arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57
58 #define DRIVER_NAME     "sh_mmcif"
59
60 /* CE_CMD_SET */
61 #define CMD_MASK                0x3f000000
62 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY            (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN           (1 << 20)
67 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH            (1 << 5)
82 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
86
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK          (1 << 0)
89
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK         0x0000ffff
92
93 /* CE_INT */
94 #define INT_CCSDE               (1 << 29)
95 #define INT_CMD12DRE            (1 << 26)
96 #define INT_CMD12RBE            (1 << 25)
97 #define INT_CMD12CRE            (1 << 24)
98 #define INT_DTRANE              (1 << 23)
99 #define INT_BUFRE               (1 << 22)
100 #define INT_BUFWEN              (1 << 21)
101 #define INT_BUFREN              (1 << 20)
102 #define INT_CCSRCV              (1 << 19)
103 #define INT_RBSYE               (1 << 17)
104 #define INT_CRSPE               (1 << 16)
105 #define INT_CMDVIO              (1 << 15)
106 #define INT_BUFVIO              (1 << 14)
107 #define INT_WDATERR             (1 << 11)
108 #define INT_RDATERR             (1 << 10)
109 #define INT_RIDXERR             (1 << 9)
110 #define INT_RSPERR              (1 << 8)
111 #define INT_CCSTO               (1 << 5)
112 #define INT_CRCSTO              (1 << 4)
113 #define INT_WDATTO              (1 << 3)
114 #define INT_RDATTO              (1 << 2)
115 #define INT_RBSYTO              (1 << 1)
116 #define INT_RSPTO               (1 << 0)
117 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
120                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
123                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
160                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
161                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
162                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ             (1 << 31)
166
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE             (1 << 31)
169 #define STS2_CRC16E             (1 << 30)
170 #define STS2_AC12CRCE           (1 << 29)
171 #define STS2_RSPCRC7E           (1 << 28)
172 #define STS2_CRCSTEBE           (1 << 27)
173 #define STS2_RDATEBE            (1 << 26)
174 #define STS2_AC12REBE           (1 << 25)
175 #define STS2_RSPEBE             (1 << 24)
176 #define STS2_AC12IDXE           (1 << 23)
177 #define STS2_RSPIDXE            (1 << 22)
178 #define STS2_CCSTO              (1 << 15)
179 #define STS2_RDATTO             (1 << 14)
180 #define STS2_DATBSYTO           (1 << 13)
181 #define STS2_CRCSTTO            (1 << 12)
182 #define STS2_AC12BSYTO          (1 << 11)
183 #define STS2_RSPBSYTO           (1 << 10)
184 #define STS2_AC12RSPTO          (1 << 9)
185 #define STS2_RSPTO              (1 << 8)
186 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
187                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
189                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
190                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
191                                  STS2_AC12RSPTO | STS2_RSPTO)
192
193 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
195 #define CLKDEV_INIT             400000   /* 400 kHz */
196
197 enum sh_mmcif_state {
198         STATE_IDLE,
199         STATE_REQUEST,
200         STATE_IOS,
201         STATE_TIMEOUT,
202 };
203
204 enum sh_mmcif_wait_for {
205         MMCIF_WAIT_FOR_REQUEST,
206         MMCIF_WAIT_FOR_CMD,
207         MMCIF_WAIT_FOR_MREAD,
208         MMCIF_WAIT_FOR_MWRITE,
209         MMCIF_WAIT_FOR_READ,
210         MMCIF_WAIT_FOR_WRITE,
211         MMCIF_WAIT_FOR_READ_END,
212         MMCIF_WAIT_FOR_WRITE_END,
213         MMCIF_WAIT_FOR_STOP,
214 };
215
216 /*
217  * difference for each SoC
218  */
219 struct sh_mmcif_host {
220         struct mmc_host *mmc;
221         struct mmc_request *mrq;
222         struct platform_device *pd;
223         struct clk *clk;
224         int bus_width;
225         unsigned char timing;
226         bool sd_error;
227         bool dying;
228         long timeout;
229         void __iomem *addr;
230         u32 *pio_ptr;
231         spinlock_t lock;                /* protect sh_mmcif_host::state */
232         enum sh_mmcif_state state;
233         enum sh_mmcif_wait_for wait_for;
234         struct delayed_work timeout_work;
235         size_t blocksize;
236         int sg_idx;
237         int sg_blkidx;
238         bool power;
239         bool ccs_enable;                /* Command Completion Signal support */
240         bool clk_ctrl2_enable;
241         struct mutex thread_lock;
242         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
243
244         /* DMA support */
245         struct dma_chan         *chan_rx;
246         struct dma_chan         *chan_tx;
247         struct completion       dma_complete;
248         bool                    dma_active;
249 };
250
251 static const struct of_device_id sh_mmcif_of_match[] = {
252         { .compatible = "renesas,sh-mmcif" },
253         { }
254 };
255 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
256
257 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
258
259 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
260                                         unsigned int reg, u32 val)
261 {
262         writel(val | readl(host->addr + reg), host->addr + reg);
263 }
264
265 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
266                                         unsigned int reg, u32 val)
267 {
268         writel(~val & readl(host->addr + reg), host->addr + reg);
269 }
270
271 static void sh_mmcif_dma_complete(void *arg)
272 {
273         struct sh_mmcif_host *host = arg;
274         struct mmc_request *mrq = host->mrq;
275         struct device *dev = sh_mmcif_host_to_dev(host);
276
277         dev_dbg(dev, "Command completed\n");
278
279         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280                  dev_name(dev)))
281                 return;
282
283         complete(&host->dma_complete);
284 }
285
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288         struct mmc_data *data = host->mrq->data;
289         struct scatterlist *sg = data->sg;
290         struct dma_async_tx_descriptor *desc = NULL;
291         struct dma_chan *chan = host->chan_rx;
292         struct device *dev = sh_mmcif_host_to_dev(host);
293         dma_cookie_t cookie = -EINVAL;
294         int ret;
295
296         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
297                          DMA_FROM_DEVICE);
298         if (ret > 0) {
299                 host->dma_active = true;
300                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
301                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
302         }
303
304         if (desc) {
305                 desc->callback = sh_mmcif_dma_complete;
306                 desc->callback_param = host;
307                 cookie = dmaengine_submit(desc);
308                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
309                 dma_async_issue_pending(chan);
310         }
311         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
312                 __func__, data->sg_len, ret, cookie);
313
314         if (!desc) {
315                 /* DMA failed, fall back to PIO */
316                 if (ret >= 0)
317                         ret = -EIO;
318                 host->chan_rx = NULL;
319                 host->dma_active = false;
320                 dma_release_channel(chan);
321                 /* Free the Tx channel too */
322                 chan = host->chan_tx;
323                 if (chan) {
324                         host->chan_tx = NULL;
325                         dma_release_channel(chan);
326                 }
327                 dev_warn(dev,
328                          "DMA failed: %d, falling back to PIO\n", ret);
329                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
330         }
331
332         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
333                 desc, cookie, data->sg_len);
334 }
335
336 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337 {
338         struct mmc_data *data = host->mrq->data;
339         struct scatterlist *sg = data->sg;
340         struct dma_async_tx_descriptor *desc = NULL;
341         struct dma_chan *chan = host->chan_tx;
342         struct device *dev = sh_mmcif_host_to_dev(host);
343         dma_cookie_t cookie = -EINVAL;
344         int ret;
345
346         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
347                          DMA_TO_DEVICE);
348         if (ret > 0) {
349                 host->dma_active = true;
350                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
351                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352         }
353
354         if (desc) {
355                 desc->callback = sh_mmcif_dma_complete;
356                 desc->callback_param = host;
357                 cookie = dmaengine_submit(desc);
358                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
359                 dma_async_issue_pending(chan);
360         }
361         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
362                 __func__, data->sg_len, ret, cookie);
363
364         if (!desc) {
365                 /* DMA failed, fall back to PIO */
366                 if (ret >= 0)
367                         ret = -EIO;
368                 host->chan_tx = NULL;
369                 host->dma_active = false;
370                 dma_release_channel(chan);
371                 /* Free the Rx channel too */
372                 chan = host->chan_rx;
373                 if (chan) {
374                         host->chan_rx = NULL;
375                         dma_release_channel(chan);
376                 }
377                 dev_warn(dev,
378                          "DMA failed: %d, falling back to PIO\n", ret);
379                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380         }
381
382         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
383                 desc, cookie);
384 }
385
386 static struct dma_chan *
387 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
388 {
389         dma_cap_mask_t mask;
390
391         dma_cap_zero(mask);
392         dma_cap_set(DMA_SLAVE, mask);
393         if (slave_id <= 0)
394                 return NULL;
395
396         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
397 }
398
399 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
400                                      struct dma_chan *chan,
401                                      enum dma_transfer_direction direction)
402 {
403         struct resource *res;
404         struct dma_slave_config cfg = { 0, };
405
406         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
407         if (!res)
408                 return -EINVAL;
409
410         cfg.direction = direction;
411
412         if (direction == DMA_DEV_TO_MEM) {
413                 cfg.src_addr = res->start + MMCIF_CE_DATA;
414                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
415         } else {
416                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
417                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418         }
419
420         return dmaengine_slave_config(chan, &cfg);
421 }
422
423 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
424 {
425         struct device *dev = sh_mmcif_host_to_dev(host);
426         host->dma_active = false;
427
428         /* We can only either use DMA for both Tx and Rx or not use it at all */
429         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
430                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
431
432                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
433                                                         pdata->slave_id_tx);
434                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
435                                                         pdata->slave_id_rx);
436         } else {
437                 host->chan_tx = dma_request_chan(dev, "tx");
438                 if (IS_ERR(host->chan_tx))
439                         host->chan_tx = NULL;
440                 host->chan_rx = dma_request_chan(dev, "rx");
441                 if (IS_ERR(host->chan_rx))
442                         host->chan_rx = NULL;
443         }
444         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
445                 host->chan_rx);
446
447         if (!host->chan_tx || !host->chan_rx ||
448             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
449             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
450                 goto error;
451
452         return;
453
454 error:
455         if (host->chan_tx)
456                 dma_release_channel(host->chan_tx);
457         if (host->chan_rx)
458                 dma_release_channel(host->chan_rx);
459         host->chan_tx = host->chan_rx = NULL;
460 }
461
462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 {
464         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465         /* Descriptors are freed automatically */
466         if (host->chan_tx) {
467                 struct dma_chan *chan = host->chan_tx;
468                 host->chan_tx = NULL;
469                 dma_release_channel(chan);
470         }
471         if (host->chan_rx) {
472                 struct dma_chan *chan = host->chan_rx;
473                 host->chan_rx = NULL;
474                 dma_release_channel(chan);
475         }
476
477         host->dma_active = false;
478 }
479
480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 {
482         struct device *dev = sh_mmcif_host_to_dev(host);
483         struct sh_mmcif_plat_data *p = dev->platform_data;
484         bool sup_pclk = p ? p->sup_pclk : false;
485         unsigned int current_clk = clk_get_rate(host->clk);
486         unsigned int clkdiv;
487
488         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490
491         if (!clk)
492                 return;
493
494         if (host->clkdiv_map) {
495                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
496                 int i;
497
498                 clkdiv = 0;
499                 diff_min = ~0;
500                 best_freq = 0;
501                 for (i = 31; i >= 0; i--) {
502                         if (!((1 << i) & host->clkdiv_map))
503                                 continue;
504
505                         /*
506                          * clk = parent_freq / div
507                          * -> parent_freq = clk x div
508                          */
509
510                         div = 1 << (i + 1);
511                         freq = clk_round_rate(host->clk, clk * div);
512                         myclk = freq / div;
513                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
514
515                         if (diff <= diff_min) {
516                                 best_freq = freq;
517                                 clkdiv = i;
518                                 diff_min = diff;
519                         }
520                 }
521
522                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
523                         (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
524
525                 clk_set_rate(host->clk, best_freq);
526                 clkdiv = clkdiv << 16;
527         } else if (sup_pclk && clk == current_clk) {
528                 clkdiv = CLK_SUP_PCLK;
529         } else {
530                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
531         }
532
533         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
534         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
535 }
536
537 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
538 {
539         u32 tmp;
540
541         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
542
543         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
544         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
545         if (host->ccs_enable)
546                 tmp |= SCCSTO_29;
547         if (host->clk_ctrl2_enable)
548                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
549         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
550                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
551         /* byte swap on */
552         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
553 }
554
555 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
556 {
557         struct device *dev = sh_mmcif_host_to_dev(host);
558         u32 state1, state2;
559         int ret, timeout;
560
561         host->sd_error = false;
562
563         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
564         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
565         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
566         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
567
568         if (state1 & STS1_CMDSEQ) {
569                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
570                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
571                 for (timeout = 10000; timeout; timeout--) {
572                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
573                               & STS1_CMDSEQ))
574                                 break;
575                         mdelay(1);
576                 }
577                 if (!timeout) {
578                         dev_err(dev,
579                                 "Forced end of command sequence timeout err\n");
580                         return -EIO;
581                 }
582                 sh_mmcif_sync_reset(host);
583                 dev_dbg(dev, "Forced end of command sequence\n");
584                 return -EIO;
585         }
586
587         if (state2 & STS2_CRC_ERR) {
588                 dev_err(dev, " CRC error: state %u, wait %u\n",
589                         host->state, host->wait_for);
590                 ret = -EIO;
591         } else if (state2 & STS2_TIMEOUT_ERR) {
592                 dev_err(dev, " Timeout: state %u, wait %u\n",
593                         host->state, host->wait_for);
594                 ret = -ETIMEDOUT;
595         } else {
596                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
597                         host->state, host->wait_for);
598                 ret = -EIO;
599         }
600         return ret;
601 }
602
603 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
604 {
605         struct mmc_data *data = host->mrq->data;
606
607         host->sg_blkidx += host->blocksize;
608
609         /* data->sg->length must be a multiple of host->blocksize? */
610         BUG_ON(host->sg_blkidx > data->sg->length);
611
612         if (host->sg_blkidx == data->sg->length) {
613                 host->sg_blkidx = 0;
614                 if (++host->sg_idx < data->sg_len)
615                         host->pio_ptr = sg_virt(++data->sg);
616         } else {
617                 host->pio_ptr = p;
618         }
619
620         return host->sg_idx != data->sg_len;
621 }
622
623 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
624                                  struct mmc_request *mrq)
625 {
626         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
627                            BLOCK_SIZE_MASK) + 3;
628
629         host->wait_for = MMCIF_WAIT_FOR_READ;
630
631         /* buf read enable */
632         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 }
634
635 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
636 {
637         struct device *dev = sh_mmcif_host_to_dev(host);
638         struct mmc_data *data = host->mrq->data;
639         u32 *p = sg_virt(data->sg);
640         int i;
641
642         if (host->sd_error) {
643                 data->error = sh_mmcif_error_manage(host);
644                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
645                 return false;
646         }
647
648         for (i = 0; i < host->blocksize / 4; i++)
649                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
650
651         /* buffer read end */
652         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
653         host->wait_for = MMCIF_WAIT_FOR_READ_END;
654
655         return true;
656 }
657
658 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
659                                 struct mmc_request *mrq)
660 {
661         struct mmc_data *data = mrq->data;
662
663         if (!data->sg_len || !data->sg->length)
664                 return;
665
666         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667                 BLOCK_SIZE_MASK;
668
669         host->wait_for = MMCIF_WAIT_FOR_MREAD;
670         host->sg_idx = 0;
671         host->sg_blkidx = 0;
672         host->pio_ptr = sg_virt(data->sg);
673
674         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
675 }
676
677 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
678 {
679         struct device *dev = sh_mmcif_host_to_dev(host);
680         struct mmc_data *data = host->mrq->data;
681         u32 *p = host->pio_ptr;
682         int i;
683
684         if (host->sd_error) {
685                 data->error = sh_mmcif_error_manage(host);
686                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
687                 return false;
688         }
689
690         BUG_ON(!data->sg->length);
691
692         for (i = 0; i < host->blocksize / 4; i++)
693                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
694
695         if (!sh_mmcif_next_block(host, p))
696                 return false;
697
698         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
699
700         return true;
701 }
702
703 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
704                                         struct mmc_request *mrq)
705 {
706         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
707                            BLOCK_SIZE_MASK) + 3;
708
709         host->wait_for = MMCIF_WAIT_FOR_WRITE;
710
711         /* buf write enable */
712         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713 }
714
715 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
716 {
717         struct device *dev = sh_mmcif_host_to_dev(host);
718         struct mmc_data *data = host->mrq->data;
719         u32 *p = sg_virt(data->sg);
720         int i;
721
722         if (host->sd_error) {
723                 data->error = sh_mmcif_error_manage(host);
724                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
725                 return false;
726         }
727
728         for (i = 0; i < host->blocksize / 4; i++)
729                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
730
731         /* buffer write end */
732         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
733         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
734
735         return true;
736 }
737
738 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
739                                 struct mmc_request *mrq)
740 {
741         struct mmc_data *data = mrq->data;
742
743         if (!data->sg_len || !data->sg->length)
744                 return;
745
746         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
747                 BLOCK_SIZE_MASK;
748
749         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
750         host->sg_idx = 0;
751         host->sg_blkidx = 0;
752         host->pio_ptr = sg_virt(data->sg);
753
754         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
755 }
756
757 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
758 {
759         struct device *dev = sh_mmcif_host_to_dev(host);
760         struct mmc_data *data = host->mrq->data;
761         u32 *p = host->pio_ptr;
762         int i;
763
764         if (host->sd_error) {
765                 data->error = sh_mmcif_error_manage(host);
766                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
767                 return false;
768         }
769
770         BUG_ON(!data->sg->length);
771
772         for (i = 0; i < host->blocksize / 4; i++)
773                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
774
775         if (!sh_mmcif_next_block(host, p))
776                 return false;
777
778         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
779
780         return true;
781 }
782
783 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
784                                                 struct mmc_command *cmd)
785 {
786         if (cmd->flags & MMC_RSP_136) {
787                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
788                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
789                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
790                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791         } else
792                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793 }
794
795 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
796                                                 struct mmc_command *cmd)
797 {
798         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
799 }
800
801 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
802                             struct mmc_request *mrq)
803 {
804         struct device *dev = sh_mmcif_host_to_dev(host);
805         struct mmc_data *data = mrq->data;
806         struct mmc_command *cmd = mrq->cmd;
807         u32 opc = cmd->opcode;
808         u32 tmp = 0;
809
810         /* Response Type check */
811         switch (mmc_resp_type(cmd)) {
812         case MMC_RSP_NONE:
813                 tmp |= CMD_SET_RTYP_NO;
814                 break;
815         case MMC_RSP_R1:
816         case MMC_RSP_R3:
817                 tmp |= CMD_SET_RTYP_6B;
818                 break;
819         case MMC_RSP_R1B:
820                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
821                 break;
822         case MMC_RSP_R2:
823                 tmp |= CMD_SET_RTYP_17B;
824                 break;
825         default:
826                 dev_err(dev, "Unsupported response type.\n");
827                 break;
828         }
829
830         /* WDAT / DATW */
831         if (data) {
832                 tmp |= CMD_SET_WDAT;
833                 switch (host->bus_width) {
834                 case MMC_BUS_WIDTH_1:
835                         tmp |= CMD_SET_DATW_1;
836                         break;
837                 case MMC_BUS_WIDTH_4:
838                         tmp |= CMD_SET_DATW_4;
839                         break;
840                 case MMC_BUS_WIDTH_8:
841                         tmp |= CMD_SET_DATW_8;
842                         break;
843                 default:
844                         dev_err(dev, "Unsupported bus width.\n");
845                         break;
846                 }
847                 switch (host->timing) {
848                 case MMC_TIMING_MMC_DDR52:
849                         /*
850                          * MMC core will only set this timing, if the host
851                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
852                          * capability. MMCIF implementations with this
853                          * capability, e.g. sh73a0, will have to set it
854                          * in their platform data.
855                          */
856                         tmp |= CMD_SET_DARS;
857                         break;
858                 }
859         }
860         /* DWEN */
861         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
862                 tmp |= CMD_SET_DWEN;
863         /* CMLTE/CMD12EN */
864         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
865                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
866                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
867                                 data->blocks << 16);
868         }
869         /* RIDXC[1:0] check bits */
870         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
871             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
872                 tmp |= CMD_SET_RIDXC_BITS;
873         /* RCRC7C[1:0] check bits */
874         if (opc == MMC_SEND_OP_COND)
875                 tmp |= CMD_SET_CRC7C_BITS;
876         /* RCRC7C[1:0] internal CRC7 */
877         if (opc == MMC_ALL_SEND_CID ||
878                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
879                 tmp |= CMD_SET_CRC7C_INTERNAL;
880
881         return (opc << 24) | tmp;
882 }
883
884 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
885                                struct mmc_request *mrq, u32 opc)
886 {
887         struct device *dev = sh_mmcif_host_to_dev(host);
888
889         switch (opc) {
890         case MMC_READ_MULTIPLE_BLOCK:
891                 sh_mmcif_multi_read(host, mrq);
892                 return 0;
893         case MMC_WRITE_MULTIPLE_BLOCK:
894                 sh_mmcif_multi_write(host, mrq);
895                 return 0;
896         case MMC_WRITE_BLOCK:
897                 sh_mmcif_single_write(host, mrq);
898                 return 0;
899         case MMC_READ_SINGLE_BLOCK:
900         case MMC_SEND_EXT_CSD:
901                 sh_mmcif_single_read(host, mrq);
902                 return 0;
903         default:
904                 dev_err(dev, "Unsupported CMD%d\n", opc);
905                 return -EINVAL;
906         }
907 }
908
909 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
910                                struct mmc_request *mrq)
911 {
912         struct mmc_command *cmd = mrq->cmd;
913         u32 opc;
914         u32 mask = 0;
915         unsigned long flags;
916
917         if (cmd->flags & MMC_RSP_BUSY)
918                 mask = MASK_START_CMD | MASK_MRBSYE;
919         else
920                 mask = MASK_START_CMD | MASK_MCRSPE;
921
922         if (host->ccs_enable)
923                 mask |= MASK_MCCSTO;
924
925         if (mrq->data) {
926                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
927                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
928                                 mrq->data->blksz);
929         }
930         opc = sh_mmcif_set_cmd(host, mrq);
931
932         if (host->ccs_enable)
933                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
934         else
935                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
936         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
937         /* set arg */
938         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
939         /* set cmd */
940         spin_lock_irqsave(&host->lock, flags);
941         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
942
943         host->wait_for = MMCIF_WAIT_FOR_CMD;
944         schedule_delayed_work(&host->timeout_work, host->timeout);
945         spin_unlock_irqrestore(&host->lock, flags);
946 }
947
948 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
949                               struct mmc_request *mrq)
950 {
951         struct device *dev = sh_mmcif_host_to_dev(host);
952
953         switch (mrq->cmd->opcode) {
954         case MMC_READ_MULTIPLE_BLOCK:
955                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
956                 break;
957         case MMC_WRITE_MULTIPLE_BLOCK:
958                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
959                 break;
960         default:
961                 dev_err(dev, "unsupported stop cmd\n");
962                 mrq->stop->error = sh_mmcif_error_manage(host);
963                 return;
964         }
965
966         host->wait_for = MMCIF_WAIT_FOR_STOP;
967 }
968
969 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
970 {
971         struct sh_mmcif_host *host = mmc_priv(mmc);
972         struct device *dev = sh_mmcif_host_to_dev(host);
973         unsigned long flags;
974
975         spin_lock_irqsave(&host->lock, flags);
976         if (host->state != STATE_IDLE) {
977                 dev_dbg(dev, "%s() rejected, state %u\n",
978                         __func__, host->state);
979                 spin_unlock_irqrestore(&host->lock, flags);
980                 mrq->cmd->error = -EAGAIN;
981                 mmc_request_done(mmc, mrq);
982                 return;
983         }
984
985         host->state = STATE_REQUEST;
986         spin_unlock_irqrestore(&host->lock, flags);
987
988         host->mrq = mrq;
989
990         sh_mmcif_start_cmd(host, mrq);
991 }
992
993 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
994 {
995         struct device *dev = sh_mmcif_host_to_dev(host);
996
997         if (host->mmc->f_max) {
998                 unsigned int f_max, f_min = 0, f_min_old;
999
1000                 f_max = host->mmc->f_max;
1001                 for (f_min_old = f_max; f_min_old > 2;) {
1002                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1003                         if (f_min == f_min_old)
1004                                 break;
1005                         f_min_old = f_min;
1006                 }
1007
1008                 /*
1009                  * This driver assumes this SoC is R-Car Gen2 or later
1010                  */
1011                 host->clkdiv_map = 0x3ff;
1012
1013                 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1014                 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1015         } else {
1016                 unsigned int clk = clk_get_rate(host->clk);
1017
1018                 host->mmc->f_max = clk / 2;
1019                 host->mmc->f_min = clk / 512;
1020         }
1021
1022         dev_dbg(dev, "clk max/min = %d/%d\n",
1023                 host->mmc->f_max, host->mmc->f_min);
1024 }
1025
1026 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1027 {
1028         struct sh_mmcif_host *host = mmc_priv(mmc);
1029         struct device *dev = sh_mmcif_host_to_dev(host);
1030         unsigned long flags;
1031
1032         spin_lock_irqsave(&host->lock, flags);
1033         if (host->state != STATE_IDLE) {
1034                 dev_dbg(dev, "%s() rejected, state %u\n",
1035                         __func__, host->state);
1036                 spin_unlock_irqrestore(&host->lock, flags);
1037                 return;
1038         }
1039
1040         host->state = STATE_IOS;
1041         spin_unlock_irqrestore(&host->lock, flags);
1042
1043         switch (ios->power_mode) {
1044         case MMC_POWER_UP:
1045                 if (!IS_ERR(mmc->supply.vmmc))
1046                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1047                 if (!host->power) {
1048                         clk_prepare_enable(host->clk);
1049                         pm_runtime_get_sync(dev);
1050                         sh_mmcif_sync_reset(host);
1051                         sh_mmcif_request_dma(host);
1052                         host->power = true;
1053                 }
1054                 break;
1055         case MMC_POWER_OFF:
1056                 if (!IS_ERR(mmc->supply.vmmc))
1057                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1058                 if (host->power) {
1059                         sh_mmcif_clock_control(host, 0);
1060                         sh_mmcif_release_dma(host);
1061                         pm_runtime_put(dev);
1062                         clk_disable_unprepare(host->clk);
1063                         host->power = false;
1064                 }
1065                 break;
1066         case MMC_POWER_ON:
1067                 sh_mmcif_clock_control(host, ios->clock);
1068                 break;
1069         }
1070
1071         host->timing = ios->timing;
1072         host->bus_width = ios->bus_width;
1073         host->state = STATE_IDLE;
1074 }
1075
1076 static const struct mmc_host_ops sh_mmcif_ops = {
1077         .request        = sh_mmcif_request,
1078         .set_ios        = sh_mmcif_set_ios,
1079         .get_cd         = mmc_gpio_get_cd,
1080 };
1081
1082 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1083 {
1084         struct mmc_command *cmd = host->mrq->cmd;
1085         struct mmc_data *data = host->mrq->data;
1086         struct device *dev = sh_mmcif_host_to_dev(host);
1087         long time;
1088
1089         if (host->sd_error) {
1090                 switch (cmd->opcode) {
1091                 case MMC_ALL_SEND_CID:
1092                 case MMC_SELECT_CARD:
1093                 case MMC_APP_CMD:
1094                         cmd->error = -ETIMEDOUT;
1095                         break;
1096                 default:
1097                         cmd->error = sh_mmcif_error_manage(host);
1098                         break;
1099                 }
1100                 dev_dbg(dev, "CMD%d error %d\n",
1101                         cmd->opcode, cmd->error);
1102                 host->sd_error = false;
1103                 return false;
1104         }
1105         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1106                 cmd->error = 0;
1107                 return false;
1108         }
1109
1110         sh_mmcif_get_response(host, cmd);
1111
1112         if (!data)
1113                 return false;
1114
1115         /*
1116          * Completion can be signalled from DMA callback and error, so, have to
1117          * reset here, before setting .dma_active
1118          */
1119         init_completion(&host->dma_complete);
1120
1121         if (data->flags & MMC_DATA_READ) {
1122                 if (host->chan_rx)
1123                         sh_mmcif_start_dma_rx(host);
1124         } else {
1125                 if (host->chan_tx)
1126                         sh_mmcif_start_dma_tx(host);
1127         }
1128
1129         if (!host->dma_active) {
1130                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1131                 return !data->error;
1132         }
1133
1134         /* Running in the IRQ thread, can sleep */
1135         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1136                                                          host->timeout);
1137
1138         if (data->flags & MMC_DATA_READ)
1139                 dma_unmap_sg(host->chan_rx->device->dev,
1140                              data->sg, data->sg_len,
1141                              DMA_FROM_DEVICE);
1142         else
1143                 dma_unmap_sg(host->chan_tx->device->dev,
1144                              data->sg, data->sg_len,
1145                              DMA_TO_DEVICE);
1146
1147         if (host->sd_error) {
1148                 dev_err(host->mmc->parent,
1149                         "Error IRQ while waiting for DMA completion!\n");
1150                 /* Woken up by an error IRQ: abort DMA */
1151                 data->error = sh_mmcif_error_manage(host);
1152         } else if (!time) {
1153                 dev_err(host->mmc->parent, "DMA timeout!\n");
1154                 data->error = -ETIMEDOUT;
1155         } else if (time < 0) {
1156                 dev_err(host->mmc->parent,
1157                         "wait_for_completion_...() error %ld!\n", time);
1158                 data->error = time;
1159         }
1160         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1161                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1162         host->dma_active = false;
1163
1164         if (data->error) {
1165                 data->bytes_xfered = 0;
1166                 /* Abort DMA */
1167                 if (data->flags & MMC_DATA_READ)
1168                         dmaengine_terminate_sync(host->chan_rx);
1169                 else
1170                         dmaengine_terminate_sync(host->chan_tx);
1171         }
1172
1173         return false;
1174 }
1175
1176 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1177 {
1178         struct sh_mmcif_host *host = dev_id;
1179         struct mmc_request *mrq;
1180         struct device *dev = sh_mmcif_host_to_dev(host);
1181         bool wait = false;
1182         unsigned long flags;
1183         int wait_work;
1184
1185         spin_lock_irqsave(&host->lock, flags);
1186         wait_work = host->wait_for;
1187         spin_unlock_irqrestore(&host->lock, flags);
1188
1189         cancel_delayed_work_sync(&host->timeout_work);
1190
1191         mutex_lock(&host->thread_lock);
1192
1193         mrq = host->mrq;
1194         if (!mrq) {
1195                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1196                         host->state, host->wait_for);
1197                 mutex_unlock(&host->thread_lock);
1198                 return IRQ_HANDLED;
1199         }
1200
1201         /*
1202          * All handlers return true, if processing continues, and false, if the
1203          * request has to be completed - successfully or not
1204          */
1205         switch (wait_work) {
1206         case MMCIF_WAIT_FOR_REQUEST:
1207                 /* We're too late, the timeout has already kicked in */
1208                 mutex_unlock(&host->thread_lock);
1209                 return IRQ_HANDLED;
1210         case MMCIF_WAIT_FOR_CMD:
1211                 /* Wait for data? */
1212                 wait = sh_mmcif_end_cmd(host);
1213                 break;
1214         case MMCIF_WAIT_FOR_MREAD:
1215                 /* Wait for more data? */
1216                 wait = sh_mmcif_mread_block(host);
1217                 break;
1218         case MMCIF_WAIT_FOR_READ:
1219                 /* Wait for data end? */
1220                 wait = sh_mmcif_read_block(host);
1221                 break;
1222         case MMCIF_WAIT_FOR_MWRITE:
1223                 /* Wait data to write? */
1224                 wait = sh_mmcif_mwrite_block(host);
1225                 break;
1226         case MMCIF_WAIT_FOR_WRITE:
1227                 /* Wait for data end? */
1228                 wait = sh_mmcif_write_block(host);
1229                 break;
1230         case MMCIF_WAIT_FOR_STOP:
1231                 if (host->sd_error) {
1232                         mrq->stop->error = sh_mmcif_error_manage(host);
1233                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1234                         break;
1235                 }
1236                 sh_mmcif_get_cmd12response(host, mrq->stop);
1237                 mrq->stop->error = 0;
1238                 break;
1239         case MMCIF_WAIT_FOR_READ_END:
1240         case MMCIF_WAIT_FOR_WRITE_END:
1241                 if (host->sd_error) {
1242                         mrq->data->error = sh_mmcif_error_manage(host);
1243                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1244                 }
1245                 break;
1246         default:
1247                 BUG();
1248         }
1249
1250         if (wait) {
1251                 schedule_delayed_work(&host->timeout_work, host->timeout);
1252                 /* Wait for more data */
1253                 mutex_unlock(&host->thread_lock);
1254                 return IRQ_HANDLED;
1255         }
1256
1257         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1258                 struct mmc_data *data = mrq->data;
1259                 if (!mrq->cmd->error && data && !data->error)
1260                         data->bytes_xfered =
1261                                 data->blocks * data->blksz;
1262
1263                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1264                         sh_mmcif_stop_cmd(host, mrq);
1265                         if (!mrq->stop->error) {
1266                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1267                                 mutex_unlock(&host->thread_lock);
1268                                 return IRQ_HANDLED;
1269                         }
1270                 }
1271         }
1272
1273         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1274         host->state = STATE_IDLE;
1275         host->mrq = NULL;
1276         mmc_request_done(host->mmc, mrq);
1277
1278         mutex_unlock(&host->thread_lock);
1279
1280         return IRQ_HANDLED;
1281 }
1282
1283 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1284 {
1285         struct sh_mmcif_host *host = dev_id;
1286         struct device *dev = sh_mmcif_host_to_dev(host);
1287         u32 state, mask;
1288
1289         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1290         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1291         if (host->ccs_enable)
1292                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1293         else
1294                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1295         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1296
1297         if (state & ~MASK_CLEAN)
1298                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1299                         state);
1300
1301         if (state & INT_ERR_STS || state & ~INT_ALL) {
1302                 host->sd_error = true;
1303                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1304         }
1305         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1306                 if (!host->mrq)
1307                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1308                 if (!host->dma_active)
1309                         return IRQ_WAKE_THREAD;
1310                 else if (host->sd_error)
1311                         sh_mmcif_dma_complete(host);
1312         } else {
1313                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1314         }
1315
1316         return IRQ_HANDLED;
1317 }
1318
1319 static void sh_mmcif_timeout_work(struct work_struct *work)
1320 {
1321         struct delayed_work *d = to_delayed_work(work);
1322         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1323         struct mmc_request *mrq = host->mrq;
1324         struct device *dev = sh_mmcif_host_to_dev(host);
1325         unsigned long flags;
1326
1327         if (host->dying)
1328                 /* Don't run after mmc_remove_host() */
1329                 return;
1330
1331         spin_lock_irqsave(&host->lock, flags);
1332         if (host->state == STATE_IDLE) {
1333                 spin_unlock_irqrestore(&host->lock, flags);
1334                 return;
1335         }
1336
1337         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1338                 host->wait_for, mrq->cmd->opcode);
1339
1340         host->state = STATE_TIMEOUT;
1341         spin_unlock_irqrestore(&host->lock, flags);
1342
1343         /*
1344          * Handle races with cancel_delayed_work(), unless
1345          * cancel_delayed_work_sync() is used
1346          */
1347         switch (host->wait_for) {
1348         case MMCIF_WAIT_FOR_CMD:
1349                 mrq->cmd->error = sh_mmcif_error_manage(host);
1350                 break;
1351         case MMCIF_WAIT_FOR_STOP:
1352                 mrq->stop->error = sh_mmcif_error_manage(host);
1353                 break;
1354         case MMCIF_WAIT_FOR_MREAD:
1355         case MMCIF_WAIT_FOR_MWRITE:
1356         case MMCIF_WAIT_FOR_READ:
1357         case MMCIF_WAIT_FOR_WRITE:
1358         case MMCIF_WAIT_FOR_READ_END:
1359         case MMCIF_WAIT_FOR_WRITE_END:
1360                 mrq->data->error = sh_mmcif_error_manage(host);
1361                 break;
1362         default:
1363                 BUG();
1364         }
1365
1366         host->state = STATE_IDLE;
1367         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1368         host->mrq = NULL;
1369         mmc_request_done(host->mmc, mrq);
1370 }
1371
1372 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1373 {
1374         struct device *dev = sh_mmcif_host_to_dev(host);
1375         struct sh_mmcif_plat_data *pd = dev->platform_data;
1376         struct mmc_host *mmc = host->mmc;
1377
1378         mmc_regulator_get_supply(mmc);
1379
1380         if (!pd)
1381                 return;
1382
1383         if (!mmc->ocr_avail)
1384                 mmc->ocr_avail = pd->ocr;
1385         else if (pd->ocr)
1386                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1387 }
1388
1389 static int sh_mmcif_probe(struct platform_device *pdev)
1390 {
1391         int ret = 0, irq[2];
1392         struct mmc_host *mmc;
1393         struct sh_mmcif_host *host;
1394         struct device *dev = &pdev->dev;
1395         struct sh_mmcif_plat_data *pd = dev->platform_data;
1396         void __iomem *reg;
1397         const char *name;
1398
1399         irq[0] = platform_get_irq(pdev, 0);
1400         irq[1] = platform_get_irq_optional(pdev, 1);
1401         if (irq[0] < 0)
1402                 return irq[0];
1403
1404         reg = devm_platform_ioremap_resource(pdev, 0);
1405         if (IS_ERR(reg))
1406                 return PTR_ERR(reg);
1407
1408         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1409         if (!mmc)
1410                 return -ENOMEM;
1411
1412         ret = mmc_of_parse(mmc);
1413         if (ret < 0)
1414                 goto err_host;
1415
1416         host            = mmc_priv(mmc);
1417         host->mmc       = mmc;
1418         host->addr      = reg;
1419         host->timeout   = msecs_to_jiffies(10000);
1420         host->ccs_enable = true;
1421         host->clk_ctrl2_enable = false;
1422
1423         host->pd = pdev;
1424
1425         spin_lock_init(&host->lock);
1426
1427         mmc->ops = &sh_mmcif_ops;
1428         sh_mmcif_init_ocr(host);
1429
1430         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1431         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1432         mmc->max_busy_timeout = 10000;
1433
1434         if (pd && pd->caps)
1435                 mmc->caps |= pd->caps;
1436         mmc->max_segs = 32;
1437         mmc->max_blk_size = 512;
1438         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1439         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1440         mmc->max_seg_size = mmc->max_req_size;
1441
1442         platform_set_drvdata(pdev, host);
1443
1444         host->clk = devm_clk_get(dev, NULL);
1445         if (IS_ERR(host->clk)) {
1446                 ret = PTR_ERR(host->clk);
1447                 dev_err(dev, "cannot get clock: %d\n", ret);
1448                 goto err_host;
1449         }
1450
1451         ret = clk_prepare_enable(host->clk);
1452         if (ret < 0)
1453                 goto err_host;
1454
1455         sh_mmcif_clk_setup(host);
1456
1457         pm_runtime_enable(dev);
1458         host->power = false;
1459
1460         ret = pm_runtime_get_sync(dev);
1461         if (ret < 0)
1462                 goto err_clk;
1463
1464         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1465
1466         sh_mmcif_sync_reset(host);
1467         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1468
1469         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1470         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1471                                         sh_mmcif_irqt, 0, name, host);
1472         if (ret) {
1473                 dev_err(dev, "request_irq error (%s)\n", name);
1474                 goto err_clk;
1475         }
1476         if (irq[1] >= 0) {
1477                 ret = devm_request_threaded_irq(dev, irq[1],
1478                                                 sh_mmcif_intr, sh_mmcif_irqt,
1479                                                 0, "sh_mmc:int", host);
1480                 if (ret) {
1481                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1482                         goto err_clk;
1483                 }
1484         }
1485
1486         mutex_init(&host->thread_lock);
1487
1488         ret = mmc_add_host(mmc);
1489         if (ret < 0)
1490                 goto err_clk;
1491
1492         dev_pm_qos_expose_latency_limit(dev, 100);
1493
1494         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1495                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1496                  clk_get_rate(host->clk) / 1000000UL);
1497
1498         pm_runtime_put(dev);
1499         clk_disable_unprepare(host->clk);
1500         return ret;
1501
1502 err_clk:
1503         clk_disable_unprepare(host->clk);
1504         pm_runtime_put_sync(dev);
1505         pm_runtime_disable(dev);
1506 err_host:
1507         mmc_free_host(mmc);
1508         return ret;
1509 }
1510
1511 static void sh_mmcif_remove(struct platform_device *pdev)
1512 {
1513         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1514
1515         host->dying = true;
1516         clk_prepare_enable(host->clk);
1517         pm_runtime_get_sync(&pdev->dev);
1518
1519         dev_pm_qos_hide_latency_limit(&pdev->dev);
1520
1521         mmc_remove_host(host->mmc);
1522         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1523
1524         /*
1525          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1526          * mmc_remove_host() call above. But swapping order doesn't help either
1527          * (a query on the linux-mmc mailing list didn't bring any replies).
1528          */
1529         cancel_delayed_work_sync(&host->timeout_work);
1530
1531         clk_disable_unprepare(host->clk);
1532         mmc_free_host(host->mmc);
1533         pm_runtime_put_sync(&pdev->dev);
1534         pm_runtime_disable(&pdev->dev);
1535 }
1536
1537 #ifdef CONFIG_PM_SLEEP
1538 static int sh_mmcif_suspend(struct device *dev)
1539 {
1540         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1541
1542         pm_runtime_get_sync(dev);
1543         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1544         pm_runtime_put(dev);
1545
1546         return 0;
1547 }
1548
1549 static int sh_mmcif_resume(struct device *dev)
1550 {
1551         return 0;
1552 }
1553 #endif
1554
1555 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1556         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1557 };
1558
1559 static struct platform_driver sh_mmcif_driver = {
1560         .probe          = sh_mmcif_probe,
1561         .remove_new     = sh_mmcif_remove,
1562         .driver         = {
1563                 .name   = DRIVER_NAME,
1564                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1565                 .pm     = &sh_mmcif_dev_pm_ops,
1566                 .of_match_table = sh_mmcif_of_match,
1567         },
1568 };
1569
1570 module_platform_driver(sh_mmcif_driver);
1571
1572 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573 MODULE_LICENSE("GPL v2");
1574 MODULE_ALIAS("platform:" DRIVER_NAME);
1575 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");