GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / ecc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Generic Error-Correcting Code (ECC) engine
4  *
5  * Copyright (C) 2019 Macronix
6  * Author:
7  *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8  *
9  *
10  * This file describes the abstraction of any NAND ECC engine. It has been
11  * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12  *
13  * There are three main situations where instantiating this ECC engine makes
14  * sense:
15  *   - external: The ECC engine is outside the NAND pipeline, typically this
16  *               is a software ECC engine, or an hardware engine that is
17  *               outside the NAND controller pipeline.
18  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19  *                controller's side. This is the case of most of the raw NAND
20  *                controllers. In the pipeline case, the ECC bytes are
21  *                generated/data corrected on the fly when a page is
22  *                written/read.
23  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24  *            Some NAND chips can correct themselves the data.
25  *
26  * Besides the initial setup and final cleanups, the interfaces are rather
27  * simple:
28  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29  *              the I/O request type. In case of software correction or external
30  *              engine, this step may involve to derive the ECC bytes and place
31  *              them in the OOB area before a write.
32  *   - finish: Finish an I/O request. Correct the data in case of a read
33  *             request and report the number of corrected bits/uncorrectable
34  *             errors. Most likely empty for write operations, unless you have
35  *             hardware specific stuff to do, like shutting down the engine to
36  *             save power.
37  *
38  * The I/O request should be enclosed in a prepare()/finish() pair of calls
39  * and will behave differently depending on the requested I/O type:
40  *   - raw: Correction disabled
41  *   - ecc: Correction enabled
42  *
43  * The request direction is impacting the logic as well:
44  *   - read: Load data from the NAND chip
45  *   - write: Store data in the NAND chip
46  *
47  * Mixing all this combinations together gives the following behavior.
48  * Those are just examples, drivers are free to add custom steps in their
49  * prepare/finish hook.
50  *
51  * [external ECC engine]
52  *   - external + prepare + raw + read: do nothing
53  *   - external + finish  + raw + read: do nothing
54  *   - external + prepare + raw + write: do nothing
55  *   - external + finish  + raw + write: do nothing
56  *   - external + prepare + ecc + read: do nothing
57  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58  *                                      ECC bytes from OOB buffer, correct
59  *                                      and report any bitflip/error
60  *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61  *                                       the right place in the OOB buffer based
62  *                                       on the OOB layout
63  *   - external + finish  + ecc + write: do nothing
64  *
65  * [pipelined ECC engine]
66  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67  *                                       activated
68  *   - pipelined + finish  + raw + read: do nothing
69  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70  *                                        activated
71  *   - pipelined + finish  + raw + write: do nothing
72  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73  *                                       deactivated
74  *   - pipelined + finish  + ecc + read: check the status, report any
75  *                                       error/bitflip
76  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77  *                                        deactivated
78  *   - pipelined + finish  + ecc + write: do nothing
79  *
80  * [ondie ECC engine]
81  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82  *                                   engine if activated
83  *   - ondie + finish  + raw + read: do nothing
84  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85  *                                    engine if activated
86  *   - ondie + finish  + raw + write: do nothing
87  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88  *                                   engine if deactivated
89  *   - ondie + finish  + ecc + read: send commands to check the status, report
90  *                                   any error/bitflip
91  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92  *                                    engine if deactivated
93  *   - ondie + finish  + ecc + write: do nothing
94  */
95
96 #include <linux/module.h>
97 #include <linux/mtd/nand.h>
98
99 /**
100  * nand_ecc_init_ctx - Init the ECC engine context
101  * @nand: the NAND device
102  *
103  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
104  */
105 int nand_ecc_init_ctx(struct nand_device *nand)
106 {
107         if (!nand->ecc.engine->ops->init_ctx)
108                 return 0;
109
110         return nand->ecc.engine->ops->init_ctx(nand);
111 }
112 EXPORT_SYMBOL(nand_ecc_init_ctx);
113
114 /**
115  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
116  * @nand: the NAND device
117  */
118 void nand_ecc_cleanup_ctx(struct nand_device *nand)
119 {
120         if (nand->ecc.engine->ops->cleanup_ctx)
121                 nand->ecc.engine->ops->cleanup_ctx(nand);
122 }
123 EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
124
125 /**
126  * nand_ecc_prepare_io_req - Prepare an I/O request
127  * @nand: the NAND device
128  * @req: the I/O request
129  */
130 int nand_ecc_prepare_io_req(struct nand_device *nand,
131                             struct nand_page_io_req *req)
132 {
133         if (!nand->ecc.engine->ops->prepare_io_req)
134                 return 0;
135
136         return nand->ecc.engine->ops->prepare_io_req(nand, req);
137 }
138 EXPORT_SYMBOL(nand_ecc_prepare_io_req);
139
140 /**
141  * nand_ecc_finish_io_req - Finish an I/O request
142  * @nand: the NAND device
143  * @req: the I/O request
144  */
145 int nand_ecc_finish_io_req(struct nand_device *nand,
146                            struct nand_page_io_req *req)
147 {
148         if (!nand->ecc.engine->ops->finish_io_req)
149                 return 0;
150
151         return nand->ecc.engine->ops->finish_io_req(nand, req);
152 }
153 EXPORT_SYMBOL(nand_ecc_finish_io_req);
154
155 /* Define default OOB placement schemes for large and small page devices */
156 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
157                                  struct mtd_oob_region *oobregion)
158 {
159         struct nand_device *nand = mtd_to_nanddev(mtd);
160         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
161
162         if (section > 1)
163                 return -ERANGE;
164
165         if (!section) {
166                 oobregion->offset = 0;
167                 if (mtd->oobsize == 16)
168                         oobregion->length = 4;
169                 else
170                         oobregion->length = 3;
171         } else {
172                 if (mtd->oobsize == 8)
173                         return -ERANGE;
174
175                 oobregion->offset = 6;
176                 oobregion->length = total_ecc_bytes - 4;
177         }
178
179         return 0;
180 }
181
182 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
183                                   struct mtd_oob_region *oobregion)
184 {
185         if (section > 1)
186                 return -ERANGE;
187
188         if (mtd->oobsize == 16) {
189                 if (section)
190                         return -ERANGE;
191
192                 oobregion->length = 8;
193                 oobregion->offset = 8;
194         } else {
195                 oobregion->length = 2;
196                 if (!section)
197                         oobregion->offset = 3;
198                 else
199                         oobregion->offset = 6;
200         }
201
202         return 0;
203 }
204
205 static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
206         .ecc = nand_ooblayout_ecc_sp,
207         .free = nand_ooblayout_free_sp,
208 };
209
210 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
211 {
212         return &nand_ooblayout_sp_ops;
213 }
214 EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
215
216 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
217                                  struct mtd_oob_region *oobregion)
218 {
219         struct nand_device *nand = mtd_to_nanddev(mtd);
220         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
221
222         if (section || !total_ecc_bytes)
223                 return -ERANGE;
224
225         oobregion->length = total_ecc_bytes;
226         oobregion->offset = mtd->oobsize - oobregion->length;
227
228         return 0;
229 }
230
231 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
232                                   struct mtd_oob_region *oobregion)
233 {
234         struct nand_device *nand = mtd_to_nanddev(mtd);
235         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
236
237         if (section)
238                 return -ERANGE;
239
240         oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
241         oobregion->offset = 2;
242
243         return 0;
244 }
245
246 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
247         .ecc = nand_ooblayout_ecc_lp,
248         .free = nand_ooblayout_free_lp,
249 };
250
251 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
252 {
253         return &nand_ooblayout_lp_ops;
254 }
255 EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
256
257 /*
258  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
259  * are placed at a fixed offset.
260  */
261 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
262                                          struct mtd_oob_region *oobregion)
263 {
264         struct nand_device *nand = mtd_to_nanddev(mtd);
265         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
266
267         if (section)
268                 return -ERANGE;
269
270         switch (mtd->oobsize) {
271         case 64:
272                 oobregion->offset = 40;
273                 break;
274         case 128:
275                 oobregion->offset = 80;
276                 break;
277         default:
278                 return -EINVAL;
279         }
280
281         oobregion->length = total_ecc_bytes;
282         if (oobregion->offset + oobregion->length > mtd->oobsize)
283                 return -ERANGE;
284
285         return 0;
286 }
287
288 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
289                                           struct mtd_oob_region *oobregion)
290 {
291         struct nand_device *nand = mtd_to_nanddev(mtd);
292         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
293         int ecc_offset = 0;
294
295         if (section < 0 || section > 1)
296                 return -ERANGE;
297
298         switch (mtd->oobsize) {
299         case 64:
300                 ecc_offset = 40;
301                 break;
302         case 128:
303                 ecc_offset = 80;
304                 break;
305         default:
306                 return -EINVAL;
307         }
308
309         if (section == 0) {
310                 oobregion->offset = 2;
311                 oobregion->length = ecc_offset - 2;
312         } else {
313                 oobregion->offset = ecc_offset + total_ecc_bytes;
314                 oobregion->length = mtd->oobsize - oobregion->offset;
315         }
316
317         return 0;
318 }
319
320 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
321         .ecc = nand_ooblayout_ecc_lp_hamming,
322         .free = nand_ooblayout_free_lp_hamming,
323 };
324
325 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
326 {
327         return &nand_ooblayout_lp_hamming_ops;
328 }
329 EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
330
331 static enum nand_ecc_engine_type
332 of_get_nand_ecc_engine_type(struct device_node *np)
333 {
334         struct device_node *eng_np;
335
336         if (of_property_read_bool(np, "nand-no-ecc-engine"))
337                 return NAND_ECC_ENGINE_TYPE_NONE;
338
339         if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
340                 return NAND_ECC_ENGINE_TYPE_SOFT;
341
342         eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
343         of_node_put(eng_np);
344
345         if (eng_np) {
346                 if (eng_np == np)
347                         return NAND_ECC_ENGINE_TYPE_ON_DIE;
348                 else
349                         return NAND_ECC_ENGINE_TYPE_ON_HOST;
350         }
351
352         return NAND_ECC_ENGINE_TYPE_INVALID;
353 }
354
355 static const char * const nand_ecc_placement[] = {
356         [NAND_ECC_PLACEMENT_OOB] = "oob",
357         [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
358 };
359
360 static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
361 {
362         enum nand_ecc_placement placement;
363         const char *pm;
364         int err;
365
366         err = of_property_read_string(np, "nand-ecc-placement", &pm);
367         if (!err) {
368                 for (placement = NAND_ECC_PLACEMENT_OOB;
369                      placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
370                         if (!strcasecmp(pm, nand_ecc_placement[placement]))
371                                 return placement;
372                 }
373         }
374
375         return NAND_ECC_PLACEMENT_UNKNOWN;
376 }
377
378 static const char * const nand_ecc_algos[] = {
379         [NAND_ECC_ALGO_HAMMING] = "hamming",
380         [NAND_ECC_ALGO_BCH] = "bch",
381         [NAND_ECC_ALGO_RS] = "rs",
382 };
383
384 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
385 {
386         enum nand_ecc_algo ecc_algo;
387         const char *pm;
388         int err;
389
390         err = of_property_read_string(np, "nand-ecc-algo", &pm);
391         if (!err) {
392                 for (ecc_algo = NAND_ECC_ALGO_HAMMING;
393                      ecc_algo < ARRAY_SIZE(nand_ecc_algos);
394                      ecc_algo++) {
395                         if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
396                                 return ecc_algo;
397                 }
398         }
399
400         return NAND_ECC_ALGO_UNKNOWN;
401 }
402
403 static int of_get_nand_ecc_step_size(struct device_node *np)
404 {
405         int ret;
406         u32 val;
407
408         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
409         return ret ? ret : val;
410 }
411
412 static int of_get_nand_ecc_strength(struct device_node *np)
413 {
414         int ret;
415         u32 val;
416
417         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
418         return ret ? ret : val;
419 }
420
421 void of_get_nand_ecc_user_config(struct nand_device *nand)
422 {
423         struct device_node *dn = nanddev_get_of_node(nand);
424         int strength, size;
425
426         nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
427         nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
428         nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
429
430         strength = of_get_nand_ecc_strength(dn);
431         if (strength >= 0)
432                 nand->ecc.user_conf.strength = strength;
433
434         size = of_get_nand_ecc_step_size(dn);
435         if (size >= 0)
436                 nand->ecc.user_conf.step_size = size;
437
438         if (of_property_read_bool(dn, "nand-ecc-maximize"))
439                 nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
440 }
441 EXPORT_SYMBOL(of_get_nand_ecc_user_config);
442
443 /**
444  * nand_ecc_is_strong_enough - Check if the chip configuration meets the
445  *                             datasheet requirements.
446  *
447  * @nand: Device to check
448  *
449  * If our configuration corrects A bits per B bytes and the minimum
450  * required correction level is X bits per Y bytes, then we must ensure
451  * both of the following are true:
452  *
453  * (1) A / B >= X / Y
454  * (2) A >= X
455  *
456  * Requirement (1) ensures we can correct for the required bitflip density.
457  * Requirement (2) ensures we can correct even when all bitflips are clumped
458  * in the same sector.
459  */
460 bool nand_ecc_is_strong_enough(struct nand_device *nand)
461 {
462         const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
463         const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
464         struct mtd_info *mtd = nanddev_to_mtd(nand);
465         int corr, ds_corr;
466
467         if (conf->step_size == 0 || reqs->step_size == 0)
468                 /* Not enough information */
469                 return true;
470
471         /*
472          * We get the number of corrected bits per page to compare
473          * the correction density.
474          */
475         corr = (mtd->writesize * conf->strength) / conf->step_size;
476         ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
477
478         return corr >= ds_corr && conf->strength >= reqs->strength;
479 }
480 EXPORT_SYMBOL(nand_ecc_is_strong_enough);
481
482 MODULE_LICENSE("GPL");
483 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
484 MODULE_DESCRIPTION("Generic ECC engine");