GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2  * Common Flash Interface support:
3  *   Intel Extended Vendor Command Set (ID 0x0001)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  *
8  * 10/10/2000   Nicolas Pitre <nico@fluxnic.net>
9  *      - completely revamped method functions so they are aware and
10  *        independent of the flash geometry (buswidth, interleave, etc.)
11  *      - scalability vs code size is completely set at compile-time
12  *        (see include/linux/mtd/cfi.h for selection)
13  *      - optimized write buffer method
14  * 02/05/2002   Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15  *      - reworked lock/unlock/erase support for var size flash
16  * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
17  *      - auto unlock sectors on resume for auto locking flash on power up
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <asm/io.h>
25 #include <asm/byteorder.h>
26
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/reboot.h>
32 #include <linux/bitmap.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/cfi.h>
37
38 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
40
41 // debugging, turns off buffer write mode if set to 1
42 #define FORCE_WORD_WRITE 0
43
44 /* Intel chips */
45 #define I82802AB        0x00ad
46 #define I82802AC        0x00ac
47 #define PF38F4476       0x881c
48 #define M28F00AP30      0x8963
49 /* STMicroelectronics chips */
50 #define M50LPW080       0x002F
51 #define M50FLW080A      0x0080
52 #define M50FLW080B      0x0081
53 /* Atmel chips */
54 #define AT49BV640D      0x02de
55 #define AT49BV640DT     0x02db
56 /* Sharp chips */
57 #define LH28F640BFHE_PTTL90     0x00b0
58 #define LH28F640BFHE_PBTL90     0x00b1
59 #define LH28F640BFHE_PTTL70A    0x00b2
60 #define LH28F640BFHE_PBTL70A    0x00b3
61
62 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
65 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
66 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
67 static void cfi_intelext_sync (struct mtd_info *);
68 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
69 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
70 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
71                                   uint64_t len);
72 #ifdef CONFIG_MTD_OTP
73 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
74 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
75 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
76 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
77 static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
78                                            size_t *, struct otp_info *);
79 static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
80                                            size_t *, struct otp_info *);
81 #endif
82 static int cfi_intelext_suspend (struct mtd_info *);
83 static void cfi_intelext_resume (struct mtd_info *);
84 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
85
86 static void cfi_intelext_destroy(struct mtd_info *);
87
88 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
89
90 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
91 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
92
93 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
94                      size_t *retlen, void **virt, resource_size_t *phys);
95 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
96
97 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
99 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
100 #include "fwh_lock.h"
101
102
103
104 /*
105  *  *********** SETUP AND PROBE BITS  ***********
106  */
107
108 static struct mtd_chip_driver cfi_intelext_chipdrv = {
109         .probe          = NULL, /* Not usable directly */
110         .destroy        = cfi_intelext_destroy,
111         .name           = "cfi_cmdset_0001",
112         .module         = THIS_MODULE
113 };
114
115 /* #define DEBUG_LOCK_BITS */
116 /* #define DEBUG_CFI_FEATURES */
117
118 #ifdef DEBUG_CFI_FEATURES
119 static void cfi_tell_features(struct cfi_pri_intelext *extp)
120 {
121         int i;
122         printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
123         printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
124         printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
125         printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
126         printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
127         printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
128         printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
129         printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
130         printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
131         printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
132         printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
133         printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
134         printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
135         for (i=11; i<32; i++) {
136                 if (extp->FeatureSupport & (1<<i))
137                         printk("     - Unknown Bit %X:      supported\n", i);
138         }
139
140         printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
141         printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
142         for (i=1; i<8; i++) {
143                 if (extp->SuspendCmdSupport & (1<<i))
144                         printk("     - Unknown Bit %X:               supported\n", i);
145         }
146
147         printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
148         printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
149         printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
150         for (i=2; i<3; i++) {
151                 if (extp->BlkStatusRegMask & (1<<i))
152                         printk("     - Unknown Bit %X Active: yes\n",i);
153         }
154         printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
155         printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
156         for (i=6; i<16; i++) {
157                 if (extp->BlkStatusRegMask & (1<<i))
158                         printk("     - Unknown Bit %X Active: yes\n",i);
159         }
160
161         printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
162                extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
163         if (extp->VppOptimal)
164                 printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
165                        extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
166 }
167 #endif
168
169 /* Atmel chips don't use the same PRI format as Intel chips */
170 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
171 {
172         struct map_info *map = mtd->priv;
173         struct cfi_private *cfi = map->fldrv_priv;
174         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
175         struct cfi_pri_atmel atmel_pri;
176         uint32_t features = 0;
177
178         /* Reverse byteswapping */
179         extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
180         extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
181         extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
182
183         memcpy(&atmel_pri, extp, sizeof(atmel_pri));
184         memset((char *)extp + 5, 0, sizeof(*extp) - 5);
185
186         printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
187
188         if (atmel_pri.Features & 0x01) /* chip erase supported */
189                 features |= (1<<0);
190         if (atmel_pri.Features & 0x02) /* erase suspend supported */
191                 features |= (1<<1);
192         if (atmel_pri.Features & 0x04) /* program suspend supported */
193                 features |= (1<<2);
194         if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
195                 features |= (1<<9);
196         if (atmel_pri.Features & 0x20) /* page mode read supported */
197                 features |= (1<<7);
198         if (atmel_pri.Features & 0x40) /* queued erase supported */
199                 features |= (1<<4);
200         if (atmel_pri.Features & 0x80) /* Protection bits supported */
201                 features |= (1<<6);
202
203         extp->FeatureSupport = features;
204
205         /* burst write mode not supported */
206         cfi->cfiq->BufWriteTimeoutTyp = 0;
207         cfi->cfiq->BufWriteTimeoutMax = 0;
208 }
209
210 static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
211 {
212         struct map_info *map = mtd->priv;
213         struct cfi_private *cfi = map->fldrv_priv;
214         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
215
216         cfip->FeatureSupport |= (1 << 5);
217         mtd->flags |= MTD_POWERUP_LOCK;
218 }
219
220 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
221 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
222 static void fixup_intel_strataflash(struct mtd_info *mtd)
223 {
224         struct map_info *map = mtd->priv;
225         struct cfi_private *cfi = map->fldrv_priv;
226         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
227
228         printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
229                             "erase on write disabled.\n");
230         extp->SuspendCmdSupport &= ~1;
231 }
232 #endif
233
234 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
235 static void fixup_no_write_suspend(struct mtd_info *mtd)
236 {
237         struct map_info *map = mtd->priv;
238         struct cfi_private *cfi = map->fldrv_priv;
239         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
240
241         if (cfip && (cfip->FeatureSupport&4)) {
242                 cfip->FeatureSupport &= ~4;
243                 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
244         }
245 }
246 #endif
247
248 static void fixup_st_m28w320ct(struct mtd_info *mtd)
249 {
250         struct map_info *map = mtd->priv;
251         struct cfi_private *cfi = map->fldrv_priv;
252
253         cfi->cfiq->BufWriteTimeoutTyp = 0;      /* Not supported */
254         cfi->cfiq->BufWriteTimeoutMax = 0;      /* Not supported */
255 }
256
257 static void fixup_st_m28w320cb(struct mtd_info *mtd)
258 {
259         struct map_info *map = mtd->priv;
260         struct cfi_private *cfi = map->fldrv_priv;
261
262         /* Note this is done after the region info is endian swapped */
263         cfi->cfiq->EraseRegionInfo[1] =
264                 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
265 };
266
267 static int is_LH28F640BF(struct cfi_private *cfi)
268 {
269         /* Sharp LH28F640BF Family */
270         if (cfi->mfr == CFI_MFR_SHARP && (
271             cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
272             cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
273                 return 1;
274         return 0;
275 }
276
277 static void fixup_LH28F640BF(struct mtd_info *mtd)
278 {
279         struct map_info *map = mtd->priv;
280         struct cfi_private *cfi = map->fldrv_priv;
281         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
282
283         /* Reset the Partition Configuration Register on LH28F640BF
284          * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
285         if (is_LH28F640BF(cfi)) {
286                 printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
287                 map_write(map, CMD(0x60), 0);
288                 map_write(map, CMD(0x04), 0);
289
290                 /* We have set one single partition thus
291                  * Simultaneous Operations are not allowed */
292                 printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
293                 extp->FeatureSupport &= ~512;
294         }
295 }
296
297 static void fixup_use_point(struct mtd_info *mtd)
298 {
299         struct map_info *map = mtd->priv;
300         if (!mtd->_point && map_is_linear(map)) {
301                 mtd->_point   = cfi_intelext_point;
302                 mtd->_unpoint = cfi_intelext_unpoint;
303         }
304 }
305
306 static void fixup_use_write_buffers(struct mtd_info *mtd)
307 {
308         struct map_info *map = mtd->priv;
309         struct cfi_private *cfi = map->fldrv_priv;
310         if (cfi->cfiq->BufWriteTimeoutTyp) {
311                 printk(KERN_INFO "Using buffer write method\n" );
312                 mtd->_write = cfi_intelext_write_buffers;
313                 mtd->_writev = cfi_intelext_writev;
314         }
315 }
316
317 /*
318  * Some chips power-up with all sectors locked by default.
319  */
320 static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
321 {
322         struct map_info *map = mtd->priv;
323         struct cfi_private *cfi = map->fldrv_priv;
324         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
325
326         if (cfip->FeatureSupport&32) {
327                 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
328                 mtd->flags |= MTD_POWERUP_LOCK;
329         }
330 }
331
332 static struct cfi_fixup cfi_fixup_table[] = {
333         { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
334         { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
335         { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
336 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
337         { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
338 #endif
339 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
340         { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
341 #endif
342 #if !FORCE_WORD_WRITE
343         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
344 #endif
345         { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
346         { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
347         { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
348         { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
349         { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
350         { 0, 0, NULL }
351 };
352
353 static struct cfi_fixup jedec_fixup_table[] = {
354         { CFI_MFR_INTEL, I82802AB,   fixup_use_fwh_lock },
355         { CFI_MFR_INTEL, I82802AC,   fixup_use_fwh_lock },
356         { CFI_MFR_ST,    M50LPW080,  fixup_use_fwh_lock },
357         { CFI_MFR_ST,    M50FLW080A, fixup_use_fwh_lock },
358         { CFI_MFR_ST,    M50FLW080B, fixup_use_fwh_lock },
359         { 0, 0, NULL }
360 };
361 static struct cfi_fixup fixup_table[] = {
362         /* The CFI vendor ids and the JEDEC vendor IDs appear
363          * to be common.  It is like the devices id's are as
364          * well.  This table is to pick all cases where
365          * we know that is the case.
366          */
367         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
368         { 0, 0, NULL }
369 };
370
371 static void cfi_fixup_major_minor(struct cfi_private *cfi,
372                                                 struct cfi_pri_intelext *extp)
373 {
374         if (cfi->mfr == CFI_MFR_INTEL &&
375                         cfi->id == PF38F4476 && extp->MinorVersion == '3')
376                 extp->MinorVersion = '1';
377 }
378
379 static int cfi_is_micron_28F00AP30(struct cfi_private *cfi, struct flchip *chip)
380 {
381         /*
382          * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
383          * Erase Supend for their small Erase Blocks(0x8000)
384          */
385         if (cfi->mfr == CFI_MFR_INTEL && cfi->id == M28F00AP30)
386                 return 1;
387         return 0;
388 }
389
390 static inline struct cfi_pri_intelext *
391 read_pri_intelext(struct map_info *map, __u16 adr)
392 {
393         struct cfi_private *cfi = map->fldrv_priv;
394         struct cfi_pri_intelext *extp;
395         unsigned int extra_size = 0;
396         unsigned int extp_size = sizeof(*extp);
397
398  again:
399         extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
400         if (!extp)
401                 return NULL;
402
403         cfi_fixup_major_minor(cfi, extp);
404
405         if (extp->MajorVersion != '1' ||
406             (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
407                 printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
408                        "version %c.%c.\n",  extp->MajorVersion,
409                        extp->MinorVersion);
410                 kfree(extp);
411                 return NULL;
412         }
413
414         /* Do some byteswapping if necessary */
415         extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
416         extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
417         extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
418
419         if (extp->MinorVersion >= '0') {
420                 extra_size = 0;
421
422                 /* Protection Register info */
423                 if (extp->NumProtectionFields)
424                         extra_size += (extp->NumProtectionFields - 1) *
425                                       sizeof(struct cfi_intelext_otpinfo);
426         }
427
428         if (extp->MinorVersion >= '1') {
429                 /* Burst Read info */
430                 extra_size += 2;
431                 if (extp_size < sizeof(*extp) + extra_size)
432                         goto need_more;
433                 extra_size += extp->extra[extra_size - 1];
434         }
435
436         if (extp->MinorVersion >= '3') {
437                 int nb_parts, i;
438
439                 /* Number of hardware-partitions */
440                 extra_size += 1;
441                 if (extp_size < sizeof(*extp) + extra_size)
442                         goto need_more;
443                 nb_parts = extp->extra[extra_size - 1];
444
445                 /* skip the sizeof(partregion) field in CFI 1.4 */
446                 if (extp->MinorVersion >= '4')
447                         extra_size += 2;
448
449                 for (i = 0; i < nb_parts; i++) {
450                         struct cfi_intelext_regioninfo *rinfo;
451                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
452                         extra_size += sizeof(*rinfo);
453                         if (extp_size < sizeof(*extp) + extra_size)
454                                 goto need_more;
455                         rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
456                         extra_size += (rinfo->NumBlockTypes - 1)
457                                       * sizeof(struct cfi_intelext_blockinfo);
458                 }
459
460                 if (extp->MinorVersion >= '4')
461                         extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
462
463                 if (extp_size < sizeof(*extp) + extra_size) {
464                         need_more:
465                         extp_size = sizeof(*extp) + extra_size;
466                         kfree(extp);
467                         if (extp_size > 4096) {
468                                 printk(KERN_ERR
469                                         "%s: cfi_pri_intelext is too fat\n",
470                                         __func__);
471                                 return NULL;
472                         }
473                         goto again;
474                 }
475         }
476
477         return extp;
478 }
479
480 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
481 {
482         struct cfi_private *cfi = map->fldrv_priv;
483         struct mtd_info *mtd;
484         int i;
485
486         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
487         if (!mtd)
488                 return NULL;
489         mtd->priv = map;
490         mtd->type = MTD_NORFLASH;
491
492         /* Fill in the default mtd operations */
493         mtd->_erase   = cfi_intelext_erase_varsize;
494         mtd->_read    = cfi_intelext_read;
495         mtd->_write   = cfi_intelext_write_words;
496         mtd->_sync    = cfi_intelext_sync;
497         mtd->_lock    = cfi_intelext_lock;
498         mtd->_unlock  = cfi_intelext_unlock;
499         mtd->_is_locked = cfi_intelext_is_locked;
500         mtd->_suspend = cfi_intelext_suspend;
501         mtd->_resume  = cfi_intelext_resume;
502         mtd->flags   = MTD_CAP_NORFLASH;
503         mtd->name    = map->name;
504         mtd->writesize = 1;
505         mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
506
507         mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
508
509         if (cfi->cfi_mode == CFI_MODE_CFI) {
510                 /*
511                  * It's a real CFI chip, not one for which the probe
512                  * routine faked a CFI structure. So we read the feature
513                  * table from it.
514                  */
515                 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
516                 struct cfi_pri_intelext *extp;
517
518                 extp = read_pri_intelext(map, adr);
519                 if (!extp) {
520                         kfree(mtd);
521                         return NULL;
522                 }
523
524                 /* Install our own private info structure */
525                 cfi->cmdset_priv = extp;
526
527                 cfi_fixup(mtd, cfi_fixup_table);
528
529 #ifdef DEBUG_CFI_FEATURES
530                 /* Tell the user about it in lots of lovely detail */
531                 cfi_tell_features(extp);
532 #endif
533
534                 if(extp->SuspendCmdSupport & 1) {
535                         printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
536                 }
537         }
538         else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
539                 /* Apply jedec specific fixups */
540                 cfi_fixup(mtd, jedec_fixup_table);
541         }
542         /* Apply generic fixups */
543         cfi_fixup(mtd, fixup_table);
544
545         for (i=0; i< cfi->numchips; i++) {
546                 if (cfi->cfiq->WordWriteTimeoutTyp)
547                         cfi->chips[i].word_write_time =
548                                 1<<cfi->cfiq->WordWriteTimeoutTyp;
549                 else
550                         cfi->chips[i].word_write_time = 50000;
551
552                 if (cfi->cfiq->BufWriteTimeoutTyp)
553                         cfi->chips[i].buffer_write_time =
554                                 1<<cfi->cfiq->BufWriteTimeoutTyp;
555                 /* No default; if it isn't specified, we won't use it */
556
557                 if (cfi->cfiq->BlockEraseTimeoutTyp)
558                         cfi->chips[i].erase_time =
559                                 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
560                 else
561                         cfi->chips[i].erase_time = 2000000;
562
563                 if (cfi->cfiq->WordWriteTimeoutTyp &&
564                     cfi->cfiq->WordWriteTimeoutMax)
565                         cfi->chips[i].word_write_time_max =
566                                 1<<(cfi->cfiq->WordWriteTimeoutTyp +
567                                     cfi->cfiq->WordWriteTimeoutMax);
568                 else
569                         cfi->chips[i].word_write_time_max = 50000 * 8;
570
571                 if (cfi->cfiq->BufWriteTimeoutTyp &&
572                     cfi->cfiq->BufWriteTimeoutMax)
573                         cfi->chips[i].buffer_write_time_max =
574                                 1<<(cfi->cfiq->BufWriteTimeoutTyp +
575                                     cfi->cfiq->BufWriteTimeoutMax);
576
577                 if (cfi->cfiq->BlockEraseTimeoutTyp &&
578                     cfi->cfiq->BlockEraseTimeoutMax)
579                         cfi->chips[i].erase_time_max =
580                                 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
581                                        cfi->cfiq->BlockEraseTimeoutMax);
582                 else
583                         cfi->chips[i].erase_time_max = 2000000 * 8;
584
585                 cfi->chips[i].ref_point_counter = 0;
586                 init_waitqueue_head(&(cfi->chips[i].wq));
587         }
588
589         map->fldrv = &cfi_intelext_chipdrv;
590
591         return cfi_intelext_setup(mtd);
592 }
593 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
594 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
595 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
596 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
597 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
598
599 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
600 {
601         struct map_info *map = mtd->priv;
602         struct cfi_private *cfi = map->fldrv_priv;
603         unsigned long offset = 0;
604         int i,j;
605         unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
606
607         //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
608
609         mtd->size = devsize * cfi->numchips;
610
611         mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
612         mtd->eraseregions = kcalloc(mtd->numeraseregions,
613                                     sizeof(struct mtd_erase_region_info),
614                                     GFP_KERNEL);
615         if (!mtd->eraseregions)
616                 goto setup_err;
617
618         for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
619                 unsigned long ernum, ersize;
620                 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
621                 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
622
623                 if (mtd->erasesize < ersize) {
624                         mtd->erasesize = ersize;
625                 }
626                 for (j=0; j<cfi->numchips; j++) {
627                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
628                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
629                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
630                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
631                         if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap)
632                                 goto setup_err;
633                 }
634                 offset += (ersize * ernum);
635         }
636
637         if (offset != devsize) {
638                 /* Argh */
639                 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
640                 goto setup_err;
641         }
642
643         for (i=0; i<mtd->numeraseregions;i++){
644                 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
645                        i,(unsigned long long)mtd->eraseregions[i].offset,
646                        mtd->eraseregions[i].erasesize,
647                        mtd->eraseregions[i].numblocks);
648         }
649
650 #ifdef CONFIG_MTD_OTP
651         mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
652         mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
653         mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
654         mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
655         mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
656         mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
657 #endif
658
659         /* This function has the potential to distort the reality
660            a bit and therefore should be called last. */
661         if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
662                 goto setup_err;
663
664         __module_get(THIS_MODULE);
665         register_reboot_notifier(&mtd->reboot_notifier);
666         return mtd;
667
668  setup_err:
669         if (mtd->eraseregions)
670                 for (i=0; i<cfi->cfiq->NumEraseRegions; i++)
671                         for (j=0; j<cfi->numchips; j++)
672                                 kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap);
673         kfree(mtd->eraseregions);
674         kfree(mtd);
675         kfree(cfi->cmdset_priv);
676         return NULL;
677 }
678
679 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
680                                         struct cfi_private **pcfi)
681 {
682         struct map_info *map = mtd->priv;
683         struct cfi_private *cfi = *pcfi;
684         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
685
686         /*
687          * Probing of multi-partition flash chips.
688          *
689          * To support multiple partitions when available, we simply arrange
690          * for each of them to have their own flchip structure even if they
691          * are on the same physical chip.  This means completely recreating
692          * a new cfi_private structure right here which is a blatent code
693          * layering violation, but this is still the least intrusive
694          * arrangement at this point. This can be rearranged in the future
695          * if someone feels motivated enough.  --nico
696          */
697         if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
698             && extp->FeatureSupport & (1 << 9)) {
699                 int offs = 0;
700                 struct cfi_private *newcfi;
701                 struct flchip *chip;
702                 struct flchip_shared *shared;
703                 int numregions, numparts, partshift, numvirtchips, i, j;
704
705                 /* Protection Register info */
706                 if (extp->NumProtectionFields)
707                         offs = (extp->NumProtectionFields - 1) *
708                                sizeof(struct cfi_intelext_otpinfo);
709
710                 /* Burst Read info */
711                 offs += extp->extra[offs+1]+2;
712
713                 /* Number of partition regions */
714                 numregions = extp->extra[offs];
715                 offs += 1;
716
717                 /* skip the sizeof(partregion) field in CFI 1.4 */
718                 if (extp->MinorVersion >= '4')
719                         offs += 2;
720
721                 /* Number of hardware partitions */
722                 numparts = 0;
723                 for (i = 0; i < numregions; i++) {
724                         struct cfi_intelext_regioninfo *rinfo;
725                         rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
726                         numparts += rinfo->NumIdentPartitions;
727                         offs += sizeof(*rinfo)
728                                 + (rinfo->NumBlockTypes - 1) *
729                                   sizeof(struct cfi_intelext_blockinfo);
730                 }
731
732                 if (!numparts)
733                         numparts = 1;
734
735                 /* Programming Region info */
736                 if (extp->MinorVersion >= '4') {
737                         struct cfi_intelext_programming_regioninfo *prinfo;
738                         prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
739                         mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
740                         mtd->flags &= ~MTD_BIT_WRITEABLE;
741                         printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
742                                map->name, mtd->writesize,
743                                cfi->interleave * prinfo->ControlValid,
744                                cfi->interleave * prinfo->ControlInvalid);
745                 }
746
747                 /*
748                  * All functions below currently rely on all chips having
749                  * the same geometry so we'll just assume that all hardware
750                  * partitions are of the same size too.
751                  */
752                 partshift = cfi->chipshift - __ffs(numparts);
753
754                 if ((1 << partshift) < mtd->erasesize) {
755                         printk( KERN_ERR
756                                 "%s: bad number of hw partitions (%d)\n",
757                                 __func__, numparts);
758                         return -EINVAL;
759                 }
760
761                 numvirtchips = cfi->numchips * numparts;
762                 newcfi = kmalloc(struct_size(newcfi, chips, numvirtchips),
763                                  GFP_KERNEL);
764                 if (!newcfi)
765                         return -ENOMEM;
766                 shared = kmalloc_array(cfi->numchips,
767                                        sizeof(struct flchip_shared),
768                                        GFP_KERNEL);
769                 if (!shared) {
770                         kfree(newcfi);
771                         return -ENOMEM;
772                 }
773                 memcpy(newcfi, cfi, sizeof(struct cfi_private));
774                 newcfi->numchips = numvirtchips;
775                 newcfi->chipshift = partshift;
776
777                 chip = &newcfi->chips[0];
778                 for (i = 0; i < cfi->numchips; i++) {
779                         shared[i].writing = shared[i].erasing = NULL;
780                         mutex_init(&shared[i].lock);
781                         for (j = 0; j < numparts; j++) {
782                                 *chip = cfi->chips[i];
783                                 chip->start += j << partshift;
784                                 chip->priv = &shared[i];
785                                 /* those should be reset too since
786                                    they create memory references. */
787                                 init_waitqueue_head(&chip->wq);
788                                 mutex_init(&chip->mutex);
789                                 chip++;
790                         }
791                 }
792
793                 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
794                                   "--> %d partitions of %d KiB\n",
795                                   map->name, cfi->numchips, cfi->interleave,
796                                   newcfi->numchips, 1<<(newcfi->chipshift-10));
797
798                 map->fldrv_priv = newcfi;
799                 *pcfi = newcfi;
800                 kfree(cfi);
801         }
802
803         return 0;
804 }
805
806 /*
807  *  *********** CHIP ACCESS FUNCTIONS ***********
808  */
809 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
810 {
811         DECLARE_WAITQUEUE(wait, current);
812         struct cfi_private *cfi = map->fldrv_priv;
813         map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
814         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
815         unsigned long timeo = jiffies + HZ;
816
817         /* Prevent setting state FL_SYNCING for chip in suspended state. */
818         if (mode == FL_SYNCING && chip->oldstate != FL_READY)
819                 goto sleep;
820
821         switch (chip->state) {
822
823         case FL_STATUS:
824                 for (;;) {
825                         status = map_read(map, adr);
826                         if (map_word_andequal(map, status, status_OK, status_OK))
827                                 break;
828
829                         /* At this point we're fine with write operations
830                            in other partitions as they don't conflict. */
831                         if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
832                                 break;
833
834                         mutex_unlock(&chip->mutex);
835                         cfi_udelay(1);
836                         mutex_lock(&chip->mutex);
837                         /* Someone else might have been playing with it. */
838                         return -EAGAIN;
839                 }
840                 fallthrough;
841         case FL_READY:
842         case FL_CFI_QUERY:
843         case FL_JEDEC_QUERY:
844                 return 0;
845
846         case FL_ERASING:
847                 if (!cfip ||
848                     !(cfip->FeatureSupport & 2) ||
849                     !(mode == FL_READY || mode == FL_POINT ||
850                      (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
851                         goto sleep;
852
853                 /* Do not allow suspend iff read/write to EB address */
854                 if ((adr & chip->in_progress_block_mask) ==
855                     chip->in_progress_block_addr)
856                         goto sleep;
857
858                 /* do not suspend small EBs, buggy Micron Chips */
859                 if (cfi_is_micron_28F00AP30(cfi, chip) &&
860                     (chip->in_progress_block_mask == ~(0x8000-1)))
861                         goto sleep;
862
863                 /* Erase suspend */
864                 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
865
866                 /* If the flash has finished erasing, then 'erase suspend'
867                  * appears to make some (28F320) flash devices switch to
868                  * 'read' mode.  Make sure that we switch to 'read status'
869                  * mode so we get the right data. --rmk
870                  */
871                 map_write(map, CMD(0x70), chip->in_progress_block_addr);
872                 chip->oldstate = FL_ERASING;
873                 chip->state = FL_ERASE_SUSPENDING;
874                 chip->erase_suspended = 1;
875                 for (;;) {
876                         status = map_read(map, chip->in_progress_block_addr);
877                         if (map_word_andequal(map, status, status_OK, status_OK))
878                                 break;
879
880                         if (time_after(jiffies, timeo)) {
881                                 /* Urgh. Resume and pretend we weren't here.
882                                  * Make sure we're in 'read status' mode if it had finished */
883                                 put_chip(map, chip, adr);
884                                 printk(KERN_ERR "%s: Chip not ready after erase "
885                                        "suspended: status = 0x%lx\n", map->name, status.x[0]);
886                                 return -EIO;
887                         }
888
889                         mutex_unlock(&chip->mutex);
890                         cfi_udelay(1);
891                         mutex_lock(&chip->mutex);
892                         /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
893                            So we can just loop here. */
894                 }
895                 chip->state = FL_STATUS;
896                 return 0;
897
898         case FL_XIP_WHILE_ERASING:
899                 if (mode != FL_READY && mode != FL_POINT &&
900                     (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
901                         goto sleep;
902                 chip->oldstate = chip->state;
903                 chip->state = FL_READY;
904                 return 0;
905
906         case FL_SHUTDOWN:
907                 /* The machine is rebooting now,so no one can get chip anymore */
908                 return -EIO;
909         case FL_POINT:
910                 /* Only if there's no operation suspended... */
911                 if (mode == FL_READY && chip->oldstate == FL_READY)
912                         return 0;
913                 fallthrough;
914         default:
915         sleep:
916                 set_current_state(TASK_UNINTERRUPTIBLE);
917                 add_wait_queue(&chip->wq, &wait);
918                 mutex_unlock(&chip->mutex);
919                 schedule();
920                 remove_wait_queue(&chip->wq, &wait);
921                 mutex_lock(&chip->mutex);
922                 return -EAGAIN;
923         }
924 }
925
926 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
927 {
928         int ret;
929         DECLARE_WAITQUEUE(wait, current);
930
931  retry:
932         if (chip->priv &&
933             (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
934             || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
935                 /*
936                  * OK. We have possibility for contention on the write/erase
937                  * operations which are global to the real chip and not per
938                  * partition.  So let's fight it over in the partition which
939                  * currently has authority on the operation.
940                  *
941                  * The rules are as follows:
942                  *
943                  * - any write operation must own shared->writing.
944                  *
945                  * - any erase operation must own _both_ shared->writing and
946                  *   shared->erasing.
947                  *
948                  * - contention arbitration is handled in the owner's context.
949                  *
950                  * The 'shared' struct can be read and/or written only when
951                  * its lock is taken.
952                  */
953                 struct flchip_shared *shared = chip->priv;
954                 struct flchip *contender;
955                 mutex_lock(&shared->lock);
956                 contender = shared->writing;
957                 if (contender && contender != chip) {
958                         /*
959                          * The engine to perform desired operation on this
960                          * partition is already in use by someone else.
961                          * Let's fight over it in the context of the chip
962                          * currently using it.  If it is possible to suspend,
963                          * that other partition will do just that, otherwise
964                          * it'll happily send us to sleep.  In any case, when
965                          * get_chip returns success we're clear to go ahead.
966                          */
967                         ret = mutex_trylock(&contender->mutex);
968                         mutex_unlock(&shared->lock);
969                         if (!ret)
970                                 goto retry;
971                         mutex_unlock(&chip->mutex);
972                         ret = chip_ready(map, contender, contender->start, mode);
973                         mutex_lock(&chip->mutex);
974
975                         if (ret == -EAGAIN) {
976                                 mutex_unlock(&contender->mutex);
977                                 goto retry;
978                         }
979                         if (ret) {
980                                 mutex_unlock(&contender->mutex);
981                                 return ret;
982                         }
983                         mutex_lock(&shared->lock);
984
985                         /* We should not own chip if it is already
986                          * in FL_SYNCING state. Put contender and retry. */
987                         if (chip->state == FL_SYNCING) {
988                                 put_chip(map, contender, contender->start);
989                                 mutex_unlock(&contender->mutex);
990                                 goto retry;
991                         }
992                         mutex_unlock(&contender->mutex);
993                 }
994
995                 /* Check if we already have suspended erase
996                  * on this chip. Sleep. */
997                 if (mode == FL_ERASING && shared->erasing
998                     && shared->erasing->oldstate == FL_ERASING) {
999                         mutex_unlock(&shared->lock);
1000                         set_current_state(TASK_UNINTERRUPTIBLE);
1001                         add_wait_queue(&chip->wq, &wait);
1002                         mutex_unlock(&chip->mutex);
1003                         schedule();
1004                         remove_wait_queue(&chip->wq, &wait);
1005                         mutex_lock(&chip->mutex);
1006                         goto retry;
1007                 }
1008
1009                 /* We now own it */
1010                 shared->writing = chip;
1011                 if (mode == FL_ERASING)
1012                         shared->erasing = chip;
1013                 mutex_unlock(&shared->lock);
1014         }
1015         ret = chip_ready(map, chip, adr, mode);
1016         if (ret == -EAGAIN)
1017                 goto retry;
1018
1019         return ret;
1020 }
1021
1022 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
1023 {
1024         struct cfi_private *cfi = map->fldrv_priv;
1025
1026         if (chip->priv) {
1027                 struct flchip_shared *shared = chip->priv;
1028                 mutex_lock(&shared->lock);
1029                 if (shared->writing == chip && chip->oldstate == FL_READY) {
1030                         /* We own the ability to write, but we're done */
1031                         shared->writing = shared->erasing;
1032                         if (shared->writing && shared->writing != chip) {
1033                                 /* give back ownership to who we loaned it from */
1034                                 struct flchip *loaner = shared->writing;
1035                                 mutex_lock(&loaner->mutex);
1036                                 mutex_unlock(&shared->lock);
1037                                 mutex_unlock(&chip->mutex);
1038                                 put_chip(map, loaner, loaner->start);
1039                                 mutex_lock(&chip->mutex);
1040                                 mutex_unlock(&loaner->mutex);
1041                                 wake_up(&chip->wq);
1042                                 return;
1043                         }
1044                         shared->erasing = NULL;
1045                         shared->writing = NULL;
1046                 } else if (shared->erasing == chip && shared->writing != chip) {
1047                         /*
1048                          * We own the ability to erase without the ability
1049                          * to write, which means the erase was suspended
1050                          * and some other partition is currently writing.
1051                          * Don't let the switch below mess things up since
1052                          * we don't have ownership to resume anything.
1053                          */
1054                         mutex_unlock(&shared->lock);
1055                         wake_up(&chip->wq);
1056                         return;
1057                 }
1058                 mutex_unlock(&shared->lock);
1059         }
1060
1061         switch(chip->oldstate) {
1062         case FL_ERASING:
1063                 /* What if one interleaved chip has finished and the
1064                    other hasn't? The old code would leave the finished
1065                    one in READY mode. That's bad, and caused -EROFS
1066                    errors to be returned from do_erase_oneblock because
1067                    that's the only bit it checked for at the time.
1068                    As the state machine appears to explicitly allow
1069                    sending the 0x70 (Read Status) command to an erasing
1070                    chip and expecting it to be ignored, that's what we
1071                    do. */
1072                 map_write(map, CMD(0xd0), chip->in_progress_block_addr);
1073                 map_write(map, CMD(0x70), chip->in_progress_block_addr);
1074                 chip->oldstate = FL_READY;
1075                 chip->state = FL_ERASING;
1076                 break;
1077
1078         case FL_XIP_WHILE_ERASING:
1079                 chip->state = chip->oldstate;
1080                 chip->oldstate = FL_READY;
1081                 break;
1082
1083         case FL_READY:
1084         case FL_STATUS:
1085         case FL_JEDEC_QUERY:
1086                 break;
1087         default:
1088                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1089         }
1090         wake_up(&chip->wq);
1091 }
1092
1093 #ifdef CONFIG_MTD_XIP
1094
1095 /*
1096  * No interrupt what so ever can be serviced while the flash isn't in array
1097  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1098  * enclosing any code path where the flash is known not to be in array mode.
1099  * And within a XIP disabled code path, only functions marked with __xipram
1100  * may be called and nothing else (it's a good thing to inspect generated
1101  * assembly to make sure inline functions were actually inlined and that gcc
1102  * didn't emit calls to its own support functions). Also configuring MTD CFI
1103  * support to a single buswidth and a single interleave is also recommended.
1104  */
1105
1106 static void xip_disable(struct map_info *map, struct flchip *chip,
1107                         unsigned long adr)
1108 {
1109         /* TODO: chips with no XIP use should ignore and return */
1110         (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1111         local_irq_disable();
1112 }
1113
1114 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1115                                 unsigned long adr)
1116 {
1117         struct cfi_private *cfi = map->fldrv_priv;
1118         if (chip->state != FL_POINT && chip->state != FL_READY) {
1119                 map_write(map, CMD(0xff), adr);
1120                 chip->state = FL_READY;
1121         }
1122         (void) map_read(map, adr);
1123         xip_iprefetch();
1124         local_irq_enable();
1125 }
1126
1127 /*
1128  * When a delay is required for the flash operation to complete, the
1129  * xip_wait_for_operation() function is polling for both the given timeout
1130  * and pending (but still masked) hardware interrupts.  Whenever there is an
1131  * interrupt pending then the flash erase or write operation is suspended,
1132  * array mode restored and interrupts unmasked.  Task scheduling might also
1133  * happen at that point.  The CPU eventually returns from the interrupt or
1134  * the call to schedule() and the suspended flash operation is resumed for
1135  * the remaining of the delay period.
1136  *
1137  * Warning: this function _will_ fool interrupt latency tracing tools.
1138  */
1139
1140 static int __xipram xip_wait_for_operation(
1141                 struct map_info *map, struct flchip *chip,
1142                 unsigned long adr, unsigned int chip_op_time_max)
1143 {
1144         struct cfi_private *cfi = map->fldrv_priv;
1145         struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1146         map_word status, OK = CMD(0x80);
1147         unsigned long usec, suspended, start, done;
1148         flstate_t oldstate, newstate;
1149
1150         start = xip_currtime();
1151         usec = chip_op_time_max;
1152         if (usec == 0)
1153                 usec = 500000;
1154         done = 0;
1155
1156         do {
1157                 cpu_relax();
1158                 if (xip_irqpending() && cfip &&
1159                     ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1160                      (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1161                     (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1162                         /*
1163                          * Let's suspend the erase or write operation when
1164                          * supported.  Note that we currently don't try to
1165                          * suspend interleaved chips if there is already
1166                          * another operation suspended (imagine what happens
1167                          * when one chip was already done with the current
1168                          * operation while another chip suspended it, then
1169                          * we resume the whole thing at once).  Yes, it
1170                          * can happen!
1171                          */
1172                         usec -= done;
1173                         map_write(map, CMD(0xb0), adr);
1174                         map_write(map, CMD(0x70), adr);
1175                         suspended = xip_currtime();
1176                         do {
1177                                 if (xip_elapsed_since(suspended) > 100000) {
1178                                         /*
1179                                          * The chip doesn't want to suspend
1180                                          * after waiting for 100 msecs.
1181                                          * This is a critical error but there
1182                                          * is not much we can do here.
1183                                          */
1184                                         return -EIO;
1185                                 }
1186                                 status = map_read(map, adr);
1187                         } while (!map_word_andequal(map, status, OK, OK));
1188
1189                         /* Suspend succeeded */
1190                         oldstate = chip->state;
1191                         if (oldstate == FL_ERASING) {
1192                                 if (!map_word_bitsset(map, status, CMD(0x40)))
1193                                         break;
1194                                 newstate = FL_XIP_WHILE_ERASING;
1195                                 chip->erase_suspended = 1;
1196                         } else {
1197                                 if (!map_word_bitsset(map, status, CMD(0x04)))
1198                                         break;
1199                                 newstate = FL_XIP_WHILE_WRITING;
1200                                 chip->write_suspended = 1;
1201                         }
1202                         chip->state = newstate;
1203                         map_write(map, CMD(0xff), adr);
1204                         (void) map_read(map, adr);
1205                         xip_iprefetch();
1206                         local_irq_enable();
1207                         mutex_unlock(&chip->mutex);
1208                         xip_iprefetch();
1209                         cond_resched();
1210
1211                         /*
1212                          * We're back.  However someone else might have
1213                          * decided to go write to the chip if we are in
1214                          * a suspended erase state.  If so let's wait
1215                          * until it's done.
1216                          */
1217                         mutex_lock(&chip->mutex);
1218                         while (chip->state != newstate) {
1219                                 DECLARE_WAITQUEUE(wait, current);
1220                                 set_current_state(TASK_UNINTERRUPTIBLE);
1221                                 add_wait_queue(&chip->wq, &wait);
1222                                 mutex_unlock(&chip->mutex);
1223                                 schedule();
1224                                 remove_wait_queue(&chip->wq, &wait);
1225                                 mutex_lock(&chip->mutex);
1226                         }
1227                         /* Disallow XIP again */
1228                         local_irq_disable();
1229
1230                         /* Resume the write or erase operation */
1231                         map_write(map, CMD(0xd0), adr);
1232                         map_write(map, CMD(0x70), adr);
1233                         chip->state = oldstate;
1234                         start = xip_currtime();
1235                 } else if (usec >= 1000000/HZ) {
1236                         /*
1237                          * Try to save on CPU power when waiting delay
1238                          * is at least a system timer tick period.
1239                          * No need to be extremely accurate here.
1240                          */
1241                         xip_cpu_idle();
1242                 }
1243                 status = map_read(map, adr);
1244                 done = xip_elapsed_since(start);
1245         } while (!map_word_andequal(map, status, OK, OK)
1246                  && done < usec);
1247
1248         return (done >= usec) ? -ETIME : 0;
1249 }
1250
1251 /*
1252  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1253  * the flash is actively programming or erasing since we have to poll for
1254  * the operation to complete anyway.  We can't do that in a generic way with
1255  * a XIP setup so do it before the actual flash operation in this case
1256  * and stub it out from INVAL_CACHE_AND_WAIT.
1257  */
1258 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1259         INVALIDATE_CACHED_RANGE(map, from, size)
1260
1261 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1262         xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1263
1264 #else
1265
1266 #define xip_disable(map, chip, adr)
1267 #define xip_enable(map, chip, adr)
1268 #define XIP_INVAL_CACHED_RANGE(x...)
1269 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1270
1271 static int inval_cache_and_wait_for_operation(
1272                 struct map_info *map, struct flchip *chip,
1273                 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1274                 unsigned int chip_op_time, unsigned int chip_op_time_max)
1275 {
1276         struct cfi_private *cfi = map->fldrv_priv;
1277         map_word status, status_OK = CMD(0x80);
1278         int chip_state = chip->state;
1279         unsigned int timeo, sleep_time, reset_timeo;
1280
1281         mutex_unlock(&chip->mutex);
1282         if (inval_len)
1283                 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1284         mutex_lock(&chip->mutex);
1285
1286         timeo = chip_op_time_max;
1287         if (!timeo)
1288                 timeo = 500000;
1289         reset_timeo = timeo;
1290         sleep_time = chip_op_time / 2;
1291
1292         for (;;) {
1293                 if (chip->state != chip_state) {
1294                         /* Someone's suspended the operation: sleep */
1295                         DECLARE_WAITQUEUE(wait, current);
1296                         set_current_state(TASK_UNINTERRUPTIBLE);
1297                         add_wait_queue(&chip->wq, &wait);
1298                         mutex_unlock(&chip->mutex);
1299                         schedule();
1300                         remove_wait_queue(&chip->wq, &wait);
1301                         mutex_lock(&chip->mutex);
1302                         continue;
1303                 }
1304
1305                 status = map_read(map, cmd_adr);
1306                 if (map_word_andequal(map, status, status_OK, status_OK))
1307                         break;
1308
1309                 if (chip->erase_suspended && chip_state == FL_ERASING)  {
1310                         /* Erase suspend occurred while sleep: reset timeout */
1311                         timeo = reset_timeo;
1312                         chip->erase_suspended = 0;
1313                 }
1314                 if (chip->write_suspended && chip_state == FL_WRITING)  {
1315                         /* Write suspend occurred while sleep: reset timeout */
1316                         timeo = reset_timeo;
1317                         chip->write_suspended = 0;
1318                 }
1319                 if (!timeo) {
1320                         map_write(map, CMD(0x70), cmd_adr);
1321                         chip->state = FL_STATUS;
1322                         return -ETIME;
1323                 }
1324
1325                 /* OK Still waiting. Drop the lock, wait a while and retry. */
1326                 mutex_unlock(&chip->mutex);
1327                 if (sleep_time >= 1000000/HZ) {
1328                         /*
1329                          * Half of the normal delay still remaining
1330                          * can be performed with a sleeping delay instead
1331                          * of busy waiting.
1332                          */
1333                         msleep(sleep_time/1000);
1334                         timeo -= sleep_time;
1335                         sleep_time = 1000000/HZ;
1336                 } else {
1337                         udelay(1);
1338                         cond_resched();
1339                         timeo--;
1340                 }
1341                 mutex_lock(&chip->mutex);
1342         }
1343
1344         /* Done and happy. */
1345         chip->state = FL_STATUS;
1346         return 0;
1347 }
1348
1349 #endif
1350
1351 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1352         INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1353
1354
1355 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1356 {
1357         unsigned long cmd_addr;
1358         struct cfi_private *cfi = map->fldrv_priv;
1359         int ret;
1360
1361         adr += chip->start;
1362
1363         /* Ensure cmd read/writes are aligned. */
1364         cmd_addr = adr & ~(map_bankwidth(map)-1);
1365
1366         mutex_lock(&chip->mutex);
1367
1368         ret = get_chip(map, chip, cmd_addr, FL_POINT);
1369
1370         if (!ret) {
1371                 if (chip->state != FL_POINT && chip->state != FL_READY)
1372                         map_write(map, CMD(0xff), cmd_addr);
1373
1374                 chip->state = FL_POINT;
1375                 chip->ref_point_counter++;
1376         }
1377         mutex_unlock(&chip->mutex);
1378
1379         return ret;
1380 }
1381
1382 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1383                 size_t *retlen, void **virt, resource_size_t *phys)
1384 {
1385         struct map_info *map = mtd->priv;
1386         struct cfi_private *cfi = map->fldrv_priv;
1387         unsigned long ofs, last_end = 0;
1388         int chipnum;
1389         int ret;
1390
1391         if (!map->virt)
1392                 return -EINVAL;
1393
1394         /* Now lock the chip(s) to POINT state */
1395
1396         /* ofs: offset within the first chip that the first read should start */
1397         chipnum = (from >> cfi->chipshift);
1398         ofs = from - (chipnum << cfi->chipshift);
1399
1400         *virt = map->virt + cfi->chips[chipnum].start + ofs;
1401         if (phys)
1402                 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1403
1404         while (len) {
1405                 unsigned long thislen;
1406
1407                 if (chipnum >= cfi->numchips)
1408                         break;
1409
1410                 /* We cannot point across chips that are virtually disjoint */
1411                 if (!last_end)
1412                         last_end = cfi->chips[chipnum].start;
1413                 else if (cfi->chips[chipnum].start != last_end)
1414                         break;
1415
1416                 if ((len + ofs -1) >> cfi->chipshift)
1417                         thislen = (1<<cfi->chipshift) - ofs;
1418                 else
1419                         thislen = len;
1420
1421                 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1422                 if (ret)
1423                         break;
1424
1425                 *retlen += thislen;
1426                 len -= thislen;
1427
1428                 ofs = 0;
1429                 last_end += 1 << cfi->chipshift;
1430                 chipnum++;
1431         }
1432         return 0;
1433 }
1434
1435 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1436 {
1437         struct map_info *map = mtd->priv;
1438         struct cfi_private *cfi = map->fldrv_priv;
1439         unsigned long ofs;
1440         int chipnum, err = 0;
1441
1442         /* Now unlock the chip(s) POINT state */
1443
1444         /* ofs: offset within the first chip that the first read should start */
1445         chipnum = (from >> cfi->chipshift);
1446         ofs = from - (chipnum <<  cfi->chipshift);
1447
1448         while (len && !err) {
1449                 unsigned long thislen;
1450                 struct flchip *chip;
1451
1452                 chip = &cfi->chips[chipnum];
1453                 if (chipnum >= cfi->numchips)
1454                         break;
1455
1456                 if ((len + ofs -1) >> cfi->chipshift)
1457                         thislen = (1<<cfi->chipshift) - ofs;
1458                 else
1459                         thislen = len;
1460
1461                 mutex_lock(&chip->mutex);
1462                 if (chip->state == FL_POINT) {
1463                         chip->ref_point_counter--;
1464                         if(chip->ref_point_counter == 0)
1465                                 chip->state = FL_READY;
1466                 } else {
1467                         printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1468                         err = -EINVAL;
1469                 }
1470
1471                 put_chip(map, chip, chip->start);
1472                 mutex_unlock(&chip->mutex);
1473
1474                 len -= thislen;
1475                 ofs = 0;
1476                 chipnum++;
1477         }
1478
1479         return err;
1480 }
1481
1482 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1483 {
1484         unsigned long cmd_addr;
1485         struct cfi_private *cfi = map->fldrv_priv;
1486         int ret;
1487
1488         adr += chip->start;
1489
1490         /* Ensure cmd read/writes are aligned. */
1491         cmd_addr = adr & ~(map_bankwidth(map)-1);
1492
1493         mutex_lock(&chip->mutex);
1494         ret = get_chip(map, chip, cmd_addr, FL_READY);
1495         if (ret) {
1496                 mutex_unlock(&chip->mutex);
1497                 return ret;
1498         }
1499
1500         if (chip->state != FL_POINT && chip->state != FL_READY) {
1501                 map_write(map, CMD(0xff), cmd_addr);
1502
1503                 chip->state = FL_READY;
1504         }
1505
1506         map_copy_from(map, buf, adr, len);
1507
1508         put_chip(map, chip, cmd_addr);
1509
1510         mutex_unlock(&chip->mutex);
1511         return 0;
1512 }
1513
1514 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1515 {
1516         struct map_info *map = mtd->priv;
1517         struct cfi_private *cfi = map->fldrv_priv;
1518         unsigned long ofs;
1519         int chipnum;
1520         int ret = 0;
1521
1522         /* ofs: offset within the first chip that the first read should start */
1523         chipnum = (from >> cfi->chipshift);
1524         ofs = from - (chipnum <<  cfi->chipshift);
1525
1526         while (len) {
1527                 unsigned long thislen;
1528
1529                 if (chipnum >= cfi->numchips)
1530                         break;
1531
1532                 if ((len + ofs -1) >> cfi->chipshift)
1533                         thislen = (1<<cfi->chipshift) - ofs;
1534                 else
1535                         thislen = len;
1536
1537                 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1538                 if (ret)
1539                         break;
1540
1541                 *retlen += thislen;
1542                 len -= thislen;
1543                 buf += thislen;
1544
1545                 ofs = 0;
1546                 chipnum++;
1547         }
1548         return ret;
1549 }
1550
1551 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1552                                      unsigned long adr, map_word datum, int mode)
1553 {
1554         struct cfi_private *cfi = map->fldrv_priv;
1555         map_word status, write_cmd;
1556         int ret;
1557
1558         adr += chip->start;
1559
1560         switch (mode) {
1561         case FL_WRITING:
1562                 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1563                 break;
1564         case FL_OTP_WRITE:
1565                 write_cmd = CMD(0xc0);
1566                 break;
1567         default:
1568                 return -EINVAL;
1569         }
1570
1571         mutex_lock(&chip->mutex);
1572         ret = get_chip(map, chip, adr, mode);
1573         if (ret) {
1574                 mutex_unlock(&chip->mutex);
1575                 return ret;
1576         }
1577
1578         XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1579         ENABLE_VPP(map);
1580         xip_disable(map, chip, adr);
1581         map_write(map, write_cmd, adr);
1582         map_write(map, datum, adr);
1583         chip->state = mode;
1584
1585         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1586                                    adr, map_bankwidth(map),
1587                                    chip->word_write_time,
1588                                    chip->word_write_time_max);
1589         if (ret) {
1590                 xip_enable(map, chip, adr);
1591                 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1592                 goto out;
1593         }
1594
1595         /* check for errors */
1596         status = map_read(map, adr);
1597         if (map_word_bitsset(map, status, CMD(0x1a))) {
1598                 unsigned long chipstatus = MERGESTATUS(status);
1599
1600                 /* reset status */
1601                 map_write(map, CMD(0x50), adr);
1602                 map_write(map, CMD(0x70), adr);
1603                 xip_enable(map, chip, adr);
1604
1605                 if (chipstatus & 0x02) {
1606                         ret = -EROFS;
1607                 } else if (chipstatus & 0x08) {
1608                         printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1609                         ret = -EIO;
1610                 } else {
1611                         printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1612                         ret = -EINVAL;
1613                 }
1614
1615                 goto out;
1616         }
1617
1618         xip_enable(map, chip, adr);
1619  out:   DISABLE_VPP(map);
1620         put_chip(map, chip, adr);
1621         mutex_unlock(&chip->mutex);
1622         return ret;
1623 }
1624
1625
1626 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1627 {
1628         struct map_info *map = mtd->priv;
1629         struct cfi_private *cfi = map->fldrv_priv;
1630         int ret;
1631         int chipnum;
1632         unsigned long ofs;
1633
1634         chipnum = to >> cfi->chipshift;
1635         ofs = to  - (chipnum << cfi->chipshift);
1636
1637         /* If it's not bus-aligned, do the first byte write */
1638         if (ofs & (map_bankwidth(map)-1)) {
1639                 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1640                 int gap = ofs - bus_ofs;
1641                 int n;
1642                 map_word datum;
1643
1644                 n = min_t(int, len, map_bankwidth(map)-gap);
1645                 datum = map_word_ff(map);
1646                 datum = map_word_load_partial(map, datum, buf, gap, n);
1647
1648                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1649                                                bus_ofs, datum, FL_WRITING);
1650                 if (ret)
1651                         return ret;
1652
1653                 len -= n;
1654                 ofs += n;
1655                 buf += n;
1656                 (*retlen) += n;
1657
1658                 if (ofs >> cfi->chipshift) {
1659                         chipnum ++;
1660                         ofs = 0;
1661                         if (chipnum == cfi->numchips)
1662                                 return 0;
1663                 }
1664         }
1665
1666         while(len >= map_bankwidth(map)) {
1667                 map_word datum = map_word_load(map, buf);
1668
1669                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1670                                        ofs, datum, FL_WRITING);
1671                 if (ret)
1672                         return ret;
1673
1674                 ofs += map_bankwidth(map);
1675                 buf += map_bankwidth(map);
1676                 (*retlen) += map_bankwidth(map);
1677                 len -= map_bankwidth(map);
1678
1679                 if (ofs >> cfi->chipshift) {
1680                         chipnum ++;
1681                         ofs = 0;
1682                         if (chipnum == cfi->numchips)
1683                                 return 0;
1684                 }
1685         }
1686
1687         if (len & (map_bankwidth(map)-1)) {
1688                 map_word datum;
1689
1690                 datum = map_word_ff(map);
1691                 datum = map_word_load_partial(map, datum, buf, 0, len);
1692
1693                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1694                                        ofs, datum, FL_WRITING);
1695                 if (ret)
1696                         return ret;
1697
1698                 (*retlen) += len;
1699         }
1700
1701         return 0;
1702 }
1703
1704
1705 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1706                                     unsigned long adr, const struct kvec **pvec,
1707                                     unsigned long *pvec_seek, int len)
1708 {
1709         struct cfi_private *cfi = map->fldrv_priv;
1710         map_word status, write_cmd, datum;
1711         unsigned long cmd_adr;
1712         int ret, wbufsize, word_gap, words;
1713         const struct kvec *vec;
1714         unsigned long vec_seek;
1715         unsigned long initial_adr;
1716         int initial_len = len;
1717
1718         wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1719         adr += chip->start;
1720         initial_adr = adr;
1721         cmd_adr = adr & ~(wbufsize-1);
1722
1723         /* Sharp LH28F640BF chips need the first address for the
1724          * Page Buffer Program command. See Table 5 of
1725          * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1726         if (is_LH28F640BF(cfi))
1727                 cmd_adr = adr;
1728
1729         /* Let's determine this according to the interleave only once */
1730         write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1731
1732         mutex_lock(&chip->mutex);
1733         ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1734         if (ret) {
1735                 mutex_unlock(&chip->mutex);
1736                 return ret;
1737         }
1738
1739         XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1740         ENABLE_VPP(map);
1741         xip_disable(map, chip, cmd_adr);
1742
1743         /* Â§4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1744            [...], the device will not accept any more Write to Buffer commands".
1745            So we must check here and reset those bits if they're set. Otherwise
1746            we're just pissing in the wind */
1747         if (chip->state != FL_STATUS) {
1748                 map_write(map, CMD(0x70), cmd_adr);
1749                 chip->state = FL_STATUS;
1750         }
1751         status = map_read(map, cmd_adr);
1752         if (map_word_bitsset(map, status, CMD(0x30))) {
1753                 xip_enable(map, chip, cmd_adr);
1754                 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1755                 xip_disable(map, chip, cmd_adr);
1756                 map_write(map, CMD(0x50), cmd_adr);
1757                 map_write(map, CMD(0x70), cmd_adr);
1758         }
1759
1760         chip->state = FL_WRITING_TO_BUFFER;
1761         map_write(map, write_cmd, cmd_adr);
1762         ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1763         if (ret) {
1764                 /* Argh. Not ready for write to buffer */
1765                 map_word Xstatus = map_read(map, cmd_adr);
1766                 map_write(map, CMD(0x70), cmd_adr);
1767                 chip->state = FL_STATUS;
1768                 status = map_read(map, cmd_adr);
1769                 map_write(map, CMD(0x50), cmd_adr);
1770                 map_write(map, CMD(0x70), cmd_adr);
1771                 xip_enable(map, chip, cmd_adr);
1772                 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1773                                 map->name, Xstatus.x[0], status.x[0]);
1774                 goto out;
1775         }
1776
1777         /* Figure out the number of words to write */
1778         word_gap = (-adr & (map_bankwidth(map)-1));
1779         words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1780         if (!word_gap) {
1781                 words--;
1782         } else {
1783                 word_gap = map_bankwidth(map) - word_gap;
1784                 adr -= word_gap;
1785                 datum = map_word_ff(map);
1786         }
1787
1788         /* Write length of data to come */
1789         map_write(map, CMD(words), cmd_adr );
1790
1791         /* Write data */
1792         vec = *pvec;
1793         vec_seek = *pvec_seek;
1794         do {
1795                 int n = map_bankwidth(map) - word_gap;
1796                 if (n > vec->iov_len - vec_seek)
1797                         n = vec->iov_len - vec_seek;
1798                 if (n > len)
1799                         n = len;
1800
1801                 if (!word_gap && len < map_bankwidth(map))
1802                         datum = map_word_ff(map);
1803
1804                 datum = map_word_load_partial(map, datum,
1805                                               vec->iov_base + vec_seek,
1806                                               word_gap, n);
1807
1808                 len -= n;
1809                 word_gap += n;
1810                 if (!len || word_gap == map_bankwidth(map)) {
1811                         map_write(map, datum, adr);
1812                         adr += map_bankwidth(map);
1813                         word_gap = 0;
1814                 }
1815
1816                 vec_seek += n;
1817                 if (vec_seek == vec->iov_len) {
1818                         vec++;
1819                         vec_seek = 0;
1820                 }
1821         } while (len);
1822         *pvec = vec;
1823         *pvec_seek = vec_seek;
1824
1825         /* GO GO GO */
1826         map_write(map, CMD(0xd0), cmd_adr);
1827         chip->state = FL_WRITING;
1828
1829         ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1830                                    initial_adr, initial_len,
1831                                    chip->buffer_write_time,
1832                                    chip->buffer_write_time_max);
1833         if (ret) {
1834                 map_write(map, CMD(0x70), cmd_adr);
1835                 chip->state = FL_STATUS;
1836                 xip_enable(map, chip, cmd_adr);
1837                 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1838                 goto out;
1839         }
1840
1841         /* check for errors */
1842         status = map_read(map, cmd_adr);
1843         if (map_word_bitsset(map, status, CMD(0x1a))) {
1844                 unsigned long chipstatus = MERGESTATUS(status);
1845
1846                 /* reset status */
1847                 map_write(map, CMD(0x50), cmd_adr);
1848                 map_write(map, CMD(0x70), cmd_adr);
1849                 xip_enable(map, chip, cmd_adr);
1850
1851                 if (chipstatus & 0x02) {
1852                         ret = -EROFS;
1853                 } else if (chipstatus & 0x08) {
1854                         printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1855                         ret = -EIO;
1856                 } else {
1857                         printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1858                         ret = -EINVAL;
1859                 }
1860
1861                 goto out;
1862         }
1863
1864         xip_enable(map, chip, cmd_adr);
1865  out:   DISABLE_VPP(map);
1866         put_chip(map, chip, cmd_adr);
1867         mutex_unlock(&chip->mutex);
1868         return ret;
1869 }
1870
1871 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1872                                 unsigned long count, loff_t to, size_t *retlen)
1873 {
1874         struct map_info *map = mtd->priv;
1875         struct cfi_private *cfi = map->fldrv_priv;
1876         int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1877         int ret;
1878         int chipnum;
1879         unsigned long ofs, vec_seek, i;
1880         size_t len = 0;
1881
1882         for (i = 0; i < count; i++)
1883                 len += vecs[i].iov_len;
1884
1885         if (!len)
1886                 return 0;
1887
1888         chipnum = to >> cfi->chipshift;
1889         ofs = to - (chipnum << cfi->chipshift);
1890         vec_seek = 0;
1891
1892         do {
1893                 /* We must not cross write block boundaries */
1894                 int size = wbufsize - (ofs & (wbufsize-1));
1895
1896                 if (size > len)
1897                         size = len;
1898                 ret = do_write_buffer(map, &cfi->chips[chipnum],
1899                                       ofs, &vecs, &vec_seek, size);
1900                 if (ret)
1901                         return ret;
1902
1903                 ofs += size;
1904                 (*retlen) += size;
1905                 len -= size;
1906
1907                 if (ofs >> cfi->chipshift) {
1908                         chipnum ++;
1909                         ofs = 0;
1910                         if (chipnum == cfi->numchips)
1911                                 return 0;
1912                 }
1913
1914                 /* Be nice and reschedule with the chip in a usable state for other
1915                    processes. */
1916                 cond_resched();
1917
1918         } while (len);
1919
1920         return 0;
1921 }
1922
1923 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1924                                        size_t len, size_t *retlen, const u_char *buf)
1925 {
1926         struct kvec vec;
1927
1928         vec.iov_base = (void *) buf;
1929         vec.iov_len = len;
1930
1931         return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1932 }
1933
1934 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1935                                       unsigned long adr, int len, void *thunk)
1936 {
1937         struct cfi_private *cfi = map->fldrv_priv;
1938         map_word status;
1939         int retries = 3;
1940         int ret;
1941
1942         adr += chip->start;
1943
1944  retry:
1945         mutex_lock(&chip->mutex);
1946         ret = get_chip(map, chip, adr, FL_ERASING);
1947         if (ret) {
1948                 mutex_unlock(&chip->mutex);
1949                 return ret;
1950         }
1951
1952         XIP_INVAL_CACHED_RANGE(map, adr, len);
1953         ENABLE_VPP(map);
1954         xip_disable(map, chip, adr);
1955
1956         /* Clear the status register first */
1957         map_write(map, CMD(0x50), adr);
1958
1959         /* Now erase */
1960         map_write(map, CMD(0x20), adr);
1961         map_write(map, CMD(0xD0), adr);
1962         chip->state = FL_ERASING;
1963         chip->erase_suspended = 0;
1964         chip->in_progress_block_addr = adr;
1965         chip->in_progress_block_mask = ~(len - 1);
1966
1967         ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1968                                    adr, len,
1969                                    chip->erase_time,
1970                                    chip->erase_time_max);
1971         if (ret) {
1972                 map_write(map, CMD(0x70), adr);
1973                 chip->state = FL_STATUS;
1974                 xip_enable(map, chip, adr);
1975                 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1976                 goto out;
1977         }
1978
1979         /* We've broken this before. It doesn't hurt to be safe */
1980         map_write(map, CMD(0x70), adr);
1981         chip->state = FL_STATUS;
1982         status = map_read(map, adr);
1983
1984         /* check for errors */
1985         if (map_word_bitsset(map, status, CMD(0x3a))) {
1986                 unsigned long chipstatus = MERGESTATUS(status);
1987
1988                 /* Reset the error bits */
1989                 map_write(map, CMD(0x50), adr);
1990                 map_write(map, CMD(0x70), adr);
1991                 xip_enable(map, chip, adr);
1992
1993                 if ((chipstatus & 0x30) == 0x30) {
1994                         printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1995                         ret = -EINVAL;
1996                 } else if (chipstatus & 0x02) {
1997                         /* Protection bit set */
1998                         ret = -EROFS;
1999                 } else if (chipstatus & 0x8) {
2000                         /* Voltage */
2001                         printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
2002                         ret = -EIO;
2003                 } else if (chipstatus & 0x20 && retries--) {
2004                         printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
2005                         DISABLE_VPP(map);
2006                         put_chip(map, chip, adr);
2007                         mutex_unlock(&chip->mutex);
2008                         goto retry;
2009                 } else {
2010                         printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
2011                         ret = -EIO;
2012                 }
2013
2014                 goto out;
2015         }
2016
2017         xip_enable(map, chip, adr);
2018  out:   DISABLE_VPP(map);
2019         put_chip(map, chip, adr);
2020         mutex_unlock(&chip->mutex);
2021         return ret;
2022 }
2023
2024 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2025 {
2026         return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2027                                 instr->len, NULL);
2028 }
2029
2030 static void cfi_intelext_sync (struct mtd_info *mtd)
2031 {
2032         struct map_info *map = mtd->priv;
2033         struct cfi_private *cfi = map->fldrv_priv;
2034         int i;
2035         struct flchip *chip;
2036         int ret = 0;
2037
2038         for (i=0; !ret && i<cfi->numchips; i++) {
2039                 chip = &cfi->chips[i];
2040
2041                 mutex_lock(&chip->mutex);
2042                 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2043
2044                 if (!ret) {
2045                         chip->oldstate = chip->state;
2046                         chip->state = FL_SYNCING;
2047                         /* No need to wake_up() on this state change -
2048                          * as the whole point is that nobody can do anything
2049                          * with the chip now anyway.
2050                          */
2051                 }
2052                 mutex_unlock(&chip->mutex);
2053         }
2054
2055         /* Unlock the chips again */
2056
2057         for (i--; i >=0; i--) {
2058                 chip = &cfi->chips[i];
2059
2060                 mutex_lock(&chip->mutex);
2061
2062                 if (chip->state == FL_SYNCING) {
2063                         chip->state = chip->oldstate;
2064                         chip->oldstate = FL_READY;
2065                         wake_up(&chip->wq);
2066                 }
2067                 mutex_unlock(&chip->mutex);
2068         }
2069 }
2070
2071 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2072                                                 struct flchip *chip,
2073                                                 unsigned long adr,
2074                                                 int len, void *thunk)
2075 {
2076         struct cfi_private *cfi = map->fldrv_priv;
2077         int status, ofs_factor = cfi->interleave * cfi->device_type;
2078
2079         adr += chip->start;
2080         xip_disable(map, chip, adr+(2*ofs_factor));
2081         map_write(map, CMD(0x90), adr+(2*ofs_factor));
2082         chip->state = FL_JEDEC_QUERY;
2083         status = cfi_read_query(map, adr+(2*ofs_factor));
2084         xip_enable(map, chip, 0);
2085         return status;
2086 }
2087
2088 #ifdef DEBUG_LOCK_BITS
2089 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2090                                                 struct flchip *chip,
2091                                                 unsigned long adr,
2092                                                 int len, void *thunk)
2093 {
2094         printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2095                adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2096         return 0;
2097 }
2098 #endif
2099
2100 #define DO_XXLOCK_ONEBLOCK_LOCK         ((void *) 1)
2101 #define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *) 2)
2102
2103 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2104                                        unsigned long adr, int len, void *thunk)
2105 {
2106         struct cfi_private *cfi = map->fldrv_priv;
2107         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2108         int mdelay;
2109         int ret;
2110
2111         adr += chip->start;
2112
2113         mutex_lock(&chip->mutex);
2114         ret = get_chip(map, chip, adr, FL_LOCKING);
2115         if (ret) {
2116                 mutex_unlock(&chip->mutex);
2117                 return ret;
2118         }
2119
2120         ENABLE_VPP(map);
2121         xip_disable(map, chip, adr);
2122
2123         map_write(map, CMD(0x60), adr);
2124         if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2125                 map_write(map, CMD(0x01), adr);
2126                 chip->state = FL_LOCKING;
2127         } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2128                 map_write(map, CMD(0xD0), adr);
2129                 chip->state = FL_UNLOCKING;
2130         } else
2131                 BUG();
2132
2133         /*
2134          * If Instant Individual Block Locking supported then no need
2135          * to delay.
2136          */
2137         /*
2138          * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2139          * lets use a max of 1.5 seconds (1500ms) as timeout.
2140          *
2141          * See "Clear Block Lock-Bits Time" on page 40 in
2142          * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2143          * from February 2003
2144          */
2145         mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
2146
2147         ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
2148         if (ret) {
2149                 map_write(map, CMD(0x70), adr);
2150                 chip->state = FL_STATUS;
2151                 xip_enable(map, chip, adr);
2152                 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2153                 goto out;
2154         }
2155
2156         xip_enable(map, chip, adr);
2157  out:   DISABLE_VPP(map);
2158         put_chip(map, chip, adr);
2159         mutex_unlock(&chip->mutex);
2160         return ret;
2161 }
2162
2163 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2164 {
2165         int ret;
2166
2167 #ifdef DEBUG_LOCK_BITS
2168         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2169                __func__, ofs, len);
2170         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2171                 ofs, len, NULL);
2172 #endif
2173
2174         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2175                 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2176
2177 #ifdef DEBUG_LOCK_BITS
2178         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2179                __func__, ret);
2180         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2181                 ofs, len, NULL);
2182 #endif
2183
2184         return ret;
2185 }
2186
2187 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2188 {
2189         int ret;
2190
2191 #ifdef DEBUG_LOCK_BITS
2192         printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2193                __func__, ofs, len);
2194         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2195                 ofs, len, NULL);
2196 #endif
2197
2198         ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2199                                         ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2200
2201 #ifdef DEBUG_LOCK_BITS
2202         printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2203                __func__, ret);
2204         cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2205                 ofs, len, NULL);
2206 #endif
2207
2208         return ret;
2209 }
2210
2211 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2212                                   uint64_t len)
2213 {
2214         return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2215                                 ofs, len, NULL) ? 1 : 0;
2216 }
2217
2218 #ifdef CONFIG_MTD_OTP
2219
2220 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2221                         u_long data_offset, u_char *buf, u_int size,
2222                         u_long prot_offset, u_int groupno, u_int groupsize);
2223
2224 static int __xipram
2225 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2226             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2227 {
2228         struct cfi_private *cfi = map->fldrv_priv;
2229         int ret;
2230
2231         mutex_lock(&chip->mutex);
2232         ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2233         if (ret) {
2234                 mutex_unlock(&chip->mutex);
2235                 return ret;
2236         }
2237
2238         /* let's ensure we're not reading back cached data from array mode */
2239         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2240
2241         xip_disable(map, chip, chip->start);
2242         if (chip->state != FL_JEDEC_QUERY) {
2243                 map_write(map, CMD(0x90), chip->start);
2244                 chip->state = FL_JEDEC_QUERY;
2245         }
2246         map_copy_from(map, buf, chip->start + offset, size);
2247         xip_enable(map, chip, chip->start);
2248
2249         /* then ensure we don't keep OTP data in the cache */
2250         INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2251
2252         put_chip(map, chip, chip->start);
2253         mutex_unlock(&chip->mutex);
2254         return 0;
2255 }
2256
2257 static int
2258 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2259              u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2260 {
2261         int ret;
2262
2263         while (size) {
2264                 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2265                 int gap = offset - bus_ofs;
2266                 int n = min_t(int, size, map_bankwidth(map)-gap);
2267                 map_word datum = map_word_ff(map);
2268
2269                 datum = map_word_load_partial(map, datum, buf, gap, n);
2270                 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2271                 if (ret)
2272                         return ret;
2273
2274                 offset += n;
2275                 buf += n;
2276                 size -= n;
2277         }
2278
2279         return 0;
2280 }
2281
2282 static int
2283 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2284             u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2285 {
2286         struct cfi_private *cfi = map->fldrv_priv;
2287         map_word datum;
2288
2289         /* make sure area matches group boundaries */
2290         if (size != grpsz)
2291                 return -EXDEV;
2292
2293         datum = map_word_ff(map);
2294         datum = map_word_clr(map, datum, CMD(1 << grpno));
2295         return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2296 }
2297
2298 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2299                                  size_t *retlen, u_char *buf,
2300                                  otp_op_t action, int user_regs)
2301 {
2302         struct map_info *map = mtd->priv;
2303         struct cfi_private *cfi = map->fldrv_priv;
2304         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2305         struct flchip *chip;
2306         struct cfi_intelext_otpinfo *otp;
2307         u_long devsize, reg_prot_offset, data_offset;
2308         u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2309         u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2310         int ret;
2311
2312         *retlen = 0;
2313
2314         /* Check that we actually have some OTP registers */
2315         if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2316                 return -ENODATA;
2317
2318         /* we need real chips here not virtual ones */
2319         devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2320         chip_step = devsize >> cfi->chipshift;
2321         chip_num = 0;
2322
2323         /* Some chips have OTP located in the _top_ partition only.
2324            For example: Intel 28F256L18T (T means top-parameter device) */
2325         if (cfi->mfr == CFI_MFR_INTEL) {
2326                 switch (cfi->id) {
2327                 case 0x880b:
2328                 case 0x880c:
2329                 case 0x880d:
2330                         chip_num = chip_step - 1;
2331                 }
2332         }
2333
2334         for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2335                 chip = &cfi->chips[chip_num];
2336                 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2337
2338                 /* first OTP region */
2339                 field = 0;
2340                 reg_prot_offset = extp->ProtRegAddr;
2341                 reg_fact_groups = 1;
2342                 reg_fact_size = 1 << extp->FactProtRegSize;
2343                 reg_user_groups = 1;
2344                 reg_user_size = 1 << extp->UserProtRegSize;
2345
2346                 while (len > 0) {
2347                         /* flash geometry fixup */
2348                         data_offset = reg_prot_offset + 1;
2349                         data_offset *= cfi->interleave * cfi->device_type;
2350                         reg_prot_offset *= cfi->interleave * cfi->device_type;
2351                         reg_fact_size *= cfi->interleave;
2352                         reg_user_size *= cfi->interleave;
2353
2354                         if (user_regs) {
2355                                 groups = reg_user_groups;
2356                                 groupsize = reg_user_size;
2357                                 /* skip over factory reg area */
2358                                 groupno = reg_fact_groups;
2359                                 data_offset += reg_fact_groups * reg_fact_size;
2360                         } else {
2361                                 groups = reg_fact_groups;
2362                                 groupsize = reg_fact_size;
2363                                 groupno = 0;
2364                         }
2365
2366                         while (len > 0 && groups > 0) {
2367                                 if (!action) {
2368                                         /*
2369                                          * Special case: if action is NULL
2370                                          * we fill buf with otp_info records.
2371                                          */
2372                                         struct otp_info *otpinfo;
2373                                         map_word lockword;
2374                                         len -= sizeof(struct otp_info);
2375                                         if (len <= 0)
2376                                                 return -ENOSPC;
2377                                         ret = do_otp_read(map, chip,
2378                                                           reg_prot_offset,
2379                                                           (u_char *)&lockword,
2380                                                           map_bankwidth(map),
2381                                                           0, 0,  0);
2382                                         if (ret)
2383                                                 return ret;
2384                                         otpinfo = (struct otp_info *)buf;
2385                                         otpinfo->start = from;
2386                                         otpinfo->length = groupsize;
2387                                         otpinfo->locked =
2388                                            !map_word_bitsset(map, lockword,
2389                                                              CMD(1 << groupno));
2390                                         from += groupsize;
2391                                         buf += sizeof(*otpinfo);
2392                                         *retlen += sizeof(*otpinfo);
2393                                 } else if (from >= groupsize) {
2394                                         from -= groupsize;
2395                                         data_offset += groupsize;
2396                                 } else {
2397                                         int size = groupsize;
2398                                         data_offset += from;
2399                                         size -= from;
2400                                         from = 0;
2401                                         if (size > len)
2402                                                 size = len;
2403                                         ret = action(map, chip, data_offset,
2404                                                      buf, size, reg_prot_offset,
2405                                                      groupno, groupsize);
2406                                         if (ret < 0)
2407                                                 return ret;
2408                                         buf += size;
2409                                         len -= size;
2410                                         *retlen += size;
2411                                         data_offset += size;
2412                                 }
2413                                 groupno++;
2414                                 groups--;
2415                         }
2416
2417                         /* next OTP region */
2418                         if (++field == extp->NumProtectionFields)
2419                                 break;
2420                         reg_prot_offset = otp->ProtRegAddr;
2421                         reg_fact_groups = otp->FactGroups;
2422                         reg_fact_size = 1 << otp->FactProtRegSize;
2423                         reg_user_groups = otp->UserGroups;
2424                         reg_user_size = 1 << otp->UserProtRegSize;
2425                         otp++;
2426                 }
2427         }
2428
2429         return 0;
2430 }
2431
2432 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2433                                            size_t len, size_t *retlen,
2434                                             u_char *buf)
2435 {
2436         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2437                                      buf, do_otp_read, 0);
2438 }
2439
2440 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2441                                            size_t len, size_t *retlen,
2442                                             u_char *buf)
2443 {
2444         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2445                                      buf, do_otp_read, 1);
2446 }
2447
2448 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2449                                             size_t len, size_t *retlen,
2450                                              u_char *buf)
2451 {
2452         return cfi_intelext_otp_walk(mtd, from, len, retlen,
2453                                      buf, do_otp_write, 1);
2454 }
2455
2456 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2457                                            loff_t from, size_t len)
2458 {
2459         size_t retlen;
2460         return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2461                                      NULL, do_otp_lock, 1);
2462 }
2463
2464 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
2465                                            size_t *retlen, struct otp_info *buf)
2466
2467 {
2468         return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2469                                      NULL, 0);
2470 }
2471
2472 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
2473                                            size_t *retlen, struct otp_info *buf)
2474 {
2475         return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2476                                      NULL, 1);
2477 }
2478
2479 #endif
2480
2481 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2482 {
2483         struct mtd_erase_region_info *region;
2484         int block, status, i;
2485         unsigned long adr;
2486         size_t len;
2487
2488         for (i = 0; i < mtd->numeraseregions; i++) {
2489                 region = &mtd->eraseregions[i];
2490                 if (!region->lockmap)
2491                         continue;
2492
2493                 for (block = 0; block < region->numblocks; block++){
2494                         len = region->erasesize;
2495                         adr = region->offset + block * len;
2496
2497                         status = cfi_varsize_frob(mtd,
2498                                         do_getlockstatus_oneblock, adr, len, NULL);
2499                         if (status)
2500                                 set_bit(block, region->lockmap);
2501                         else
2502                                 clear_bit(block, region->lockmap);
2503                 }
2504         }
2505 }
2506
2507 static int cfi_intelext_suspend(struct mtd_info *mtd)
2508 {
2509         struct map_info *map = mtd->priv;
2510         struct cfi_private *cfi = map->fldrv_priv;
2511         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2512         int i;
2513         struct flchip *chip;
2514         int ret = 0;
2515
2516         if ((mtd->flags & MTD_POWERUP_LOCK)
2517             && extp && (extp->FeatureSupport & (1 << 5)))
2518                 cfi_intelext_save_locks(mtd);
2519
2520         for (i=0; !ret && i<cfi->numchips; i++) {
2521                 chip = &cfi->chips[i];
2522
2523                 mutex_lock(&chip->mutex);
2524
2525                 switch (chip->state) {
2526                 case FL_READY:
2527                 case FL_STATUS:
2528                 case FL_CFI_QUERY:
2529                 case FL_JEDEC_QUERY:
2530                         if (chip->oldstate == FL_READY) {
2531                                 /* place the chip in a known state before suspend */
2532                                 map_write(map, CMD(0xFF), cfi->chips[i].start);
2533                                 chip->oldstate = chip->state;
2534                                 chip->state = FL_PM_SUSPENDED;
2535                                 /* No need to wake_up() on this state change -
2536                                  * as the whole point is that nobody can do anything
2537                                  * with the chip now anyway.
2538                                  */
2539                         } else {
2540                                 /* There seems to be an operation pending. We must wait for it. */
2541                                 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2542                                 ret = -EAGAIN;
2543                         }
2544                         break;
2545                 default:
2546                         /* Should we actually wait? Once upon a time these routines weren't
2547                            allowed to. Or should we return -EAGAIN, because the upper layers
2548                            ought to have already shut down anything which was using the device
2549                            anyway? The latter for now. */
2550                         printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
2551                         ret = -EAGAIN;
2552                 case FL_PM_SUSPENDED:
2553                         break;
2554                 }
2555                 mutex_unlock(&chip->mutex);
2556         }
2557
2558         /* Unlock the chips again */
2559
2560         if (ret) {
2561                 for (i--; i >=0; i--) {
2562                         chip = &cfi->chips[i];
2563
2564                         mutex_lock(&chip->mutex);
2565
2566                         if (chip->state == FL_PM_SUSPENDED) {
2567                                 /* No need to force it into a known state here,
2568                                    because we're returning failure, and it didn't
2569                                    get power cycled */
2570                                 chip->state = chip->oldstate;
2571                                 chip->oldstate = FL_READY;
2572                                 wake_up(&chip->wq);
2573                         }
2574                         mutex_unlock(&chip->mutex);
2575                 }
2576         }
2577
2578         return ret;
2579 }
2580
2581 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2582 {
2583         struct mtd_erase_region_info *region;
2584         int block, i;
2585         unsigned long adr;
2586         size_t len;
2587
2588         for (i = 0; i < mtd->numeraseregions; i++) {
2589                 region = &mtd->eraseregions[i];
2590                 if (!region->lockmap)
2591                         continue;
2592
2593                 for_each_clear_bit(block, region->lockmap, region->numblocks) {
2594                         len = region->erasesize;
2595                         adr = region->offset + block * len;
2596                         cfi_intelext_unlock(mtd, adr, len);
2597                 }
2598         }
2599 }
2600
2601 static void cfi_intelext_resume(struct mtd_info *mtd)
2602 {
2603         struct map_info *map = mtd->priv;
2604         struct cfi_private *cfi = map->fldrv_priv;
2605         struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2606         int i;
2607         struct flchip *chip;
2608
2609         for (i=0; i<cfi->numchips; i++) {
2610
2611                 chip = &cfi->chips[i];
2612
2613                 mutex_lock(&chip->mutex);
2614
2615                 /* Go to known state. Chip may have been power cycled */
2616                 if (chip->state == FL_PM_SUSPENDED) {
2617                         /* Refresh LH28F640BF Partition Config. Register */
2618                         fixup_LH28F640BF(mtd);
2619                         map_write(map, CMD(0xFF), cfi->chips[i].start);
2620                         chip->oldstate = chip->state = FL_READY;
2621                         wake_up(&chip->wq);
2622                 }
2623
2624                 mutex_unlock(&chip->mutex);
2625         }
2626
2627         if ((mtd->flags & MTD_POWERUP_LOCK)
2628             && extp && (extp->FeatureSupport & (1 << 5)))
2629                 cfi_intelext_restore_locks(mtd);
2630 }
2631
2632 static int cfi_intelext_reset(struct mtd_info *mtd)
2633 {
2634         struct map_info *map = mtd->priv;
2635         struct cfi_private *cfi = map->fldrv_priv;
2636         int i, ret;
2637
2638         for (i=0; i < cfi->numchips; i++) {
2639                 struct flchip *chip = &cfi->chips[i];
2640
2641                 /* force the completion of any ongoing operation
2642                    and switch to array mode so any bootloader in
2643                    flash is accessible for soft reboot. */
2644                 mutex_lock(&chip->mutex);
2645                 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2646                 if (!ret) {
2647                         map_write(map, CMD(0xff), chip->start);
2648                         chip->state = FL_SHUTDOWN;
2649                         put_chip(map, chip, chip->start);
2650                 }
2651                 mutex_unlock(&chip->mutex);
2652         }
2653
2654         return 0;
2655 }
2656
2657 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2658                                void *v)
2659 {
2660         struct mtd_info *mtd;
2661
2662         mtd = container_of(nb, struct mtd_info, reboot_notifier);
2663         cfi_intelext_reset(mtd);
2664         return NOTIFY_DONE;
2665 }
2666
2667 static void cfi_intelext_destroy(struct mtd_info *mtd)
2668 {
2669         struct map_info *map = mtd->priv;
2670         struct cfi_private *cfi = map->fldrv_priv;
2671         struct mtd_erase_region_info *region;
2672         int i;
2673         cfi_intelext_reset(mtd);
2674         unregister_reboot_notifier(&mtd->reboot_notifier);
2675         kfree(cfi->cmdset_priv);
2676         kfree(cfi->cfiq);
2677         kfree(cfi->chips[0].priv);
2678         kfree(cfi);
2679         for (i = 0; i < mtd->numeraseregions; i++) {
2680                 region = &mtd->eraseregions[i];
2681                 kfree(region->lockmap);
2682         }
2683         kfree(mtd->eraseregions);
2684 }
2685
2686 MODULE_LICENSE("GPL");
2687 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2688 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2689 MODULE_ALIAS("cfi_cmdset_0003");
2690 MODULE_ALIAS("cfi_cmdset_0200");