GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39
40 #include <asm/div64.h>
41 #include <asm/io.h>
42
43 #include "mmci.h"
44
45 #define DRIVER_NAME "mmci-pl18x"
46
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50
51 static unsigned int fmax = 515633;
52
53 static struct variant_data variant_arm = {
54         .fifosize               = 16 * 4,
55         .fifohalfsize           = 8 * 4,
56         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
57         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
59         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
60         .datalength_bits        = 16,
61         .datactrl_blocksz       = 11,
62         .pwrreg_powerup         = MCI_PWR_UP,
63         .f_max                  = 100000000,
64         .reversed_irq_handling  = true,
65         .mmcimask1              = true,
66         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
67         .start_err              = MCI_STARTBITERR,
68         .opendrain              = MCI_ROD,
69         .init                   = mmci_variant_init,
70 };
71
72 static struct variant_data variant_arm_extended_fifo = {
73         .fifosize               = 128 * 4,
74         .fifohalfsize           = 64 * 4,
75         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
76         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
78         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
79         .datalength_bits        = 16,
80         .datactrl_blocksz       = 11,
81         .pwrreg_powerup         = MCI_PWR_UP,
82         .f_max                  = 100000000,
83         .mmcimask1              = true,
84         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
85         .start_err              = MCI_STARTBITERR,
86         .opendrain              = MCI_ROD,
87         .init                   = mmci_variant_init,
88 };
89
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91         .fifosize               = 128 * 4,
92         .fifohalfsize           = 64 * 4,
93         .clkreg_enable          = MCI_ARM_HWFCEN,
94         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
95         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
97         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
98         .datalength_bits        = 16,
99         .datactrl_blocksz       = 11,
100         .pwrreg_powerup         = MCI_PWR_UP,
101         .f_max                  = 100000000,
102         .mmcimask1              = true,
103         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
104         .start_err              = MCI_STARTBITERR,
105         .opendrain              = MCI_ROD,
106         .init                   = mmci_variant_init,
107 };
108
109 static struct variant_data variant_u300 = {
110         .fifosize               = 16 * 4,
111         .fifohalfsize           = 8 * 4,
112         .clkreg_enable          = MCI_ST_U300_HWFCEN,
113         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
115         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
117         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
118         .datalength_bits        = 16,
119         .datactrl_blocksz       = 11,
120         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
121         .st_sdio                        = true,
122         .pwrreg_powerup         = MCI_PWR_ON,
123         .f_max                  = 100000000,
124         .signal_direction       = true,
125         .pwrreg_clkgate         = true,
126         .pwrreg_nopower         = true,
127         .mmcimask1              = true,
128         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
129         .start_err              = MCI_STARTBITERR,
130         .opendrain              = MCI_OD,
131         .init                   = mmci_variant_init,
132 };
133
134 static struct variant_data variant_nomadik = {
135         .fifosize               = 16 * 4,
136         .fifohalfsize           = 8 * 4,
137         .clkreg                 = MCI_CLK_ENABLE,
138         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
140         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
142         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
143         .datalength_bits        = 24,
144         .datactrl_blocksz       = 11,
145         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
146         .st_sdio                = true,
147         .st_clkdiv              = true,
148         .pwrreg_powerup         = MCI_PWR_ON,
149         .f_max                  = 100000000,
150         .signal_direction       = true,
151         .pwrreg_clkgate         = true,
152         .pwrreg_nopower         = true,
153         .mmcimask1              = true,
154         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
155         .start_err              = MCI_STARTBITERR,
156         .opendrain              = MCI_OD,
157         .init                   = mmci_variant_init,
158 };
159
160 static struct variant_data variant_ux500 = {
161         .fifosize               = 30 * 4,
162         .fifohalfsize           = 8 * 4,
163         .clkreg                 = MCI_CLK_ENABLE,
164         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
165         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
167         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
168         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
170         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
171         .datalength_bits        = 24,
172         .datactrl_blocksz       = 11,
173         .datactrl_any_blocksz   = true,
174         .dma_power_of_2         = true,
175         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
176         .st_sdio                = true,
177         .st_clkdiv              = true,
178         .pwrreg_powerup         = MCI_PWR_ON,
179         .f_max                  = 100000000,
180         .signal_direction       = true,
181         .pwrreg_clkgate         = true,
182         .busy_detect            = true,
183         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
184         .busy_detect_flag       = MCI_ST_CARDBUSY,
185         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
186         .pwrreg_nopower         = true,
187         .mmcimask1              = true,
188         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
189         .start_err              = MCI_STARTBITERR,
190         .opendrain              = MCI_OD,
191         .init                   = ux500_variant_init,
192 };
193
194 static struct variant_data variant_ux500v2 = {
195         .fifosize               = 30 * 4,
196         .fifohalfsize           = 8 * 4,
197         .clkreg                 = MCI_CLK_ENABLE,
198         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
199         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
201         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
202         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
204         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
205         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
206         .datalength_bits        = 24,
207         .datactrl_blocksz       = 11,
208         .datactrl_any_blocksz   = true,
209         .dma_power_of_2         = true,
210         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
211         .st_sdio                = true,
212         .st_clkdiv              = true,
213         .pwrreg_powerup         = MCI_PWR_ON,
214         .f_max                  = 100000000,
215         .signal_direction       = true,
216         .pwrreg_clkgate         = true,
217         .busy_detect            = true,
218         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
219         .busy_detect_flag       = MCI_ST_CARDBUSY,
220         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
221         .pwrreg_nopower         = true,
222         .mmcimask1              = true,
223         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
224         .start_err              = MCI_STARTBITERR,
225         .opendrain              = MCI_OD,
226         .init                   = ux500v2_variant_init,
227 };
228
229 static struct variant_data variant_stm32 = {
230         .fifosize               = 32 * 4,
231         .fifohalfsize           = 8 * 4,
232         .clkreg                 = MCI_CLK_ENABLE,
233         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
234         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
236         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
237         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
239         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
240         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
241         .datalength_bits        = 24,
242         .datactrl_blocksz       = 11,
243         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
244         .st_sdio                = true,
245         .st_clkdiv              = true,
246         .pwrreg_powerup         = MCI_PWR_ON,
247         .f_max                  = 48000000,
248         .pwrreg_clkgate         = true,
249         .pwrreg_nopower         = true,
250         .init                   = mmci_variant_init,
251 };
252
253 static struct variant_data variant_stm32_sdmmc = {
254         .fifosize               = 16 * 4,
255         .fifohalfsize           = 8 * 4,
256         .f_max                  = 208000000,
257         .stm32_clkdiv           = true,
258         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
259         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
260         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
261         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
262         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
263         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
264         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
265         .datactrl_first         = true,
266         .datacnt_useless        = true,
267         .datalength_bits        = 25,
268         .datactrl_blocksz       = 14,
269         .datactrl_any_blocksz   = true,
270         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
271         .stm32_idmabsize_mask   = GENMASK(12, 5),
272         .busy_timeout           = true,
273         .busy_detect            = true,
274         .busy_detect_flag       = MCI_STM32_BUSYD0,
275         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
276         .init                   = sdmmc_variant_init,
277 };
278
279 static struct variant_data variant_stm32_sdmmcv2 = {
280         .fifosize               = 16 * 4,
281         .fifohalfsize           = 8 * 4,
282         .f_max                  = 208000000,
283         .stm32_clkdiv           = true,
284         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
285         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
286         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
287         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
288         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
289         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
290         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
291         .datactrl_first         = true,
292         .datacnt_useless        = true,
293         .datalength_bits        = 25,
294         .datactrl_blocksz       = 14,
295         .datactrl_any_blocksz   = true,
296         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
297         .stm32_idmabsize_mask   = GENMASK(16, 5),
298         .dma_lli                = true,
299         .busy_timeout           = true,
300         .busy_detect            = true,
301         .busy_detect_flag       = MCI_STM32_BUSYD0,
302         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
303         .init                   = sdmmc_variant_init,
304 };
305
306 static struct variant_data variant_qcom = {
307         .fifosize               = 16 * 4,
308         .fifohalfsize           = 8 * 4,
309         .clkreg                 = MCI_CLK_ENABLE,
310         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
311                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
312         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
313         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
314         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
315         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
316         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
317         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
318         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
319         .datalength_bits        = 24,
320         .datactrl_blocksz       = 11,
321         .datactrl_any_blocksz   = true,
322         .pwrreg_powerup         = MCI_PWR_UP,
323         .f_max                  = 208000000,
324         .explicit_mclk_control  = true,
325         .qcom_fifo              = true,
326         .qcom_dml               = true,
327         .mmcimask1              = true,
328         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
329         .start_err              = MCI_STARTBITERR,
330         .opendrain              = MCI_ROD,
331         .init                   = qcom_variant_init,
332 };
333
334 /* Busy detection for the ST Micro variant */
335 static int mmci_card_busy(struct mmc_host *mmc)
336 {
337         struct mmci_host *host = mmc_priv(mmc);
338         unsigned long flags;
339         int busy = 0;
340
341         spin_lock_irqsave(&host->lock, flags);
342         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
343                 busy = 1;
344         spin_unlock_irqrestore(&host->lock, flags);
345
346         return busy;
347 }
348
349 static void mmci_reg_delay(struct mmci_host *host)
350 {
351         /*
352          * According to the spec, at least three feedback clock cycles
353          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355          * Worst delay time during card init is at 100 kHz => 30 us.
356          * Worst delay time when up and running is at 25 MHz => 120 ns.
357          */
358         if (host->cclk < 25000000)
359                 udelay(30);
360         else
361                 ndelay(120);
362 }
363
364 /*
365  * This must be called with host->lock held
366  */
367 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
368 {
369         if (host->clk_reg != clk) {
370                 host->clk_reg = clk;
371                 writel(clk, host->base + MMCICLOCK);
372         }
373 }
374
375 /*
376  * This must be called with host->lock held
377  */
378 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
379 {
380         if (host->pwr_reg != pwr) {
381                 host->pwr_reg = pwr;
382                 writel(pwr, host->base + MMCIPOWER);
383         }
384 }
385
386 /*
387  * This must be called with host->lock held
388  */
389 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
390 {
391         /* Keep busy mode in DPSM if enabled */
392         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
393
394         if (host->datactrl_reg != datactrl) {
395                 host->datactrl_reg = datactrl;
396                 writel(datactrl, host->base + MMCIDATACTRL);
397         }
398 }
399
400 /*
401  * This must be called with host->lock held
402  */
403 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
404 {
405         struct variant_data *variant = host->variant;
406         u32 clk = variant->clkreg;
407
408         /* Make sure cclk reflects the current calculated clock */
409         host->cclk = 0;
410
411         if (desired) {
412                 if (variant->explicit_mclk_control) {
413                         host->cclk = host->mclk;
414                 } else if (desired >= host->mclk) {
415                         clk = MCI_CLK_BYPASS;
416                         if (variant->st_clkdiv)
417                                 clk |= MCI_ST_UX500_NEG_EDGE;
418                         host->cclk = host->mclk;
419                 } else if (variant->st_clkdiv) {
420                         /*
421                          * DB8500 TRM says f = mclk / (clkdiv + 2)
422                          * => clkdiv = (mclk / f) - 2
423                          * Round the divider up so we don't exceed the max
424                          * frequency
425                          */
426                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
427                         if (clk >= 256)
428                                 clk = 255;
429                         host->cclk = host->mclk / (clk + 2);
430                 } else {
431                         /*
432                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433                          * => clkdiv = mclk / (2 * f) - 1
434                          */
435                         clk = host->mclk / (2 * desired) - 1;
436                         if (clk >= 256)
437                                 clk = 255;
438                         host->cclk = host->mclk / (2 * (clk + 1));
439                 }
440
441                 clk |= variant->clkreg_enable;
442                 clk |= MCI_CLK_ENABLE;
443                 /* This hasn't proven to be worthwhile */
444                 /* clk |= MCI_CLK_PWRSAVE; */
445         }
446
447         /* Set actual clock for debug */
448         host->mmc->actual_clock = host->cclk;
449
450         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
451                 clk |= MCI_4BIT_BUS;
452         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
453                 clk |= variant->clkreg_8bit_bus_enable;
454
455         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
456             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
457                 clk |= variant->clkreg_neg_edge_enable;
458
459         mmci_write_clkreg(host, clk);
460 }
461
462 static void mmci_dma_release(struct mmci_host *host)
463 {
464         if (host->ops && host->ops->dma_release)
465                 host->ops->dma_release(host);
466
467         host->use_dma = false;
468 }
469
470 static void mmci_dma_setup(struct mmci_host *host)
471 {
472         if (!host->ops || !host->ops->dma_setup)
473                 return;
474
475         if (host->ops->dma_setup(host))
476                 return;
477
478         /* initialize pre request cookie */
479         host->next_cookie = 1;
480
481         host->use_dma = true;
482 }
483
484 /*
485  * Validate mmc prerequisites
486  */
487 static int mmci_validate_data(struct mmci_host *host,
488                               struct mmc_data *data)
489 {
490         struct variant_data *variant = host->variant;
491
492         if (!data)
493                 return 0;
494         if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
495                 dev_err(mmc_dev(host->mmc),
496                         "unsupported block size (%d bytes)\n", data->blksz);
497                 return -EINVAL;
498         }
499
500         if (host->ops && host->ops->validate_data)
501                 return host->ops->validate_data(host, data);
502
503         return 0;
504 }
505
506 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
507 {
508         int err;
509
510         if (!host->ops || !host->ops->prep_data)
511                 return 0;
512
513         err = host->ops->prep_data(host, data, next);
514
515         if (next && !err)
516                 data->host_cookie = ++host->next_cookie < 0 ?
517                         1 : host->next_cookie;
518
519         return err;
520 }
521
522 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
523                       int err)
524 {
525         if (host->ops && host->ops->unprep_data)
526                 host->ops->unprep_data(host, data, err);
527
528         data->host_cookie = 0;
529 }
530
531 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532 {
533         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
534
535         if (host->ops && host->ops->get_next_data)
536                 host->ops->get_next_data(host, data);
537 }
538
539 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
540 {
541         struct mmc_data *data = host->data;
542         int ret;
543
544         if (!host->use_dma)
545                 return -EINVAL;
546
547         ret = mmci_prep_data(host, data, false);
548         if (ret)
549                 return ret;
550
551         if (!host->ops || !host->ops->dma_start)
552                 return -EINVAL;
553
554         /* Okay, go for it. */
555         dev_vdbg(mmc_dev(host->mmc),
556                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557                  data->sg_len, data->blksz, data->blocks, data->flags);
558
559         ret = host->ops->dma_start(host, &datactrl);
560         if (ret)
561                 return ret;
562
563         /* Trigger the DMA transfer */
564         mmci_write_datactrlreg(host, datactrl);
565
566         /*
567          * Let the MMCI say when the data is ended and it's time
568          * to fire next DMA request. When that happens, MMCI will
569          * call mmci_data_end()
570          */
571         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
572                host->base + MMCIMASK0);
573         return 0;
574 }
575
576 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577 {
578         if (!host->use_dma)
579                 return;
580
581         if (host->ops && host->ops->dma_finalize)
582                 host->ops->dma_finalize(host, data);
583 }
584
585 static void mmci_dma_error(struct mmci_host *host)
586 {
587         if (!host->use_dma)
588                 return;
589
590         if (host->ops && host->ops->dma_error)
591                 host->ops->dma_error(host);
592 }
593
594 static void
595 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
596 {
597         writel(0, host->base + MMCICOMMAND);
598
599         BUG_ON(host->data);
600
601         host->mrq = NULL;
602         host->cmd = NULL;
603
604         mmc_request_done(host->mmc, mrq);
605 }
606
607 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
608 {
609         void __iomem *base = host->base;
610         struct variant_data *variant = host->variant;
611
612         if (host->singleirq) {
613                 unsigned int mask0 = readl(base + MMCIMASK0);
614
615                 mask0 &= ~variant->irq_pio_mask;
616                 mask0 |= mask;
617
618                 writel(mask0, base + MMCIMASK0);
619         }
620
621         if (variant->mmcimask1)
622                 writel(mask, base + MMCIMASK1);
623
624         host->mask1_reg = mask;
625 }
626
627 static void mmci_stop_data(struct mmci_host *host)
628 {
629         mmci_write_datactrlreg(host, 0);
630         mmci_set_mask1(host, 0);
631         host->data = NULL;
632 }
633
634 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
635 {
636         unsigned int flags = SG_MITER_ATOMIC;
637
638         if (data->flags & MMC_DATA_READ)
639                 flags |= SG_MITER_TO_SG;
640         else
641                 flags |= SG_MITER_FROM_SG;
642
643         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
644 }
645
646 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
647 {
648         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
649 }
650
651 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
652 {
653         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
654 }
655
656 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
657 {
658         void __iomem *base = host->base;
659
660         /*
661          * Before unmasking for the busy end IRQ, confirm that the
662          * command was sent successfully. To keep track of having a
663          * command in-progress, waiting for busy signaling to end,
664          * store the status in host->busy_status.
665          *
666          * Note that, the card may need a couple of clock cycles before
667          * it starts signaling busy on DAT0, hence re-read the
668          * MMCISTATUS register here, to allow the busy bit to be set.
669          * Potentially we may even need to poll the register for a
670          * while, to allow it to be set, but tests indicates that it
671          * isn't needed.
672          */
673         if (!host->busy_status && !(status & err_msk) &&
674             (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
675                 writel(readl(base + MMCIMASK0) |
676                        host->variant->busy_detect_mask,
677                        base + MMCIMASK0);
678
679                 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
680                 return false;
681         }
682
683         /*
684          * If there is a command in-progress that has been successfully
685          * sent, then bail out if busy status is set and wait for the
686          * busy end IRQ.
687          *
688          * Note that, the HW triggers an IRQ on both edges while
689          * monitoring DAT0 for busy completion, but there is only one
690          * status bit in MMCISTATUS for the busy state. Therefore
691          * both the start and the end interrupts needs to be cleared,
692          * one after the other. So, clear the busy start IRQ here.
693          */
694         if (host->busy_status &&
695             (status & host->variant->busy_detect_flag)) {
696                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
697                 return false;
698         }
699
700         /*
701          * If there is a command in-progress that has been successfully
702          * sent and the busy bit isn't set, it means we have received
703          * the busy end IRQ. Clear and mask the IRQ, then continue to
704          * process the command.
705          */
706         if (host->busy_status) {
707                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
708
709                 writel(readl(base + MMCIMASK0) &
710                        ~host->variant->busy_detect_mask, base + MMCIMASK0);
711                 host->busy_status = 0;
712         }
713
714         return true;
715 }
716
717 /*
718  * All the DMA operation mode stuff goes inside this ifdef.
719  * This assumes that you have a generic DMA device interface,
720  * no custom DMA interfaces are supported.
721  */
722 #ifdef CONFIG_DMA_ENGINE
723 struct mmci_dmae_next {
724         struct dma_async_tx_descriptor *desc;
725         struct dma_chan *chan;
726 };
727
728 struct mmci_dmae_priv {
729         struct dma_chan *cur;
730         struct dma_chan *rx_channel;
731         struct dma_chan *tx_channel;
732         struct dma_async_tx_descriptor  *desc_current;
733         struct mmci_dmae_next next_data;
734 };
735
736 int mmci_dmae_setup(struct mmci_host *host)
737 {
738         const char *rxname, *txname;
739         struct mmci_dmae_priv *dmae;
740
741         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
742         if (!dmae)
743                 return -ENOMEM;
744
745         host->dma_priv = dmae;
746
747         dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
748         if (IS_ERR(dmae->rx_channel)) {
749                 int ret = PTR_ERR(dmae->rx_channel);
750                 dmae->rx_channel = NULL;
751                 return ret;
752         }
753
754         dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
755         if (IS_ERR(dmae->tx_channel)) {
756                 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
757                         dev_warn(mmc_dev(host->mmc),
758                                  "Deferred probe for TX channel ignored\n");
759                 dmae->tx_channel = NULL;
760         }
761
762         /*
763          * If only an RX channel is specified, the driver will
764          * attempt to use it bidirectionally, however if it is
765          * is specified but cannot be located, DMA will be disabled.
766          */
767         if (dmae->rx_channel && !dmae->tx_channel)
768                 dmae->tx_channel = dmae->rx_channel;
769
770         if (dmae->rx_channel)
771                 rxname = dma_chan_name(dmae->rx_channel);
772         else
773                 rxname = "none";
774
775         if (dmae->tx_channel)
776                 txname = dma_chan_name(dmae->tx_channel);
777         else
778                 txname = "none";
779
780         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
781                  rxname, txname);
782
783         /*
784          * Limit the maximum segment size in any SG entry according to
785          * the parameters of the DMA engine device.
786          */
787         if (dmae->tx_channel) {
788                 struct device *dev = dmae->tx_channel->device->dev;
789                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
790
791                 if (max_seg_size < host->mmc->max_seg_size)
792                         host->mmc->max_seg_size = max_seg_size;
793         }
794         if (dmae->rx_channel) {
795                 struct device *dev = dmae->rx_channel->device->dev;
796                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
797
798                 if (max_seg_size < host->mmc->max_seg_size)
799                         host->mmc->max_seg_size = max_seg_size;
800         }
801
802         if (!dmae->tx_channel || !dmae->rx_channel) {
803                 mmci_dmae_release(host);
804                 return -EINVAL;
805         }
806
807         return 0;
808 }
809
810 /*
811  * This is used in or so inline it
812  * so it can be discarded.
813  */
814 void mmci_dmae_release(struct mmci_host *host)
815 {
816         struct mmci_dmae_priv *dmae = host->dma_priv;
817
818         if (dmae->rx_channel)
819                 dma_release_channel(dmae->rx_channel);
820         if (dmae->tx_channel)
821                 dma_release_channel(dmae->tx_channel);
822         dmae->rx_channel = dmae->tx_channel = NULL;
823 }
824
825 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
826 {
827         struct mmci_dmae_priv *dmae = host->dma_priv;
828         struct dma_chan *chan;
829
830         if (data->flags & MMC_DATA_READ)
831                 chan = dmae->rx_channel;
832         else
833                 chan = dmae->tx_channel;
834
835         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
836                      mmc_get_dma_dir(data));
837 }
838
839 void mmci_dmae_error(struct mmci_host *host)
840 {
841         struct mmci_dmae_priv *dmae = host->dma_priv;
842
843         if (!dma_inprogress(host))
844                 return;
845
846         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
847         dmaengine_terminate_all(dmae->cur);
848         host->dma_in_progress = false;
849         dmae->cur = NULL;
850         dmae->desc_current = NULL;
851         host->data->host_cookie = 0;
852
853         mmci_dma_unmap(host, host->data);
854 }
855
856 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
857 {
858         struct mmci_dmae_priv *dmae = host->dma_priv;
859         u32 status;
860         int i;
861
862         if (!dma_inprogress(host))
863                 return;
864
865         /* Wait up to 1ms for the DMA to complete */
866         for (i = 0; ; i++) {
867                 status = readl(host->base + MMCISTATUS);
868                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
869                         break;
870                 udelay(10);
871         }
872
873         /*
874          * Check to see whether we still have some data left in the FIFO -
875          * this catches DMA controllers which are unable to monitor the
876          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
878          */
879         if (status & MCI_RXDATAAVLBLMASK) {
880                 mmci_dma_error(host);
881                 if (!data->error)
882                         data->error = -EIO;
883         } else if (!data->host_cookie) {
884                 mmci_dma_unmap(host, data);
885         }
886
887         /*
888          * Use of DMA with scatter-gather is impossible.
889          * Give up with DMA and switch back to PIO mode.
890          */
891         if (status & MCI_RXDATAAVLBLMASK) {
892                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
893                 mmci_dma_release(host);
894         }
895
896         host->dma_in_progress = false;
897         dmae->cur = NULL;
898         dmae->desc_current = NULL;
899 }
900
901 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
902 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
903                                 struct dma_chan **dma_chan,
904                                 struct dma_async_tx_descriptor **dma_desc)
905 {
906         struct mmci_dmae_priv *dmae = host->dma_priv;
907         struct variant_data *variant = host->variant;
908         struct dma_slave_config conf = {
909                 .src_addr = host->phybase + MMCIFIFO,
910                 .dst_addr = host->phybase + MMCIFIFO,
911                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
914                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
915                 .device_fc = false,
916         };
917         struct dma_chan *chan;
918         struct dma_device *device;
919         struct dma_async_tx_descriptor *desc;
920         int nr_sg;
921         unsigned long flags = DMA_CTRL_ACK;
922
923         if (data->flags & MMC_DATA_READ) {
924                 conf.direction = DMA_DEV_TO_MEM;
925                 chan = dmae->rx_channel;
926         } else {
927                 conf.direction = DMA_MEM_TO_DEV;
928                 chan = dmae->tx_channel;
929         }
930
931         /* If there's no DMA channel, fall back to PIO */
932         if (!chan)
933                 return -EINVAL;
934
935         /* If less than or equal to the fifo size, don't bother with DMA */
936         if (data->blksz * data->blocks <= variant->fifosize)
937                 return -EINVAL;
938
939         /*
940          * This is necessary to get SDIO working on the Ux500. We do not yet
941          * know if this is a bug in:
942          * - The Ux500 DMA controller (DMA40)
943          * - The MMCI DMA interface on the Ux500
944          * some power of two blocks (such as 64 bytes) are sent regularly
945          * during SDIO traffic and those work fine so for these we enable DMA
946          * transfers.
947          */
948         if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
949                 return -EINVAL;
950
951         device = chan->device;
952         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
953                            mmc_get_dma_dir(data));
954         if (nr_sg == 0)
955                 return -EINVAL;
956
957         if (host->variant->qcom_dml)
958                 flags |= DMA_PREP_INTERRUPT;
959
960         dmaengine_slave_config(chan, &conf);
961         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
962                                             conf.direction, flags);
963         if (!desc)
964                 goto unmap_exit;
965
966         *dma_chan = chan;
967         *dma_desc = desc;
968
969         return 0;
970
971  unmap_exit:
972         dma_unmap_sg(device->dev, data->sg, data->sg_len,
973                      mmc_get_dma_dir(data));
974         return -ENOMEM;
975 }
976
977 int mmci_dmae_prep_data(struct mmci_host *host,
978                         struct mmc_data *data,
979                         bool next)
980 {
981         struct mmci_dmae_priv *dmae = host->dma_priv;
982         struct mmci_dmae_next *nd = &dmae->next_data;
983
984         if (!host->use_dma)
985                 return -EINVAL;
986
987         if (next)
988                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
989         /* Check if next job is already prepared. */
990         if (dmae->cur && dmae->desc_current)
991                 return 0;
992
993         /* No job were prepared thus do it now. */
994         return _mmci_dmae_prep_data(host, data, &dmae->cur,
995                                     &dmae->desc_current);
996 }
997
998 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
999 {
1000         struct mmci_dmae_priv *dmae = host->dma_priv;
1001         int ret;
1002
1003         host->dma_in_progress = true;
1004         ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005         if (ret < 0) {
1006                 host->dma_in_progress = false;
1007                 return ret;
1008         }
1009         dma_async_issue_pending(dmae->cur);
1010
1011         *datactrl |= MCI_DPSM_DMAENABLE;
1012
1013         return 0;
1014 }
1015
1016 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017 {
1018         struct mmci_dmae_priv *dmae = host->dma_priv;
1019         struct mmci_dmae_next *next = &dmae->next_data;
1020
1021         if (!host->use_dma)
1022                 return;
1023
1024         WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025
1026         dmae->desc_current = next->desc;
1027         dmae->cur = next->chan;
1028         next->desc = NULL;
1029         next->chan = NULL;
1030 }
1031
1032 void mmci_dmae_unprep_data(struct mmci_host *host,
1033                            struct mmc_data *data, int err)
1034
1035 {
1036         struct mmci_dmae_priv *dmae = host->dma_priv;
1037
1038         if (!host->use_dma)
1039                 return;
1040
1041         mmci_dma_unmap(host, data);
1042
1043         if (err) {
1044                 struct mmci_dmae_next *next = &dmae->next_data;
1045                 struct dma_chan *chan;
1046                 if (data->flags & MMC_DATA_READ)
1047                         chan = dmae->rx_channel;
1048                 else
1049                         chan = dmae->tx_channel;
1050                 dmaengine_terminate_all(chan);
1051
1052                 if (dmae->desc_current == next->desc)
1053                         dmae->desc_current = NULL;
1054
1055                 if (dmae->cur == next->chan) {
1056                         host->dma_in_progress = false;
1057                         dmae->cur = NULL;
1058                 }
1059
1060                 next->desc = NULL;
1061                 next->chan = NULL;
1062         }
1063 }
1064
1065 static struct mmci_host_ops mmci_variant_ops = {
1066         .prep_data = mmci_dmae_prep_data,
1067         .unprep_data = mmci_dmae_unprep_data,
1068         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1069         .get_next_data = mmci_dmae_get_next_data,
1070         .dma_setup = mmci_dmae_setup,
1071         .dma_release = mmci_dmae_release,
1072         .dma_start = mmci_dmae_start,
1073         .dma_finalize = mmci_dmae_finalize,
1074         .dma_error = mmci_dmae_error,
1075 };
1076 #else
1077 static struct mmci_host_ops mmci_variant_ops = {
1078         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1079 };
1080 #endif
1081
1082 static void mmci_variant_init(struct mmci_host *host)
1083 {
1084         host->ops = &mmci_variant_ops;
1085 }
1086
1087 static void ux500_variant_init(struct mmci_host *host)
1088 {
1089         host->ops = &mmci_variant_ops;
1090         host->ops->busy_complete = ux500_busy_complete;
1091 }
1092
1093 static void ux500v2_variant_init(struct mmci_host *host)
1094 {
1095         host->ops = &mmci_variant_ops;
1096         host->ops->busy_complete = ux500_busy_complete;
1097         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098 }
1099
1100 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101 {
1102         struct mmci_host *host = mmc_priv(mmc);
1103         struct mmc_data *data = mrq->data;
1104
1105         if (!data)
1106                 return;
1107
1108         WARN_ON(data->host_cookie);
1109
1110         if (mmci_validate_data(host, data))
1111                 return;
1112
1113         mmci_prep_data(host, data, true);
1114 }
1115
1116 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117                               int err)
1118 {
1119         struct mmci_host *host = mmc_priv(mmc);
1120         struct mmc_data *data = mrq->data;
1121
1122         if (!data || !data->host_cookie)
1123                 return;
1124
1125         mmci_unprep_data(host, data, err);
1126 }
1127
1128 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129 {
1130         struct variant_data *variant = host->variant;
1131         unsigned int datactrl, timeout, irqmask;
1132         unsigned long long clks;
1133         void __iomem *base;
1134
1135         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136                 data->blksz, data->blocks, data->flags);
1137
1138         host->data = data;
1139         host->size = data->blksz * data->blocks;
1140         data->bytes_xfered = 0;
1141
1142         clks = (unsigned long long)data->timeout_ns * host->cclk;
1143         do_div(clks, NSEC_PER_SEC);
1144
1145         timeout = data->timeout_clks + (unsigned int)clks;
1146
1147         base = host->base;
1148         writel(timeout, base + MMCIDATATIMER);
1149         writel(host->size, base + MMCIDATALENGTH);
1150
1151         datactrl = host->ops->get_datactrl_cfg(host);
1152         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155                 u32 clk;
1156
1157                 datactrl |= variant->datactrl_mask_sdio;
1158
1159                 /*
1160                  * The ST Micro variant for SDIO small write transfers
1161                  * needs to have clock H/W flow control disabled,
1162                  * otherwise the transfer will not start. The threshold
1163                  * depends on the rate of MCLK.
1164                  */
1165                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166                     (host->size < 8 ||
1167                      (host->size <= 8 && host->mclk > 50000000)))
1168                         clk = host->clk_reg & ~variant->clkreg_enable;
1169                 else
1170                         clk = host->clk_reg | variant->clkreg_enable;
1171
1172                 mmci_write_clkreg(host, clk);
1173         }
1174
1175         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177                 datactrl |= variant->datactrl_mask_ddrmode;
1178
1179         /*
1180          * Attempt to use DMA operation mode, if this
1181          * should fail, fall back to PIO mode
1182          */
1183         if (!mmci_dma_start(host, datactrl))
1184                 return;
1185
1186         /* IRQ mode, map the SG list for CPU reading/writing */
1187         mmci_init_sg(host, data);
1188
1189         if (data->flags & MMC_DATA_READ) {
1190                 irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192                 /*
1193                  * If we have less than the fifo 'half-full' threshold to
1194                  * transfer, trigger a PIO interrupt as soon as any data
1195                  * is available.
1196                  */
1197                 if (host->size < variant->fifohalfsize)
1198                         irqmask |= MCI_RXDATAAVLBLMASK;
1199         } else {
1200                 /*
1201                  * We don't actually need to include "FIFO empty" here
1202                  * since its implicit in "FIFO half empty".
1203                  */
1204                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205         }
1206
1207         mmci_write_datactrlreg(host, datactrl);
1208         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209         mmci_set_mask1(host, irqmask);
1210 }
1211
1212 static void
1213 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214 {
1215         void __iomem *base = host->base;
1216         unsigned long long clks;
1217
1218         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219             cmd->opcode, cmd->arg, cmd->flags);
1220
1221         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222                 writel(0, base + MMCICOMMAND);
1223                 mmci_reg_delay(host);
1224         }
1225
1226         if (host->variant->cmdreg_stop &&
1227             cmd->opcode == MMC_STOP_TRANSMISSION)
1228                 c |= host->variant->cmdreg_stop;
1229
1230         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231         if (cmd->flags & MMC_RSP_PRESENT) {
1232                 if (cmd->flags & MMC_RSP_136)
1233                         c |= host->variant->cmdreg_lrsp_crc;
1234                 else if (cmd->flags & MMC_RSP_CRC)
1235                         c |= host->variant->cmdreg_srsp_crc;
1236                 else
1237                         c |= host->variant->cmdreg_srsp;
1238         }
1239
1240         if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241                 if (!cmd->busy_timeout)
1242                         cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244                 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1245                         clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1246                 else
1247                         clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1248
1249                 do_div(clks, MSEC_PER_SEC);
1250                 writel_relaxed(clks, host->base + MMCIDATATIMER);
1251         }
1252
1253         if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1254                 host->ops->pre_sig_volt_switch(host);
1255
1256         if (/*interrupt*/0)
1257                 c |= MCI_CPSM_INTERRUPT;
1258
1259         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1260                 c |= host->variant->data_cmd_enable;
1261
1262         host->cmd = cmd;
1263
1264         writel(cmd->arg, base + MMCIARGUMENT);
1265         writel(c, base + MMCICOMMAND);
1266 }
1267
1268 static void mmci_stop_command(struct mmci_host *host)
1269 {
1270         host->stop_abort.error = 0;
1271         mmci_start_command(host, &host->stop_abort, 0);
1272 }
1273
1274 static void
1275 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1276               unsigned int status)
1277 {
1278         unsigned int status_err;
1279
1280         /* Make sure we have data to handle */
1281         if (!data)
1282                 return;
1283
1284         /* First check for errors */
1285         status_err = status & (host->variant->start_err |
1286                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1287                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1288
1289         if (status_err) {
1290                 u32 remain, success;
1291
1292                 /* Terminate the DMA transfer */
1293                 mmci_dma_error(host);
1294
1295                 /*
1296                  * Calculate how far we are into the transfer.  Note that
1297                  * the data counter gives the number of bytes transferred
1298                  * on the MMC bus, not on the host side.  On reads, this
1299                  * can be as much as a FIFO-worth of data ahead.  This
1300                  * matters for FIFO overruns only.
1301                  */
1302                 if (!host->variant->datacnt_useless) {
1303                         remain = readl(host->base + MMCIDATACNT);
1304                         success = data->blksz * data->blocks - remain;
1305                 } else {
1306                         success = 0;
1307                 }
1308
1309                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1310                         status_err, success);
1311                 if (status_err & MCI_DATACRCFAIL) {
1312                         /* Last block was not successful */
1313                         success -= 1;
1314                         data->error = -EILSEQ;
1315                 } else if (status_err & MCI_DATATIMEOUT) {
1316                         data->error = -ETIMEDOUT;
1317                 } else if (status_err & MCI_STARTBITERR) {
1318                         data->error = -ECOMM;
1319                 } else if (status_err & MCI_TXUNDERRUN) {
1320                         data->error = -EIO;
1321                 } else if (status_err & MCI_RXOVERRUN) {
1322                         if (success > host->variant->fifosize)
1323                                 success -= host->variant->fifosize;
1324                         else
1325                                 success = 0;
1326                         data->error = -EIO;
1327                 }
1328                 data->bytes_xfered = round_down(success, data->blksz);
1329         }
1330
1331         if (status & MCI_DATABLOCKEND)
1332                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1333
1334         if (status & MCI_DATAEND || data->error) {
1335                 mmci_dma_finalize(host, data);
1336
1337                 mmci_stop_data(host);
1338
1339                 if (!data->error)
1340                         /* The error clause is handled above, success! */
1341                         data->bytes_xfered = data->blksz * data->blocks;
1342
1343                 if (!data->stop) {
1344                         if (host->variant->cmdreg_stop && data->error)
1345                                 mmci_stop_command(host);
1346                         else
1347                                 mmci_request_end(host, data->mrq);
1348                 } else if (host->mrq->sbc && !data->error) {
1349                         mmci_request_end(host, data->mrq);
1350                 } else {
1351                         mmci_start_command(host, data->stop, 0);
1352                 }
1353         }
1354 }
1355
1356 static void
1357 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1358              unsigned int status)
1359 {
1360         u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1361         void __iomem *base = host->base;
1362         bool sbc, busy_resp;
1363
1364         if (!cmd)
1365                 return;
1366
1367         sbc = (cmd == host->mrq->sbc);
1368         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1369
1370         /*
1371          * We need to be one of these interrupts to be considered worth
1372          * handling. Note that we tag on any latent IRQs postponed
1373          * due to waiting for busy status.
1374          */
1375         if (host->variant->busy_timeout && busy_resp)
1376                 err_msk |= MCI_DATATIMEOUT;
1377
1378         if (!((status | host->busy_status) &
1379               (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1380                 return;
1381
1382         /* Handle busy detection on DAT0 if the variant supports it. */
1383         if (busy_resp && host->variant->busy_detect)
1384                 if (!host->ops->busy_complete(host, status, err_msk))
1385                         return;
1386
1387         host->cmd = NULL;
1388
1389         if (status & MCI_CMDTIMEOUT) {
1390                 cmd->error = -ETIMEDOUT;
1391         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1392                 cmd->error = -EILSEQ;
1393         } else if (host->variant->busy_timeout && busy_resp &&
1394                    status & MCI_DATATIMEOUT) {
1395                 cmd->error = -ETIMEDOUT;
1396                 host->irq_action = IRQ_WAKE_THREAD;
1397         } else {
1398                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1399                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1400                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1401                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1402         }
1403
1404         if ((!sbc && !cmd->data) || cmd->error) {
1405                 if (host->data) {
1406                         /* Terminate the DMA transfer */
1407                         mmci_dma_error(host);
1408
1409                         mmci_stop_data(host);
1410                         if (host->variant->cmdreg_stop && cmd->error) {
1411                                 mmci_stop_command(host);
1412                                 return;
1413                         }
1414                 }
1415
1416                 if (host->irq_action != IRQ_WAKE_THREAD)
1417                         mmci_request_end(host, host->mrq);
1418
1419         } else if (sbc) {
1420                 mmci_start_command(host, host->mrq->cmd, 0);
1421         } else if (!host->variant->datactrl_first &&
1422                    !(cmd->data->flags & MMC_DATA_READ)) {
1423                 mmci_start_data(host, cmd->data);
1424         }
1425 }
1426
1427 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1428 {
1429         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1430 }
1431
1432 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1433 {
1434         /*
1435          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1436          * from the fifo range should be used
1437          */
1438         if (status & MCI_RXFIFOHALFFULL)
1439                 return host->variant->fifohalfsize;
1440         else if (status & MCI_RXDATAAVLBL)
1441                 return 4;
1442
1443         return 0;
1444 }
1445
1446 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1447 {
1448         void __iomem *base = host->base;
1449         char *ptr = buffer;
1450         u32 status = readl(host->base + MMCISTATUS);
1451         int host_remain = host->size;
1452
1453         do {
1454                 int count = host->get_rx_fifocnt(host, status, host_remain);
1455
1456                 if (count > remain)
1457                         count = remain;
1458
1459                 if (count <= 0)
1460                         break;
1461
1462                 /*
1463                  * SDIO especially may want to send something that is
1464                  * not divisible by 4 (as opposed to card sectors
1465                  * etc). Therefore make sure to always read the last bytes
1466                  * while only doing full 32-bit reads towards the FIFO.
1467                  */
1468                 if (unlikely(count & 0x3)) {
1469                         if (count < 4) {
1470                                 unsigned char buf[4];
1471                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1472                                 memcpy(ptr, buf, count);
1473                         } else {
1474                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475                                 count &= ~0x3;
1476                         }
1477                 } else {
1478                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1479                 }
1480
1481                 ptr += count;
1482                 remain -= count;
1483                 host_remain -= count;
1484
1485                 if (remain == 0)
1486                         break;
1487
1488                 status = readl(base + MMCISTATUS);
1489         } while (status & MCI_RXDATAAVLBL);
1490
1491         return ptr - buffer;
1492 }
1493
1494 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1495 {
1496         struct variant_data *variant = host->variant;
1497         void __iomem *base = host->base;
1498         char *ptr = buffer;
1499
1500         do {
1501                 unsigned int count, maxcnt;
1502
1503                 maxcnt = status & MCI_TXFIFOEMPTY ?
1504                          variant->fifosize : variant->fifohalfsize;
1505                 count = min(remain, maxcnt);
1506
1507                 /*
1508                  * SDIO especially may want to send something that is
1509                  * not divisible by 4 (as opposed to card sectors
1510                  * etc), and the FIFO only accept full 32-bit writes.
1511                  * So compensate by adding +3 on the count, a single
1512                  * byte become a 32bit write, 7 bytes will be two
1513                  * 32bit writes etc.
1514                  */
1515                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1516
1517                 ptr += count;
1518                 remain -= count;
1519
1520                 if (remain == 0)
1521                         break;
1522
1523                 status = readl(base + MMCISTATUS);
1524         } while (status & MCI_TXFIFOHALFEMPTY);
1525
1526         return ptr - buffer;
1527 }
1528
1529 /*
1530  * PIO data transfer IRQ handler.
1531  */
1532 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1533 {
1534         struct mmci_host *host = dev_id;
1535         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1536         struct variant_data *variant = host->variant;
1537         void __iomem *base = host->base;
1538         u32 status;
1539
1540         status = readl(base + MMCISTATUS);
1541
1542         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1543
1544         do {
1545                 unsigned int remain, len;
1546                 char *buffer;
1547
1548                 /*
1549                  * For write, we only need to test the half-empty flag
1550                  * here - if the FIFO is completely empty, then by
1551                  * definition it is more than half empty.
1552                  *
1553                  * For read, check for data available.
1554                  */
1555                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1556                         break;
1557
1558                 if (!sg_miter_next(sg_miter))
1559                         break;
1560
1561                 buffer = sg_miter->addr;
1562                 remain = sg_miter->length;
1563
1564                 len = 0;
1565                 if (status & MCI_RXACTIVE)
1566                         len = mmci_pio_read(host, buffer, remain);
1567                 if (status & MCI_TXACTIVE)
1568                         len = mmci_pio_write(host, buffer, remain, status);
1569
1570                 sg_miter->consumed = len;
1571
1572                 host->size -= len;
1573                 remain -= len;
1574
1575                 if (remain)
1576                         break;
1577
1578                 status = readl(base + MMCISTATUS);
1579         } while (1);
1580
1581         sg_miter_stop(sg_miter);
1582
1583         /*
1584          * If we have less than the fifo 'half-full' threshold to transfer,
1585          * trigger a PIO interrupt as soon as any data is available.
1586          */
1587         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1588                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1589
1590         /*
1591          * If we run out of data, disable the data IRQs; this
1592          * prevents a race where the FIFO becomes empty before
1593          * the chip itself has disabled the data path, and
1594          * stops us racing with our data end IRQ.
1595          */
1596         if (host->size == 0) {
1597                 mmci_set_mask1(host, 0);
1598                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1599         }
1600
1601         return IRQ_HANDLED;
1602 }
1603
1604 /*
1605  * Handle completion of command and data transfers.
1606  */
1607 static irqreturn_t mmci_irq(int irq, void *dev_id)
1608 {
1609         struct mmci_host *host = dev_id;
1610         u32 status;
1611
1612         spin_lock(&host->lock);
1613         host->irq_action = IRQ_HANDLED;
1614
1615         do {
1616                 status = readl(host->base + MMCISTATUS);
1617
1618                 if (host->singleirq) {
1619                         if (status & host->mask1_reg)
1620                                 mmci_pio_irq(irq, dev_id);
1621
1622                         status &= ~host->variant->irq_pio_mask;
1623                 }
1624
1625                 /*
1626                  * Busy detection is managed by mmci_cmd_irq(), including to
1627                  * clear the corresponding IRQ.
1628                  */
1629                 status &= readl(host->base + MMCIMASK0);
1630                 if (host->variant->busy_detect)
1631                         writel(status & ~host->variant->busy_detect_mask,
1632                                host->base + MMCICLEAR);
1633                 else
1634                         writel(status, host->base + MMCICLEAR);
1635
1636                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1637
1638                 if (host->variant->reversed_irq_handling) {
1639                         mmci_data_irq(host, host->data, status);
1640                         mmci_cmd_irq(host, host->cmd, status);
1641                 } else {
1642                         mmci_cmd_irq(host, host->cmd, status);
1643                         mmci_data_irq(host, host->data, status);
1644                 }
1645
1646                 /*
1647                  * Busy detection has been handled by mmci_cmd_irq() above.
1648                  * Clear the status bit to prevent polling in IRQ context.
1649                  */
1650                 if (host->variant->busy_detect_flag)
1651                         status &= ~host->variant->busy_detect_flag;
1652
1653         } while (status);
1654
1655         spin_unlock(&host->lock);
1656
1657         return host->irq_action;
1658 }
1659
1660 /*
1661  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1662  *
1663  * A reset is needed for some variants, where a datatimeout for a R1B request
1664  * causes the DPSM to stay busy (non-functional).
1665  */
1666 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1667 {
1668         struct mmci_host *host = dev_id;
1669         unsigned long flags;
1670
1671         if (host->rst) {
1672                 reset_control_assert(host->rst);
1673                 udelay(2);
1674                 reset_control_deassert(host->rst);
1675         }
1676
1677         spin_lock_irqsave(&host->lock, flags);
1678         writel(host->clk_reg, host->base + MMCICLOCK);
1679         writel(host->pwr_reg, host->base + MMCIPOWER);
1680         writel(MCI_IRQENABLE | host->variant->start_err,
1681                host->base + MMCIMASK0);
1682
1683         host->irq_action = IRQ_HANDLED;
1684         mmci_request_end(host, host->mrq);
1685         spin_unlock_irqrestore(&host->lock, flags);
1686
1687         return host->irq_action;
1688 }
1689
1690 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1691 {
1692         struct mmci_host *host = mmc_priv(mmc);
1693         unsigned long flags;
1694
1695         WARN_ON(host->mrq != NULL);
1696
1697         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1698         if (mrq->cmd->error) {
1699                 mmc_request_done(mmc, mrq);
1700                 return;
1701         }
1702
1703         spin_lock_irqsave(&host->lock, flags);
1704
1705         host->mrq = mrq;
1706
1707         if (mrq->data)
1708                 mmci_get_next_data(host, mrq->data);
1709
1710         if (mrq->data &&
1711             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1712                 mmci_start_data(host, mrq->data);
1713
1714         if (mrq->sbc)
1715                 mmci_start_command(host, mrq->sbc, 0);
1716         else
1717                 mmci_start_command(host, mrq->cmd, 0);
1718
1719         spin_unlock_irqrestore(&host->lock, flags);
1720 }
1721
1722 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1723 {
1724         struct mmci_host *host = mmc_priv(mmc);
1725         u32 max_busy_timeout = 0;
1726
1727         if (!host->variant->busy_detect)
1728                 return;
1729
1730         if (host->variant->busy_timeout && mmc->actual_clock)
1731                 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1732
1733         mmc->max_busy_timeout = max_busy_timeout;
1734 }
1735
1736 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1737 {
1738         struct mmci_host *host = mmc_priv(mmc);
1739         struct variant_data *variant = host->variant;
1740         u32 pwr = 0;
1741         unsigned long flags;
1742         int ret;
1743
1744         if (host->plat->ios_handler &&
1745                 host->plat->ios_handler(mmc_dev(mmc), ios))
1746                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1747
1748         switch (ios->power_mode) {
1749         case MMC_POWER_OFF:
1750                 if (!IS_ERR(mmc->supply.vmmc))
1751                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1752
1753                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1754                         regulator_disable(mmc->supply.vqmmc);
1755                         host->vqmmc_enabled = false;
1756                 }
1757
1758                 break;
1759         case MMC_POWER_UP:
1760                 if (!IS_ERR(mmc->supply.vmmc))
1761                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1762
1763                 /*
1764                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1765                  * and instead uses MCI_PWR_ON so apply whatever value is
1766                  * configured in the variant data.
1767                  */
1768                 pwr |= variant->pwrreg_powerup;
1769
1770                 break;
1771         case MMC_POWER_ON:
1772                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1773                         ret = regulator_enable(mmc->supply.vqmmc);
1774                         if (ret < 0)
1775                                 dev_err(mmc_dev(mmc),
1776                                         "failed to enable vqmmc regulator\n");
1777                         else
1778                                 host->vqmmc_enabled = true;
1779                 }
1780
1781                 pwr |= MCI_PWR_ON;
1782                 break;
1783         }
1784
1785         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1786                 /*
1787                  * The ST Micro variant has some additional bits
1788                  * indicating signal direction for the signals in
1789                  * the SD/MMC bus and feedback-clock usage.
1790                  */
1791                 pwr |= host->pwr_reg_add;
1792
1793                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1794                         pwr &= ~MCI_ST_DATA74DIREN;
1795                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1796                         pwr &= (~MCI_ST_DATA74DIREN &
1797                                 ~MCI_ST_DATA31DIREN &
1798                                 ~MCI_ST_DATA2DIREN);
1799         }
1800
1801         if (variant->opendrain) {
1802                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1803                         pwr |= variant->opendrain;
1804         } else {
1805                 /*
1806                  * If the variant cannot configure the pads by its own, then we
1807                  * expect the pinctrl to be able to do that for us
1808                  */
1809                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1810                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1811                 else
1812                         pinctrl_select_default_state(mmc_dev(mmc));
1813         }
1814
1815         /*
1816          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1817          * gating the clock, the MCI_PWR_ON bit is cleared.
1818          */
1819         if (!ios->clock && variant->pwrreg_clkgate)
1820                 pwr &= ~MCI_PWR_ON;
1821
1822         if (host->variant->explicit_mclk_control &&
1823             ios->clock != host->clock_cache) {
1824                 ret = clk_set_rate(host->clk, ios->clock);
1825                 if (ret < 0)
1826                         dev_err(mmc_dev(host->mmc),
1827                                 "Error setting clock rate (%d)\n", ret);
1828                 else
1829                         host->mclk = clk_get_rate(host->clk);
1830         }
1831         host->clock_cache = ios->clock;
1832
1833         spin_lock_irqsave(&host->lock, flags);
1834
1835         if (host->ops && host->ops->set_clkreg)
1836                 host->ops->set_clkreg(host, ios->clock);
1837         else
1838                 mmci_set_clkreg(host, ios->clock);
1839
1840         mmci_set_max_busy_timeout(mmc);
1841
1842         if (host->ops && host->ops->set_pwrreg)
1843                 host->ops->set_pwrreg(host, pwr);
1844         else
1845                 mmci_write_pwrreg(host, pwr);
1846
1847         mmci_reg_delay(host);
1848
1849         spin_unlock_irqrestore(&host->lock, flags);
1850 }
1851
1852 static int mmci_get_cd(struct mmc_host *mmc)
1853 {
1854         struct mmci_host *host = mmc_priv(mmc);
1855         struct mmci_platform_data *plat = host->plat;
1856         unsigned int status = mmc_gpio_get_cd(mmc);
1857
1858         if (status == -ENOSYS) {
1859                 if (!plat->status)
1860                         return 1; /* Assume always present */
1861
1862                 status = plat->status(mmc_dev(host->mmc));
1863         }
1864         return status;
1865 }
1866
1867 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1868 {
1869         struct mmci_host *host = mmc_priv(mmc);
1870         int ret;
1871
1872         ret = mmc_regulator_set_vqmmc(mmc, ios);
1873
1874         if (!ret && host->ops && host->ops->post_sig_volt_switch)
1875                 ret = host->ops->post_sig_volt_switch(host, ios);
1876         else if (ret)
1877                 ret = 0;
1878
1879         if (ret < 0)
1880                 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1881
1882         return ret;
1883 }
1884
1885 static struct mmc_host_ops mmci_ops = {
1886         .request        = mmci_request,
1887         .pre_req        = mmci_pre_request,
1888         .post_req       = mmci_post_request,
1889         .set_ios        = mmci_set_ios,
1890         .get_ro         = mmc_gpio_get_ro,
1891         .get_cd         = mmci_get_cd,
1892         .start_signal_voltage_switch = mmci_sig_volt_switch,
1893 };
1894
1895 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1896 {
1897         struct mmci_host *host = mmc_priv(mmc);
1898         int ret = mmc_of_parse(mmc);
1899
1900         if (ret)
1901                 return ret;
1902
1903         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1904                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1905         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1906                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1907         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1908                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1909         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1910                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1911         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1912                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1913         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1914                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1915         if (of_get_property(np, "st,sig-dir", NULL))
1916                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1917         if (of_get_property(np, "st,neg-edge", NULL))
1918                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1919         if (of_get_property(np, "st,use-ckin", NULL))
1920                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1921
1922         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1923                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1924         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1925                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1926
1927         return 0;
1928 }
1929
1930 static int mmci_probe(struct amba_device *dev,
1931         const struct amba_id *id)
1932 {
1933         struct mmci_platform_data *plat = dev->dev.platform_data;
1934         struct device_node *np = dev->dev.of_node;
1935         struct variant_data *variant = id->data;
1936         struct mmci_host *host;
1937         struct mmc_host *mmc;
1938         int ret;
1939
1940         /* Must have platform data or Device Tree. */
1941         if (!plat && !np) {
1942                 dev_err(&dev->dev, "No plat data or DT found\n");
1943                 return -EINVAL;
1944         }
1945
1946         if (!plat) {
1947                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1948                 if (!plat)
1949                         return -ENOMEM;
1950         }
1951
1952         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1953         if (!mmc)
1954                 return -ENOMEM;
1955
1956         ret = mmci_of_parse(np, mmc);
1957         if (ret)
1958                 goto host_free;
1959
1960         host = mmc_priv(mmc);
1961         host->mmc = mmc;
1962         host->mmc_ops = &mmci_ops;
1963         mmc->ops = &mmci_ops;
1964
1965         /*
1966          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1967          * pins can be set accordingly using pinctrl
1968          */
1969         if (!variant->opendrain) {
1970                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1971                 if (IS_ERR(host->pinctrl)) {
1972                         dev_err(&dev->dev, "failed to get pinctrl");
1973                         ret = PTR_ERR(host->pinctrl);
1974                         goto host_free;
1975                 }
1976
1977                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1978                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1979                 if (IS_ERR(host->pins_opendrain)) {
1980                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1981                         ret = PTR_ERR(host->pins_opendrain);
1982                         goto host_free;
1983                 }
1984         }
1985
1986         host->hw_designer = amba_manf(dev);
1987         host->hw_revision = amba_rev(dev);
1988         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1989         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1990
1991         host->clk = devm_clk_get(&dev->dev, NULL);
1992         if (IS_ERR(host->clk)) {
1993                 ret = PTR_ERR(host->clk);
1994                 goto host_free;
1995         }
1996
1997         ret = clk_prepare_enable(host->clk);
1998         if (ret)
1999                 goto host_free;
2000
2001         if (variant->qcom_fifo)
2002                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2003         else
2004                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2005
2006         host->plat = plat;
2007         host->variant = variant;
2008         host->mclk = clk_get_rate(host->clk);
2009         /*
2010          * According to the spec, mclk is max 100 MHz,
2011          * so we try to adjust the clock down to this,
2012          * (if possible).
2013          */
2014         if (host->mclk > variant->f_max) {
2015                 ret = clk_set_rate(host->clk, variant->f_max);
2016                 if (ret < 0)
2017                         goto clk_disable;
2018                 host->mclk = clk_get_rate(host->clk);
2019                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2020                         host->mclk);
2021         }
2022
2023         host->phybase = dev->res.start;
2024         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2025         if (IS_ERR(host->base)) {
2026                 ret = PTR_ERR(host->base);
2027                 goto clk_disable;
2028         }
2029
2030         if (variant->init)
2031                 variant->init(host);
2032
2033         /*
2034          * The ARM and ST versions of the block have slightly different
2035          * clock divider equations which means that the minimum divider
2036          * differs too.
2037          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2038          */
2039         if (variant->st_clkdiv)
2040                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2041         else if (variant->stm32_clkdiv)
2042                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2043         else if (variant->explicit_mclk_control)
2044                 mmc->f_min = clk_round_rate(host->clk, 100000);
2045         else
2046                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2047         /*
2048          * If no maximum operating frequency is supplied, fall back to use
2049          * the module parameter, which has a (low) default value in case it
2050          * is not specified. Either value must not exceed the clock rate into
2051          * the block, of course.
2052          */
2053         if (mmc->f_max)
2054                 mmc->f_max = variant->explicit_mclk_control ?
2055                                 min(variant->f_max, mmc->f_max) :
2056                                 min(host->mclk, mmc->f_max);
2057         else
2058                 mmc->f_max = variant->explicit_mclk_control ?
2059                                 fmax : min(host->mclk, fmax);
2060
2061
2062         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2063
2064         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2065         if (IS_ERR(host->rst)) {
2066                 ret = PTR_ERR(host->rst);
2067                 goto clk_disable;
2068         }
2069
2070         /* Get regulators and the supported OCR mask */
2071         ret = mmc_regulator_get_supply(mmc);
2072         if (ret)
2073                 goto clk_disable;
2074
2075         if (!mmc->ocr_avail)
2076                 mmc->ocr_avail = plat->ocr_mask;
2077         else if (plat->ocr_mask)
2078                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2079
2080         /* We support these capabilities. */
2081         mmc->caps |= MMC_CAP_CMD23;
2082
2083         /*
2084          * Enable busy detection.
2085          */
2086         if (variant->busy_detect) {
2087                 mmci_ops.card_busy = mmci_card_busy;
2088                 /*
2089                  * Not all variants have a flag to enable busy detection
2090                  * in the DPSM, but if they do, set it here.
2091                  */
2092                 if (variant->busy_dpsm_flag)
2093                         mmci_write_datactrlreg(host,
2094                                                host->variant->busy_dpsm_flag);
2095                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2096         }
2097
2098         /* Variants with mandatory busy timeout in HW needs R1B responses. */
2099         if (variant->busy_timeout)
2100                 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2101
2102         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2103         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2104         host->stop_abort.arg = 0;
2105         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2106
2107         /* We support these PM capabilities. */
2108         mmc->pm_caps |= MMC_PM_KEEP_POWER;
2109
2110         /*
2111          * We can do SGIO
2112          */
2113         mmc->max_segs = NR_SG;
2114
2115         /*
2116          * Since only a certain number of bits are valid in the data length
2117          * register, we must ensure that we don't exceed 2^num-1 bytes in a
2118          * single request.
2119          */
2120         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2121
2122         /*
2123          * Set the maximum segment size.  Since we aren't doing DMA
2124          * (yet) we are only limited by the data length register.
2125          */
2126         mmc->max_seg_size = mmc->max_req_size;
2127
2128         /*
2129          * Block size can be up to 2048 bytes, but must be a power of two.
2130          */
2131         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2132
2133         /*
2134          * Limit the number of blocks transferred so that we don't overflow
2135          * the maximum request size.
2136          */
2137         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2138
2139         spin_lock_init(&host->lock);
2140
2141         writel(0, host->base + MMCIMASK0);
2142
2143         if (variant->mmcimask1)
2144                 writel(0, host->base + MMCIMASK1);
2145
2146         writel(0xfff, host->base + MMCICLEAR);
2147
2148         /*
2149          * If:
2150          * - not using DT but using a descriptor table, or
2151          * - using a table of descriptors ALONGSIDE DT, or
2152          * look up these descriptors named "cd" and "wp" right here, fail
2153          * silently of these do not exist
2154          */
2155         if (!np) {
2156                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2157                 if (ret == -EPROBE_DEFER)
2158                         goto clk_disable;
2159
2160                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2161                 if (ret == -EPROBE_DEFER)
2162                         goto clk_disable;
2163         }
2164
2165         ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2166                                         mmci_irq_thread, IRQF_SHARED,
2167                                         DRIVER_NAME " (cmd)", host);
2168         if (ret)
2169                 goto clk_disable;
2170
2171         if (!dev->irq[1])
2172                 host->singleirq = true;
2173         else {
2174                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2175                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2176                 if (ret)
2177                         goto clk_disable;
2178         }
2179
2180         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2181
2182         amba_set_drvdata(dev, mmc);
2183
2184         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2185                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2186                  amba_rev(dev), (unsigned long long)dev->res.start,
2187                  dev->irq[0], dev->irq[1]);
2188
2189         mmci_dma_setup(host);
2190
2191         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2192         pm_runtime_use_autosuspend(&dev->dev);
2193
2194         mmc_add_host(mmc);
2195
2196         pm_runtime_put(&dev->dev);
2197         return 0;
2198
2199  clk_disable:
2200         clk_disable_unprepare(host->clk);
2201  host_free:
2202         mmc_free_host(mmc);
2203         return ret;
2204 }
2205
2206 static void mmci_remove(struct amba_device *dev)
2207 {
2208         struct mmc_host *mmc = amba_get_drvdata(dev);
2209
2210         if (mmc) {
2211                 struct mmci_host *host = mmc_priv(mmc);
2212                 struct variant_data *variant = host->variant;
2213
2214                 /*
2215                  * Undo pm_runtime_put() in probe.  We use the _sync
2216                  * version here so that we can access the primecell.
2217                  */
2218                 pm_runtime_get_sync(&dev->dev);
2219
2220                 mmc_remove_host(mmc);
2221
2222                 writel(0, host->base + MMCIMASK0);
2223
2224                 if (variant->mmcimask1)
2225                         writel(0, host->base + MMCIMASK1);
2226
2227                 writel(0, host->base + MMCICOMMAND);
2228                 writel(0, host->base + MMCIDATACTRL);
2229
2230                 mmci_dma_release(host);
2231                 clk_disable_unprepare(host->clk);
2232                 mmc_free_host(mmc);
2233         }
2234 }
2235
2236 #ifdef CONFIG_PM
2237 static void mmci_save(struct mmci_host *host)
2238 {
2239         unsigned long flags;
2240
2241         spin_lock_irqsave(&host->lock, flags);
2242
2243         writel(0, host->base + MMCIMASK0);
2244         if (host->variant->pwrreg_nopower) {
2245                 writel(0, host->base + MMCIDATACTRL);
2246                 writel(0, host->base + MMCIPOWER);
2247                 writel(0, host->base + MMCICLOCK);
2248         }
2249         mmci_reg_delay(host);
2250
2251         spin_unlock_irqrestore(&host->lock, flags);
2252 }
2253
2254 static void mmci_restore(struct mmci_host *host)
2255 {
2256         unsigned long flags;
2257
2258         spin_lock_irqsave(&host->lock, flags);
2259
2260         if (host->variant->pwrreg_nopower) {
2261                 writel(host->clk_reg, host->base + MMCICLOCK);
2262                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2263                 writel(host->pwr_reg, host->base + MMCIPOWER);
2264         }
2265         writel(MCI_IRQENABLE | host->variant->start_err,
2266                host->base + MMCIMASK0);
2267         mmci_reg_delay(host);
2268
2269         spin_unlock_irqrestore(&host->lock, flags);
2270 }
2271
2272 static int mmci_runtime_suspend(struct device *dev)
2273 {
2274         struct amba_device *adev = to_amba_device(dev);
2275         struct mmc_host *mmc = amba_get_drvdata(adev);
2276
2277         if (mmc) {
2278                 struct mmci_host *host = mmc_priv(mmc);
2279                 pinctrl_pm_select_sleep_state(dev);
2280                 mmci_save(host);
2281                 clk_disable_unprepare(host->clk);
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int mmci_runtime_resume(struct device *dev)
2288 {
2289         struct amba_device *adev = to_amba_device(dev);
2290         struct mmc_host *mmc = amba_get_drvdata(adev);
2291
2292         if (mmc) {
2293                 struct mmci_host *host = mmc_priv(mmc);
2294                 clk_prepare_enable(host->clk);
2295                 mmci_restore(host);
2296                 pinctrl_select_default_state(dev);
2297         }
2298
2299         return 0;
2300 }
2301 #endif
2302
2303 static const struct dev_pm_ops mmci_dev_pm_ops = {
2304         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2305                                 pm_runtime_force_resume)
2306         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2307 };
2308
2309 static const struct amba_id mmci_ids[] = {
2310         {
2311                 .id     = 0x00041180,
2312                 .mask   = 0xff0fffff,
2313                 .data   = &variant_arm,
2314         },
2315         {
2316                 .id     = 0x01041180,
2317                 .mask   = 0xff0fffff,
2318                 .data   = &variant_arm_extended_fifo,
2319         },
2320         {
2321                 .id     = 0x02041180,
2322                 .mask   = 0xff0fffff,
2323                 .data   = &variant_arm_extended_fifo_hwfc,
2324         },
2325         {
2326                 .id     = 0x00041181,
2327                 .mask   = 0x000fffff,
2328                 .data   = &variant_arm,
2329         },
2330         /* ST Micro variants */
2331         {
2332                 .id     = 0x00180180,
2333                 .mask   = 0x00ffffff,
2334                 .data   = &variant_u300,
2335         },
2336         {
2337                 .id     = 0x10180180,
2338                 .mask   = 0xf0ffffff,
2339                 .data   = &variant_nomadik,
2340         },
2341         {
2342                 .id     = 0x00280180,
2343                 .mask   = 0x00ffffff,
2344                 .data   = &variant_nomadik,
2345         },
2346         {
2347                 .id     = 0x00480180,
2348                 .mask   = 0xf0ffffff,
2349                 .data   = &variant_ux500,
2350         },
2351         {
2352                 .id     = 0x10480180,
2353                 .mask   = 0xf0ffffff,
2354                 .data   = &variant_ux500v2,
2355         },
2356         {
2357                 .id     = 0x00880180,
2358                 .mask   = 0x00ffffff,
2359                 .data   = &variant_stm32,
2360         },
2361         {
2362                 .id     = 0x10153180,
2363                 .mask   = 0xf0ffffff,
2364                 .data   = &variant_stm32_sdmmc,
2365         },
2366         {
2367                 .id     = 0x00253180,
2368                 .mask   = 0xf0ffffff,
2369                 .data   = &variant_stm32_sdmmcv2,
2370         },
2371         /* Qualcomm variants */
2372         {
2373                 .id     = 0x00051180,
2374                 .mask   = 0x000fffff,
2375                 .data   = &variant_qcom,
2376         },
2377         { 0, 0 },
2378 };
2379
2380 MODULE_DEVICE_TABLE(amba, mmci_ids);
2381
2382 static struct amba_driver mmci_driver = {
2383         .drv            = {
2384                 .name   = DRIVER_NAME,
2385                 .pm     = &mmci_dev_pm_ops,
2386         },
2387         .probe          = mmci_probe,
2388         .remove         = mmci_remove,
2389         .id_table       = mmci_ids,
2390 };
2391
2392 module_amba_driver(mmci_driver);
2393
2394 module_param(fmax, uint, 0444);
2395
2396 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2397 MODULE_LICENSE("GPL");