arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41
42 #include <asm/div64.h>
43 #include <asm/io.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52
53 static unsigned int fmax = 515633;
54
55 static struct variant_data variant_arm = {
56         .fifosize               = 16 * 4,
57         .fifohalfsize           = 8 * 4,
58         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
59         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
61         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
62         .datalength_bits        = 16,
63         .datactrl_blocksz       = 11,
64         .pwrreg_powerup         = MCI_PWR_UP,
65         .f_max                  = 100000000,
66         .reversed_irq_handling  = true,
67         .mmcimask1              = true,
68         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
69         .start_err              = MCI_STARTBITERR,
70         .opendrain              = MCI_ROD,
71         .init                   = mmci_variant_init,
72 };
73
74 static struct variant_data variant_arm_extended_fifo = {
75         .fifosize               = 128 * 4,
76         .fifohalfsize           = 64 * 4,
77         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
78         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
80         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
81         .datalength_bits        = 16,
82         .datactrl_blocksz       = 11,
83         .pwrreg_powerup         = MCI_PWR_UP,
84         .f_max                  = 100000000,
85         .mmcimask1              = true,
86         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
87         .start_err              = MCI_STARTBITERR,
88         .opendrain              = MCI_ROD,
89         .init                   = mmci_variant_init,
90 };
91
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93         .fifosize               = 128 * 4,
94         .fifohalfsize           = 64 * 4,
95         .clkreg_enable          = MCI_ARM_HWFCEN,
96         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
97         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
99         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
100         .datalength_bits        = 16,
101         .datactrl_blocksz       = 11,
102         .pwrreg_powerup         = MCI_PWR_UP,
103         .f_max                  = 100000000,
104         .mmcimask1              = true,
105         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
106         .start_err              = MCI_STARTBITERR,
107         .opendrain              = MCI_ROD,
108         .init                   = mmci_variant_init,
109 };
110
111 static struct variant_data variant_u300 = {
112         .fifosize               = 16 * 4,
113         .fifohalfsize           = 8 * 4,
114         .clkreg_enable          = MCI_ST_U300_HWFCEN,
115         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
117         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
119         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
120         .datalength_bits        = 16,
121         .datactrl_blocksz       = 11,
122         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
123         .st_sdio                        = true,
124         .pwrreg_powerup         = MCI_PWR_ON,
125         .f_max                  = 100000000,
126         .signal_direction       = true,
127         .pwrreg_clkgate         = true,
128         .pwrreg_nopower         = true,
129         .mmcimask1              = true,
130         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
131         .start_err              = MCI_STARTBITERR,
132         .opendrain              = MCI_OD,
133         .init                   = mmci_variant_init,
134 };
135
136 static struct variant_data variant_nomadik = {
137         .fifosize               = 16 * 4,
138         .fifohalfsize           = 8 * 4,
139         .clkreg                 = MCI_CLK_ENABLE,
140         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
142         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
144         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
145         .datalength_bits        = 24,
146         .datactrl_blocksz       = 11,
147         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
148         .st_sdio                = true,
149         .st_clkdiv              = true,
150         .pwrreg_powerup         = MCI_PWR_ON,
151         .f_max                  = 100000000,
152         .signal_direction       = true,
153         .pwrreg_clkgate         = true,
154         .pwrreg_nopower         = true,
155         .mmcimask1              = true,
156         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
157         .start_err              = MCI_STARTBITERR,
158         .opendrain              = MCI_OD,
159         .init                   = mmci_variant_init,
160 };
161
162 static struct variant_data variant_ux500 = {
163         .fifosize               = 30 * 4,
164         .fifohalfsize           = 8 * 4,
165         .clkreg                 = MCI_CLK_ENABLE,
166         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
167         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
169         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
170         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
172         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
173         .datalength_bits        = 24,
174         .datactrl_blocksz       = 11,
175         .datactrl_any_blocksz   = true,
176         .dma_power_of_2         = true,
177         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
178         .st_sdio                = true,
179         .st_clkdiv              = true,
180         .pwrreg_powerup         = MCI_PWR_ON,
181         .f_max                  = 100000000,
182         .signal_direction       = true,
183         .pwrreg_clkgate         = true,
184         .busy_detect            = true,
185         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
186         .busy_detect_flag       = MCI_ST_CARDBUSY,
187         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
188         .pwrreg_nopower         = true,
189         .mmcimask1              = true,
190         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
191         .start_err              = MCI_STARTBITERR,
192         .opendrain              = MCI_OD,
193         .init                   = ux500_variant_init,
194 };
195
196 static struct variant_data variant_ux500v2 = {
197         .fifosize               = 30 * 4,
198         .fifohalfsize           = 8 * 4,
199         .clkreg                 = MCI_CLK_ENABLE,
200         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
201         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
203         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
204         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
206         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
207         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
208         .datalength_bits        = 24,
209         .datactrl_blocksz       = 11,
210         .datactrl_any_blocksz   = true,
211         .dma_power_of_2         = true,
212         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
213         .st_sdio                = true,
214         .st_clkdiv              = true,
215         .pwrreg_powerup         = MCI_PWR_ON,
216         .f_max                  = 100000000,
217         .signal_direction       = true,
218         .pwrreg_clkgate         = true,
219         .busy_detect            = true,
220         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
221         .busy_detect_flag       = MCI_ST_CARDBUSY,
222         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
223         .pwrreg_nopower         = true,
224         .mmcimask1              = true,
225         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
226         .start_err              = MCI_STARTBITERR,
227         .opendrain              = MCI_OD,
228         .init                   = ux500v2_variant_init,
229 };
230
231 static struct variant_data variant_stm32 = {
232         .fifosize               = 32 * 4,
233         .fifohalfsize           = 8 * 4,
234         .clkreg                 = MCI_CLK_ENABLE,
235         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
236         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
238         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
239         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
241         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
242         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
243         .datalength_bits        = 24,
244         .datactrl_blocksz       = 11,
245         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
246         .st_sdio                = true,
247         .st_clkdiv              = true,
248         .pwrreg_powerup         = MCI_PWR_ON,
249         .f_max                  = 48000000,
250         .pwrreg_clkgate         = true,
251         .pwrreg_nopower         = true,
252         .dma_flow_controller    = true,
253         .init                   = mmci_variant_init,
254 };
255
256 static struct variant_data variant_stm32_sdmmc = {
257         .fifosize               = 16 * 4,
258         .fifohalfsize           = 8 * 4,
259         .f_max                  = 208000000,
260         .stm32_clkdiv           = true,
261         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
262         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
263         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
264         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
265         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
266         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
267         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
268         .datactrl_first         = true,
269         .datacnt_useless        = true,
270         .datalength_bits        = 25,
271         .datactrl_blocksz       = 14,
272         .datactrl_any_blocksz   = true,
273         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
274         .stm32_idmabsize_mask   = GENMASK(12, 5),
275         .stm32_idmabsize_align  = BIT(5),
276         .busy_timeout           = true,
277         .busy_detect            = true,
278         .busy_detect_flag       = MCI_STM32_BUSYD0,
279         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
280         .init                   = sdmmc_variant_init,
281 };
282
283 static struct variant_data variant_stm32_sdmmcv2 = {
284         .fifosize               = 16 * 4,
285         .fifohalfsize           = 8 * 4,
286         .f_max                  = 267000000,
287         .stm32_clkdiv           = true,
288         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
289         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
290         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
291         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
292         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
293         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
294         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
295         .datactrl_first         = true,
296         .datacnt_useless        = true,
297         .datalength_bits        = 25,
298         .datactrl_blocksz       = 14,
299         .datactrl_any_blocksz   = true,
300         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
301         .stm32_idmabsize_mask   = GENMASK(16, 5),
302         .stm32_idmabsize_align  = BIT(5),
303         .dma_lli                = true,
304         .busy_timeout           = true,
305         .busy_detect            = true,
306         .busy_detect_flag       = MCI_STM32_BUSYD0,
307         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
308         .init                   = sdmmc_variant_init,
309 };
310
311 static struct variant_data variant_stm32_sdmmcv3 = {
312         .fifosize               = 256 * 4,
313         .fifohalfsize           = 128 * 4,
314         .f_max                  = 267000000,
315         .stm32_clkdiv           = true,
316         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
317         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
318         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
319         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
320         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
321         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
322         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
323         .datactrl_first         = true,
324         .datacnt_useless        = true,
325         .datalength_bits        = 25,
326         .datactrl_blocksz       = 14,
327         .datactrl_any_blocksz   = true,
328         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
329         .stm32_idmabsize_mask   = GENMASK(16, 6),
330         .stm32_idmabsize_align  = BIT(6),
331         .dma_lli                = true,
332         .busy_timeout           = true,
333         .busy_detect            = true,
334         .busy_detect_flag       = MCI_STM32_BUSYD0,
335         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
336         .init                   = sdmmc_variant_init,
337 };
338
339 static struct variant_data variant_qcom = {
340         .fifosize               = 16 * 4,
341         .fifohalfsize           = 8 * 4,
342         .clkreg                 = MCI_CLK_ENABLE,
343         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
344                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
345         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
346         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
347         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
348         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
349         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
350         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
351         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
352         .datalength_bits        = 24,
353         .datactrl_blocksz       = 11,
354         .datactrl_any_blocksz   = true,
355         .pwrreg_powerup         = MCI_PWR_UP,
356         .f_max                  = 208000000,
357         .explicit_mclk_control  = true,
358         .qcom_fifo              = true,
359         .qcom_dml               = true,
360         .mmcimask1              = true,
361         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
362         .start_err              = MCI_STARTBITERR,
363         .opendrain              = MCI_ROD,
364         .init                   = qcom_variant_init,
365 };
366
367 /* Busy detection for the ST Micro variant */
368 static int mmci_card_busy(struct mmc_host *mmc)
369 {
370         struct mmci_host *host = mmc_priv(mmc);
371         unsigned long flags;
372         int busy = 0;
373
374         spin_lock_irqsave(&host->lock, flags);
375         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
376                 busy = 1;
377         spin_unlock_irqrestore(&host->lock, flags);
378
379         return busy;
380 }
381
382 static void mmci_reg_delay(struct mmci_host *host)
383 {
384         /*
385          * According to the spec, at least three feedback clock cycles
386          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
387          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
388          * Worst delay time during card init is at 100 kHz => 30 us.
389          * Worst delay time when up and running is at 25 MHz => 120 ns.
390          */
391         if (host->cclk < 25000000)
392                 udelay(30);
393         else
394                 ndelay(120);
395 }
396
397 /*
398  * This must be called with host->lock held
399  */
400 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
401 {
402         if (host->clk_reg != clk) {
403                 host->clk_reg = clk;
404                 writel(clk, host->base + MMCICLOCK);
405         }
406 }
407
408 /*
409  * This must be called with host->lock held
410  */
411 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
412 {
413         if (host->pwr_reg != pwr) {
414                 host->pwr_reg = pwr;
415                 writel(pwr, host->base + MMCIPOWER);
416         }
417 }
418
419 /*
420  * This must be called with host->lock held
421  */
422 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
423 {
424         /* Keep busy mode in DPSM if enabled */
425         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
426
427         if (host->datactrl_reg != datactrl) {
428                 host->datactrl_reg = datactrl;
429                 writel(datactrl, host->base + MMCIDATACTRL);
430         }
431 }
432
433 /*
434  * This must be called with host->lock held
435  */
436 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
437 {
438         struct variant_data *variant = host->variant;
439         u32 clk = variant->clkreg;
440
441         /* Make sure cclk reflects the current calculated clock */
442         host->cclk = 0;
443
444         if (desired) {
445                 if (variant->explicit_mclk_control) {
446                         host->cclk = host->mclk;
447                 } else if (desired >= host->mclk) {
448                         clk = MCI_CLK_BYPASS;
449                         if (variant->st_clkdiv)
450                                 clk |= MCI_ST_UX500_NEG_EDGE;
451                         host->cclk = host->mclk;
452                 } else if (variant->st_clkdiv) {
453                         /*
454                          * DB8500 TRM says f = mclk / (clkdiv + 2)
455                          * => clkdiv = (mclk / f) - 2
456                          * Round the divider up so we don't exceed the max
457                          * frequency
458                          */
459                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
460                         if (clk >= 256)
461                                 clk = 255;
462                         host->cclk = host->mclk / (clk + 2);
463                 } else {
464                         /*
465                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
466                          * => clkdiv = mclk / (2 * f) - 1
467                          */
468                         clk = host->mclk / (2 * desired) - 1;
469                         if (clk >= 256)
470                                 clk = 255;
471                         host->cclk = host->mclk / (2 * (clk + 1));
472                 }
473
474                 clk |= variant->clkreg_enable;
475                 clk |= MCI_CLK_ENABLE;
476                 /* This hasn't proven to be worthwhile */
477                 /* clk |= MCI_CLK_PWRSAVE; */
478         }
479
480         /* Set actual clock for debug */
481         host->mmc->actual_clock = host->cclk;
482
483         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
484                 clk |= MCI_4BIT_BUS;
485         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
486                 clk |= variant->clkreg_8bit_bus_enable;
487
488         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
489             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
490                 clk |= variant->clkreg_neg_edge_enable;
491
492         mmci_write_clkreg(host, clk);
493 }
494
495 static void mmci_dma_release(struct mmci_host *host)
496 {
497         if (host->ops && host->ops->dma_release)
498                 host->ops->dma_release(host);
499
500         host->use_dma = false;
501 }
502
503 static void mmci_dma_setup(struct mmci_host *host)
504 {
505         if (!host->ops || !host->ops->dma_setup)
506                 return;
507
508         if (host->ops->dma_setup(host))
509                 return;
510
511         /* initialize pre request cookie */
512         host->next_cookie = 1;
513
514         host->use_dma = true;
515 }
516
517 /*
518  * Validate mmc prerequisites
519  */
520 static int mmci_validate_data(struct mmci_host *host,
521                               struct mmc_data *data)
522 {
523         struct variant_data *variant = host->variant;
524
525         if (!data)
526                 return 0;
527         if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
528                 dev_err(mmc_dev(host->mmc),
529                         "unsupported block size (%d bytes)\n", data->blksz);
530                 return -EINVAL;
531         }
532
533         if (host->ops && host->ops->validate_data)
534                 return host->ops->validate_data(host, data);
535
536         return 0;
537 }
538
539 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
540 {
541         int err;
542
543         if (!host->ops || !host->ops->prep_data)
544                 return 0;
545
546         err = host->ops->prep_data(host, data, next);
547
548         if (next && !err)
549                 data->host_cookie = ++host->next_cookie < 0 ?
550                         1 : host->next_cookie;
551
552         return err;
553 }
554
555 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
556                       int err)
557 {
558         if (host->ops && host->ops->unprep_data)
559                 host->ops->unprep_data(host, data, err);
560
561         data->host_cookie = 0;
562 }
563
564 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
565 {
566         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
567
568         if (host->ops && host->ops->get_next_data)
569                 host->ops->get_next_data(host, data);
570 }
571
572 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
573 {
574         struct mmc_data *data = host->data;
575         int ret;
576
577         if (!host->use_dma)
578                 return -EINVAL;
579
580         ret = mmci_prep_data(host, data, false);
581         if (ret)
582                 return ret;
583
584         if (!host->ops || !host->ops->dma_start)
585                 return -EINVAL;
586
587         /* Okay, go for it. */
588         dev_vdbg(mmc_dev(host->mmc),
589                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
590                  data->sg_len, data->blksz, data->blocks, data->flags);
591
592         ret = host->ops->dma_start(host, &datactrl);
593         if (ret)
594                 return ret;
595
596         /* Trigger the DMA transfer */
597         mmci_write_datactrlreg(host, datactrl);
598
599         /*
600          * Let the MMCI say when the data is ended and it's time
601          * to fire next DMA request. When that happens, MMCI will
602          * call mmci_data_end()
603          */
604         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
605                host->base + MMCIMASK0);
606         return 0;
607 }
608
609 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
610 {
611         if (!host->use_dma)
612                 return;
613
614         if (host->ops && host->ops->dma_finalize)
615                 host->ops->dma_finalize(host, data);
616 }
617
618 static void mmci_dma_error(struct mmci_host *host)
619 {
620         if (!host->use_dma)
621                 return;
622
623         if (host->ops && host->ops->dma_error)
624                 host->ops->dma_error(host);
625 }
626
627 static void
628 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
629 {
630         writel(0, host->base + MMCICOMMAND);
631
632         BUG_ON(host->data);
633
634         host->mrq = NULL;
635         host->cmd = NULL;
636
637         mmc_request_done(host->mmc, mrq);
638 }
639
640 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
641 {
642         void __iomem *base = host->base;
643         struct variant_data *variant = host->variant;
644
645         if (host->singleirq) {
646                 unsigned int mask0 = readl(base + MMCIMASK0);
647
648                 mask0 &= ~variant->irq_pio_mask;
649                 mask0 |= mask;
650
651                 writel(mask0, base + MMCIMASK0);
652         }
653
654         if (variant->mmcimask1)
655                 writel(mask, base + MMCIMASK1);
656
657         host->mask1_reg = mask;
658 }
659
660 static void mmci_stop_data(struct mmci_host *host)
661 {
662         mmci_write_datactrlreg(host, 0);
663         mmci_set_mask1(host, 0);
664         host->data = NULL;
665 }
666
667 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
668 {
669         unsigned int flags = SG_MITER_ATOMIC;
670
671         if (data->flags & MMC_DATA_READ)
672                 flags |= SG_MITER_TO_SG;
673         else
674                 flags |= SG_MITER_FROM_SG;
675
676         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
677 }
678
679 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
680 {
681         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
682 }
683
684 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
685 {
686         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
687 }
688
689 static void ux500_busy_clear_mask_done(struct mmci_host *host)
690 {
691         void __iomem *base = host->base;
692
693         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
694         writel(readl(base + MMCIMASK0) &
695                ~host->variant->busy_detect_mask, base + MMCIMASK0);
696         host->busy_state = MMCI_BUSY_DONE;
697         host->busy_status = 0;
698 }
699
700 /*
701  * ux500_busy_complete() - this will wait until the busy status
702  * goes off, saving any status that occur in the meantime into
703  * host->busy_status until we know the card is not busy any more.
704  * The function returns true when the busy detection is ended
705  * and we should continue processing the command.
706  *
707  * The Ux500 typically fires two IRQs over a busy cycle like this:
708  *
709  *  DAT0 busy          +-----------------+
710  *                     |                 |
711  *  DAT0 not busy  ----+                 +--------
712  *
713  *                     ^                 ^
714  *                     |                 |
715  *                    IRQ1              IRQ2
716  */
717 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
718                                 u32 status, u32 err_msk)
719 {
720         void __iomem *base = host->base;
721         int retries = 10;
722
723         if (status & err_msk) {
724                 /* Stop any ongoing busy detection if an error occurs */
725                 ux500_busy_clear_mask_done(host);
726                 goto out_ret_state;
727         }
728
729         /*
730          * The state transitions are encoded in a state machine crossing
731          * the edges in this switch statement.
732          */
733         switch (host->busy_state) {
734
735         /*
736          * Before unmasking for the busy end IRQ, confirm that the
737          * command was sent successfully. To keep track of having a
738          * command in-progress, waiting for busy signaling to end,
739          * store the status in host->busy_status.
740          *
741          * Note that, the card may need a couple of clock cycles before
742          * it starts signaling busy on DAT0, hence re-read the
743          * MMCISTATUS register here, to allow the busy bit to be set.
744          */
745         case MMCI_BUSY_DONE:
746                 /*
747                  * Save the first status register read to be sure to catch
748                  * all bits that may be lost will retrying. If the command
749                  * is still busy this will result in assigning 0 to
750                  * host->busy_status, which is what it should be in IDLE.
751                  */
752                 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
753                 while (retries) {
754                         status = readl(base + MMCISTATUS);
755                         /* Keep accumulating status bits */
756                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
757                         if (status & host->variant->busy_detect_flag) {
758                                 writel(readl(base + MMCIMASK0) |
759                                        host->variant->busy_detect_mask,
760                                        base + MMCIMASK0);
761                                 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
762                                 schedule_delayed_work(&host->ux500_busy_timeout_work,
763                                       msecs_to_jiffies(cmd->busy_timeout));
764                                 goto out_ret_state;
765                         }
766                         retries--;
767                 }
768                 dev_dbg(mmc_dev(host->mmc),
769                         "no busy signalling in time CMD%02x\n", cmd->opcode);
770                 ux500_busy_clear_mask_done(host);
771                 break;
772
773         /*
774          * If there is a command in-progress that has been successfully
775          * sent, then bail out if busy status is set and wait for the
776          * busy end IRQ.
777          *
778          * Note that, the HW triggers an IRQ on both edges while
779          * monitoring DAT0 for busy completion, but there is only one
780          * status bit in MMCISTATUS for the busy state. Therefore
781          * both the start and the end interrupts needs to be cleared,
782          * one after the other. So, clear the busy start IRQ here.
783          */
784         case MMCI_BUSY_WAITING_FOR_START_IRQ:
785                 if (status & host->variant->busy_detect_flag) {
786                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
787                         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
788                         host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
789                 } else {
790                         dev_dbg(mmc_dev(host->mmc),
791                                 "lost busy status when waiting for busy start IRQ CMD%02x\n",
792                                 cmd->opcode);
793                         cancel_delayed_work(&host->ux500_busy_timeout_work);
794                         ux500_busy_clear_mask_done(host);
795                 }
796                 break;
797
798         case MMCI_BUSY_WAITING_FOR_END_IRQ:
799                 if (!(status & host->variant->busy_detect_flag)) {
800                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
801                         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
802                         cancel_delayed_work(&host->ux500_busy_timeout_work);
803                         ux500_busy_clear_mask_done(host);
804                 } else {
805                         dev_dbg(mmc_dev(host->mmc),
806                                 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
807                                 cmd->opcode);
808                 }
809                 break;
810
811         default:
812                 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
813                         host->busy_state, cmd->opcode);
814                 break;
815         }
816
817 out_ret_state:
818         return (host->busy_state == MMCI_BUSY_DONE);
819 }
820
821 /*
822  * All the DMA operation mode stuff goes inside this ifdef.
823  * This assumes that you have a generic DMA device interface,
824  * no custom DMA interfaces are supported.
825  */
826 #ifdef CONFIG_DMA_ENGINE
827 struct mmci_dmae_next {
828         struct dma_async_tx_descriptor *desc;
829         struct dma_chan *chan;
830 };
831
832 struct mmci_dmae_priv {
833         struct dma_chan *cur;
834         struct dma_chan *rx_channel;
835         struct dma_chan *tx_channel;
836         struct dma_async_tx_descriptor  *desc_current;
837         struct mmci_dmae_next next_data;
838 };
839
840 int mmci_dmae_setup(struct mmci_host *host)
841 {
842         const char *rxname, *txname;
843         struct mmci_dmae_priv *dmae;
844
845         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
846         if (!dmae)
847                 return -ENOMEM;
848
849         host->dma_priv = dmae;
850
851         dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
852         if (IS_ERR(dmae->rx_channel)) {
853                 int ret = PTR_ERR(dmae->rx_channel);
854                 dmae->rx_channel = NULL;
855                 return ret;
856         }
857
858         dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
859         if (IS_ERR(dmae->tx_channel)) {
860                 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
861                         dev_warn(mmc_dev(host->mmc),
862                                  "Deferred probe for TX channel ignored\n");
863                 dmae->tx_channel = NULL;
864         }
865
866         /*
867          * If only an RX channel is specified, the driver will
868          * attempt to use it bidirectionally, however if it
869          * is specified but cannot be located, DMA will be disabled.
870          */
871         if (dmae->rx_channel && !dmae->tx_channel)
872                 dmae->tx_channel = dmae->rx_channel;
873
874         if (dmae->rx_channel)
875                 rxname = dma_chan_name(dmae->rx_channel);
876         else
877                 rxname = "none";
878
879         if (dmae->tx_channel)
880                 txname = dma_chan_name(dmae->tx_channel);
881         else
882                 txname = "none";
883
884         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
885                  rxname, txname);
886
887         /*
888          * Limit the maximum segment size in any SG entry according to
889          * the parameters of the DMA engine device.
890          */
891         if (dmae->tx_channel) {
892                 struct device *dev = dmae->tx_channel->device->dev;
893                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
894
895                 if (max_seg_size < host->mmc->max_seg_size)
896                         host->mmc->max_seg_size = max_seg_size;
897         }
898         if (dmae->rx_channel) {
899                 struct device *dev = dmae->rx_channel->device->dev;
900                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
901
902                 if (max_seg_size < host->mmc->max_seg_size)
903                         host->mmc->max_seg_size = max_seg_size;
904         }
905
906         if (!dmae->tx_channel || !dmae->rx_channel) {
907                 mmci_dmae_release(host);
908                 return -EINVAL;
909         }
910
911         return 0;
912 }
913
914 /*
915  * This is used in or so inline it
916  * so it can be discarded.
917  */
918 void mmci_dmae_release(struct mmci_host *host)
919 {
920         struct mmci_dmae_priv *dmae = host->dma_priv;
921
922         if (dmae->rx_channel)
923                 dma_release_channel(dmae->rx_channel);
924         if (dmae->tx_channel)
925                 dma_release_channel(dmae->tx_channel);
926         dmae->rx_channel = dmae->tx_channel = NULL;
927 }
928
929 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
930 {
931         struct mmci_dmae_priv *dmae = host->dma_priv;
932         struct dma_chan *chan;
933
934         if (data->flags & MMC_DATA_READ)
935                 chan = dmae->rx_channel;
936         else
937                 chan = dmae->tx_channel;
938
939         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
940                      mmc_get_dma_dir(data));
941 }
942
943 void mmci_dmae_error(struct mmci_host *host)
944 {
945         struct mmci_dmae_priv *dmae = host->dma_priv;
946
947         if (!dma_inprogress(host))
948                 return;
949
950         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
951         dmaengine_terminate_all(dmae->cur);
952         host->dma_in_progress = false;
953         dmae->cur = NULL;
954         dmae->desc_current = NULL;
955         host->data->host_cookie = 0;
956
957         mmci_dma_unmap(host, host->data);
958 }
959
960 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
961 {
962         struct mmci_dmae_priv *dmae = host->dma_priv;
963         u32 status;
964         int i;
965
966         if (!dma_inprogress(host))
967                 return;
968
969         /* Wait up to 1ms for the DMA to complete */
970         for (i = 0; ; i++) {
971                 status = readl(host->base + MMCISTATUS);
972                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
973                         break;
974                 udelay(10);
975         }
976
977         /*
978          * Check to see whether we still have some data left in the FIFO -
979          * this catches DMA controllers which are unable to monitor the
980          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
981          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
982          */
983         if (status & MCI_RXDATAAVLBLMASK) {
984                 mmci_dma_error(host);
985                 if (!data->error)
986                         data->error = -EIO;
987         } else if (!data->host_cookie) {
988                 mmci_dma_unmap(host, data);
989         }
990
991         /*
992          * Use of DMA with scatter-gather is impossible.
993          * Give up with DMA and switch back to PIO mode.
994          */
995         if (status & MCI_RXDATAAVLBLMASK) {
996                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
997                 mmci_dma_release(host);
998         }
999
1000         host->dma_in_progress = false;
1001         dmae->cur = NULL;
1002         dmae->desc_current = NULL;
1003 }
1004
1005 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1006 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1007                                 struct dma_chan **dma_chan,
1008                                 struct dma_async_tx_descriptor **dma_desc)
1009 {
1010         struct mmci_dmae_priv *dmae = host->dma_priv;
1011         struct variant_data *variant = host->variant;
1012         struct dma_slave_config conf = {
1013                 .src_addr = host->phybase + MMCIFIFO,
1014                 .dst_addr = host->phybase + MMCIFIFO,
1015                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1016                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1017                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1018                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1019                 .device_fc = variant->dma_flow_controller,
1020         };
1021         struct dma_chan *chan;
1022         struct dma_device *device;
1023         struct dma_async_tx_descriptor *desc;
1024         int nr_sg;
1025         unsigned long flags = DMA_CTRL_ACK;
1026
1027         if (data->flags & MMC_DATA_READ) {
1028                 conf.direction = DMA_DEV_TO_MEM;
1029                 chan = dmae->rx_channel;
1030         } else {
1031                 conf.direction = DMA_MEM_TO_DEV;
1032                 chan = dmae->tx_channel;
1033         }
1034
1035         /* If there's no DMA channel, fall back to PIO */
1036         if (!chan)
1037                 return -EINVAL;
1038
1039         /* If less than or equal to the fifo size, don't bother with DMA */
1040         if (data->blksz * data->blocks <= variant->fifosize)
1041                 return -EINVAL;
1042
1043         /*
1044          * This is necessary to get SDIO working on the Ux500. We do not yet
1045          * know if this is a bug in:
1046          * - The Ux500 DMA controller (DMA40)
1047          * - The MMCI DMA interface on the Ux500
1048          * some power of two blocks (such as 64 bytes) are sent regularly
1049          * during SDIO traffic and those work fine so for these we enable DMA
1050          * transfers.
1051          */
1052         if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1053                 return -EINVAL;
1054
1055         device = chan->device;
1056         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1057                            mmc_get_dma_dir(data));
1058         if (nr_sg == 0)
1059                 return -EINVAL;
1060
1061         if (host->variant->qcom_dml)
1062                 flags |= DMA_PREP_INTERRUPT;
1063
1064         dmaengine_slave_config(chan, &conf);
1065         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1066                                             conf.direction, flags);
1067         if (!desc)
1068                 goto unmap_exit;
1069
1070         *dma_chan = chan;
1071         *dma_desc = desc;
1072
1073         return 0;
1074
1075  unmap_exit:
1076         dma_unmap_sg(device->dev, data->sg, data->sg_len,
1077                      mmc_get_dma_dir(data));
1078         return -ENOMEM;
1079 }
1080
1081 int mmci_dmae_prep_data(struct mmci_host *host,
1082                         struct mmc_data *data,
1083                         bool next)
1084 {
1085         struct mmci_dmae_priv *dmae = host->dma_priv;
1086         struct mmci_dmae_next *nd = &dmae->next_data;
1087
1088         if (!host->use_dma)
1089                 return -EINVAL;
1090
1091         if (next)
1092                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1093         /* Check if next job is already prepared. */
1094         if (dmae->cur && dmae->desc_current)
1095                 return 0;
1096
1097         /* No job were prepared thus do it now. */
1098         return _mmci_dmae_prep_data(host, data, &dmae->cur,
1099                                     &dmae->desc_current);
1100 }
1101
1102 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1103 {
1104         struct mmci_dmae_priv *dmae = host->dma_priv;
1105         int ret;
1106
1107         host->dma_in_progress = true;
1108         ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1109         if (ret < 0) {
1110                 host->dma_in_progress = false;
1111                 return ret;
1112         }
1113         dma_async_issue_pending(dmae->cur);
1114
1115         *datactrl |= MCI_DPSM_DMAENABLE;
1116
1117         return 0;
1118 }
1119
1120 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1121 {
1122         struct mmci_dmae_priv *dmae = host->dma_priv;
1123         struct mmci_dmae_next *next = &dmae->next_data;
1124
1125         if (!host->use_dma)
1126                 return;
1127
1128         WARN_ON(!data->host_cookie && (next->desc || next->chan));
1129
1130         dmae->desc_current = next->desc;
1131         dmae->cur = next->chan;
1132         next->desc = NULL;
1133         next->chan = NULL;
1134 }
1135
1136 void mmci_dmae_unprep_data(struct mmci_host *host,
1137                            struct mmc_data *data, int err)
1138
1139 {
1140         struct mmci_dmae_priv *dmae = host->dma_priv;
1141
1142         if (!host->use_dma)
1143                 return;
1144
1145         mmci_dma_unmap(host, data);
1146
1147         if (err) {
1148                 struct mmci_dmae_next *next = &dmae->next_data;
1149                 struct dma_chan *chan;
1150                 if (data->flags & MMC_DATA_READ)
1151                         chan = dmae->rx_channel;
1152                 else
1153                         chan = dmae->tx_channel;
1154                 dmaengine_terminate_all(chan);
1155
1156                 if (dmae->desc_current == next->desc)
1157                         dmae->desc_current = NULL;
1158
1159                 if (dmae->cur == next->chan) {
1160                         host->dma_in_progress = false;
1161                         dmae->cur = NULL;
1162                 }
1163
1164                 next->desc = NULL;
1165                 next->chan = NULL;
1166         }
1167 }
1168
1169 static struct mmci_host_ops mmci_variant_ops = {
1170         .prep_data = mmci_dmae_prep_data,
1171         .unprep_data = mmci_dmae_unprep_data,
1172         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1173         .get_next_data = mmci_dmae_get_next_data,
1174         .dma_setup = mmci_dmae_setup,
1175         .dma_release = mmci_dmae_release,
1176         .dma_start = mmci_dmae_start,
1177         .dma_finalize = mmci_dmae_finalize,
1178         .dma_error = mmci_dmae_error,
1179 };
1180 #else
1181 static struct mmci_host_ops mmci_variant_ops = {
1182         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1183 };
1184 #endif
1185
1186 static void mmci_variant_init(struct mmci_host *host)
1187 {
1188         host->ops = &mmci_variant_ops;
1189 }
1190
1191 static void ux500_variant_init(struct mmci_host *host)
1192 {
1193         host->ops = &mmci_variant_ops;
1194         host->ops->busy_complete = ux500_busy_complete;
1195 }
1196
1197 static void ux500v2_variant_init(struct mmci_host *host)
1198 {
1199         host->ops = &mmci_variant_ops;
1200         host->ops->busy_complete = ux500_busy_complete;
1201         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1202 }
1203
1204 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1205 {
1206         struct mmci_host *host = mmc_priv(mmc);
1207         struct mmc_data *data = mrq->data;
1208
1209         if (!data)
1210                 return;
1211
1212         WARN_ON(data->host_cookie);
1213
1214         if (mmci_validate_data(host, data))
1215                 return;
1216
1217         mmci_prep_data(host, data, true);
1218 }
1219
1220 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1221                               int err)
1222 {
1223         struct mmci_host *host = mmc_priv(mmc);
1224         struct mmc_data *data = mrq->data;
1225
1226         if (!data || !data->host_cookie)
1227                 return;
1228
1229         mmci_unprep_data(host, data, err);
1230 }
1231
1232 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1233 {
1234         struct variant_data *variant = host->variant;
1235         unsigned int datactrl, timeout, irqmask;
1236         unsigned long long clks;
1237         void __iomem *base;
1238
1239         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1240                 data->blksz, data->blocks, data->flags);
1241
1242         host->data = data;
1243         host->size = data->blksz * data->blocks;
1244         data->bytes_xfered = 0;
1245
1246         clks = (unsigned long long)data->timeout_ns * host->cclk;
1247         do_div(clks, NSEC_PER_SEC);
1248
1249         timeout = data->timeout_clks + (unsigned int)clks;
1250
1251         base = host->base;
1252         writel(timeout, base + MMCIDATATIMER);
1253         writel(host->size, base + MMCIDATALENGTH);
1254
1255         datactrl = host->ops->get_datactrl_cfg(host);
1256         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1257
1258         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1259                 u32 clk;
1260
1261                 datactrl |= variant->datactrl_mask_sdio;
1262
1263                 /*
1264                  * The ST Micro variant for SDIO small write transfers
1265                  * needs to have clock H/W flow control disabled,
1266                  * otherwise the transfer will not start. The threshold
1267                  * depends on the rate of MCLK.
1268                  */
1269                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1270                     (host->size < 8 ||
1271                      (host->size <= 8 && host->mclk > 50000000)))
1272                         clk = host->clk_reg & ~variant->clkreg_enable;
1273                 else
1274                         clk = host->clk_reg | variant->clkreg_enable;
1275
1276                 mmci_write_clkreg(host, clk);
1277         }
1278
1279         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1280             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1281                 datactrl |= variant->datactrl_mask_ddrmode;
1282
1283         /*
1284          * Attempt to use DMA operation mode, if this
1285          * should fail, fall back to PIO mode
1286          */
1287         if (!mmci_dma_start(host, datactrl))
1288                 return;
1289
1290         /* IRQ mode, map the SG list for CPU reading/writing */
1291         mmci_init_sg(host, data);
1292
1293         if (data->flags & MMC_DATA_READ) {
1294                 irqmask = MCI_RXFIFOHALFFULLMASK;
1295
1296                 /*
1297                  * If we have less than the fifo 'half-full' threshold to
1298                  * transfer, trigger a PIO interrupt as soon as any data
1299                  * is available.
1300                  */
1301                 if (host->size < variant->fifohalfsize)
1302                         irqmask |= MCI_RXDATAAVLBLMASK;
1303         } else {
1304                 /*
1305                  * We don't actually need to include "FIFO empty" here
1306                  * since its implicit in "FIFO half empty".
1307                  */
1308                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1309         }
1310
1311         mmci_write_datactrlreg(host, datactrl);
1312         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1313         mmci_set_mask1(host, irqmask);
1314 }
1315
1316 static void
1317 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1318 {
1319         void __iomem *base = host->base;
1320         bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1321         unsigned long long clks;
1322
1323         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1324             cmd->opcode, cmd->arg, cmd->flags);
1325
1326         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1327                 writel(0, base + MMCICOMMAND);
1328                 mmci_reg_delay(host);
1329         }
1330
1331         if (host->variant->cmdreg_stop &&
1332             cmd->opcode == MMC_STOP_TRANSMISSION)
1333                 c |= host->variant->cmdreg_stop;
1334
1335         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1336         if (cmd->flags & MMC_RSP_PRESENT) {
1337                 if (cmd->flags & MMC_RSP_136)
1338                         c |= host->variant->cmdreg_lrsp_crc;
1339                 else if (cmd->flags & MMC_RSP_CRC)
1340                         c |= host->variant->cmdreg_srsp_crc;
1341                 else
1342                         c |= host->variant->cmdreg_srsp;
1343         }
1344
1345         host->busy_status = 0;
1346         host->busy_state = MMCI_BUSY_DONE;
1347
1348         /* Assign a default timeout if the core does not provide one */
1349         if (busy_resp && !cmd->busy_timeout)
1350                 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1351
1352         if (busy_resp && host->variant->busy_timeout) {
1353                 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1354                         clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1355                 else
1356                         clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1357
1358                 do_div(clks, MSEC_PER_SEC);
1359                 writel_relaxed(clks, host->base + MMCIDATATIMER);
1360         }
1361
1362         if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1363                 host->ops->pre_sig_volt_switch(host);
1364
1365         if (/*interrupt*/0)
1366                 c |= MCI_CPSM_INTERRUPT;
1367
1368         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1369                 c |= host->variant->data_cmd_enable;
1370
1371         host->cmd = cmd;
1372
1373         writel(cmd->arg, base + MMCIARGUMENT);
1374         writel(c, base + MMCICOMMAND);
1375 }
1376
1377 static void mmci_stop_command(struct mmci_host *host)
1378 {
1379         host->stop_abort.error = 0;
1380         mmci_start_command(host, &host->stop_abort, 0);
1381 }
1382
1383 static void
1384 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1385               unsigned int status)
1386 {
1387         unsigned int status_err;
1388
1389         /* Make sure we have data to handle */
1390         if (!data)
1391                 return;
1392
1393         /* First check for errors */
1394         status_err = status & (host->variant->start_err |
1395                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1396                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1397
1398         if (status_err) {
1399                 u32 remain, success;
1400
1401                 /* Terminate the DMA transfer */
1402                 mmci_dma_error(host);
1403
1404                 /*
1405                  * Calculate how far we are into the transfer.  Note that
1406                  * the data counter gives the number of bytes transferred
1407                  * on the MMC bus, not on the host side.  On reads, this
1408                  * can be as much as a FIFO-worth of data ahead.  This
1409                  * matters for FIFO overruns only.
1410                  */
1411                 if (!host->variant->datacnt_useless) {
1412                         remain = readl(host->base + MMCIDATACNT);
1413                         success = data->blksz * data->blocks - remain;
1414                 } else {
1415                         success = 0;
1416                 }
1417
1418                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1419                         status_err, success);
1420                 if (status_err & MCI_DATACRCFAIL) {
1421                         /* Last block was not successful */
1422                         success -= 1;
1423                         data->error = -EILSEQ;
1424                 } else if (status_err & MCI_DATATIMEOUT) {
1425                         data->error = -ETIMEDOUT;
1426                 } else if (status_err & MCI_STARTBITERR) {
1427                         data->error = -ECOMM;
1428                 } else if (status_err & MCI_TXUNDERRUN) {
1429                         data->error = -EIO;
1430                 } else if (status_err & MCI_RXOVERRUN) {
1431                         if (success > host->variant->fifosize)
1432                                 success -= host->variant->fifosize;
1433                         else
1434                                 success = 0;
1435                         data->error = -EIO;
1436                 }
1437                 data->bytes_xfered = round_down(success, data->blksz);
1438         }
1439
1440         if (status & MCI_DATABLOCKEND)
1441                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1442
1443         if (status & MCI_DATAEND || data->error) {
1444                 mmci_dma_finalize(host, data);
1445
1446                 mmci_stop_data(host);
1447
1448                 if (!data->error)
1449                         /* The error clause is handled above, success! */
1450                         data->bytes_xfered = data->blksz * data->blocks;
1451
1452                 if (!data->stop) {
1453                         if (host->variant->cmdreg_stop && data->error)
1454                                 mmci_stop_command(host);
1455                         else
1456                                 mmci_request_end(host, data->mrq);
1457                 } else if (host->mrq->sbc && !data->error) {
1458                         mmci_request_end(host, data->mrq);
1459                 } else {
1460                         mmci_start_command(host, data->stop, 0);
1461                 }
1462         }
1463 }
1464
1465 static void
1466 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1467              unsigned int status)
1468 {
1469         u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1470         void __iomem *base = host->base;
1471         bool sbc, busy_resp;
1472
1473         if (!cmd)
1474                 return;
1475
1476         sbc = (cmd == host->mrq->sbc);
1477         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1478
1479         /*
1480          * We need to be one of these interrupts to be considered worth
1481          * handling. Note that we tag on any latent IRQs postponed
1482          * due to waiting for busy status.
1483          */
1484         if (host->variant->busy_timeout && busy_resp)
1485                 err_msk |= MCI_DATATIMEOUT;
1486
1487         if (!((status | host->busy_status) &
1488               (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1489                 return;
1490
1491         /* Handle busy detection on DAT0 if the variant supports it. */
1492         if (busy_resp && host->variant->busy_detect)
1493                 if (!host->ops->busy_complete(host, cmd, status, err_msk))
1494                         return;
1495
1496         host->cmd = NULL;
1497
1498         if (status & MCI_CMDTIMEOUT) {
1499                 cmd->error = -ETIMEDOUT;
1500         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1501                 cmd->error = -EILSEQ;
1502         } else if (host->variant->busy_timeout && busy_resp &&
1503                    status & MCI_DATATIMEOUT) {
1504                 cmd->error = -ETIMEDOUT;
1505                 /*
1506                  * This will wake up mmci_irq_thread() which will issue
1507                  * a hardware reset of the MMCI block.
1508                  */
1509                 host->irq_action = IRQ_WAKE_THREAD;
1510         } else {
1511                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1512                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1513                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1514                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1515         }
1516
1517         if ((!sbc && !cmd->data) || cmd->error) {
1518                 if (host->data) {
1519                         /* Terminate the DMA transfer */
1520                         mmci_dma_error(host);
1521
1522                         mmci_stop_data(host);
1523                         if (host->variant->cmdreg_stop && cmd->error) {
1524                                 mmci_stop_command(host);
1525                                 return;
1526                         }
1527                 }
1528
1529                 if (host->irq_action != IRQ_WAKE_THREAD)
1530                         mmci_request_end(host, host->mrq);
1531
1532         } else if (sbc) {
1533                 mmci_start_command(host, host->mrq->cmd, 0);
1534         } else if (!host->variant->datactrl_first &&
1535                    !(cmd->data->flags & MMC_DATA_READ)) {
1536                 mmci_start_data(host, cmd->data);
1537         }
1538 }
1539
1540 static char *ux500_state_str(struct mmci_host *host)
1541 {
1542         switch (host->busy_state) {
1543         case MMCI_BUSY_WAITING_FOR_START_IRQ:
1544                 return "waiting for start IRQ";
1545         case MMCI_BUSY_WAITING_FOR_END_IRQ:
1546                 return "waiting for end IRQ";
1547         case MMCI_BUSY_DONE:
1548                 return "not waiting for IRQs";
1549         default:
1550                 return "unknown";
1551         }
1552 }
1553
1554 /*
1555  * This busy timeout worker is used to "kick" the command IRQ if a
1556  * busy detect IRQ fails to appear in reasonable time. Only used on
1557  * variants with busy detection IRQ delivery.
1558  */
1559 static void ux500_busy_timeout_work(struct work_struct *work)
1560 {
1561         struct mmci_host *host = container_of(work, struct mmci_host,
1562                                         ux500_busy_timeout_work.work);
1563         unsigned long flags;
1564         u32 status;
1565
1566         spin_lock_irqsave(&host->lock, flags);
1567
1568         if (host->cmd) {
1569                 /* If we are still busy let's tag on a cmd-timeout error. */
1570                 status = readl(host->base + MMCISTATUS);
1571                 if (status & host->variant->busy_detect_flag) {
1572                         status |= MCI_CMDTIMEOUT;
1573                         dev_err(mmc_dev(host->mmc),
1574                                 "timeout in state %s still busy with CMD%02x\n",
1575                                 ux500_state_str(host), host->cmd->opcode);
1576                 } else {
1577                         dev_err(mmc_dev(host->mmc),
1578                                 "timeout in state %s waiting for busy CMD%02x\n",
1579                                 ux500_state_str(host), host->cmd->opcode);
1580                 }
1581
1582                 mmci_cmd_irq(host, host->cmd, status);
1583         }
1584
1585         spin_unlock_irqrestore(&host->lock, flags);
1586 }
1587
1588 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1589 {
1590         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1591 }
1592
1593 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1594 {
1595         /*
1596          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1597          * from the fifo range should be used
1598          */
1599         if (status & MCI_RXFIFOHALFFULL)
1600                 return host->variant->fifohalfsize;
1601         else if (status & MCI_RXDATAAVLBL)
1602                 return 4;
1603
1604         return 0;
1605 }
1606
1607 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1608 {
1609         void __iomem *base = host->base;
1610         char *ptr = buffer;
1611         u32 status = readl(host->base + MMCISTATUS);
1612         int host_remain = host->size;
1613
1614         do {
1615                 int count = host->get_rx_fifocnt(host, status, host_remain);
1616
1617                 if (count > remain)
1618                         count = remain;
1619
1620                 if (count <= 0)
1621                         break;
1622
1623                 /*
1624                  * SDIO especially may want to send something that is
1625                  * not divisible by 4 (as opposed to card sectors
1626                  * etc). Therefore make sure to always read the last bytes
1627                  * while only doing full 32-bit reads towards the FIFO.
1628                  */
1629                 if (unlikely(count & 0x3)) {
1630                         if (count < 4) {
1631                                 unsigned char buf[4];
1632                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1633                                 memcpy(ptr, buf, count);
1634                         } else {
1635                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1636                                 count &= ~0x3;
1637                         }
1638                 } else {
1639                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640                 }
1641
1642                 ptr += count;
1643                 remain -= count;
1644                 host_remain -= count;
1645
1646                 if (remain == 0)
1647                         break;
1648
1649                 status = readl(base + MMCISTATUS);
1650         } while (status & MCI_RXDATAAVLBL);
1651
1652         return ptr - buffer;
1653 }
1654
1655 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1656 {
1657         struct variant_data *variant = host->variant;
1658         void __iomem *base = host->base;
1659         char *ptr = buffer;
1660
1661         do {
1662                 unsigned int count, maxcnt;
1663
1664                 maxcnt = status & MCI_TXFIFOEMPTY ?
1665                          variant->fifosize : variant->fifohalfsize;
1666                 count = min(remain, maxcnt);
1667
1668                 /*
1669                  * SDIO especially may want to send something that is
1670                  * not divisible by 4 (as opposed to card sectors
1671                  * etc), and the FIFO only accept full 32-bit writes.
1672                  * So compensate by adding +3 on the count, a single
1673                  * byte become a 32bit write, 7 bytes will be two
1674                  * 32bit writes etc.
1675                  */
1676                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1677
1678                 ptr += count;
1679                 remain -= count;
1680
1681                 if (remain == 0)
1682                         break;
1683
1684                 status = readl(base + MMCISTATUS);
1685         } while (status & MCI_TXFIFOHALFEMPTY);
1686
1687         return ptr - buffer;
1688 }
1689
1690 /*
1691  * PIO data transfer IRQ handler.
1692  */
1693 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1694 {
1695         struct mmci_host *host = dev_id;
1696         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1697         struct variant_data *variant = host->variant;
1698         void __iomem *base = host->base;
1699         u32 status;
1700
1701         status = readl(base + MMCISTATUS);
1702
1703         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1704
1705         do {
1706                 unsigned int remain, len;
1707                 char *buffer;
1708
1709                 /*
1710                  * For write, we only need to test the half-empty flag
1711                  * here - if the FIFO is completely empty, then by
1712                  * definition it is more than half empty.
1713                  *
1714                  * For read, check for data available.
1715                  */
1716                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1717                         break;
1718
1719                 if (!sg_miter_next(sg_miter))
1720                         break;
1721
1722                 buffer = sg_miter->addr;
1723                 remain = sg_miter->length;
1724
1725                 len = 0;
1726                 if (status & MCI_RXACTIVE)
1727                         len = mmci_pio_read(host, buffer, remain);
1728                 if (status & MCI_TXACTIVE)
1729                         len = mmci_pio_write(host, buffer, remain, status);
1730
1731                 sg_miter->consumed = len;
1732
1733                 host->size -= len;
1734                 remain -= len;
1735
1736                 if (remain)
1737                         break;
1738
1739                 status = readl(base + MMCISTATUS);
1740         } while (1);
1741
1742         sg_miter_stop(sg_miter);
1743
1744         /*
1745          * If we have less than the fifo 'half-full' threshold to transfer,
1746          * trigger a PIO interrupt as soon as any data is available.
1747          */
1748         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1749                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1750
1751         /*
1752          * If we run out of data, disable the data IRQs; this
1753          * prevents a race where the FIFO becomes empty before
1754          * the chip itself has disabled the data path, and
1755          * stops us racing with our data end IRQ.
1756          */
1757         if (host->size == 0) {
1758                 mmci_set_mask1(host, 0);
1759                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1760         }
1761
1762         return IRQ_HANDLED;
1763 }
1764
1765 /*
1766  * Handle completion of command and data transfers.
1767  */
1768 static irqreturn_t mmci_irq(int irq, void *dev_id)
1769 {
1770         struct mmci_host *host = dev_id;
1771         u32 status;
1772
1773         spin_lock(&host->lock);
1774         host->irq_action = IRQ_HANDLED;
1775
1776         do {
1777                 status = readl(host->base + MMCISTATUS);
1778                 if (!status)
1779                         break;
1780
1781                 if (host->singleirq) {
1782                         if (status & host->mask1_reg)
1783                                 mmci_pio_irq(irq, dev_id);
1784
1785                         status &= ~host->variant->irq_pio_mask;
1786                 }
1787
1788                 /*
1789                  * Busy detection is managed by mmci_cmd_irq(), including to
1790                  * clear the corresponding IRQ.
1791                  */
1792                 status &= readl(host->base + MMCIMASK0);
1793                 if (host->variant->busy_detect)
1794                         writel(status & ~host->variant->busy_detect_mask,
1795                                host->base + MMCICLEAR);
1796                 else
1797                         writel(status, host->base + MMCICLEAR);
1798
1799                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1800
1801                 if (host->variant->reversed_irq_handling) {
1802                         mmci_data_irq(host, host->data, status);
1803                         mmci_cmd_irq(host, host->cmd, status);
1804                 } else {
1805                         mmci_cmd_irq(host, host->cmd, status);
1806                         mmci_data_irq(host, host->data, status);
1807                 }
1808
1809                 /*
1810                  * Busy detection has been handled by mmci_cmd_irq() above.
1811                  * Clear the status bit to prevent polling in IRQ context.
1812                  */
1813                 if (host->variant->busy_detect_flag)
1814                         status &= ~host->variant->busy_detect_flag;
1815
1816         } while (status);
1817
1818         spin_unlock(&host->lock);
1819
1820         return host->irq_action;
1821 }
1822
1823 /*
1824  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1825  *
1826  * A reset is needed for some variants, where a datatimeout for a R1B request
1827  * causes the DPSM to stay busy (non-functional).
1828  */
1829 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1830 {
1831         struct mmci_host *host = dev_id;
1832         unsigned long flags;
1833
1834         if (host->rst) {
1835                 reset_control_assert(host->rst);
1836                 udelay(2);
1837                 reset_control_deassert(host->rst);
1838         }
1839
1840         spin_lock_irqsave(&host->lock, flags);
1841         writel(host->clk_reg, host->base + MMCICLOCK);
1842         writel(host->pwr_reg, host->base + MMCIPOWER);
1843         writel(MCI_IRQENABLE | host->variant->start_err,
1844                host->base + MMCIMASK0);
1845
1846         host->irq_action = IRQ_HANDLED;
1847         mmci_request_end(host, host->mrq);
1848         spin_unlock_irqrestore(&host->lock, flags);
1849
1850         return host->irq_action;
1851 }
1852
1853 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1854 {
1855         struct mmci_host *host = mmc_priv(mmc);
1856         unsigned long flags;
1857
1858         WARN_ON(host->mrq != NULL);
1859
1860         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1861         if (mrq->cmd->error) {
1862                 mmc_request_done(mmc, mrq);
1863                 return;
1864         }
1865
1866         spin_lock_irqsave(&host->lock, flags);
1867
1868         host->mrq = mrq;
1869
1870         if (mrq->data)
1871                 mmci_get_next_data(host, mrq->data);
1872
1873         if (mrq->data &&
1874             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1875                 mmci_start_data(host, mrq->data);
1876
1877         if (mrq->sbc)
1878                 mmci_start_command(host, mrq->sbc, 0);
1879         else
1880                 mmci_start_command(host, mrq->cmd, 0);
1881
1882         spin_unlock_irqrestore(&host->lock, flags);
1883 }
1884
1885 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1886 {
1887         struct mmci_host *host = mmc_priv(mmc);
1888         u32 max_busy_timeout = 0;
1889
1890         if (!host->variant->busy_detect)
1891                 return;
1892
1893         if (host->variant->busy_timeout && mmc->actual_clock)
1894                 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1895                                                           MSEC_PER_SEC);
1896
1897         mmc->max_busy_timeout = max_busy_timeout;
1898 }
1899
1900 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1901 {
1902         struct mmci_host *host = mmc_priv(mmc);
1903         struct variant_data *variant = host->variant;
1904         u32 pwr = 0;
1905         unsigned long flags;
1906         int ret;
1907
1908         switch (ios->power_mode) {
1909         case MMC_POWER_OFF:
1910                 if (!IS_ERR(mmc->supply.vmmc))
1911                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1912
1913                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1914                         regulator_disable(mmc->supply.vqmmc);
1915                         host->vqmmc_enabled = false;
1916                 }
1917
1918                 break;
1919         case MMC_POWER_UP:
1920                 if (!IS_ERR(mmc->supply.vmmc))
1921                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1922
1923                 /*
1924                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1925                  * and instead uses MCI_PWR_ON so apply whatever value is
1926                  * configured in the variant data.
1927                  */
1928                 pwr |= variant->pwrreg_powerup;
1929
1930                 break;
1931         case MMC_POWER_ON:
1932                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1933                         ret = regulator_enable(mmc->supply.vqmmc);
1934                         if (ret < 0)
1935                                 dev_err(mmc_dev(mmc),
1936                                         "failed to enable vqmmc regulator\n");
1937                         else
1938                                 host->vqmmc_enabled = true;
1939                 }
1940
1941                 pwr |= MCI_PWR_ON;
1942                 break;
1943         }
1944
1945         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1946                 /*
1947                  * The ST Micro variant has some additional bits
1948                  * indicating signal direction for the signals in
1949                  * the SD/MMC bus and feedback-clock usage.
1950                  */
1951                 pwr |= host->pwr_reg_add;
1952
1953                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1954                         pwr &= ~MCI_ST_DATA74DIREN;
1955                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1956                         pwr &= (~MCI_ST_DATA74DIREN &
1957                                 ~MCI_ST_DATA31DIREN &
1958                                 ~MCI_ST_DATA2DIREN);
1959         }
1960
1961         if (variant->opendrain) {
1962                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1963                         pwr |= variant->opendrain;
1964         } else {
1965                 /*
1966                  * If the variant cannot configure the pads by its own, then we
1967                  * expect the pinctrl to be able to do that for us
1968                  */
1969                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1970                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1971                 else
1972                         pinctrl_select_default_state(mmc_dev(mmc));
1973         }
1974
1975         /*
1976          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1977          * gating the clock, the MCI_PWR_ON bit is cleared.
1978          */
1979         if (!ios->clock && variant->pwrreg_clkgate)
1980                 pwr &= ~MCI_PWR_ON;
1981
1982         if (host->variant->explicit_mclk_control &&
1983             ios->clock != host->clock_cache) {
1984                 ret = clk_set_rate(host->clk, ios->clock);
1985                 if (ret < 0)
1986                         dev_err(mmc_dev(host->mmc),
1987                                 "Error setting clock rate (%d)\n", ret);
1988                 else
1989                         host->mclk = clk_get_rate(host->clk);
1990         }
1991         host->clock_cache = ios->clock;
1992
1993         spin_lock_irqsave(&host->lock, flags);
1994
1995         if (host->ops && host->ops->set_clkreg)
1996                 host->ops->set_clkreg(host, ios->clock);
1997         else
1998                 mmci_set_clkreg(host, ios->clock);
1999
2000         mmci_set_max_busy_timeout(mmc);
2001
2002         if (host->ops && host->ops->set_pwrreg)
2003                 host->ops->set_pwrreg(host, pwr);
2004         else
2005                 mmci_write_pwrreg(host, pwr);
2006
2007         mmci_reg_delay(host);
2008
2009         spin_unlock_irqrestore(&host->lock, flags);
2010 }
2011
2012 static int mmci_get_cd(struct mmc_host *mmc)
2013 {
2014         struct mmci_host *host = mmc_priv(mmc);
2015         struct mmci_platform_data *plat = host->plat;
2016         unsigned int status = mmc_gpio_get_cd(mmc);
2017
2018         if (status == -ENOSYS) {
2019                 if (!plat->status)
2020                         return 1; /* Assume always present */
2021
2022                 status = plat->status(mmc_dev(host->mmc));
2023         }
2024         return status;
2025 }
2026
2027 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2028 {
2029         struct mmci_host *host = mmc_priv(mmc);
2030         int ret;
2031
2032         ret = mmc_regulator_set_vqmmc(mmc, ios);
2033
2034         if (!ret && host->ops && host->ops->post_sig_volt_switch)
2035                 ret = host->ops->post_sig_volt_switch(host, ios);
2036         else if (ret)
2037                 ret = 0;
2038
2039         if (ret < 0)
2040                 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2041
2042         return ret;
2043 }
2044
2045 static struct mmc_host_ops mmci_ops = {
2046         .request        = mmci_request,
2047         .pre_req        = mmci_pre_request,
2048         .post_req       = mmci_post_request,
2049         .set_ios        = mmci_set_ios,
2050         .get_ro         = mmc_gpio_get_ro,
2051         .get_cd         = mmci_get_cd,
2052         .start_signal_voltage_switch = mmci_sig_volt_switch,
2053 };
2054
2055 static void mmci_probe_level_translator(struct mmc_host *mmc)
2056 {
2057         struct device *dev = mmc_dev(mmc);
2058         struct mmci_host *host = mmc_priv(mmc);
2059         struct gpio_desc *cmd_gpio;
2060         struct gpio_desc *ck_gpio;
2061         struct gpio_desc *ckin_gpio;
2062         int clk_hi, clk_lo;
2063
2064         /*
2065          * Assume the level translator is present if st,use-ckin is set.
2066          * This is to cater for DTs which do not implement this test.
2067          */
2068         host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2069
2070         cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2071         if (IS_ERR(cmd_gpio))
2072                 goto exit_cmd;
2073
2074         ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2075         if (IS_ERR(ck_gpio))
2076                 goto exit_ck;
2077
2078         ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2079         if (IS_ERR(ckin_gpio))
2080                 goto exit_ckin;
2081
2082         /* All GPIOs are valid, test whether level translator works */
2083
2084         /* Sample CKIN */
2085         clk_hi = !!gpiod_get_value(ckin_gpio);
2086
2087         /* Set CK low */
2088         gpiod_set_value(ck_gpio, 0);
2089
2090         /* Sample CKIN */
2091         clk_lo = !!gpiod_get_value(ckin_gpio);
2092
2093         /* Tristate all */
2094         gpiod_direction_input(cmd_gpio);
2095         gpiod_direction_input(ck_gpio);
2096
2097         /* Level translator is present if CK signal is propagated to CKIN */
2098         if (!clk_hi || clk_lo) {
2099                 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2100                 dev_warn(dev,
2101                          "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2102         }
2103
2104         gpiod_put(ckin_gpio);
2105
2106 exit_ckin:
2107         gpiod_put(ck_gpio);
2108 exit_ck:
2109         gpiod_put(cmd_gpio);
2110 exit_cmd:
2111         pinctrl_select_default_state(dev);
2112 }
2113
2114 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2115 {
2116         struct mmci_host *host = mmc_priv(mmc);
2117         int ret = mmc_of_parse(mmc);
2118
2119         if (ret)
2120                 return ret;
2121
2122         if (of_property_read_bool(np, "st,sig-dir-dat0"))
2123                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2124         if (of_property_read_bool(np, "st,sig-dir-dat2"))
2125                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2126         if (of_property_read_bool(np, "st,sig-dir-dat31"))
2127                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2128         if (of_property_read_bool(np, "st,sig-dir-dat74"))
2129                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2130         if (of_property_read_bool(np, "st,sig-dir-cmd"))
2131                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
2132         if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2133                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
2134         if (of_property_read_bool(np, "st,sig-dir"))
2135                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
2136         if (of_property_read_bool(np, "st,neg-edge"))
2137                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2138         if (of_property_read_bool(np, "st,use-ckin"))
2139                 mmci_probe_level_translator(mmc);
2140
2141         if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2142                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2143         if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2144                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2145
2146         return 0;
2147 }
2148
2149 static int mmci_probe(struct amba_device *dev,
2150         const struct amba_id *id)
2151 {
2152         struct mmci_platform_data *plat = dev->dev.platform_data;
2153         struct device_node *np = dev->dev.of_node;
2154         struct variant_data *variant = id->data;
2155         struct mmci_host *host;
2156         struct mmc_host *mmc;
2157         int ret;
2158
2159         /* Must have platform data or Device Tree. */
2160         if (!plat && !np) {
2161                 dev_err(&dev->dev, "No plat data or DT found\n");
2162                 return -EINVAL;
2163         }
2164
2165         if (!plat) {
2166                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2167                 if (!plat)
2168                         return -ENOMEM;
2169         }
2170
2171         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2172         if (!mmc)
2173                 return -ENOMEM;
2174
2175         host = mmc_priv(mmc);
2176         host->mmc = mmc;
2177         host->mmc_ops = &mmci_ops;
2178         mmc->ops = &mmci_ops;
2179
2180         ret = mmci_of_parse(np, mmc);
2181         if (ret)
2182                 goto host_free;
2183
2184         /*
2185          * Some variant (STM32) doesn't have opendrain bit, nevertheless
2186          * pins can be set accordingly using pinctrl
2187          */
2188         if (!variant->opendrain) {
2189                 host->pinctrl = devm_pinctrl_get(&dev->dev);
2190                 if (IS_ERR(host->pinctrl)) {
2191                         dev_err(&dev->dev, "failed to get pinctrl");
2192                         ret = PTR_ERR(host->pinctrl);
2193                         goto host_free;
2194                 }
2195
2196                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2197                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
2198                 if (IS_ERR(host->pins_opendrain)) {
2199                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2200                         ret = PTR_ERR(host->pins_opendrain);
2201                         goto host_free;
2202                 }
2203         }
2204
2205         host->hw_designer = amba_manf(dev);
2206         host->hw_revision = amba_rev(dev);
2207         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2208         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2209
2210         host->clk = devm_clk_get(&dev->dev, NULL);
2211         if (IS_ERR(host->clk)) {
2212                 ret = PTR_ERR(host->clk);
2213                 goto host_free;
2214         }
2215
2216         ret = clk_prepare_enable(host->clk);
2217         if (ret)
2218                 goto host_free;
2219
2220         if (variant->qcom_fifo)
2221                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2222         else
2223                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2224
2225         host->plat = plat;
2226         host->variant = variant;
2227         host->mclk = clk_get_rate(host->clk);
2228         /*
2229          * According to the spec, mclk is max 100 MHz,
2230          * so we try to adjust the clock down to this,
2231          * (if possible).
2232          */
2233         if (host->mclk > variant->f_max) {
2234                 ret = clk_set_rate(host->clk, variant->f_max);
2235                 if (ret < 0)
2236                         goto clk_disable;
2237                 host->mclk = clk_get_rate(host->clk);
2238                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2239                         host->mclk);
2240         }
2241
2242         host->phybase = dev->res.start;
2243         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2244         if (IS_ERR(host->base)) {
2245                 ret = PTR_ERR(host->base);
2246                 goto clk_disable;
2247         }
2248
2249         if (variant->init)
2250                 variant->init(host);
2251
2252         /*
2253          * The ARM and ST versions of the block have slightly different
2254          * clock divider equations which means that the minimum divider
2255          * differs too.
2256          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2257          */
2258         if (variant->st_clkdiv)
2259                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2260         else if (variant->stm32_clkdiv)
2261                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2262         else if (variant->explicit_mclk_control)
2263                 mmc->f_min = clk_round_rate(host->clk, 100000);
2264         else
2265                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2266         /*
2267          * If no maximum operating frequency is supplied, fall back to use
2268          * the module parameter, which has a (low) default value in case it
2269          * is not specified. Either value must not exceed the clock rate into
2270          * the block, of course.
2271          */
2272         if (mmc->f_max)
2273                 mmc->f_max = variant->explicit_mclk_control ?
2274                                 min(variant->f_max, mmc->f_max) :
2275                                 min(host->mclk, mmc->f_max);
2276         else
2277                 mmc->f_max = variant->explicit_mclk_control ?
2278                                 fmax : min(host->mclk, fmax);
2279
2280
2281         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2282
2283         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2284         if (IS_ERR(host->rst)) {
2285                 ret = PTR_ERR(host->rst);
2286                 goto clk_disable;
2287         }
2288         ret = reset_control_deassert(host->rst);
2289         if (ret)
2290                 dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2291
2292         /* Get regulators and the supported OCR mask */
2293         ret = mmc_regulator_get_supply(mmc);
2294         if (ret)
2295                 goto clk_disable;
2296
2297         if (!mmc->ocr_avail)
2298                 mmc->ocr_avail = plat->ocr_mask;
2299         else if (plat->ocr_mask)
2300                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2301
2302         /* We support these capabilities. */
2303         mmc->caps |= MMC_CAP_CMD23;
2304
2305         /*
2306          * Enable busy detection.
2307          */
2308         if (variant->busy_detect) {
2309                 mmci_ops.card_busy = mmci_card_busy;
2310                 /*
2311                  * Not all variants have a flag to enable busy detection
2312                  * in the DPSM, but if they do, set it here.
2313                  */
2314                 if (variant->busy_dpsm_flag)
2315                         mmci_write_datactrlreg(host,
2316                                                host->variant->busy_dpsm_flag);
2317                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2318         }
2319
2320         /* Variants with mandatory busy timeout in HW needs R1B responses. */
2321         if (variant->busy_timeout)
2322                 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2323
2324         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2325         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2326         host->stop_abort.arg = 0;
2327         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2328
2329         /* We support these PM capabilities. */
2330         mmc->pm_caps |= MMC_PM_KEEP_POWER;
2331
2332         /*
2333          * We can do SGIO
2334          */
2335         mmc->max_segs = NR_SG;
2336
2337         /*
2338          * Since only a certain number of bits are valid in the data length
2339          * register, we must ensure that we don't exceed 2^num-1 bytes in a
2340          * single request.
2341          */
2342         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2343
2344         /*
2345          * Set the maximum segment size.  Since we aren't doing DMA
2346          * (yet) we are only limited by the data length register.
2347          */
2348         mmc->max_seg_size = mmc->max_req_size;
2349
2350         /*
2351          * Block size can be up to 2048 bytes, but must be a power of two.
2352          */
2353         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2354
2355         /*
2356          * Limit the number of blocks transferred so that we don't overflow
2357          * the maximum request size.
2358          */
2359         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2360
2361         spin_lock_init(&host->lock);
2362
2363         writel(0, host->base + MMCIMASK0);
2364
2365         if (variant->mmcimask1)
2366                 writel(0, host->base + MMCIMASK1);
2367
2368         writel(0xfff, host->base + MMCICLEAR);
2369
2370         /*
2371          * If:
2372          * - not using DT but using a descriptor table, or
2373          * - using a table of descriptors ALONGSIDE DT, or
2374          * look up these descriptors named "cd" and "wp" right here, fail
2375          * silently of these do not exist
2376          */
2377         if (!np) {
2378                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2379                 if (ret == -EPROBE_DEFER)
2380                         goto clk_disable;
2381
2382                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2383                 if (ret == -EPROBE_DEFER)
2384                         goto clk_disable;
2385         }
2386
2387         ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2388                                         mmci_irq_thread, IRQF_SHARED,
2389                                         DRIVER_NAME " (cmd)", host);
2390         if (ret)
2391                 goto clk_disable;
2392
2393         if (!dev->irq[1])
2394                 host->singleirq = true;
2395         else {
2396                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2397                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2398                 if (ret)
2399                         goto clk_disable;
2400         }
2401
2402         if (host->variant->busy_detect)
2403                 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2404                                   ux500_busy_timeout_work);
2405
2406         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2407
2408         amba_set_drvdata(dev, mmc);
2409
2410         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2411                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2412                  amba_rev(dev), (unsigned long long)dev->res.start,
2413                  dev->irq[0], dev->irq[1]);
2414
2415         mmci_dma_setup(host);
2416
2417         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2418         pm_runtime_use_autosuspend(&dev->dev);
2419
2420         ret = mmc_add_host(mmc);
2421         if (ret)
2422                 goto clk_disable;
2423
2424         pm_runtime_put(&dev->dev);
2425         return 0;
2426
2427  clk_disable:
2428         clk_disable_unprepare(host->clk);
2429  host_free:
2430         mmc_free_host(mmc);
2431         return ret;
2432 }
2433
2434 static void mmci_remove(struct amba_device *dev)
2435 {
2436         struct mmc_host *mmc = amba_get_drvdata(dev);
2437
2438         if (mmc) {
2439                 struct mmci_host *host = mmc_priv(mmc);
2440                 struct variant_data *variant = host->variant;
2441
2442                 /*
2443                  * Undo pm_runtime_put() in probe.  We use the _sync
2444                  * version here so that we can access the primecell.
2445                  */
2446                 pm_runtime_get_sync(&dev->dev);
2447
2448                 mmc_remove_host(mmc);
2449
2450                 writel(0, host->base + MMCIMASK0);
2451
2452                 if (variant->mmcimask1)
2453                         writel(0, host->base + MMCIMASK1);
2454
2455                 writel(0, host->base + MMCICOMMAND);
2456                 writel(0, host->base + MMCIDATACTRL);
2457
2458                 mmci_dma_release(host);
2459                 clk_disable_unprepare(host->clk);
2460                 mmc_free_host(mmc);
2461         }
2462 }
2463
2464 #ifdef CONFIG_PM
2465 static void mmci_save(struct mmci_host *host)
2466 {
2467         unsigned long flags;
2468
2469         spin_lock_irqsave(&host->lock, flags);
2470
2471         writel(0, host->base + MMCIMASK0);
2472         if (host->variant->pwrreg_nopower) {
2473                 writel(0, host->base + MMCIDATACTRL);
2474                 writel(0, host->base + MMCIPOWER);
2475                 writel(0, host->base + MMCICLOCK);
2476         }
2477         mmci_reg_delay(host);
2478
2479         spin_unlock_irqrestore(&host->lock, flags);
2480 }
2481
2482 static void mmci_restore(struct mmci_host *host)
2483 {
2484         unsigned long flags;
2485
2486         spin_lock_irqsave(&host->lock, flags);
2487
2488         if (host->variant->pwrreg_nopower) {
2489                 writel(host->clk_reg, host->base + MMCICLOCK);
2490                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2491                 writel(host->pwr_reg, host->base + MMCIPOWER);
2492         }
2493         writel(MCI_IRQENABLE | host->variant->start_err,
2494                host->base + MMCIMASK0);
2495         mmci_reg_delay(host);
2496
2497         spin_unlock_irqrestore(&host->lock, flags);
2498 }
2499
2500 static int mmci_runtime_suspend(struct device *dev)
2501 {
2502         struct amba_device *adev = to_amba_device(dev);
2503         struct mmc_host *mmc = amba_get_drvdata(adev);
2504
2505         if (mmc) {
2506                 struct mmci_host *host = mmc_priv(mmc);
2507                 pinctrl_pm_select_sleep_state(dev);
2508                 mmci_save(host);
2509                 clk_disable_unprepare(host->clk);
2510         }
2511
2512         return 0;
2513 }
2514
2515 static int mmci_runtime_resume(struct device *dev)
2516 {
2517         struct amba_device *adev = to_amba_device(dev);
2518         struct mmc_host *mmc = amba_get_drvdata(adev);
2519
2520         if (mmc) {
2521                 struct mmci_host *host = mmc_priv(mmc);
2522                 clk_prepare_enable(host->clk);
2523                 mmci_restore(host);
2524                 pinctrl_select_default_state(dev);
2525         }
2526
2527         return 0;
2528 }
2529 #endif
2530
2531 static const struct dev_pm_ops mmci_dev_pm_ops = {
2532         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2533                                 pm_runtime_force_resume)
2534         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2535 };
2536
2537 static const struct amba_id mmci_ids[] = {
2538         {
2539                 .id     = 0x00041180,
2540                 .mask   = 0xff0fffff,
2541                 .data   = &variant_arm,
2542         },
2543         {
2544                 .id     = 0x01041180,
2545                 .mask   = 0xff0fffff,
2546                 .data   = &variant_arm_extended_fifo,
2547         },
2548         {
2549                 .id     = 0x02041180,
2550                 .mask   = 0xff0fffff,
2551                 .data   = &variant_arm_extended_fifo_hwfc,
2552         },
2553         {
2554                 .id     = 0x00041181,
2555                 .mask   = 0x000fffff,
2556                 .data   = &variant_arm,
2557         },
2558         /* ST Micro variants */
2559         {
2560                 .id     = 0x00180180,
2561                 .mask   = 0x00ffffff,
2562                 .data   = &variant_u300,
2563         },
2564         {
2565                 .id     = 0x10180180,
2566                 .mask   = 0xf0ffffff,
2567                 .data   = &variant_nomadik,
2568         },
2569         {
2570                 .id     = 0x00280180,
2571                 .mask   = 0x00ffffff,
2572                 .data   = &variant_nomadik,
2573         },
2574         {
2575                 .id     = 0x00480180,
2576                 .mask   = 0xf0ffffff,
2577                 .data   = &variant_ux500,
2578         },
2579         {
2580                 .id     = 0x10480180,
2581                 .mask   = 0xf0ffffff,
2582                 .data   = &variant_ux500v2,
2583         },
2584         {
2585                 .id     = 0x00880180,
2586                 .mask   = 0x00ffffff,
2587                 .data   = &variant_stm32,
2588         },
2589         {
2590                 .id     = 0x10153180,
2591                 .mask   = 0xf0ffffff,
2592                 .data   = &variant_stm32_sdmmc,
2593         },
2594         {
2595                 .id     = 0x00253180,
2596                 .mask   = 0xf0ffffff,
2597                 .data   = &variant_stm32_sdmmcv2,
2598         },
2599         {
2600                 .id     = 0x20253180,
2601                 .mask   = 0xf0ffffff,
2602                 .data   = &variant_stm32_sdmmcv2,
2603         },
2604         {
2605                 .id     = 0x00353180,
2606                 .mask   = 0xf0ffffff,
2607                 .data   = &variant_stm32_sdmmcv3,
2608         },
2609         /* Qualcomm variants */
2610         {
2611                 .id     = 0x00051180,
2612                 .mask   = 0x000fffff,
2613                 .data   = &variant_qcom,
2614         },
2615         { 0, 0 },
2616 };
2617
2618 MODULE_DEVICE_TABLE(amba, mmci_ids);
2619
2620 static struct amba_driver mmci_driver = {
2621         .drv            = {
2622                 .name   = DRIVER_NAME,
2623                 .pm     = &mmci_dev_pm_ops,
2624                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2625         },
2626         .probe          = mmci_probe,
2627         .remove         = mmci_remove,
2628         .id_table       = mmci_ids,
2629 };
2630
2631 module_amba_driver(mmci_driver);
2632
2633 module_param(fmax, uint, 0444);
2634
2635 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2636 MODULE_LICENSE("GPL");