                     XX 1111 1100
3212          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3213          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3214          */
3215         if (FLEXONENAND(this))
3216                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3217
3218         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3219         if (otp == 1)
3220                 buf[otp_lock_offset] = 0xFC;
3221         else if (otp == 2)
3222                 buf[otp_lock_offset] = 0xF3;
3223         else if (otp == 3)
3224                 buf[otp_lock_offset] = 0xF0;
3225         else if (otp != 0)
3226                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3227
3228         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3229
3230         return ret ? : retlen;
3231 }
3232
3233 #endif  /* CONFIG_MTD_ONENAND_OTP */
3234
3235 /**
3236  * onenand_check_features - Check and set OneNAND features
3237  * @param mtd           MTD data structure
3238  *
3239  * Check and set OneNAND features
3240  * - lock scheme
3241  * - two plane
3242  */
3243 static void onenand_check_features(struct mtd_info *mtd)
3244 {
3245         struct onenand_chip *this = mtd->priv;
3246         unsigned int density, process, numbufs;
3247
3248         /* Lock scheme depends on density and process */
3249         density = onenand_get_density(this->device_id);
3250         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3251         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3252
3253         /* Lock scheme */
3254         switch (density) {
3255         case ONENAND_DEVICE_DENSITY_8Gb:
3256                 this->options |= ONENAND_HAS_NOP_1;
3257                 fallthrough;
3258         case ONENAND_DEVICE_DENSITY_4Gb:
3259                 if (ONENAND_IS_DDP(this))
3260                         this->options |= ONENAND_HAS_2PLANE;
3261                 else if (numbufs == 1) {
3262                         this->options |= ONENAND_HAS_4KB_PAGE;
3263                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3264                         /*
3265                          * There are two different 4KiB pagesize chips
3266                          * and no way to detect it by H/W config values.
3267                          *
3268                          * To detect the correct NOP for each chips,
3269                          * It should check the version ID as workaround.
3270                          *
3271                          * Now it has as following
3272                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3273                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3274                          */
3275                         if ((this->version_id & 0xf) == 0xe)
3276                                 this->options |= ONENAND_HAS_NOP_1;
3277                 }
3278                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3279                 break;
3280
3281         case ONENAND_DEVICE_DENSITY_2Gb:
3282                 /* 2Gb DDP does not have 2 plane */
3283                 if (!ONENAND_IS_DDP(this))
3284                         this->options |= ONENAND_HAS_2PLANE;
3285                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3286                 break;
3287
3288         case ONENAND_DEVICE_DENSITY_1Gb:
3289                 /* A-Die has all block unlock */
3290                 if (process)
3291                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3292                 break;
3293
3294         default:
3295                 /* Some OneNAND has continuous lock scheme */
3296                 if (!process)
3297                         this->options |= ONENAND_HAS_CONT_LOCK;
3298                 break;
3299         }
3300
3301         /* The MLC has 4KiB pagesize. */
3302         if (ONENAND_IS_MLC(this))
3303                 this->options |= ONENAND_HAS_4KB_PAGE;
3304
3305         if (ONENAND_IS_4KB_PAGE(this))
3306                 this->options &= ~ONENAND_HAS_2PLANE;
3307
3308         if (FLEXONENAND(this)) {
3309                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3310                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3311         }
3312
3313         if (this->options & ONENAND_HAS_CONT_LOCK)
3314                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3315         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3316                 printk(KERN_DEBUG "Chip support all block unlock\n");
3317         if (this->options & ONENAND_HAS_2PLANE)
3318                 printk(KERN_DEBUG "Chip has 2 plane\n");
3319         if (this->options & ONENAND_HAS_4KB_PAGE)
3320                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3321         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3322                 printk(KERN_DEBUG "Chip has cache program feature\n");
3323 }
3324
3325 /**
3326  * onenand_print_device_info - Print device & version ID
3327  * @param device        device ID
3328  * @param version       version ID
3329  *
3330  * Print device & version ID
3331  */
3332 static void onenand_print_device_info(int device, int version)
3333 {
3334         int vcc, demuxed, ddp, density, flexonenand;
3335
3336         vcc = device & ONENAND_DEVICE_VCC_MASK;
3337         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3338         ddp = device & ONENAND_DEVICE_IS_DDP;
3339         density = onenand_get_density(device);
3340         flexonenand = device & DEVICE_IS_FLEXONENAND;
3341         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3342                 demuxed ? "" : "Muxed ",
3343                 flexonenand ? "Flex-" : "",
3344                 ddp ? "(DDP)" : "",
3345                 (16 << density),
3346                 vcc ? "2.65/3.3" : "1.8",
3347                 device);
3348         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3349 }
3350
3351 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3352         {ONENAND_MFR_SAMSUNG, "Samsung"},
3353         {ONENAND_MFR_NUMONYX, "Numonyx"},
3354 };
3355
3356 /**
3357  * onenand_check_maf - Check manufacturer ID
3358  * @param manuf         manufacturer ID
3359  *
3360  * Check manufacturer ID
3361  */
3362 static int onenand_check_maf(int manuf)
3363 {
3364         int size = ARRAY_SIZE(onenand_manuf_ids);
3365         char *name;
3366         int i;
3367
3368         for (i = 0; i < size; i++)
3369                 if (manuf == onenand_manuf_ids[i].id)
3370                         break;
3371
3372         if (i < size)
3373                 name = onenand_manuf_ids[i].name;
3374         else
3375                 name = "Unknown";
3376
3377         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3378
3379         return (i == size);
3380 }
3381
3382 /**
3383 * flexonenand_get_boundary      - Reads the SLC boundary
3384 * @param onenand_info           - onenand info structure
3385 **/
3386 static int flexonenand_get_boundary(struct mtd_info *mtd)
3387 {
3388         struct onenand_chip *this = mtd->priv;
3389         unsigned die, bdry;
3390         int syscfg, locked;
3391
3392         /* Disable ECC */
3393         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3394         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3395
3396         for (die = 0; die < this->dies; die++) {
3397                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3398                 this->wait(mtd, FL_SYNCING);
3399
3400                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3401                 this->wait(mtd, FL_READING);
3402
3403                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3404                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3405                         locked = 0;
3406                 else
3407                         locked = 1;
3408                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3409
3410                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3411                 this->wait(mtd, FL_RESETTING);
3412
3413                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3414                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3415         }
3416
3417         /* Enable ECC */
3418         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3419         return 0;
3420 }
3421
3422 /**
3423  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3424  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3425  * @param mtd           - MTD device structure
3426  */
3427 static void flexonenand_get_size(struct mtd_info *mtd)
3428 {
3429         struct onenand_chip *this = mtd->priv;
3430         int die, i, eraseshift, density;
3431         int blksperdie, maxbdry;
3432         loff_t ofs;
3433
3434         density = onenand_get_density(this->device_id);
3435         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3436         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3437         maxbdry = blksperdie - 1;
3438         eraseshift = this->erase_shift - 1;
3439
3440         mtd->numeraseregions = this->dies << 1;
3441
3442         /* This fills up the device boundary */
3443         flexonenand_get_boundary(mtd);
3444         die = ofs = 0;
3445         i = -1;
3446         for (; die < this->dies; die++) {
3447                 if (!die || this->boundary[die-1] != maxbdry) {
3448                         i++;
3449                         mtd->eraseregions[i].offset = ofs;
3450                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3451                         mtd->eraseregions[i].numblocks =
3452                                                         this->boundary[die] + 1;
3453                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3454                         eraseshift++;
3455                 } else {
3456                         mtd->numeraseregions -= 1;
3457                         mtd->eraseregions[i].numblocks +=
3458                                                         this->boundary[die] + 1;
3459                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3460                 }
3461                 if (this->boundary[die] != maxbdry) {
3462                         i++;
3463                         mtd->eraseregions[i].offset = ofs;
3464                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3465                         mtd->eraseregions[i].numblocks = maxbdry ^
3466                                                          this->boundary[die];
3467                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3468                         eraseshift--;
3469                 } else
3470                         mtd->numeraseregions -= 1;
3471         }
3472
3473         /* Expose MLC erase size except when all blocks are SLC */
3474         mtd->erasesize = 1 << this->erase_shift;
3475         if (mtd->numeraseregions == 1)
3476                 mtd->erasesize >>= 1;
3477
3478         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3479         for (i = 0; i < mtd->numeraseregions; i++)
3480                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3481                         " numblocks: %04u]\n",
3482                         (unsigned int) mtd->eraseregions[i].offset,
3483                         mtd->eraseregions[i].erasesize,
3484                         mtd->eraseregions[i].numblocks);
3485
3486         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3487                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3488                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3489                                                  << (this->erase_shift - 1);
3490                 mtd->size += this->diesize[die];
3491         }
3492 }
3493
3494 /**
3495  * flexonenand_check_blocks_erased - Check if blocks are erased
3496  * @param mtd_info      - mtd info structure
3497  * @param start         - first erase block to check
3498  * @param end           - last erase block to check
3499  *
3500  * Converting an unerased block from MLC to SLC
3501  * causes byte values to change. Since both data and its ECC
3502  * have changed, reads on the block give uncorrectable error.
3503  * This might lead to the block being detected as bad.
3504  *
3505  * Avoid this by ensuring that the block to be converted is
3506  * erased.
3507  */
3508 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3509 {
3510         struct onenand_chip *this = mtd->priv;
3511         int i, ret;
3512         int block;
3513         struct mtd_oob_ops ops = {
3514                 .mode = MTD_OPS_PLACE_OOB,
3515                 .ooboffs = 0,
3516                 .ooblen = mtd->oobsize,
3517                 .datbuf = NULL,
3518                 .oobbuf = this->oob_buf,
3519         };
3520         loff_t addr;
3521
3522         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3523
3524         for (block = start; block <= end; block++) {
3525                 addr = flexonenand_addr(this, block);
3526                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3527                         continue;
3528
3529                 /*
3530                  * Since main area write results in ECC write to spare,
3531                  * it is sufficient to check only ECC bytes for change.
3532                  */
3533                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3534                 if (ret)
3535                         return ret;
3536
3537                 for (i = 0; i < mtd->oobsize; i++)
3538                         if (this->oob_buf[i] != 0xff)
3539                                 break;
3540
3541                 if (i != mtd->oobsize) {
3542                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3543                                 __func__, block);
3544                         return 1;
3545                 }
3546         }
3547
3548         return 0;
3549 }
3550
3551 /**
3552  * flexonenand_set_boundary     - Writes the SLC boundary
3553  * @param mtd                   - mtd info structure
3554  */
3555 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3556                                     int boundary, int lock)
3557 {
3558         struct onenand_chip *this = mtd->priv;
3559         int ret, density, blksperdie, old, new, thisboundary;
3560         loff_t addr;
3561
3562         /* Change only once for SDP Flex-OneNAND */
3563         if (die && (!ONENAND_IS_DDP(this)))
3564                 return 0;
3565
3566         /* boundary value of -1 indicates no required change */
3567         if (boundary < 0 || boundary == this->boundary[die])
3568                 return 0;
3569
3570         density = onenand_get_density(this->device_id);
3571         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3572         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3573
3574         if (boundary >= blksperdie) {
3575                 printk(KERN_ERR "%s: Invalid boundary value. "
3576                                 "Boundary not changed.\n", __func__);
3577                 return -EINVAL;
3578         }
3579
3580         /* Check if converting blocks are erased */
3581         old = this->boundary[die] + (die * this->density_mask);
3582         new = boundary + (die * this->density_mask);
3583         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3584         if (ret) {
3585                 printk(KERN_ERR "%s: Please erase blocks "
3586                                 "before boundary change\n", __func__);
3587                 return ret;
3588         }
3589
3590         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3591         this->wait(mtd, FL_SYNCING);
3592
3593         /* Check is boundary is locked */
3594         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3595         this->wait(mtd, FL_READING);
3596
3597         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3598         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3599                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3600                 ret = 1;
3601                 goto out;
3602         }
3603
3604         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3605                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3606
3607         addr = die ? this->diesize[0] : 0;
3608
3609         boundary &= FLEXONENAND_PI_MASK;
3610         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3611
3612         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3613         ret = this->wait(mtd, FL_ERASING);
3614         if (ret) {
3615                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3616                        __func__, die);
3617                 goto out;
3618         }
3619
3620         this->write_word(boundary, this->base + ONENAND_DATARAM);
3621         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3622         ret = this->wait(mtd, FL_WRITING);
3623         if (ret) {
3624                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3625                         __func__, die);
3626                 goto out;
3627         }
3628
3629         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3630         ret = this->wait(mtd, FL_WRITING);
3631 out:
3632         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3633         this->wait(mtd, FL_RESETTING);
3634         if (!ret)
3635                 /* Recalculate device size on boundary change*/
3636                 flexonenand_get_size(mtd);
3637
3638         return ret;
3639 }
3640
3641 /**
3642  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3643  * @param mtd           MTD device structure
3644  *
3645  * OneNAND detection method:
3646  *   Compare the values from command with ones from register
3647  */
3648 static int onenand_chip_probe(struct mtd_info *mtd)
3649 {
3650         struct onenand_chip *this = mtd->priv;
3651         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3652         int syscfg;
3653
3654         /* Save system configuration 1 */
3655         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3656         /* Clear Sync. Burst Read mode to read BootRAM */
3657         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3658
3659         /* Send the command for reading device ID from BootRAM */
3660         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3661
3662         /* Read manufacturer and device IDs from BootRAM */
3663         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3664         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3665
3666         /* Reset OneNAND to read default register values */
3667         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3668         /* Wait reset */
3669         this->wait(mtd, FL_RESETTING);
3670
3671         /* Restore system configuration 1 */
3672         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3673
3674         /* Check manufacturer ID */
3675         if (onenand_check_maf(bram_maf_id))
3676                 return -ENXIO;
3677
3678         /* Read manufacturer and device IDs from Register */
3679         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3680         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3681
3682         /* Check OneNAND device */
3683         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3684                 return -ENXIO;
3685
3686         return 0;
3687 }
3688
3689 /**
3690  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3691  * @param mtd           MTD device structure
3692  */
3693 static int onenand_probe(struct mtd_info *mtd)
3694 {
3695         struct onenand_chip *this = mtd->priv;
3696         int dev_id, ver_id;
3697         int density;
3698         int ret;
3699
3700         ret = this->chip_probe(mtd);
3701         if (ret)
3702                 return ret;
3703
3704         /* Device and version IDs from Register */
3705         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3706         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3707         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3708
3709         /* Flash device information */
3710         onenand_print_device_info(dev_id, ver_id);
3711         this->device_id = dev_id;
3712         this->version_id = ver_id;
3713
3714         /* Check OneNAND features */
3715         onenand_check_features(mtd);
3716
3717         density = onenand_get_density(dev_id);
3718         if (FLEXONENAND(this)) {
3719                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3720                 /* Maximum possible erase regions */
3721                 mtd->numeraseregions = this->dies << 1;
3722                 mtd->eraseregions =
3723                         kcalloc(this->dies << 1,
3724                                 sizeof(struct mtd_erase_region_info),
3725                                 GFP_KERNEL);
3726                 if (!mtd->eraseregions)
3727                         return -ENOMEM;
3728         }
3729
3730         /*
3731          * For Flex-OneNAND, chipsize represents maximum possible device size.
3732          * mtd->size represents the actual device size.
3733          */
3734         this->chipsize = (16 << density) << 20;
3735
3736         /* OneNAND page size & block size */
3737         /* The data buffer size is equal to page size */
3738         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3739         /* We use the full BufferRAM */
3740         if (ONENAND_IS_4KB_PAGE(this))
3741                 mtd->writesize <<= 1;
3742
3743         mtd->oobsize = mtd->writesize >> 5;
3744         /* Pages per a block are always 64 in OneNAND */
3745         mtd->erasesize = mtd->writesize << 6;
3746         /*
3747          * Flex-OneNAND SLC area has 64 pages per block.
3748          * Flex-OneNAND MLC area has 128 pages per block.
3749          * Expose MLC erase size to find erase_shift and page_mask.
3750          */
3751         if (FLEXONENAND(this))
3752                 mtd->erasesize <<= 1;
3753
3754         this->erase_shift = ffs(mtd->erasesize) - 1;
3755         this->page_shift = ffs(mtd->writesize) - 1;
3756         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3757         /* Set density mask. it is used for DDP */
3758         if (ONENAND_IS_DDP(this))
3759                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3760         /* It's real page size */
3761         this->writesize = mtd->writesize;
3762
3763         /* REVISIT: Multichip handling */
3764
3765         if (FLEXONENAND(this))
3766                 flexonenand_get_size(mtd);
3767         else
3768                 mtd->size = this->chipsize;
3769
3770         /*
3771          * We emulate the 4KiB page and 256KiB erase block size
3772          * But oobsize is still 64 bytes.
3773          * It is only valid if you turn on 2X program support,
3774          * Otherwise it will be ignored by compiler.
3775          */
3776         if (ONENAND_IS_2PLANE(this)) {
3777                 mtd->writesize <<= 1;
3778                 mtd->erasesize <<= 1;
3779         }
3780
3781         return 0;
3782 }
3783
3784 /**
3785  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3786  * @param mtd           MTD device structure
3787  */
3788 static int onenand_suspend(struct mtd_info *mtd)
3789 {
3790         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3791 }
3792
3793 /**
3794  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3795  * @param mtd           MTD device structure
3796  */
3797 static void onenand_resume(struct mtd_info *mtd)
3798 {
3799         struct onenand_chip *this = mtd->priv;
3800
3801         if (this->state == FL_PM_SUSPENDED)
3802                 onenand_release_device(mtd);
3803         else
3804                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3805                                 "in suspended state\n", __func__);
3806 }
3807
3808 /**
3809  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3810  * @param mtd           MTD device structure
3811  * @param maxchips      Number of chips to scan for
3812  *
3813  * This fills out all the not initialized function pointers
3814  * with the defaults.
3815  * The flash ID is read and the mtd/chip structures are
3816  * filled with the appropriate values.
3817  */
3818 int onenand_scan(struct mtd_info *mtd, int maxchips)
3819 {
3820         int i, ret;
3821         struct onenand_chip *this = mtd->priv;
3822
3823         if (!this->read_word)
3824                 this->read_word = onenand_readw;
3825         if (!this->write_word)
3826                 this->write_word = onenand_writew;
3827
3828         if (!this->command)
3829                 this->command = onenand_command;
3830         if (!this->wait)
3831                 onenand_setup_wait(mtd);
3832         if (!this->bbt_wait)
3833                 this->bbt_wait = onenand_bbt_wait;
3834         if (!this->unlock_all)
3835                 this->unlock_all = onenand_unlock_all;
3836
3837         if (!this->chip_probe)
3838                 this->chip_probe = onenand_chip_probe;
3839
3840         if (!this->read_bufferram)
3841                 this->read_bufferram = onenand_read_bufferram;
3842         if (!this->write_bufferram)
3843                 this->write_bufferram = onenand_write_bufferram;
3844
3845         if (!this->block_markbad)
3846                 this->block_markbad = onenand_default_block_markbad;
3847         if (!this->scan_bbt)
3848                 this->scan_bbt = onenand_default_bbt;
3849
3850         if (onenand_probe(mtd))
3851                 return -ENXIO;
3852
3853         /* Set Sync. Burst Read after probing */
3854         if (this->mmcontrol) {
3855                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3856                 this->read_bufferram = onenand_sync_read_bufferram;
3857         }
3858
3859         /* Allocate buffers, if necessary */
3860         if (!this->page_buf) {
3861                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3862                 if (!this->page_buf)
3863                         return -ENOMEM;
3864 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3865                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3866                 if (!this->verify_buf) {
3867                         kfree(this->page_buf);
3868                         return -ENOMEM;
3869                 }
3870 #endif
3871                 this->options |= ONENAND_PAGEBUF_ALLOC;
3872         }
3873         if (!this->oob_buf) {
3874                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3875                 if (!this->oob_buf) {
3876                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3877                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3878 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3879                                 kfree(this->verify_buf);
3880 #endif
3881                                 kfree(this->page_buf);
3882                         }
3883                         return -ENOMEM;
3884                 }
3885                 this->options |= ONENAND_OOBBUF_ALLOC;
3886         }
3887
3888         this->state = FL_READY;
3889         init_waitqueue_head(&this->wq);
3890         spin_lock_init(&this->chip_lock);
3891
3892         /*
3893          * Allow subpage writes up to oobsize.
3894          */
3895         switch (mtd->oobsize) {
3896         case 128:
3897                 if (FLEXONENAND(this)) {
3898                         mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3899                         mtd->subpage_sft = 0;
3900                 } else {
3901                         mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3902                         mtd->subpage_sft = 2;
3903                 }
3904                 if (ONENAND_IS_NOP_1(this))
3905                         mtd->subpage_sft = 0;
3906                 break;
3907         case 64:
3908                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909                 mtd->subpage_sft = 2;
3910                 break;
3911
3912         case 32:
3913                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3914                 mtd->subpage_sft = 1;
3915                 break;
3916
3917         default:
3918                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3919                         __func__, mtd->oobsize);
3920                 mtd->subpage_sft = 0;
3921                 /* To prevent kernel oops */
3922                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3923                 break;
3924         }
3925
3926         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3927
3928         /*
3929          * The number of bytes available for a client to place data into
3930          * the out of band area
3931          */
3932         ret = mtd_ooblayout_count_freebytes(mtd);
3933         if (ret < 0)
3934                 ret = 0;
3935
3936         mtd->oobavail = ret;
3937
3938         mtd->ecc_strength = 1;
3939
3940         /* Fill in remaining MTD driver data */
3941         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3942         mtd->flags = MTD_CAP_NANDFLASH;
3943         mtd->_erase = onenand_erase;
3944         mtd->_point = NULL;
3945         mtd->_unpoint = NULL;
3946         mtd->_read_oob = onenand_read_oob;
3947         mtd->_write_oob = onenand_write_oob;
3948         mtd->_panic_write = onenand_panic_write;
3949 #ifdef CONFIG_MTD_ONENAND_OTP
3950         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3951         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3952         mtd->_get_user_prot_info = onenand_get_user_prot_info;
3953         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3954         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3955         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3956 #endif
3957         mtd->_sync = onenand_sync;
3958         mtd->_lock = onenand_lock;
3959         mtd->_unlock = onenand_unlock;
3960         mtd->_suspend = onenand_suspend;
3961         mtd->_resume = onenand_resume;
3962         mtd->_block_isbad = onenand_block_isbad;
3963         mtd->_block_markbad = onenand_block_markbad;
3964         mtd->owner = THIS_MODULE;
3965         mtd->writebufsize = mtd->writesize;
3966
3967         /* Unlock whole block */
3968         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3969                 this->unlock_all(mtd);
3970
3971         /* Set the bad block marker position */
3972         this->badblockpos = ONENAND_BADBLOCK_POS;
3973
3974         ret = this->scan_bbt(mtd);
3975         if ((!FLEXONENAND(this)) || ret)
3976                 return ret;
3977
3978         /* Change Flex-OneNAND boundaries if required */
3979         for (i = 0; i < MAX_DIES; i++)
3980                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3981                                                  flex_bdry[(2 * i) + 1]);
3982
3983         return 0;
3984 }
3985
3986 /**
3987  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3988  * @param mtd           MTD device structure
3989  */
3990 void onenand_release(struct mtd_info *mtd)
3991 {
3992         struct onenand_chip *this = mtd->priv;
3993
3994         /* Deregister partitions */
3995         mtd_device_unregister(mtd);
3996
3997         /* Free bad block table memory, if allocated */
3998         if (this->bbm) {
3999                 struct bbm_info *bbm = this->bbm;
4000                 kfree(bbm->bbt);
4001                 kfree(this->bbm);
4002         }
4003         /* Buffers allocated by onenand_scan */
4004         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4005                 kfree(this->page_buf);
4006 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4007                 kfree(this->verify_buf);
4008 #endif
4009         }
4010         if (this->options & ONENAND_OOBBUF_ALLOC)
4011                 kfree(this->oob_buf);
4012         kfree(mtd->eraseregions);
4013 }
4014
4015 EXPORT_SYMBOL_GPL(onenand_scan);
4016 EXPORT_SYMBOL_GPL(onenand_release);
4017
4018 MODULE_LICENSE("GPL");
4019 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4020 MODULE_DESCRIPTION("Generic OneNAND flash driver code");