GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / mtd / nand / ecc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Generic Error-Correcting Code (ECC) engine
4  *
5  * Copyright (C) 2019 Macronix
6  * Author:
7  *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8  *
9  *
10  * This file describes the abstraction of any NAND ECC engine. It has been
11  * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12  *
13  * There are three main situations where instantiating this ECC engine makes
14  * sense:
15  *   - external: The ECC engine is outside the NAND pipeline, typically this
16  *               is a software ECC engine, or an hardware engine that is
17  *               outside the NAND controller pipeline.
18  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19  *                controller's side. This is the case of most of the raw NAND
20  *                controllers. In the pipeline case, the ECC bytes are
21  *                generated/data corrected on the fly when a page is
22  *                written/read.
23  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24  *            Some NAND chips can correct themselves the data.
25  *
26  * Besides the initial setup and final cleanups, the interfaces are rather
27  * simple:
28  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29  *              the I/O request type. In case of software correction or external
30  *              engine, this step may involve to derive the ECC bytes and place
31  *              them in the OOB area before a write.
32  *   - finish: Finish an I/O request. Correct the data in case of a read
33  *             request and report the number of corrected bits/uncorrectable
34  *             errors. Most likely empty for write operations, unless you have
35  *             hardware specific stuff to do, like shutting down the engine to
36  *             save power.
37  *
38  * The I/O request should be enclosed in a prepare()/finish() pair of calls
39  * and will behave differently depending on the requested I/O type:
40  *   - raw: Correction disabled
41  *   - ecc: Correction enabled
42  *
43  * The request direction is impacting the logic as well:
44  *   - read: Load data from the NAND chip
45  *   - write: Store data in the NAND chip
46  *
47  * Mixing all this combinations together gives the following behavior.
48  * Those are just examples, drivers are free to add custom steps in their
49  * prepare/finish hook.
50  *
51  * [external ECC engine]
52  *   - external + prepare + raw + read: do nothing
53  *   - external + finish  + raw + read: do nothing
54  *   - external + prepare + raw + write: do nothing
55  *   - external + finish  + raw + write: do nothing
56  *   - external + prepare + ecc + read: do nothing
57  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58  *                                      ECC bytes from OOB buffer, correct
59  *                                      and report any bitflip/error
60  *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61  *                                       the right place in the OOB buffer based
62  *                                       on the OOB layout
63  *   - external + finish  + ecc + write: do nothing
64  *
65  * [pipelined ECC engine]
66  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67  *                                       activated
68  *   - pipelined + finish  + raw + read: do nothing
69  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70  *                                        activated
71  *   - pipelined + finish  + raw + write: do nothing
72  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73  *                                       deactivated
74  *   - pipelined + finish  + ecc + read: check the status, report any
75  *                                       error/bitflip
76  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77  *                                        deactivated
78  *   - pipelined + finish  + ecc + write: do nothing
79  *
80  * [ondie ECC engine]
81  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82  *                                   engine if activated
83  *   - ondie + finish  + raw + read: do nothing
84  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85  *                                    engine if activated
86  *   - ondie + finish  + raw + write: do nothing
87  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88  *                                   engine if deactivated
89  *   - ondie + finish  + ecc + read: send commands to check the status, report
90  *                                   any error/bitflip
91  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92  *                                    engine if deactivated
93  *   - ondie + finish  + ecc + write: do nothing
94  */
95
96 #include <linux/module.h>
97 #include <linux/mtd/nand.h>
98 #include <linux/slab.h>
99 #include <linux/of.h>
100 #include <linux/of_device.h>
101 #include <linux/of_platform.h>
102
103 static LIST_HEAD(on_host_hw_engines);
104 static DEFINE_MUTEX(on_host_hw_engines_mutex);
105
106 /**
107  * nand_ecc_init_ctx - Init the ECC engine context
108  * @nand: the NAND device
109  *
110  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
111  */
112 int nand_ecc_init_ctx(struct nand_device *nand)
113 {
114         if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx)
115                 return 0;
116
117         return nand->ecc.engine->ops->init_ctx(nand);
118 }
119 EXPORT_SYMBOL(nand_ecc_init_ctx);
120
121 /**
122  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
123  * @nand: the NAND device
124  */
125 void nand_ecc_cleanup_ctx(struct nand_device *nand)
126 {
127         if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx)
128                 nand->ecc.engine->ops->cleanup_ctx(nand);
129 }
130 EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
131
132 /**
133  * nand_ecc_prepare_io_req - Prepare an I/O request
134  * @nand: the NAND device
135  * @req: the I/O request
136  */
137 int nand_ecc_prepare_io_req(struct nand_device *nand,
138                             struct nand_page_io_req *req)
139 {
140         if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req)
141                 return 0;
142
143         return nand->ecc.engine->ops->prepare_io_req(nand, req);
144 }
145 EXPORT_SYMBOL(nand_ecc_prepare_io_req);
146
147 /**
148  * nand_ecc_finish_io_req - Finish an I/O request
149  * @nand: the NAND device
150  * @req: the I/O request
151  */
152 int nand_ecc_finish_io_req(struct nand_device *nand,
153                            struct nand_page_io_req *req)
154 {
155         if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req)
156                 return 0;
157
158         return nand->ecc.engine->ops->finish_io_req(nand, req);
159 }
160 EXPORT_SYMBOL(nand_ecc_finish_io_req);
161
162 /* Define default OOB placement schemes for large and small page devices */
163 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
164                                  struct mtd_oob_region *oobregion)
165 {
166         struct nand_device *nand = mtd_to_nanddev(mtd);
167         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
168
169         if (section > 1)
170                 return -ERANGE;
171
172         if (!section) {
173                 oobregion->offset = 0;
174                 if (mtd->oobsize == 16)
175                         oobregion->length = 4;
176                 else
177                         oobregion->length = 3;
178         } else {
179                 if (mtd->oobsize == 8)
180                         return -ERANGE;
181
182                 oobregion->offset = 6;
183                 oobregion->length = total_ecc_bytes - 4;
184         }
185
186         return 0;
187 }
188
189 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
190                                   struct mtd_oob_region *oobregion)
191 {
192         if (section > 1)
193                 return -ERANGE;
194
195         if (mtd->oobsize == 16) {
196                 if (section)
197                         return -ERANGE;
198
199                 oobregion->length = 8;
200                 oobregion->offset = 8;
201         } else {
202                 oobregion->length = 2;
203                 if (!section)
204                         oobregion->offset = 3;
205                 else
206                         oobregion->offset = 6;
207         }
208
209         return 0;
210 }
211
212 static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
213         .ecc = nand_ooblayout_ecc_sp,
214         .free = nand_ooblayout_free_sp,
215 };
216
217 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
218 {
219         return &nand_ooblayout_sp_ops;
220 }
221 EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
222
223 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
224                                  struct mtd_oob_region *oobregion)
225 {
226         struct nand_device *nand = mtd_to_nanddev(mtd);
227         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
228
229         if (section || !total_ecc_bytes)
230                 return -ERANGE;
231
232         oobregion->length = total_ecc_bytes;
233         oobregion->offset = mtd->oobsize - oobregion->length;
234
235         return 0;
236 }
237
238 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
239                                   struct mtd_oob_region *oobregion)
240 {
241         struct nand_device *nand = mtd_to_nanddev(mtd);
242         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
243
244         if (section)
245                 return -ERANGE;
246
247         oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
248         oobregion->offset = 2;
249
250         return 0;
251 }
252
253 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
254         .ecc = nand_ooblayout_ecc_lp,
255         .free = nand_ooblayout_free_lp,
256 };
257
258 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
259 {
260         return &nand_ooblayout_lp_ops;
261 }
262 EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
263
264 /*
265  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
266  * are placed at a fixed offset.
267  */
268 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
269                                          struct mtd_oob_region *oobregion)
270 {
271         struct nand_device *nand = mtd_to_nanddev(mtd);
272         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
273
274         if (section)
275                 return -ERANGE;
276
277         switch (mtd->oobsize) {
278         case 64:
279                 oobregion->offset = 40;
280                 break;
281         case 128:
282                 oobregion->offset = 80;
283                 break;
284         default:
285                 return -EINVAL;
286         }
287
288         oobregion->length = total_ecc_bytes;
289         if (oobregion->offset + oobregion->length > mtd->oobsize)
290                 return -ERANGE;
291
292         return 0;
293 }
294
295 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
296                                           struct mtd_oob_region *oobregion)
297 {
298         struct nand_device *nand = mtd_to_nanddev(mtd);
299         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
300         int ecc_offset = 0;
301
302         if (section < 0 || section > 1)
303                 return -ERANGE;
304
305         switch (mtd->oobsize) {
306         case 64:
307                 ecc_offset = 40;
308                 break;
309         case 128:
310                 ecc_offset = 80;
311                 break;
312         default:
313                 return -EINVAL;
314         }
315
316         if (section == 0) {
317                 oobregion->offset = 2;
318                 oobregion->length = ecc_offset - 2;
319         } else {
320                 oobregion->offset = ecc_offset + total_ecc_bytes;
321                 oobregion->length = mtd->oobsize - oobregion->offset;
322         }
323
324         return 0;
325 }
326
327 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
328         .ecc = nand_ooblayout_ecc_lp_hamming,
329         .free = nand_ooblayout_free_lp_hamming,
330 };
331
332 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
333 {
334         return &nand_ooblayout_lp_hamming_ops;
335 }
336 EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
337
338 static enum nand_ecc_engine_type
339 of_get_nand_ecc_engine_type(struct device_node *np)
340 {
341         struct device_node *eng_np;
342
343         if (of_property_read_bool(np, "nand-no-ecc-engine"))
344                 return NAND_ECC_ENGINE_TYPE_NONE;
345
346         if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
347                 return NAND_ECC_ENGINE_TYPE_SOFT;
348
349         eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
350         of_node_put(eng_np);
351
352         if (eng_np) {
353                 if (eng_np == np)
354                         return NAND_ECC_ENGINE_TYPE_ON_DIE;
355                 else
356                         return NAND_ECC_ENGINE_TYPE_ON_HOST;
357         }
358
359         return NAND_ECC_ENGINE_TYPE_INVALID;
360 }
361
362 static const char * const nand_ecc_placement[] = {
363         [NAND_ECC_PLACEMENT_OOB] = "oob",
364         [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
365 };
366
367 static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
368 {
369         enum nand_ecc_placement placement;
370         const char *pm;
371         int err;
372
373         err = of_property_read_string(np, "nand-ecc-placement", &pm);
374         if (!err) {
375                 for (placement = NAND_ECC_PLACEMENT_OOB;
376                      placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
377                         if (!strcasecmp(pm, nand_ecc_placement[placement]))
378                                 return placement;
379                 }
380         }
381
382         return NAND_ECC_PLACEMENT_UNKNOWN;
383 }
384
385 static const char * const nand_ecc_algos[] = {
386         [NAND_ECC_ALGO_HAMMING] = "hamming",
387         [NAND_ECC_ALGO_BCH] = "bch",
388         [NAND_ECC_ALGO_RS] = "rs",
389 };
390
391 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
392 {
393         enum nand_ecc_algo ecc_algo;
394         const char *pm;
395         int err;
396
397         err = of_property_read_string(np, "nand-ecc-algo", &pm);
398         if (!err) {
399                 for (ecc_algo = NAND_ECC_ALGO_HAMMING;
400                      ecc_algo < ARRAY_SIZE(nand_ecc_algos);
401                      ecc_algo++) {
402                         if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
403                                 return ecc_algo;
404                 }
405         }
406
407         return NAND_ECC_ALGO_UNKNOWN;
408 }
409
410 static int of_get_nand_ecc_step_size(struct device_node *np)
411 {
412         int ret;
413         u32 val;
414
415         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
416         return ret ? ret : val;
417 }
418
419 static int of_get_nand_ecc_strength(struct device_node *np)
420 {
421         int ret;
422         u32 val;
423
424         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
425         return ret ? ret : val;
426 }
427
428 void of_get_nand_ecc_user_config(struct nand_device *nand)
429 {
430         struct device_node *dn = nanddev_get_of_node(nand);
431         int strength, size;
432
433         nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
434         nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
435         nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
436
437         strength = of_get_nand_ecc_strength(dn);
438         if (strength >= 0)
439                 nand->ecc.user_conf.strength = strength;
440
441         size = of_get_nand_ecc_step_size(dn);
442         if (size >= 0)
443                 nand->ecc.user_conf.step_size = size;
444
445         if (of_property_read_bool(dn, "nand-ecc-maximize"))
446                 nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
447 }
448 EXPORT_SYMBOL(of_get_nand_ecc_user_config);
449
450 /**
451  * nand_ecc_is_strong_enough - Check if the chip configuration meets the
452  *                             datasheet requirements.
453  *
454  * @nand: Device to check
455  *
456  * If our configuration corrects A bits per B bytes and the minimum
457  * required correction level is X bits per Y bytes, then we must ensure
458  * both of the following are true:
459  *
460  * (1) A / B >= X / Y
461  * (2) A >= X
462  *
463  * Requirement (1) ensures we can correct for the required bitflip density.
464  * Requirement (2) ensures we can correct even when all bitflips are clumped
465  * in the same sector.
466  */
467 bool nand_ecc_is_strong_enough(struct nand_device *nand)
468 {
469         const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
470         const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
471         struct mtd_info *mtd = nanddev_to_mtd(nand);
472         int corr, ds_corr;
473
474         if (conf->step_size == 0 || reqs->step_size == 0)
475                 /* Not enough information */
476                 return true;
477
478         /*
479          * We get the number of corrected bits per page to compare
480          * the correction density.
481          */
482         corr = (mtd->writesize * conf->strength) / conf->step_size;
483         ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
484
485         return corr >= ds_corr && conf->strength >= reqs->strength;
486 }
487 EXPORT_SYMBOL(nand_ecc_is_strong_enough);
488
489 /* ECC engine driver internal helpers */
490 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
491                                struct nand_device *nand)
492 {
493         unsigned int total_buffer_size;
494
495         ctx->nand = nand;
496
497         /* Let the user decide the exact length of each buffer */
498         if (!ctx->page_buffer_size)
499                 ctx->page_buffer_size = nanddev_page_size(nand);
500         if (!ctx->oob_buffer_size)
501                 ctx->oob_buffer_size = nanddev_per_page_oobsize(nand);
502
503         total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size;
504
505         ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL);
506         if (!ctx->spare_databuf)
507                 return -ENOMEM;
508
509         ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size;
510
511         return 0;
512 }
513 EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking);
514
515 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx)
516 {
517         kfree(ctx->spare_databuf);
518 }
519 EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking);
520
521 /*
522  * Ensure data and OOB area is fully read/written otherwise the correction might
523  * not work as expected.
524  */
525 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
526                         struct nand_page_io_req *req)
527 {
528         struct nand_device *nand = ctx->nand;
529         struct nand_page_io_req *orig, *tweak;
530
531         /* Save the original request */
532         ctx->orig_req = *req;
533         ctx->bounce_data = false;
534         ctx->bounce_oob = false;
535         orig = &ctx->orig_req;
536         tweak = req;
537
538         /* Ensure the request covers the entire page */
539         if (orig->datalen < nanddev_page_size(nand)) {
540                 ctx->bounce_data = true;
541                 tweak->dataoffs = 0;
542                 tweak->datalen = nanddev_page_size(nand);
543                 tweak->databuf.in = ctx->spare_databuf;
544                 memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size);
545         }
546
547         if (orig->ooblen < nanddev_per_page_oobsize(nand)) {
548                 ctx->bounce_oob = true;
549                 tweak->ooboffs = 0;
550                 tweak->ooblen = nanddev_per_page_oobsize(nand);
551                 tweak->oobbuf.in = ctx->spare_oobbuf;
552                 memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
553         }
554
555         /* Copy the data that must be writen in the bounce buffers, if needed */
556         if (orig->type == NAND_PAGE_WRITE) {
557                 if (ctx->bounce_data)
558                         memcpy((void *)tweak->databuf.out + orig->dataoffs,
559                                orig->databuf.out, orig->datalen);
560
561                 if (ctx->bounce_oob)
562                         memcpy((void *)tweak->oobbuf.out + orig->ooboffs,
563                                orig->oobbuf.out, orig->ooblen);
564         }
565 }
566 EXPORT_SYMBOL_GPL(nand_ecc_tweak_req);
567
568 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
569                           struct nand_page_io_req *req)
570 {
571         struct nand_page_io_req *orig, *tweak;
572
573         orig = &ctx->orig_req;
574         tweak = req;
575
576         /* Restore the data read from the bounce buffers, if needed */
577         if (orig->type == NAND_PAGE_READ) {
578                 if (ctx->bounce_data)
579                         memcpy(orig->databuf.in,
580                                tweak->databuf.in + orig->dataoffs,
581                                orig->datalen);
582
583                 if (ctx->bounce_oob)
584                         memcpy(orig->oobbuf.in,
585                                tweak->oobbuf.in + orig->ooboffs,
586                                orig->ooblen);
587         }
588
589         /* Ensure the original request is restored */
590         *req = *orig;
591 }
592 EXPORT_SYMBOL_GPL(nand_ecc_restore_req);
593
594 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand)
595 {
596         unsigned int algo = nand->ecc.user_conf.algo;
597
598         if (algo == NAND_ECC_ALGO_UNKNOWN)
599                 algo = nand->ecc.defaults.algo;
600
601         switch (algo) {
602         case NAND_ECC_ALGO_HAMMING:
603                 return nand_ecc_sw_hamming_get_engine();
604         case NAND_ECC_ALGO_BCH:
605                 return nand_ecc_sw_bch_get_engine();
606         default:
607                 break;
608         }
609
610         return NULL;
611 }
612 EXPORT_SYMBOL(nand_ecc_get_sw_engine);
613
614 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand)
615 {
616         return nand->ecc.ondie_engine;
617 }
618 EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine);
619
620 int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
621 {
622         struct nand_ecc_engine *item;
623
624         if (!engine)
625                 return -EINVAL;
626
627         /* Prevent multiple registrations of one engine */
628         list_for_each_entry(item, &on_host_hw_engines, node)
629                 if (item == engine)
630                         return 0;
631
632         mutex_lock(&on_host_hw_engines_mutex);
633         list_add_tail(&engine->node, &on_host_hw_engines);
634         mutex_unlock(&on_host_hw_engines_mutex);
635
636         return 0;
637 }
638 EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine);
639
640 int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
641 {
642         if (!engine)
643                 return -EINVAL;
644
645         mutex_lock(&on_host_hw_engines_mutex);
646         list_del(&engine->node);
647         mutex_unlock(&on_host_hw_engines_mutex);
648
649         return 0;
650 }
651 EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine);
652
653 static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev)
654 {
655         struct nand_ecc_engine *item;
656
657         list_for_each_entry(item, &on_host_hw_engines, node)
658                 if (item->dev == dev)
659                         return item;
660
661         return NULL;
662 }
663
664 struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand)
665 {
666         struct nand_ecc_engine *engine = NULL;
667         struct device *dev = &nand->mtd.dev;
668         struct platform_device *pdev;
669         struct device_node *np;
670
671         if (list_empty(&on_host_hw_engines))
672                 return NULL;
673
674         /* Check for an explicit nand-ecc-engine property */
675         np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0);
676         if (np) {
677                 pdev = of_find_device_by_node(np);
678                 if (!pdev)
679                         return ERR_PTR(-EPROBE_DEFER);
680
681                 engine = nand_ecc_match_on_host_hw_engine(&pdev->dev);
682                 platform_device_put(pdev);
683                 of_node_put(np);
684
685                 if (!engine)
686                         return ERR_PTR(-EPROBE_DEFER);
687         }
688
689         if (engine)
690                 get_device(engine->dev);
691
692         return engine;
693 }
694 EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine);
695
696 void nand_ecc_put_on_host_hw_engine(struct nand_device *nand)
697 {
698         put_device(nand->ecc.engine->dev);
699 }
700 EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine);
701
702 /*
703  * In the case of a pipelined engine, the device registering the ECC
704  * engine is not necessarily the ECC engine itself but may be a host controller.
705  * It is then useful to provide a helper to retrieve the right device object
706  * which actually represents the ECC engine.
707  */
708 struct device *nand_ecc_get_engine_dev(struct device *host)
709 {
710         struct platform_device *ecc_pdev;
711         struct device_node *np;
712
713         /*
714          * If the device node contains this property, it means we need to follow
715          * it in order to get the right ECC engine device we are looking for.
716          */
717         np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0);
718         if (!np)
719                 return host;
720
721         ecc_pdev = of_find_device_by_node(np);
722         if (!ecc_pdev) {
723                 of_node_put(np);
724                 return NULL;
725         }
726
727         platform_device_put(ecc_pdev);
728         of_node_put(np);
729
730         return &ecc_pdev->dev;
731 }
732
733 MODULE_LICENSE("GPL");
734 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
735 MODULE_DESCRIPTION("Generic ECC engine");