GNU Linux-libre 4.4.294-gnu1
[releases.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
52 #define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
67
68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
78
79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
80
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD                         (1 << 0)
86 #define NFC_ADDR                        (1 << 1)
87 #define NFC_INPUT                       (1 << 2)
88 #define NFC_OUTPUT                      (1 << 3)
89 #define NFC_ID                          (1 << 4)
90 #define NFC_STATUS                      (1 << 5)
91
92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
94
95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
98
99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139
140 struct mxc_nand_host;
141
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174
175 struct mxc_nand_host {
176         struct mtd_info         mtd;
177         struct nand_chip        nand;
178         struct device           *dev;
179
180         void __iomem            *spare0;
181         void __iomem            *main_area0;
182
183         void __iomem            *base;
184         void __iomem            *regs;
185         void __iomem            *regs_axi;
186         void __iomem            *regs_ip;
187         int                     status_request;
188         struct clk              *clk;
189         int                     clk_act;
190         int                     irq;
191         int                     eccsize;
192         int                     used_oobsize;
193         int                     active_cs;
194
195         struct completion       op_completion;
196
197         uint8_t                 *data_buf;
198         unsigned int            buf_start;
199
200         const struct mxc_nand_devtype_data *devtype_data;
201         struct mxc_nand_platform_data pdata;
202 };
203
204 /* OOB placement block for use with hardware ecc generation */
205 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
206         .eccbytes = 5,
207         .eccpos = {6, 7, 8, 9, 10},
208         .oobfree = {{0, 5}, {12, 4}, }
209 };
210
211 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
212         .eccbytes = 20,
213         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
214                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
215         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
216 };
217
218 /* OOB description for 512 byte pages with 16 byte OOB */
219 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
220         .eccbytes = 1 * 9,
221         .eccpos = {
222                  7,  8,  9, 10, 11, 12, 13, 14, 15
223         },
224         .oobfree = {
225                 {.offset = 0, .length = 5}
226         }
227 };
228
229 /* OOB description for 2048 byte pages with 64 byte OOB */
230 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
231         .eccbytes = 4 * 9,
232         .eccpos = {
233                  7,  8,  9, 10, 11, 12, 13, 14, 15,
234                 23, 24, 25, 26, 27, 28, 29, 30, 31,
235                 39, 40, 41, 42, 43, 44, 45, 46, 47,
236                 55, 56, 57, 58, 59, 60, 61, 62, 63
237         },
238         .oobfree = {
239                 {.offset = 2, .length = 4},
240                 {.offset = 16, .length = 7},
241                 {.offset = 32, .length = 7},
242                 {.offset = 48, .length = 7}
243         }
244 };
245
246 /* OOB description for 4096 byte pages with 128 byte OOB */
247 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
248         .eccbytes = 8 * 9,
249         .eccpos = {
250                 7,  8,  9, 10, 11, 12, 13, 14, 15,
251                 23, 24, 25, 26, 27, 28, 29, 30, 31,
252                 39, 40, 41, 42, 43, 44, 45, 46, 47,
253                 55, 56, 57, 58, 59, 60, 61, 62, 63,
254                 71, 72, 73, 74, 75, 76, 77, 78, 79,
255                 87, 88, 89, 90, 91, 92, 93, 94, 95,
256                 103, 104, 105, 106, 107, 108, 109, 110, 111,
257                 119, 120, 121, 122, 123, 124, 125, 126, 127,
258         },
259         .oobfree = {
260                 {.offset = 2, .length = 4},
261                 {.offset = 16, .length = 7},
262                 {.offset = 32, .length = 7},
263                 {.offset = 48, .length = 7},
264                 {.offset = 64, .length = 7},
265                 {.offset = 80, .length = 7},
266                 {.offset = 96, .length = 7},
267                 {.offset = 112, .length = 7},
268         }
269 };
270
271 static const char * const part_probes[] = {
272         "cmdlinepart", "RedBoot", "ofpart", NULL };
273
274 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
275 {
276         int i;
277         u32 *t = trg;
278         const __iomem u32 *s = src;
279
280         for (i = 0; i < (size >> 2); i++)
281                 *t++ = __raw_readl(s++);
282 }
283
284 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
285 {
286         int i;
287         u16 *t = trg;
288         const __iomem u16 *s = src;
289
290         /* We assume that src (IO) is always 32bit aligned */
291         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
292                 memcpy32_fromio(trg, src, size);
293                 return;
294         }
295
296         for (i = 0; i < (size >> 1); i++)
297                 *t++ = __raw_readw(s++);
298 }
299
300 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
301 {
302         /* __iowrite32_copy use 32bit size values so divide by 4 */
303         __iowrite32_copy(trg, src, size / 4);
304 }
305
306 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
307 {
308         int i;
309         __iomem u16 *t = trg;
310         const u16 *s = src;
311
312         /* We assume that trg (IO) is always 32bit aligned */
313         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
314                 memcpy32_toio(trg, src, size);
315                 return;
316         }
317
318         for (i = 0; i < (size >> 1); i++)
319                 __raw_writew(*s++, t++);
320 }
321
322 static int check_int_v3(struct mxc_nand_host *host)
323 {
324         uint32_t tmp;
325
326         tmp = readl(NFC_V3_IPC);
327         if (!(tmp & NFC_V3_IPC_INT))
328                 return 0;
329
330         tmp &= ~NFC_V3_IPC_INT;
331         writel(tmp, NFC_V3_IPC);
332
333         return 1;
334 }
335
336 static int check_int_v1_v2(struct mxc_nand_host *host)
337 {
338         uint32_t tmp;
339
340         tmp = readw(NFC_V1_V2_CONFIG2);
341         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
342                 return 0;
343
344         if (!host->devtype_data->irqpending_quirk)
345                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
346
347         return 1;
348 }
349
350 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
351 {
352         uint16_t tmp;
353
354         tmp = readw(NFC_V1_V2_CONFIG1);
355
356         if (activate)
357                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
358         else
359                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
360
361         writew(tmp, NFC_V1_V2_CONFIG1);
362 }
363
364 static void irq_control_v3(struct mxc_nand_host *host, int activate)
365 {
366         uint32_t tmp;
367
368         tmp = readl(NFC_V3_CONFIG2);
369
370         if (activate)
371                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
372         else
373                 tmp |= NFC_V3_CONFIG2_INT_MSK;
374
375         writel(tmp, NFC_V3_CONFIG2);
376 }
377
378 static void irq_control(struct mxc_nand_host *host, int activate)
379 {
380         if (host->devtype_data->irqpending_quirk) {
381                 if (activate)
382                         enable_irq(host->irq);
383                 else
384                         disable_irq_nosync(host->irq);
385         } else {
386                 host->devtype_data->irq_control(host, activate);
387         }
388 }
389
390 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
391 {
392         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
393 }
394
395 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
396 {
397         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
398 }
399
400 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
401 {
402         return readl(NFC_V3_ECC_STATUS_RESULT);
403 }
404
405 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
406 {
407         struct mxc_nand_host *host = dev_id;
408
409         if (!host->devtype_data->check_int(host))
410                 return IRQ_NONE;
411
412         irq_control(host, 0);
413
414         complete(&host->op_completion);
415
416         return IRQ_HANDLED;
417 }
418
419 /* This function polls the NANDFC to wait for the basic operation to
420  * complete by checking the INT bit of config2 register.
421  */
422 static int wait_op_done(struct mxc_nand_host *host, int useirq)
423 {
424         int ret = 0;
425
426         /*
427          * If operation is already complete, don't bother to setup an irq or a
428          * loop.
429          */
430         if (host->devtype_data->check_int(host))
431                 return 0;
432
433         if (useirq) {
434                 unsigned long timeout;
435
436                 reinit_completion(&host->op_completion);
437
438                 irq_control(host, 1);
439
440                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
441                 if (!timeout && !host->devtype_data->check_int(host)) {
442                         dev_dbg(host->dev, "timeout waiting for irq\n");
443                         ret = -ETIMEDOUT;
444                 }
445         } else {
446                 int max_retries = 8000;
447                 int done;
448
449                 do {
450                         udelay(1);
451
452                         done = host->devtype_data->check_int(host);
453                         if (done)
454                                 break;
455
456                 } while (--max_retries);
457
458                 if (!done) {
459                         dev_dbg(host->dev, "timeout polling for completion\n");
460                         ret = -ETIMEDOUT;
461                 }
462         }
463
464         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
465
466         return ret;
467 }
468
469 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
470 {
471         /* fill command */
472         writel(cmd, NFC_V3_FLASH_CMD);
473
474         /* send out command */
475         writel(NFC_CMD, NFC_V3_LAUNCH);
476
477         /* Wait for operation to complete */
478         wait_op_done(host, useirq);
479 }
480
481 /* This function issues the specified command to the NAND device and
482  * waits for completion. */
483 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
484 {
485         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
486
487         writew(cmd, NFC_V1_V2_FLASH_CMD);
488         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
489
490         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
491                 int max_retries = 100;
492                 /* Reset completion is indicated by NFC_CONFIG2 */
493                 /* being set to 0 */
494                 while (max_retries-- > 0) {
495                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
496                                 break;
497                         }
498                         udelay(1);
499                 }
500                 if (max_retries < 0)
501                         pr_debug("%s: RESET failed\n", __func__);
502         } else {
503                 /* Wait for operation to complete */
504                 wait_op_done(host, useirq);
505         }
506 }
507
508 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
509 {
510         /* fill address */
511         writel(addr, NFC_V3_FLASH_ADDR0);
512
513         /* send out address */
514         writel(NFC_ADDR, NFC_V3_LAUNCH);
515
516         wait_op_done(host, 0);
517 }
518
519 /* This function sends an address (or partial address) to the
520  * NAND device. The address is used to select the source/destination for
521  * a NAND command. */
522 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
523 {
524         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
525
526         writew(addr, NFC_V1_V2_FLASH_ADDR);
527         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
528
529         /* Wait for operation to complete */
530         wait_op_done(host, islast);
531 }
532
533 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
534 {
535         struct nand_chip *nand_chip = mtd->priv;
536         struct mxc_nand_host *host = nand_chip->priv;
537         uint32_t tmp;
538
539         tmp = readl(NFC_V3_CONFIG1);
540         tmp &= ~(7 << 4);
541         writel(tmp, NFC_V3_CONFIG1);
542
543         /* transfer data from NFC ram to nand */
544         writel(ops, NFC_V3_LAUNCH);
545
546         wait_op_done(host, false);
547 }
548
549 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
550 {
551         struct nand_chip *nand_chip = mtd->priv;
552         struct mxc_nand_host *host = nand_chip->priv;
553
554         /* NANDFC buffer 0 is used for page read/write */
555         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
556
557         writew(ops, NFC_V1_V2_CONFIG2);
558
559         /* Wait for operation to complete */
560         wait_op_done(host, true);
561 }
562
563 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
564 {
565         struct nand_chip *nand_chip = mtd->priv;
566         struct mxc_nand_host *host = nand_chip->priv;
567         int bufs, i;
568
569         if (mtd->writesize > 512)
570                 bufs = 4;
571         else
572                 bufs = 1;
573
574         for (i = 0; i < bufs; i++) {
575
576                 /* NANDFC buffer 0 is used for page read/write */
577                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
578
579                 writew(ops, NFC_V1_V2_CONFIG2);
580
581                 /* Wait for operation to complete */
582                 wait_op_done(host, true);
583         }
584 }
585
586 static void send_read_id_v3(struct mxc_nand_host *host)
587 {
588         /* Read ID into main buffer */
589         writel(NFC_ID, NFC_V3_LAUNCH);
590
591         wait_op_done(host, true);
592
593         memcpy32_fromio(host->data_buf, host->main_area0, 16);
594 }
595
596 /* Request the NANDFC to perform a read of the NAND device ID. */
597 static void send_read_id_v1_v2(struct mxc_nand_host *host)
598 {
599         /* NANDFC buffer 0 is used for device ID output */
600         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
601
602         writew(NFC_ID, NFC_V1_V2_CONFIG2);
603
604         /* Wait for operation to complete */
605         wait_op_done(host, true);
606
607         memcpy32_fromio(host->data_buf, host->main_area0, 16);
608 }
609
610 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
611 {
612         writew(NFC_STATUS, NFC_V3_LAUNCH);
613         wait_op_done(host, true);
614
615         return readl(NFC_V3_CONFIG1) >> 16;
616 }
617
618 /* This function requests the NANDFC to perform a read of the
619  * NAND device status and returns the current status. */
620 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
621 {
622         void __iomem *main_buf = host->main_area0;
623         uint32_t store;
624         uint16_t ret;
625
626         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
627
628         /*
629          * The device status is stored in main_area0. To
630          * prevent corruption of the buffer save the value
631          * and restore it afterwards.
632          */
633         store = readl(main_buf);
634
635         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
636         wait_op_done(host, true);
637
638         ret = readw(main_buf);
639
640         writel(store, main_buf);
641
642         return ret;
643 }
644
645 /* This functions is used by upper layer to checks if device is ready */
646 static int mxc_nand_dev_ready(struct mtd_info *mtd)
647 {
648         /*
649          * NFC handles R/B internally. Therefore, this function
650          * always returns status as ready.
651          */
652         return 1;
653 }
654
655 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
656 {
657         /*
658          * If HW ECC is enabled, we turn it on during init. There is
659          * no need to enable again here.
660          */
661 }
662
663 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
664                                  u_char *read_ecc, u_char *calc_ecc)
665 {
666         struct nand_chip *nand_chip = mtd->priv;
667         struct mxc_nand_host *host = nand_chip->priv;
668
669         /*
670          * 1-Bit errors are automatically corrected in HW.  No need for
671          * additional correction.  2-Bit errors cannot be corrected by
672          * HW ECC, so we need to return failure
673          */
674         uint16_t ecc_status = get_ecc_status_v1(host);
675
676         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
677                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
678                 return -1;
679         }
680
681         return 0;
682 }
683
684 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
685                                  u_char *read_ecc, u_char *calc_ecc)
686 {
687         struct nand_chip *nand_chip = mtd->priv;
688         struct mxc_nand_host *host = nand_chip->priv;
689         u32 ecc_stat, err;
690         int no_subpages = 1;
691         int ret = 0;
692         u8 ecc_bit_mask, err_limit;
693
694         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
695         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
696
697         no_subpages = mtd->writesize >> 9;
698
699         ecc_stat = host->devtype_data->get_ecc_status(host);
700
701         do {
702                 err = ecc_stat & ecc_bit_mask;
703                 if (err > err_limit) {
704                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
705                         return -1;
706                 } else {
707                         ret += err;
708                 }
709                 ecc_stat >>= 4;
710         } while (--no_subpages);
711
712         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
713
714         return ret;
715 }
716
717 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
718                                   u_char *ecc_code)
719 {
720         return 0;
721 }
722
723 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
724 {
725         struct nand_chip *nand_chip = mtd->priv;
726         struct mxc_nand_host *host = nand_chip->priv;
727         uint8_t ret;
728
729         /* Check for status request */
730         if (host->status_request)
731                 return host->devtype_data->get_dev_status(host) & 0xFF;
732
733         if (nand_chip->options & NAND_BUSWIDTH_16) {
734                 /* only take the lower byte of each word */
735                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
736
737                 host->buf_start += 2;
738         } else {
739                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
740                 host->buf_start++;
741         }
742
743         pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
744         return ret;
745 }
746
747 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
748 {
749         struct nand_chip *nand_chip = mtd->priv;
750         struct mxc_nand_host *host = nand_chip->priv;
751         uint16_t ret;
752
753         ret = *(uint16_t *)(host->data_buf + host->buf_start);
754         host->buf_start += 2;
755
756         return ret;
757 }
758
759 /* Write data of length len to buffer buf. The data to be
760  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
761  * Operation by the NFC, the data is written to NAND Flash */
762 static void mxc_nand_write_buf(struct mtd_info *mtd,
763                                 const u_char *buf, int len)
764 {
765         struct nand_chip *nand_chip = mtd->priv;
766         struct mxc_nand_host *host = nand_chip->priv;
767         u16 col = host->buf_start;
768         int n = mtd->oobsize + mtd->writesize - col;
769
770         n = min(n, len);
771
772         memcpy(host->data_buf + col, buf, n);
773
774         host->buf_start += n;
775 }
776
777 /* Read the data buffer from the NAND Flash. To read the data from NAND
778  * Flash first the data output cycle is initiated by the NFC, which copies
779  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
780  */
781 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
782 {
783         struct nand_chip *nand_chip = mtd->priv;
784         struct mxc_nand_host *host = nand_chip->priv;
785         u16 col = host->buf_start;
786         int n = mtd->oobsize + mtd->writesize - col;
787
788         n = min(n, len);
789
790         memcpy(buf, host->data_buf + col, n);
791
792         host->buf_start += n;
793 }
794
795 /* This function is used by upper layer for select and
796  * deselect of the NAND chip */
797 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
798 {
799         struct nand_chip *nand_chip = mtd->priv;
800         struct mxc_nand_host *host = nand_chip->priv;
801
802         if (chip == -1) {
803                 /* Disable the NFC clock */
804                 if (host->clk_act) {
805                         clk_disable_unprepare(host->clk);
806                         host->clk_act = 0;
807                 }
808                 return;
809         }
810
811         if (!host->clk_act) {
812                 /* Enable the NFC clock */
813                 clk_prepare_enable(host->clk);
814                 host->clk_act = 1;
815         }
816 }
817
818 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
819 {
820         struct nand_chip *nand_chip = mtd->priv;
821         struct mxc_nand_host *host = nand_chip->priv;
822
823         if (chip == -1) {
824                 /* Disable the NFC clock */
825                 if (host->clk_act) {
826                         clk_disable_unprepare(host->clk);
827                         host->clk_act = 0;
828                 }
829                 return;
830         }
831
832         if (!host->clk_act) {
833                 /* Enable the NFC clock */
834                 clk_prepare_enable(host->clk);
835                 host->clk_act = 1;
836         }
837
838         host->active_cs = chip;
839         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
840 }
841
842 /*
843  * The controller splits a page into data chunks of 512 bytes + partial oob.
844  * There are writesize / 512 such chunks, the size of the partial oob parts is
845  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
846  * contains additionally the byte lost by rounding (if any).
847  * This function handles the needed shuffling between host->data_buf (which
848  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
849  * spare) and the NFC buffer.
850  */
851 static void copy_spare(struct mtd_info *mtd, bool bfrom)
852 {
853         struct nand_chip *this = mtd->priv;
854         struct mxc_nand_host *host = this->priv;
855         u16 i, oob_chunk_size;
856         u16 num_chunks = mtd->writesize / 512;
857
858         u8 *d = host->data_buf + mtd->writesize;
859         u8 __iomem *s = host->spare0;
860         u16 sparebuf_size = host->devtype_data->spare_len;
861
862         /* size of oob chunk for all but possibly the last one */
863         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
864
865         if (bfrom) {
866                 for (i = 0; i < num_chunks - 1; i++)
867                         memcpy16_fromio(d + i * oob_chunk_size,
868                                         s + i * sparebuf_size,
869                                         oob_chunk_size);
870
871                 /* the last chunk */
872                 memcpy16_fromio(d + i * oob_chunk_size,
873                                 s + i * sparebuf_size,
874                                 host->used_oobsize - i * oob_chunk_size);
875         } else {
876                 for (i = 0; i < num_chunks - 1; i++)
877                         memcpy16_toio(&s[i * sparebuf_size],
878                                       &d[i * oob_chunk_size],
879                                       oob_chunk_size);
880
881                 /* the last chunk */
882                 memcpy16_toio(&s[i * sparebuf_size],
883                               &d[i * oob_chunk_size],
884                               host->used_oobsize - i * oob_chunk_size);
885         }
886 }
887
888 /*
889  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
890  * the upper layers perform a read/write buf operation, the saved column address
891  * is used to index into the full page. So usually this function is called with
892  * column == 0 (unless no column cycle is needed indicated by column == -1)
893  */
894 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
895 {
896         struct nand_chip *nand_chip = mtd->priv;
897         struct mxc_nand_host *host = nand_chip->priv;
898
899         /* Write out column address, if necessary */
900         if (column != -1) {
901                 host->devtype_data->send_addr(host, column & 0xff,
902                                               page_addr == -1);
903                 if (mtd->writesize > 512)
904                         /* another col addr cycle for 2k page */
905                         host->devtype_data->send_addr(host,
906                                                       (column >> 8) & 0xff,
907                                                       false);
908         }
909
910         /* Write out page address, if necessary */
911         if (page_addr != -1) {
912                 /* paddr_0 - p_addr_7 */
913                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
914
915                 if (mtd->writesize > 512) {
916                         if (mtd->size >= 0x10000000) {
917                                 /* paddr_8 - paddr_15 */
918                                 host->devtype_data->send_addr(host,
919                                                 (page_addr >> 8) & 0xff,
920                                                 false);
921                                 host->devtype_data->send_addr(host,
922                                                 (page_addr >> 16) & 0xff,
923                                                 true);
924                         } else
925                                 /* paddr_8 - paddr_15 */
926                                 host->devtype_data->send_addr(host,
927                                                 (page_addr >> 8) & 0xff, true);
928                 } else {
929                         /* One more address cycle for higher density devices */
930                         if (mtd->size >= 0x4000000) {
931                                 /* paddr_8 - paddr_15 */
932                                 host->devtype_data->send_addr(host,
933                                                 (page_addr >> 8) & 0xff,
934                                                 false);
935                                 host->devtype_data->send_addr(host,
936                                                 (page_addr >> 16) & 0xff,
937                                                 true);
938                         } else
939                                 /* paddr_8 - paddr_15 */
940                                 host->devtype_data->send_addr(host,
941                                                 (page_addr >> 8) & 0xff, true);
942                 }
943         }
944 }
945
946 /*
947  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
948  * on how much oob the nand chip has. For 8bit ecc we need at least
949  * 26 bytes of oob data per 512 byte block.
950  */
951 static int get_eccsize(struct mtd_info *mtd)
952 {
953         int oobbytes_per_512 = 0;
954
955         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
956
957         if (oobbytes_per_512 < 26)
958                 return 4;
959         else
960                 return 8;
961 }
962
963 static void ecc_8bit_layout_4k(struct nand_ecclayout *layout)
964 {
965         int i, j;
966
967         layout->eccbytes = 8*18;
968         for (i = 0; i < 8; i++)
969                 for (j = 0; j < 18; j++)
970                         layout->eccpos[i*18 + j] = i*26 + j + 7;
971
972         layout->oobfree[0].offset = 2;
973         layout->oobfree[0].length = 4;
974         for (i = 1; i < 8; i++) {
975                 layout->oobfree[i].offset = i*26;
976                 layout->oobfree[i].length = 7;
977         }
978 }
979
980 static void preset_v1(struct mtd_info *mtd)
981 {
982         struct nand_chip *nand_chip = mtd->priv;
983         struct mxc_nand_host *host = nand_chip->priv;
984         uint16_t config1 = 0;
985
986         if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
987                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
988
989         if (!host->devtype_data->irqpending_quirk)
990                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
991
992         host->eccsize = 1;
993
994         writew(config1, NFC_V1_V2_CONFIG1);
995         /* preset operation */
996
997         /* Unlock the internal RAM Buffer */
998         writew(0x2, NFC_V1_V2_CONFIG);
999
1000         /* Blocks to be unlocked */
1001         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1002         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1003
1004         /* Unlock Block Command for given address range */
1005         writew(0x4, NFC_V1_V2_WRPROT);
1006 }
1007
1008 static void preset_v2(struct mtd_info *mtd)
1009 {
1010         struct nand_chip *nand_chip = mtd->priv;
1011         struct mxc_nand_host *host = nand_chip->priv;
1012         uint16_t config1 = 0;
1013
1014         config1 |= NFC_V2_CONFIG1_FP_INT;
1015
1016         if (!host->devtype_data->irqpending_quirk)
1017                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1018
1019         if (mtd->writesize) {
1020                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1021
1022                 if (nand_chip->ecc.mode == NAND_ECC_HW)
1023                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1024
1025                 host->eccsize = get_eccsize(mtd);
1026                 if (host->eccsize == 4)
1027                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1028
1029                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1030         } else {
1031                 host->eccsize = 1;
1032         }
1033
1034         writew(config1, NFC_V1_V2_CONFIG1);
1035         /* preset operation */
1036
1037         /* spare area size in 16-bit half-words */
1038         writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1039
1040         /* Unlock the internal RAM Buffer */
1041         writew(0x2, NFC_V1_V2_CONFIG);
1042
1043         /* Blocks to be unlocked */
1044         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1045         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1046         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1047         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1048         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1049         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1050         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1051         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1052
1053         /* Unlock Block Command for given address range */
1054         writew(0x4, NFC_V1_V2_WRPROT);
1055 }
1056
1057 static void preset_v3(struct mtd_info *mtd)
1058 {
1059         struct nand_chip *chip = mtd->priv;
1060         struct mxc_nand_host *host = chip->priv;
1061         uint32_t config2, config3;
1062         int i, addr_phases;
1063
1064         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1065         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1066
1067         /* Unlock the internal RAM Buffer */
1068         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1069                         NFC_V3_WRPROT);
1070
1071         /* Blocks to be unlocked */
1072         for (i = 0; i < NAND_MAX_CHIPS; i++)
1073                 writel(0x0 |    (0xffff << 16),
1074                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1075
1076         writel(0, NFC_V3_IPC);
1077
1078         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1079                 NFC_V3_CONFIG2_2CMD_PHASES |
1080                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1081                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1082                 NFC_V3_CONFIG2_INT_MSK |
1083                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1084
1085         addr_phases = fls(chip->pagemask) >> 3;
1086
1087         if (mtd->writesize == 2048) {
1088                 config2 |= NFC_V3_CONFIG2_PS_2048;
1089                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1090         } else if (mtd->writesize == 4096) {
1091                 config2 |= NFC_V3_CONFIG2_PS_4096;
1092                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1093         } else {
1094                 config2 |= NFC_V3_CONFIG2_PS_512;
1095                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1096         }
1097
1098         if (mtd->writesize) {
1099                 if (chip->ecc.mode == NAND_ECC_HW)
1100                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1101
1102                 config2 |= NFC_V3_CONFIG2_PPB(
1103                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1104                                 host->devtype_data->ppb_shift);
1105                 host->eccsize = get_eccsize(mtd);
1106                 if (host->eccsize == 8)
1107                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1108         }
1109
1110         writel(config2, NFC_V3_CONFIG2);
1111
1112         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1113                         NFC_V3_CONFIG3_NO_SDMA |
1114                         NFC_V3_CONFIG3_RBB_MODE |
1115                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1116                         NFC_V3_CONFIG3_ADD_OP(0);
1117
1118         if (!(chip->options & NAND_BUSWIDTH_16))
1119                 config3 |= NFC_V3_CONFIG3_FW8;
1120
1121         writel(config3, NFC_V3_CONFIG3);
1122
1123         writel(0, NFC_V3_DELAY_LINE);
1124 }
1125
1126 /* Used by the upper layer to write command to NAND Flash for
1127  * different operations to be carried out on NAND Flash */
1128 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1129                                 int column, int page_addr)
1130 {
1131         struct nand_chip *nand_chip = mtd->priv;
1132         struct mxc_nand_host *host = nand_chip->priv;
1133
1134         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1135               command, column, page_addr);
1136
1137         /* Reset command state information */
1138         host->status_request = false;
1139
1140         /* Command pre-processing step */
1141         switch (command) {
1142         case NAND_CMD_RESET:
1143                 host->devtype_data->preset(mtd);
1144                 host->devtype_data->send_cmd(host, command, false);
1145                 break;
1146
1147         case NAND_CMD_STATUS:
1148                 host->buf_start = 0;
1149                 host->status_request = true;
1150
1151                 host->devtype_data->send_cmd(host, command, true);
1152                 WARN_ONCE(column != -1 || page_addr != -1,
1153                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1154                           command, column, page_addr);
1155                 mxc_do_addr_cycle(mtd, column, page_addr);
1156                 break;
1157
1158         case NAND_CMD_READ0:
1159         case NAND_CMD_READOOB:
1160                 if (command == NAND_CMD_READ0)
1161                         host->buf_start = column;
1162                 else
1163                         host->buf_start = column + mtd->writesize;
1164
1165                 command = NAND_CMD_READ0; /* only READ0 is valid */
1166
1167                 host->devtype_data->send_cmd(host, command, false);
1168                 WARN_ONCE(column < 0,
1169                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1170                           command, column, page_addr);
1171                 mxc_do_addr_cycle(mtd, 0, page_addr);
1172
1173                 if (mtd->writesize > 512)
1174                         host->devtype_data->send_cmd(host,
1175                                         NAND_CMD_READSTART, true);
1176
1177                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1178
1179                 memcpy32_fromio(host->data_buf, host->main_area0,
1180                                 mtd->writesize);
1181                 copy_spare(mtd, true);
1182                 break;
1183
1184         case NAND_CMD_SEQIN:
1185                 if (column >= mtd->writesize)
1186                         /* call ourself to read a page */
1187                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1188
1189                 host->buf_start = column;
1190
1191                 host->devtype_data->send_cmd(host, command, false);
1192                 WARN_ONCE(column < -1,
1193                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1194                           command, column, page_addr);
1195                 mxc_do_addr_cycle(mtd, 0, page_addr);
1196                 break;
1197
1198         case NAND_CMD_PAGEPROG:
1199                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1200                 copy_spare(mtd, false);
1201                 host->devtype_data->send_page(mtd, NFC_INPUT);
1202                 host->devtype_data->send_cmd(host, command, true);
1203                 WARN_ONCE(column != -1 || page_addr != -1,
1204                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1205                           command, column, page_addr);
1206                 mxc_do_addr_cycle(mtd, column, page_addr);
1207                 break;
1208
1209         case NAND_CMD_READID:
1210                 host->devtype_data->send_cmd(host, command, true);
1211                 mxc_do_addr_cycle(mtd, column, page_addr);
1212                 host->devtype_data->send_read_id(host);
1213                 host->buf_start = 0;
1214                 break;
1215
1216         case NAND_CMD_ERASE1:
1217         case NAND_CMD_ERASE2:
1218                 host->devtype_data->send_cmd(host, command, false);
1219                 WARN_ONCE(column != -1,
1220                           "Unexpected column value (cmd=%u, col=%d)\n",
1221                           command, column);
1222                 mxc_do_addr_cycle(mtd, column, page_addr);
1223
1224                 break;
1225         case NAND_CMD_PARAM:
1226                 host->devtype_data->send_cmd(host, command, false);
1227                 mxc_do_addr_cycle(mtd, column, page_addr);
1228                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1229                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1230                 host->buf_start = 0;
1231                 break;
1232         default:
1233                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1234                           command);
1235                 break;
1236         }
1237 }
1238
1239 /*
1240  * The generic flash bbt decriptors overlap with our ecc
1241  * hardware, so define some i.MX specific ones.
1242  */
1243 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1244 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1245
1246 static struct nand_bbt_descr bbt_main_descr = {
1247         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1248             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1249         .offs = 0,
1250         .len = 4,
1251         .veroffs = 4,
1252         .maxblocks = 4,
1253         .pattern = bbt_pattern,
1254 };
1255
1256 static struct nand_bbt_descr bbt_mirror_descr = {
1257         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1258             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1259         .offs = 0,
1260         .len = 4,
1261         .veroffs = 4,
1262         .maxblocks = 4,
1263         .pattern = mirror_pattern,
1264 };
1265
1266 /* v1 + irqpending_quirk: i.MX21 */
1267 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1268         .preset = preset_v1,
1269         .send_cmd = send_cmd_v1_v2,
1270         .send_addr = send_addr_v1_v2,
1271         .send_page = send_page_v1,
1272         .send_read_id = send_read_id_v1_v2,
1273         .get_dev_status = get_dev_status_v1_v2,
1274         .check_int = check_int_v1_v2,
1275         .irq_control = irq_control_v1_v2,
1276         .get_ecc_status = get_ecc_status_v1,
1277         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1278         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1279         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1280         .select_chip = mxc_nand_select_chip_v1_v3,
1281         .correct_data = mxc_nand_correct_data_v1,
1282         .irqpending_quirk = 1,
1283         .needs_ip = 0,
1284         .regs_offset = 0xe00,
1285         .spare0_offset = 0x800,
1286         .spare_len = 16,
1287         .eccbytes = 3,
1288         .eccsize = 1,
1289 };
1290
1291 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1292 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1293         .preset = preset_v1,
1294         .send_cmd = send_cmd_v1_v2,
1295         .send_addr = send_addr_v1_v2,
1296         .send_page = send_page_v1,
1297         .send_read_id = send_read_id_v1_v2,
1298         .get_dev_status = get_dev_status_v1_v2,
1299         .check_int = check_int_v1_v2,
1300         .irq_control = irq_control_v1_v2,
1301         .get_ecc_status = get_ecc_status_v1,
1302         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1303         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1304         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1305         .select_chip = mxc_nand_select_chip_v1_v3,
1306         .correct_data = mxc_nand_correct_data_v1,
1307         .irqpending_quirk = 0,
1308         .needs_ip = 0,
1309         .regs_offset = 0xe00,
1310         .spare0_offset = 0x800,
1311         .axi_offset = 0,
1312         .spare_len = 16,
1313         .eccbytes = 3,
1314         .eccsize = 1,
1315 };
1316
1317 /* v21: i.MX25, i.MX35 */
1318 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1319         .preset = preset_v2,
1320         .send_cmd = send_cmd_v1_v2,
1321         .send_addr = send_addr_v1_v2,
1322         .send_page = send_page_v2,
1323         .send_read_id = send_read_id_v1_v2,
1324         .get_dev_status = get_dev_status_v1_v2,
1325         .check_int = check_int_v1_v2,
1326         .irq_control = irq_control_v1_v2,
1327         .get_ecc_status = get_ecc_status_v2,
1328         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1329         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1330         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1331         .select_chip = mxc_nand_select_chip_v2,
1332         .correct_data = mxc_nand_correct_data_v2_v3,
1333         .irqpending_quirk = 0,
1334         .needs_ip = 0,
1335         .regs_offset = 0x1e00,
1336         .spare0_offset = 0x1000,
1337         .axi_offset = 0,
1338         .spare_len = 64,
1339         .eccbytes = 9,
1340         .eccsize = 0,
1341 };
1342
1343 /* v3.2a: i.MX51 */
1344 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1345         .preset = preset_v3,
1346         .send_cmd = send_cmd_v3,
1347         .send_addr = send_addr_v3,
1348         .send_page = send_page_v3,
1349         .send_read_id = send_read_id_v3,
1350         .get_dev_status = get_dev_status_v3,
1351         .check_int = check_int_v3,
1352         .irq_control = irq_control_v3,
1353         .get_ecc_status = get_ecc_status_v3,
1354         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1355         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1356         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1357         .select_chip = mxc_nand_select_chip_v1_v3,
1358         .correct_data = mxc_nand_correct_data_v2_v3,
1359         .irqpending_quirk = 0,
1360         .needs_ip = 1,
1361         .regs_offset = 0,
1362         .spare0_offset = 0x1000,
1363         .axi_offset = 0x1e00,
1364         .spare_len = 64,
1365         .eccbytes = 0,
1366         .eccsize = 0,
1367         .ppb_shift = 7,
1368 };
1369
1370 /* v3.2b: i.MX53 */
1371 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1372         .preset = preset_v3,
1373         .send_cmd = send_cmd_v3,
1374         .send_addr = send_addr_v3,
1375         .send_page = send_page_v3,
1376         .send_read_id = send_read_id_v3,
1377         .get_dev_status = get_dev_status_v3,
1378         .check_int = check_int_v3,
1379         .irq_control = irq_control_v3,
1380         .get_ecc_status = get_ecc_status_v3,
1381         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1382         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1383         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1384         .select_chip = mxc_nand_select_chip_v1_v3,
1385         .correct_data = mxc_nand_correct_data_v2_v3,
1386         .irqpending_quirk = 0,
1387         .needs_ip = 1,
1388         .regs_offset = 0,
1389         .spare0_offset = 0x1000,
1390         .axi_offset = 0x1e00,
1391         .spare_len = 64,
1392         .eccbytes = 0,
1393         .eccsize = 0,
1394         .ppb_shift = 8,
1395 };
1396
1397 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1398 {
1399         return host->devtype_data == &imx21_nand_devtype_data;
1400 }
1401
1402 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1403 {
1404         return host->devtype_data == &imx27_nand_devtype_data;
1405 }
1406
1407 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1408 {
1409         return host->devtype_data == &imx25_nand_devtype_data;
1410 }
1411
1412 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1413 {
1414         return host->devtype_data == &imx51_nand_devtype_data;
1415 }
1416
1417 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1418 {
1419         return host->devtype_data == &imx53_nand_devtype_data;
1420 }
1421
1422 static const struct platform_device_id mxcnd_devtype[] = {
1423         {
1424                 .name = "imx21-nand",
1425                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1426         }, {
1427                 .name = "imx27-nand",
1428                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1429         }, {
1430                 .name = "imx25-nand",
1431                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1432         }, {
1433                 .name = "imx51-nand",
1434                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1435         }, {
1436                 .name = "imx53-nand",
1437                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1438         }, {
1439                 /* sentinel */
1440         }
1441 };
1442 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1443
1444 #ifdef CONFIG_OF_MTD
1445 static const struct of_device_id mxcnd_dt_ids[] = {
1446         {
1447                 .compatible = "fsl,imx21-nand",
1448                 .data = &imx21_nand_devtype_data,
1449         }, {
1450                 .compatible = "fsl,imx27-nand",
1451                 .data = &imx27_nand_devtype_data,
1452         }, {
1453                 .compatible = "fsl,imx25-nand",
1454                 .data = &imx25_nand_devtype_data,
1455         }, {
1456                 .compatible = "fsl,imx51-nand",
1457                 .data = &imx51_nand_devtype_data,
1458         }, {
1459                 .compatible = "fsl,imx53-nand",
1460                 .data = &imx53_nand_devtype_data,
1461         },
1462         { /* sentinel */ }
1463 };
1464 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1465
1466 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1467 {
1468         struct device_node *np = host->dev->of_node;
1469         struct mxc_nand_platform_data *pdata = &host->pdata;
1470         const struct of_device_id *of_id =
1471                 of_match_device(mxcnd_dt_ids, host->dev);
1472         int buswidth;
1473
1474         if (!np)
1475                 return 1;
1476
1477         if (of_get_nand_ecc_mode(np) >= 0)
1478                 pdata->hw_ecc = 1;
1479
1480         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1481
1482         buswidth = of_get_nand_bus_width(np);
1483         if (buswidth < 0)
1484                 return buswidth;
1485
1486         pdata->width = buswidth / 8;
1487
1488         host->devtype_data = of_id->data;
1489
1490         return 0;
1491 }
1492 #else
1493 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1494 {
1495         return 1;
1496 }
1497 #endif
1498
1499 static int mxcnd_probe(struct platform_device *pdev)
1500 {
1501         struct nand_chip *this;
1502         struct mtd_info *mtd;
1503         struct mxc_nand_host *host;
1504         struct resource *res;
1505         int err = 0;
1506
1507         /* Allocate memory for MTD device structure and private data */
1508         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1509                         GFP_KERNEL);
1510         if (!host)
1511                 return -ENOMEM;
1512
1513         /* allocate a temporary buffer for the nand_scan_ident() */
1514         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1515         if (!host->data_buf)
1516                 return -ENOMEM;
1517
1518         host->dev = &pdev->dev;
1519         /* structures must be linked */
1520         this = &host->nand;
1521         mtd = &host->mtd;
1522         mtd->priv = this;
1523         mtd->dev.parent = &pdev->dev;
1524         mtd->name = DRIVER_NAME;
1525
1526         /* 50 us command delay time */
1527         this->chip_delay = 5;
1528
1529         this->priv = host;
1530         this->dev_ready = mxc_nand_dev_ready;
1531         this->cmdfunc = mxc_nand_command;
1532         this->read_byte = mxc_nand_read_byte;
1533         this->read_word = mxc_nand_read_word;
1534         this->write_buf = mxc_nand_write_buf;
1535         this->read_buf = mxc_nand_read_buf;
1536
1537         host->clk = devm_clk_get(&pdev->dev, NULL);
1538         if (IS_ERR(host->clk))
1539                 return PTR_ERR(host->clk);
1540
1541         err = mxcnd_probe_dt(host);
1542         if (err > 0) {
1543                 struct mxc_nand_platform_data *pdata =
1544                                         dev_get_platdata(&pdev->dev);
1545                 if (pdata) {
1546                         host->pdata = *pdata;
1547                         host->devtype_data = (struct mxc_nand_devtype_data *)
1548                                                 pdev->id_entry->driver_data;
1549                 } else {
1550                         err = -ENODEV;
1551                 }
1552         }
1553         if (err < 0)
1554                 return err;
1555
1556         if (host->devtype_data->needs_ip) {
1557                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1558                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1559                 if (IS_ERR(host->regs_ip))
1560                         return PTR_ERR(host->regs_ip);
1561
1562                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1563         } else {
1564                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1565         }
1566
1567         host->base = devm_ioremap_resource(&pdev->dev, res);
1568         if (IS_ERR(host->base))
1569                 return PTR_ERR(host->base);
1570
1571         host->main_area0 = host->base;
1572
1573         if (host->devtype_data->regs_offset)
1574                 host->regs = host->base + host->devtype_data->regs_offset;
1575         host->spare0 = host->base + host->devtype_data->spare0_offset;
1576         if (host->devtype_data->axi_offset)
1577                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1578
1579         this->ecc.bytes = host->devtype_data->eccbytes;
1580         host->eccsize = host->devtype_data->eccsize;
1581
1582         this->select_chip = host->devtype_data->select_chip;
1583         this->ecc.size = 512;
1584         this->ecc.layout = host->devtype_data->ecclayout_512;
1585
1586         if (host->pdata.hw_ecc) {
1587                 this->ecc.calculate = mxc_nand_calculate_ecc;
1588                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1589                 this->ecc.correct = host->devtype_data->correct_data;
1590                 this->ecc.mode = NAND_ECC_HW;
1591         } else {
1592                 this->ecc.mode = NAND_ECC_SOFT;
1593         }
1594
1595         /* NAND bus width determines access functions used by upper layer */
1596         if (host->pdata.width == 2)
1597                 this->options |= NAND_BUSWIDTH_16;
1598
1599         if (host->pdata.flash_bbt) {
1600                 this->bbt_td = &bbt_main_descr;
1601                 this->bbt_md = &bbt_mirror_descr;
1602                 /* update flash based bbt */
1603                 this->bbt_options |= NAND_BBT_USE_FLASH;
1604         }
1605
1606         init_completion(&host->op_completion);
1607
1608         host->irq = platform_get_irq(pdev, 0);
1609         if (host->irq < 0)
1610                 return host->irq;
1611
1612         /*
1613          * Use host->devtype_data->irq_control() here instead of irq_control()
1614          * because we must not disable_irq_nosync without having requested the
1615          * irq.
1616          */
1617         host->devtype_data->irq_control(host, 0);
1618
1619         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1620                         0, DRIVER_NAME, host);
1621         if (err)
1622                 return err;
1623
1624         err = clk_prepare_enable(host->clk);
1625         if (err)
1626                 return err;
1627         host->clk_act = 1;
1628
1629         /*
1630          * Now that we "own" the interrupt make sure the interrupt mask bit is
1631          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1632          * on this machine.
1633          */
1634         if (host->devtype_data->irqpending_quirk) {
1635                 disable_irq_nosync(host->irq);
1636                 host->devtype_data->irq_control(host, 1);
1637         }
1638
1639         /* first scan to find the device and get the page size */
1640         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1641                 err = -ENXIO;
1642                 goto escan;
1643         }
1644
1645         /* allocate the right size buffer now */
1646         devm_kfree(&pdev->dev, (void *)host->data_buf);
1647         host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1648                                         GFP_KERNEL);
1649         if (!host->data_buf) {
1650                 err = -ENOMEM;
1651                 goto escan;
1652         }
1653
1654         /* Call preset again, with correct writesize this time */
1655         host->devtype_data->preset(mtd);
1656
1657         if (mtd->writesize == 2048)
1658                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1659         else if (mtd->writesize == 4096) {
1660                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1661                 if (get_eccsize(mtd) == 8)
1662                         ecc_8bit_layout_4k(this->ecc.layout);
1663         }
1664
1665         /*
1666          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1667          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1668          * into copying invalid data to/from the spare IO buffer, as this
1669          * might cause ECC data corruption when doing sub-page write to a
1670          * partially written page.
1671          */
1672         host->used_oobsize = min(mtd->oobsize, 218U);
1673
1674         if (this->ecc.mode == NAND_ECC_HW) {
1675                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1676                         this->ecc.strength = 1;
1677                 else
1678                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1679         }
1680
1681         /* second phase scan */
1682         if (nand_scan_tail(mtd)) {
1683                 err = -ENXIO;
1684                 goto escan;
1685         }
1686
1687         /* Register the partitions */
1688         mtd_device_parse_register(mtd, part_probes,
1689                         &(struct mtd_part_parser_data){
1690                                 .of_node = pdev->dev.of_node,
1691                         },
1692                         host->pdata.parts,
1693                         host->pdata.nr_parts);
1694
1695         platform_set_drvdata(pdev, host);
1696
1697         return 0;
1698
1699 escan:
1700         if (host->clk_act)
1701                 clk_disable_unprepare(host->clk);
1702
1703         return err;
1704 }
1705
1706 static int mxcnd_remove(struct platform_device *pdev)
1707 {
1708         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1709
1710         nand_release(&host->mtd);
1711         if (host->clk_act)
1712                 clk_disable_unprepare(host->clk);
1713
1714         return 0;
1715 }
1716
1717 static struct platform_driver mxcnd_driver = {
1718         .driver = {
1719                    .name = DRIVER_NAME,
1720                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1721         },
1722         .id_table = mxcnd_devtype,
1723         .probe = mxcnd_probe,
1724         .remove = mxcnd_remove,
1725 };
1726 module_platform_driver(mxcnd_driver);
1727
1728 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1729 MODULE_DESCRIPTION("MXC NAND MTD driver");
1730 MODULE_LICENSE("GPL");