arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / drivers / mmc / host / dw_mmc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40
41 #include "dw_mmc.h"
42
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45                                  SDMMC_INT_HTO | SDMMC_INT_SBE  | \
46                                  SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS  (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48                                  SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS      (DW_MCI_DATA_ERROR_FLAGS | \
50                                  DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS      1
52 #define DW_MCI_RECV_STATUS      2
53 #define DW_MCI_DMA_THRESHOLD    16
54
55 #define DW_MCI_FREQ_MAX 200000000       /* unit: HZ */
56 #define DW_MCI_FREQ_MIN 100000          /* unit: HZ */
57
58 #define IDMAC_INT_CLR           (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59                                  SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60                                  SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61                                  SDMMC_IDMAC_INT_TI)
62
63 #define DESC_RING_BUF_SZ        PAGE_SIZE
64
65 struct idmac_desc_64addr {
66         u32             des0;   /* Control Descriptor */
67 #define IDMAC_OWN_CLR64(x) \
68         !((x) & cpu_to_le32(IDMAC_DES0_OWN))
69
70         u32             des1;   /* Reserved */
71
72         u32             des2;   /*Buffer sizes */
73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74         ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75          ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76
77         u32             des3;   /* Reserved */
78
79         u32             des4;   /* Lower 32-bits of Buffer Address Pointer 1*/
80         u32             des5;   /* Upper 32-bits of Buffer Address Pointer 1*/
81
82         u32             des6;   /* Lower 32-bits of Next Descriptor Address */
83         u32             des7;   /* Upper 32-bits of Next Descriptor Address */
84 };
85
86 struct idmac_desc {
87         __le32          des0;   /* Control Descriptor */
88 #define IDMAC_DES0_DIC  BIT(1)
89 #define IDMAC_DES0_LD   BIT(2)
90 #define IDMAC_DES0_FD   BIT(3)
91 #define IDMAC_DES0_CH   BIT(4)
92 #define IDMAC_DES0_ER   BIT(5)
93 #define IDMAC_DES0_CES  BIT(30)
94 #define IDMAC_DES0_OWN  BIT(31)
95
96         __le32          des1;   /* Buffer sizes */
97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
98         ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99
100         __le32          des2;   /* buffer 1 physical address */
101
102         __le32          des3;   /* buffer 2 physical address */
103 };
104
105 /* Each descriptor can transfer up to 4KB of data in chained mode */
106 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107
108 #if defined(CONFIG_DEBUG_FS)
109 static int dw_mci_req_show(struct seq_file *s, void *v)
110 {
111         struct dw_mci_slot *slot = s->private;
112         struct mmc_request *mrq;
113         struct mmc_command *cmd;
114         struct mmc_command *stop;
115         struct mmc_data *data;
116
117         /* Make sure we get a consistent snapshot */
118         spin_lock_bh(&slot->host->lock);
119         mrq = slot->mrq;
120
121         if (mrq) {
122                 cmd = mrq->cmd;
123                 data = mrq->data;
124                 stop = mrq->stop;
125
126                 if (cmd)
127                         seq_printf(s,
128                                    "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129                                    cmd->opcode, cmd->arg, cmd->flags,
130                                    cmd->resp[0], cmd->resp[1], cmd->resp[2],
131                                    cmd->resp[2], cmd->error);
132                 if (data)
133                         seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134                                    data->bytes_xfered, data->blocks,
135                                    data->blksz, data->flags, data->error);
136                 if (stop)
137                         seq_printf(s,
138                                    "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139                                    stop->opcode, stop->arg, stop->flags,
140                                    stop->resp[0], stop->resp[1], stop->resp[2],
141                                    stop->resp[2], stop->error);
142         }
143
144         spin_unlock_bh(&slot->host->lock);
145
146         return 0;
147 }
148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149
150 static int dw_mci_regs_show(struct seq_file *s, void *v)
151 {
152         struct dw_mci *host = s->private;
153
154         pm_runtime_get_sync(host->dev);
155
156         seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157         seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158         seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159         seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160         seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161         seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162
163         pm_runtime_put_autosuspend(host->dev);
164
165         return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168
169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170 {
171         struct mmc_host *mmc = slot->mmc;
172         struct dw_mci *host = slot->host;
173         struct dentry *root;
174
175         root = mmc->debugfs_root;
176         if (!root)
177                 return;
178
179         debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180         debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181         debugfs_create_u32("state", S_IRUSR, root, &host->state);
182         debugfs_create_xul("pending_events", S_IRUSR, root,
183                            &host->pending_events);
184         debugfs_create_xul("completed_events", S_IRUSR, root,
185                            &host->completed_events);
186 #ifdef CONFIG_FAULT_INJECTION
187         fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188 #endif
189 }
190 #endif /* defined(CONFIG_DEBUG_FS) */
191
192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193 {
194         u32 ctrl;
195
196         ctrl = mci_readl(host, CTRL);
197         ctrl |= reset;
198         mci_writel(host, CTRL, ctrl);
199
200         /* wait till resets clear */
201         if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202                                       !(ctrl & reset),
203                                       1, 500 * USEC_PER_MSEC)) {
204                 dev_err(host->dev,
205                         "Timeout resetting block (ctrl reset %#x)\n",
206                         ctrl & reset);
207                 return false;
208         }
209
210         return true;
211 }
212
213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214 {
215         u32 status;
216
217         /*
218          * Databook says that before issuing a new data transfer command
219          * we need to check to see if the card is busy.  Data transfer commands
220          * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221          *
222          * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223          * expected.
224          */
225         if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226             !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227                 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228                                               status,
229                                               !(status & SDMMC_STATUS_BUSY),
230                                               10, 500 * USEC_PER_MSEC))
231                         dev_err(host->dev, "Busy; trying anyway\n");
232         }
233 }
234
235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236 {
237         struct dw_mci *host = slot->host;
238         unsigned int cmd_status = 0;
239
240         mci_writel(host, CMDARG, arg);
241         wmb(); /* drain writebuffer */
242         dw_mci_wait_while_busy(host, cmd);
243         mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244
245         if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246                                       !(cmd_status & SDMMC_CMD_START),
247                                       1, 500 * USEC_PER_MSEC))
248                 dev_err(&slot->mmc->class_dev,
249                         "Timeout sending command (cmd %#x arg %#x status %#x)\n",
250                         cmd, arg, cmd_status);
251 }
252
253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254 {
255         struct dw_mci_slot *slot = mmc_priv(mmc);
256         struct dw_mci *host = slot->host;
257         u32 cmdr;
258
259         cmd->error = -EINPROGRESS;
260         cmdr = cmd->opcode;
261
262         if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263             cmd->opcode == MMC_GO_IDLE_STATE ||
264             cmd->opcode == MMC_GO_INACTIVE_STATE ||
265             (cmd->opcode == SD_IO_RW_DIRECT &&
266              ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267                 cmdr |= SDMMC_CMD_STOP;
268         else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269                 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270
271         if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272                 u32 clk_en_a;
273
274                 /* Special bit makes CMD11 not die */
275                 cmdr |= SDMMC_CMD_VOLT_SWITCH;
276
277                 /* Change state to continue to handle CMD11 weirdness */
278                 WARN_ON(slot->host->state != STATE_SENDING_CMD);
279                 slot->host->state = STATE_SENDING_CMD11;
280
281                 /*
282                  * We need to disable low power mode (automatic clock stop)
283                  * while doing voltage switch so we don't confuse the card,
284                  * since stopping the clock is a specific part of the UHS
285                  * voltage change dance.
286                  *
287                  * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288                  * unconditionally turned back on in dw_mci_setup_bus() if it's
289                  * ever called with a non-zero clock.  That shouldn't happen
290                  * until the voltage change is all done.
291                  */
292                 clk_en_a = mci_readl(host, CLKENA);
293                 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294                 mci_writel(host, CLKENA, clk_en_a);
295                 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296                              SDMMC_CMD_PRV_DAT_WAIT, 0);
297         }
298
299         if (cmd->flags & MMC_RSP_PRESENT) {
300                 /* We expect a response, so set this bit */
301                 cmdr |= SDMMC_CMD_RESP_EXP;
302                 if (cmd->flags & MMC_RSP_136)
303                         cmdr |= SDMMC_CMD_RESP_LONG;
304         }
305
306         if (cmd->flags & MMC_RSP_CRC)
307                 cmdr |= SDMMC_CMD_RESP_CRC;
308
309         if (cmd->data) {
310                 cmdr |= SDMMC_CMD_DAT_EXP;
311                 if (cmd->data->flags & MMC_DATA_WRITE)
312                         cmdr |= SDMMC_CMD_DAT_WR;
313         }
314
315         if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316                 cmdr |= SDMMC_CMD_USE_HOLD_REG;
317
318         return cmdr;
319 }
320
321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322 {
323         struct mmc_command *stop;
324         u32 cmdr;
325
326         if (!cmd->data)
327                 return 0;
328
329         stop = &host->stop_abort;
330         cmdr = cmd->opcode;
331         memset(stop, 0, sizeof(struct mmc_command));
332
333         if (cmdr == MMC_READ_SINGLE_BLOCK ||
334             cmdr == MMC_READ_MULTIPLE_BLOCK ||
335             cmdr == MMC_WRITE_BLOCK ||
336             cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337             mmc_op_tuning(cmdr) ||
338             cmdr == MMC_GEN_CMD) {
339                 stop->opcode = MMC_STOP_TRANSMISSION;
340                 stop->arg = 0;
341                 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
342         } else if (cmdr == SD_IO_RW_EXTENDED) {
343                 stop->opcode = SD_IO_RW_DIRECT;
344                 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
345                              ((cmd->arg >> 28) & 0x7);
346                 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
347         } else {
348                 return 0;
349         }
350
351         cmdr = stop->opcode | SDMMC_CMD_STOP |
352                 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
353
354         if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
355                 cmdr |= SDMMC_CMD_USE_HOLD_REG;
356
357         return cmdr;
358 }
359
360 static inline void dw_mci_set_cto(struct dw_mci *host)
361 {
362         unsigned int cto_clks;
363         unsigned int cto_div;
364         unsigned int cto_ms;
365         unsigned long irqflags;
366
367         cto_clks = mci_readl(host, TMOUT) & 0xff;
368         cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
369         if (cto_div == 0)
370                 cto_div = 1;
371
372         cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
373                                   host->bus_hz);
374
375         /* add a bit spare time */
376         cto_ms += 10;
377
378         /*
379          * The durations we're working with are fairly short so we have to be
380          * extra careful about synchronization here.  Specifically in hardware a
381          * command timeout is _at most_ 5.1 ms, so that means we expect an
382          * interrupt (either command done or timeout) to come rather quickly
383          * after the mci_writel.  ...but just in case we have a long interrupt
384          * latency let's add a bit of paranoia.
385          *
386          * In general we'll assume that at least an interrupt will be asserted
387          * in hardware by the time the cto_timer runs.  ...and if it hasn't
388          * been asserted in hardware by that time then we'll assume it'll never
389          * come.
390          */
391         spin_lock_irqsave(&host->irq_lock, irqflags);
392         if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
393                 mod_timer(&host->cto_timer,
394                         jiffies + msecs_to_jiffies(cto_ms) + 1);
395         spin_unlock_irqrestore(&host->irq_lock, irqflags);
396 }
397
398 static void dw_mci_start_command(struct dw_mci *host,
399                                  struct mmc_command *cmd, u32 cmd_flags)
400 {
401         host->cmd = cmd;
402         dev_vdbg(host->dev,
403                  "start command: ARGR=0x%08x CMDR=0x%08x\n",
404                  cmd->arg, cmd_flags);
405
406         mci_writel(host, CMDARG, cmd->arg);
407         wmb(); /* drain writebuffer */
408         dw_mci_wait_while_busy(host, cmd_flags);
409
410         mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
411
412         /* response expected command only */
413         if (cmd_flags & SDMMC_CMD_RESP_EXP)
414                 dw_mci_set_cto(host);
415 }
416
417 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418 {
419         struct mmc_command *stop = &host->stop_abort;
420
421         dw_mci_start_command(host, stop, host->stop_cmdr);
422 }
423
424 /* DMA interface functions */
425 static void dw_mci_stop_dma(struct dw_mci *host)
426 {
427         if (host->using_dma) {
428                 host->dma_ops->stop(host);
429                 host->dma_ops->cleanup(host);
430         }
431
432         /* Data transfer was stopped by the interrupt handler */
433         set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
434 }
435
436 static void dw_mci_dma_cleanup(struct dw_mci *host)
437 {
438         struct mmc_data *data = host->data;
439
440         if (data && data->host_cookie == COOKIE_MAPPED) {
441                 dma_unmap_sg(host->dev,
442                              data->sg,
443                              data->sg_len,
444                              mmc_get_dma_dir(data));
445                 data->host_cookie = COOKIE_UNMAPPED;
446         }
447 }
448
449 static void dw_mci_idmac_reset(struct dw_mci *host)
450 {
451         u32 bmod = mci_readl(host, BMOD);
452         /* Software reset of DMA */
453         bmod |= SDMMC_IDMAC_SWRESET;
454         mci_writel(host, BMOD, bmod);
455 }
456
457 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
458 {
459         u32 temp;
460
461         /* Disable and reset the IDMAC interface */
462         temp = mci_readl(host, CTRL);
463         temp &= ~SDMMC_CTRL_USE_IDMAC;
464         temp |= SDMMC_CTRL_DMA_RESET;
465         mci_writel(host, CTRL, temp);
466
467         /* Stop the IDMAC running */
468         temp = mci_readl(host, BMOD);
469         temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
470         temp |= SDMMC_IDMAC_SWRESET;
471         mci_writel(host, BMOD, temp);
472 }
473
474 static void dw_mci_dmac_complete_dma(void *arg)
475 {
476         struct dw_mci *host = arg;
477         struct mmc_data *data = host->data;
478
479         dev_vdbg(host->dev, "DMA complete\n");
480
481         if ((host->use_dma == TRANS_MODE_EDMAC) &&
482             data && (data->flags & MMC_DATA_READ))
483                 /* Invalidate cache after read */
484                 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
485                                     data->sg,
486                                     data->sg_len,
487                                     DMA_FROM_DEVICE);
488
489         host->dma_ops->cleanup(host);
490
491         /*
492          * If the card was removed, data will be NULL. No point in trying to
493          * send the stop command or waiting for NBUSY in this case.
494          */
495         if (data) {
496                 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
497                 tasklet_schedule(&host->tasklet);
498         }
499 }
500
501 static int dw_mci_idmac_init(struct dw_mci *host)
502 {
503         int i;
504
505         if (host->dma_64bit_address == 1) {
506                 struct idmac_desc_64addr *p;
507                 /* Number of descriptors in the ring buffer */
508                 host->ring_size =
509                         DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510
511                 /* Forward link the descriptor list */
512                 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513                                                                 i++, p++) {
514                         p->des6 = (host->sg_dma +
515                                         (sizeof(struct idmac_desc_64addr) *
516                                                         (i + 1))) & 0xffffffff;
517
518                         p->des7 = (u64)(host->sg_dma +
519                                         (sizeof(struct idmac_desc_64addr) *
520                                                         (i + 1))) >> 32;
521                         /* Initialize reserved and buffer size fields to "0" */
522                         p->des0 = 0;
523                         p->des1 = 0;
524                         p->des2 = 0;
525                         p->des3 = 0;
526                 }
527
528                 /* Set the last descriptor as the end-of-ring descriptor */
529                 p->des6 = host->sg_dma & 0xffffffff;
530                 p->des7 = (u64)host->sg_dma >> 32;
531                 p->des0 = IDMAC_DES0_ER;
532
533         } else {
534                 struct idmac_desc *p;
535                 /* Number of descriptors in the ring buffer */
536                 host->ring_size =
537                         DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
538
539                 /* Forward link the descriptor list */
540                 for (i = 0, p = host->sg_cpu;
541                      i < host->ring_size - 1;
542                      i++, p++) {
543                         p->des3 = cpu_to_le32(host->sg_dma +
544                                         (sizeof(struct idmac_desc) * (i + 1)));
545                         p->des0 = 0;
546                         p->des1 = 0;
547                 }
548
549                 /* Set the last descriptor as the end-of-ring descriptor */
550                 p->des3 = cpu_to_le32(host->sg_dma);
551                 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
552         }
553
554         dw_mci_idmac_reset(host);
555
556         if (host->dma_64bit_address == 1) {
557                 /* Mask out interrupts - get Tx & Rx complete only */
558                 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
559                 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
560                                 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
561
562                 /* Set the descriptor base address */
563                 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
564                 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
565
566         } else {
567                 /* Mask out interrupts - get Tx & Rx complete only */
568                 mci_writel(host, IDSTS, IDMAC_INT_CLR);
569                 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
570                                 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
571
572                 /* Set the descriptor base address */
573                 mci_writel(host, DBADDR, host->sg_dma);
574         }
575
576         return 0;
577 }
578
579 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
580                                          struct mmc_data *data,
581                                          unsigned int sg_len)
582 {
583         unsigned int desc_len;
584         struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585         u32 val;
586         int i;
587
588         desc_first = desc_last = desc = host->sg_cpu;
589
590         for (i = 0; i < sg_len; i++) {
591                 unsigned int length = sg_dma_len(&data->sg[i]);
592
593                 u64 mem_addr = sg_dma_address(&data->sg[i]);
594
595                 for ( ; length ; desc++) {
596                         desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
597                                    length : DW_MCI_DESC_DATA_LENGTH;
598
599                         length -= desc_len;
600
601                         /*
602                          * Wait for the former clear OWN bit operation
603                          * of IDMAC to make sure that this descriptor
604                          * isn't still owned by IDMAC as IDMAC's write
605                          * ops and CPU's read ops are asynchronous.
606                          */
607                         if (readl_poll_timeout_atomic(&desc->des0, val,
608                                                 !(val & IDMAC_DES0_OWN),
609                                                 10, 100 * USEC_PER_MSEC))
610                                 goto err_own_bit;
611
612                         /*
613                          * Set the OWN bit and disable interrupts
614                          * for this descriptor
615                          */
616                         desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617                                                 IDMAC_DES0_CH;
618
619                         /* Buffer length */
620                         IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
621
622                         /* Physical address to DMA to/from */
623                         desc->des4 = mem_addr & 0xffffffff;
624                         desc->des5 = mem_addr >> 32;
625
626                         /* Update physical address for the next desc */
627                         mem_addr += desc_len;
628
629                         /* Save pointer to the last descriptor */
630                         desc_last = desc;
631                 }
632         }
633
634         /* Set first descriptor */
635         desc_first->des0 |= IDMAC_DES0_FD;
636
637         /* Set last descriptor */
638         desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
639         desc_last->des0 |= IDMAC_DES0_LD;
640
641         return 0;
642 err_own_bit:
643         /* restore the descriptor chain as it's polluted */
644         dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
645         memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
646         dw_mci_idmac_init(host);
647         return -EINVAL;
648 }
649
650
651 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
652                                          struct mmc_data *data,
653                                          unsigned int sg_len)
654 {
655         unsigned int desc_len;
656         struct idmac_desc *desc_first, *desc_last, *desc;
657         u32 val;
658         int i;
659
660         desc_first = desc_last = desc = host->sg_cpu;
661
662         for (i = 0; i < sg_len; i++) {
663                 unsigned int length = sg_dma_len(&data->sg[i]);
664
665                 u32 mem_addr = sg_dma_address(&data->sg[i]);
666
667                 for ( ; length ; desc++) {
668                         desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
669                                    length : DW_MCI_DESC_DATA_LENGTH;
670
671                         length -= desc_len;
672
673                         /*
674                          * Wait for the former clear OWN bit operation
675                          * of IDMAC to make sure that this descriptor
676                          * isn't still owned by IDMAC as IDMAC's write
677                          * ops and CPU's read ops are asynchronous.
678                          */
679                         if (readl_poll_timeout_atomic(&desc->des0, val,
680                                                       IDMAC_OWN_CLR64(val),
681                                                       10,
682                                                       100 * USEC_PER_MSEC))
683                                 goto err_own_bit;
684
685                         /*
686                          * Set the OWN bit and disable interrupts
687                          * for this descriptor
688                          */
689                         desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
690                                                  IDMAC_DES0_DIC |
691                                                  IDMAC_DES0_CH);
692
693                         /* Buffer length */
694                         IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
695
696                         /* Physical address to DMA to/from */
697                         desc->des2 = cpu_to_le32(mem_addr);
698
699                         /* Update physical address for the next desc */
700                         mem_addr += desc_len;
701
702                         /* Save pointer to the last descriptor */
703                         desc_last = desc;
704                 }
705         }
706
707         /* Set first descriptor */
708         desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
709
710         /* Set last descriptor */
711         desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
712                                        IDMAC_DES0_DIC));
713         desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714
715         return 0;
716 err_own_bit:
717         /* restore the descriptor chain as it's polluted */
718         dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
719         memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
720         dw_mci_idmac_init(host);
721         return -EINVAL;
722 }
723
724 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
725 {
726         u32 temp;
727         int ret;
728
729         if (host->dma_64bit_address == 1)
730                 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
731         else
732                 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
733
734         if (ret)
735                 goto out;
736
737         /* drain writebuffer */
738         wmb();
739
740         /* Make sure to reset DMA in case we did PIO before this */
741         dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
742         dw_mci_idmac_reset(host);
743
744         /* Select IDMAC interface */
745         temp = mci_readl(host, CTRL);
746         temp |= SDMMC_CTRL_USE_IDMAC;
747         mci_writel(host, CTRL, temp);
748
749         /* drain writebuffer */
750         wmb();
751
752         /* Enable the IDMAC */
753         temp = mci_readl(host, BMOD);
754         temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
755         mci_writel(host, BMOD, temp);
756
757         /* Start it running */
758         mci_writel(host, PLDMND, 1);
759
760 out:
761         return ret;
762 }
763
764 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
765         .init = dw_mci_idmac_init,
766         .start = dw_mci_idmac_start_dma,
767         .stop = dw_mci_idmac_stop_dma,
768         .complete = dw_mci_dmac_complete_dma,
769         .cleanup = dw_mci_dma_cleanup,
770 };
771
772 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
773 {
774         dmaengine_terminate_async(host->dms->ch);
775 }
776
777 static int dw_mci_edmac_start_dma(struct dw_mci *host,
778                                             unsigned int sg_len)
779 {
780         struct dma_slave_config cfg;
781         struct dma_async_tx_descriptor *desc = NULL;
782         struct scatterlist *sgl = host->data->sg;
783         static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
784         u32 sg_elems = host->data->sg_len;
785         u32 fifoth_val;
786         u32 fifo_offset = host->fifo_reg - host->regs;
787         int ret = 0;
788
789         /* Set external dma config: burst size, burst width */
790         memset(&cfg, 0, sizeof(cfg));
791         cfg.dst_addr = host->phy_regs + fifo_offset;
792         cfg.src_addr = cfg.dst_addr;
793         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795
796         /* Match burst msize with external dma config */
797         fifoth_val = mci_readl(host, FIFOTH);
798         cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
799         cfg.src_maxburst = cfg.dst_maxburst;
800
801         if (host->data->flags & MMC_DATA_WRITE)
802                 cfg.direction = DMA_MEM_TO_DEV;
803         else
804                 cfg.direction = DMA_DEV_TO_MEM;
805
806         ret = dmaengine_slave_config(host->dms->ch, &cfg);
807         if (ret) {
808                 dev_err(host->dev, "Failed to config edmac.\n");
809                 return -EBUSY;
810         }
811
812         desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
813                                        sg_len, cfg.direction,
814                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
815         if (!desc) {
816                 dev_err(host->dev, "Can't prepare slave sg.\n");
817                 return -EBUSY;
818         }
819
820         /* Set dw_mci_dmac_complete_dma as callback */
821         desc->callback = dw_mci_dmac_complete_dma;
822         desc->callback_param = (void *)host;
823         dmaengine_submit(desc);
824
825         /* Flush cache before write */
826         if (host->data->flags & MMC_DATA_WRITE)
827                 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
828                                        sg_elems, DMA_TO_DEVICE);
829
830         dma_async_issue_pending(host->dms->ch);
831
832         return 0;
833 }
834
835 static int dw_mci_edmac_init(struct dw_mci *host)
836 {
837         /* Request external dma channel */
838         host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
839         if (!host->dms)
840                 return -ENOMEM;
841
842         host->dms->ch = dma_request_chan(host->dev, "rx-tx");
843         if (IS_ERR(host->dms->ch)) {
844                 int ret = PTR_ERR(host->dms->ch);
845
846                 dev_err(host->dev, "Failed to get external DMA channel.\n");
847                 kfree(host->dms);
848                 host->dms = NULL;
849                 return ret;
850         }
851
852         return 0;
853 }
854
855 static void dw_mci_edmac_exit(struct dw_mci *host)
856 {
857         if (host->dms) {
858                 if (host->dms->ch) {
859                         dma_release_channel(host->dms->ch);
860                         host->dms->ch = NULL;
861                 }
862                 kfree(host->dms);
863                 host->dms = NULL;
864         }
865 }
866
867 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
868         .init = dw_mci_edmac_init,
869         .exit = dw_mci_edmac_exit,
870         .start = dw_mci_edmac_start_dma,
871         .stop = dw_mci_edmac_stop_dma,
872         .complete = dw_mci_dmac_complete_dma,
873         .cleanup = dw_mci_dma_cleanup,
874 };
875
876 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
877                                    struct mmc_data *data,
878                                    int cookie)
879 {
880         struct scatterlist *sg;
881         unsigned int i, sg_len;
882
883         if (data->host_cookie == COOKIE_PRE_MAPPED)
884                 return data->sg_len;
885
886         /*
887          * We don't do DMA on "complex" transfers, i.e. with
888          * non-word-aligned buffers or lengths. Also, we don't bother
889          * with all the DMA setup overhead for short transfers.
890          */
891         if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
892                 return -EINVAL;
893
894         if (data->blksz & 3)
895                 return -EINVAL;
896
897         for_each_sg(data->sg, sg, data->sg_len, i) {
898                 if (sg->offset & 3 || sg->length & 3)
899                         return -EINVAL;
900         }
901
902         sg_len = dma_map_sg(host->dev,
903                             data->sg,
904                             data->sg_len,
905                             mmc_get_dma_dir(data));
906         if (sg_len == 0)
907                 return -EINVAL;
908
909         data->host_cookie = cookie;
910
911         return sg_len;
912 }
913
914 static void dw_mci_pre_req(struct mmc_host *mmc,
915                            struct mmc_request *mrq)
916 {
917         struct dw_mci_slot *slot = mmc_priv(mmc);
918         struct mmc_data *data = mrq->data;
919
920         if (!slot->host->use_dma || !data)
921                 return;
922
923         /* This data might be unmapped at this time */
924         data->host_cookie = COOKIE_UNMAPPED;
925
926         if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
927                                 COOKIE_PRE_MAPPED) < 0)
928                 data->host_cookie = COOKIE_UNMAPPED;
929 }
930
931 static void dw_mci_post_req(struct mmc_host *mmc,
932                             struct mmc_request *mrq,
933                             int err)
934 {
935         struct dw_mci_slot *slot = mmc_priv(mmc);
936         struct mmc_data *data = mrq->data;
937
938         if (!slot->host->use_dma || !data)
939                 return;
940
941         if (data->host_cookie != COOKIE_UNMAPPED)
942                 dma_unmap_sg(slot->host->dev,
943                              data->sg,
944                              data->sg_len,
945                              mmc_get_dma_dir(data));
946         data->host_cookie = COOKIE_UNMAPPED;
947 }
948
949 static int dw_mci_get_cd(struct mmc_host *mmc)
950 {
951         int present;
952         struct dw_mci_slot *slot = mmc_priv(mmc);
953         struct dw_mci *host = slot->host;
954         int gpio_cd = mmc_gpio_get_cd(mmc);
955
956         /* Use platform get_cd function, else try onboard card detect */
957         if (((mmc->caps & MMC_CAP_NEEDS_POLL)
958                                 || !mmc_card_is_removable(mmc))) {
959                 present = 1;
960
961                 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
962                         if (mmc->caps & MMC_CAP_NEEDS_POLL) {
963                                 dev_info(&mmc->class_dev,
964                                         "card is polling.\n");
965                         } else {
966                                 dev_info(&mmc->class_dev,
967                                         "card is non-removable.\n");
968                         }
969                         set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
970                 }
971
972                 return present;
973         } else if (gpio_cd >= 0)
974                 present = gpio_cd;
975         else
976                 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
977                         == 0 ? 1 : 0;
978
979         spin_lock_bh(&host->lock);
980         if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
981                 dev_dbg(&mmc->class_dev, "card is present\n");
982         else if (!present &&
983                         !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
984                 dev_dbg(&mmc->class_dev, "card is not present\n");
985         spin_unlock_bh(&host->lock);
986
987         return present;
988 }
989
990 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
991 {
992         unsigned int blksz = data->blksz;
993         static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
994         u32 fifo_width = 1 << host->data_shift;
995         u32 blksz_depth = blksz / fifo_width, fifoth_val;
996         u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
997         int idx = ARRAY_SIZE(mszs) - 1;
998
999         /* pio should ship this scenario */
1000         if (!host->use_dma)
1001                 return;
1002
1003         tx_wmark = (host->fifo_depth) / 2;
1004         tx_wmark_invers = host->fifo_depth - tx_wmark;
1005
1006         /*
1007          * MSIZE is '1',
1008          * if blksz is not a multiple of the FIFO width
1009          */
1010         if (blksz % fifo_width)
1011                 goto done;
1012
1013         do {
1014                 if (!((blksz_depth % mszs[idx]) ||
1015                      (tx_wmark_invers % mszs[idx]))) {
1016                         msize = idx;
1017                         rx_wmark = mszs[idx] - 1;
1018                         break;
1019                 }
1020         } while (--idx > 0);
1021         /*
1022          * If idx is '0', it won't be tried
1023          * Thus, initial values are uesed
1024          */
1025 done:
1026         fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027         mci_writel(host, FIFOTH, fifoth_val);
1028 }
1029
1030 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031 {
1032         unsigned int blksz = data->blksz;
1033         u32 blksz_depth, fifo_depth;
1034         u16 thld_size;
1035         u8 enable;
1036
1037         /*
1038          * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039          * in the FIFO region, so we really shouldn't access it).
1040          */
1041         if (host->verid < DW_MMC_240A ||
1042                 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043                 return;
1044
1045         /*
1046          * Card write Threshold is introduced since 2.80a
1047          * It's used when HS400 mode is enabled.
1048          */
1049         if (data->flags & MMC_DATA_WRITE &&
1050                 host->timing != MMC_TIMING_MMC_HS400)
1051                 goto disable;
1052
1053         if (data->flags & MMC_DATA_WRITE)
1054                 enable = SDMMC_CARD_WR_THR_EN;
1055         else
1056                 enable = SDMMC_CARD_RD_THR_EN;
1057
1058         if (host->timing != MMC_TIMING_MMC_HS200 &&
1059             host->timing != MMC_TIMING_UHS_SDR104 &&
1060             host->timing != MMC_TIMING_MMC_HS400)
1061                 goto disable;
1062
1063         blksz_depth = blksz / (1 << host->data_shift);
1064         fifo_depth = host->fifo_depth;
1065
1066         if (blksz_depth > fifo_depth)
1067                 goto disable;
1068
1069         /*
1070          * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071          * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1072          * Currently just choose blksz.
1073          */
1074         thld_size = blksz;
1075         mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076         return;
1077
1078 disable:
1079         mci_writel(host, CDTHRCTL, 0);
1080 }
1081
1082 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083 {
1084         unsigned long irqflags;
1085         int sg_len;
1086         u32 temp;
1087
1088         host->using_dma = 0;
1089
1090         /* If we don't have a channel, we can't do DMA */
1091         if (!host->use_dma)
1092                 return -ENODEV;
1093
1094         sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095         if (sg_len < 0) {
1096                 host->dma_ops->stop(host);
1097                 return sg_len;
1098         }
1099
1100         host->using_dma = 1;
1101
1102         if (host->use_dma == TRANS_MODE_IDMAC)
1103                 dev_vdbg(host->dev,
1104                          "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105                          (unsigned long)host->sg_cpu,
1106                          (unsigned long)host->sg_dma,
1107                          sg_len);
1108
1109         /*
1110          * Decide the MSIZE and RX/TX Watermark.
1111          * If current block size is same with previous size,
1112          * no need to update fifoth.
1113          */
1114         if (host->prev_blksz != data->blksz)
1115                 dw_mci_adjust_fifoth(host, data);
1116
1117         /* Enable the DMA interface */
1118         temp = mci_readl(host, CTRL);
1119         temp |= SDMMC_CTRL_DMA_ENABLE;
1120         mci_writel(host, CTRL, temp);
1121
1122         /* Disable RX/TX IRQs, let DMA handle it */
1123         spin_lock_irqsave(&host->irq_lock, irqflags);
1124         temp = mci_readl(host, INTMASK);
1125         temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126         mci_writel(host, INTMASK, temp);
1127         spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128
1129         if (host->dma_ops->start(host, sg_len)) {
1130                 host->dma_ops->stop(host);
1131                 /* We can't do DMA, try PIO for this one */
1132                 dev_dbg(host->dev,
1133                         "%s: fall back to PIO mode for current transfer\n",
1134                         __func__);
1135                 return -ENODEV;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142 {
1143         unsigned long irqflags;
1144         int flags = SG_MITER_ATOMIC;
1145         u32 temp;
1146
1147         data->error = -EINPROGRESS;
1148
1149         WARN_ON(host->data);
1150         host->sg = NULL;
1151         host->data = data;
1152
1153         if (data->flags & MMC_DATA_READ)
1154                 host->dir_status = DW_MCI_RECV_STATUS;
1155         else
1156                 host->dir_status = DW_MCI_SEND_STATUS;
1157
1158         dw_mci_ctrl_thld(host, data);
1159
1160         if (dw_mci_submit_data_dma(host, data)) {
1161                 if (host->data->flags & MMC_DATA_READ)
1162                         flags |= SG_MITER_TO_SG;
1163                 else
1164                         flags |= SG_MITER_FROM_SG;
1165
1166                 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167                 host->sg = data->sg;
1168                 host->part_buf_start = 0;
1169                 host->part_buf_count = 0;
1170
1171                 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172
1173                 spin_lock_irqsave(&host->irq_lock, irqflags);
1174                 temp = mci_readl(host, INTMASK);
1175                 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176                 mci_writel(host, INTMASK, temp);
1177                 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178
1179                 temp = mci_readl(host, CTRL);
1180                 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181                 mci_writel(host, CTRL, temp);
1182
1183                 /*
1184                  * Use the initial fifoth_val for PIO mode. If wm_algined
1185                  * is set, we set watermark same as data size.
1186                  * If next issued data may be transfered by DMA mode,
1187                  * prev_blksz should be invalidated.
1188                  */
1189                 if (host->wm_aligned)
1190                         dw_mci_adjust_fifoth(host, data);
1191                 else
1192                         mci_writel(host, FIFOTH, host->fifoth_val);
1193                 host->prev_blksz = 0;
1194         } else {
1195                 /*
1196                  * Keep the current block size.
1197                  * It will be used to decide whether to update
1198                  * fifoth register next time.
1199                  */
1200                 host->prev_blksz = data->blksz;
1201         }
1202 }
1203
1204 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205 {
1206         struct dw_mci *host = slot->host;
1207         unsigned int clock = slot->clock;
1208         u32 div;
1209         u32 clk_en_a;
1210         u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211
1212         /* We must continue to set bit 28 in CMD until the change is complete */
1213         if (host->state == STATE_WAITING_CMD11_DONE)
1214                 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215
1216         slot->mmc->actual_clock = 0;
1217
1218         if (!clock) {
1219                 mci_writel(host, CLKENA, 0);
1220                 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221         } else if (clock != host->current_speed || force_clkinit) {
1222                 div = host->bus_hz / clock;
1223                 if (host->bus_hz % clock && host->bus_hz > clock)
1224                         /*
1225                          * move the + 1 after the divide to prevent
1226                          * over-clocking the card.
1227                          */
1228                         div += 1;
1229
1230                 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231
1232                 if ((clock != slot->__clk_old &&
1233                         !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234                         force_clkinit) {
1235                         /* Silent the verbose log if calling from PM context */
1236                         if (!force_clkinit)
1237                                 dev_info(&slot->mmc->class_dev,
1238                                          "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239                                          slot->id, host->bus_hz, clock,
1240                                          div ? ((host->bus_hz / div) >> 1) :
1241                                          host->bus_hz, div);
1242
1243                         /*
1244                          * If card is polling, display the message only
1245                          * one time at boot time.
1246                          */
1247                         if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248                                         slot->mmc->f_min == clock)
1249                                 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250                 }
1251
1252                 /* disable clock */
1253                 mci_writel(host, CLKENA, 0);
1254                 mci_writel(host, CLKSRC, 0);
1255
1256                 /* inform CIU */
1257                 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258
1259                 /* set clock to desired speed */
1260                 mci_writel(host, CLKDIV, div);
1261
1262                 /* inform CIU */
1263                 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264
1265                 /* enable clock; only low power if no SDIO */
1266                 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267                 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268                         clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269                 mci_writel(host, CLKENA, clk_en_a);
1270
1271                 /* inform CIU */
1272                 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273
1274                 /* keep the last clock value that was requested from core */
1275                 slot->__clk_old = clock;
1276                 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277                                           host->bus_hz;
1278         }
1279
1280         host->current_speed = clock;
1281
1282         /* Set the current slot bus width */
1283         mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284 }
1285
1286 static void dw_mci_set_data_timeout(struct dw_mci *host,
1287                                     unsigned int timeout_ns)
1288 {
1289         const struct dw_mci_drv_data *drv_data = host->drv_data;
1290         u32 clk_div, tmout;
1291         u64 tmp;
1292
1293         if (drv_data && drv_data->set_data_timeout)
1294                 return drv_data->set_data_timeout(host, timeout_ns);
1295
1296         clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1297         if (clk_div == 0)
1298                 clk_div = 1;
1299
1300         tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1301         tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1302
1303         /* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1304         tmout = 0xFF; /* Set maximum */
1305
1306         /* TMOUT[31:8] (DATA_TIMEOUT) */
1307         if (!tmp || tmp > 0xFFFFFF)
1308                 tmout |= (0xFFFFFF << 8);
1309         else
1310                 tmout |= (tmp & 0xFFFFFF) << 8;
1311
1312         mci_writel(host, TMOUT, tmout);
1313         dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1314                 timeout_ns, tmout >> 8);
1315 }
1316
1317 static void __dw_mci_start_request(struct dw_mci *host,
1318                                    struct dw_mci_slot *slot,
1319                                    struct mmc_command *cmd)
1320 {
1321         struct mmc_request *mrq;
1322         struct mmc_data *data;
1323         u32 cmdflags;
1324
1325         mrq = slot->mrq;
1326
1327         host->mrq = mrq;
1328
1329         host->pending_events = 0;
1330         host->completed_events = 0;
1331         host->cmd_status = 0;
1332         host->data_status = 0;
1333         host->dir_status = 0;
1334
1335         data = cmd->data;
1336         if (data) {
1337                 dw_mci_set_data_timeout(host, data->timeout_ns);
1338                 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1339                 mci_writel(host, BLKSIZ, data->blksz);
1340         }
1341
1342         cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1343
1344         /* this is the first command, send the initialization clock */
1345         if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1346                 cmdflags |= SDMMC_CMD_INIT;
1347
1348         if (data) {
1349                 dw_mci_submit_data(host, data);
1350                 wmb(); /* drain writebuffer */
1351         }
1352
1353         dw_mci_start_command(host, cmd, cmdflags);
1354
1355         if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1356                 unsigned long irqflags;
1357
1358                 /*
1359                  * Databook says to fail after 2ms w/ no response, but evidence
1360                  * shows that sometimes the cmd11 interrupt takes over 130ms.
1361                  * We'll set to 500ms, plus an extra jiffy just in case jiffies
1362                  * is just about to roll over.
1363                  *
1364                  * We do this whole thing under spinlock and only if the
1365                  * command hasn't already completed (indicating the irq
1366                  * already ran so we don't want the timeout).
1367                  */
1368                 spin_lock_irqsave(&host->irq_lock, irqflags);
1369                 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1370                         mod_timer(&host->cmd11_timer,
1371                                 jiffies + msecs_to_jiffies(500) + 1);
1372                 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1373         }
1374
1375         host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1376 }
1377
1378 static void dw_mci_start_request(struct dw_mci *host,
1379                                  struct dw_mci_slot *slot)
1380 {
1381         struct mmc_request *mrq = slot->mrq;
1382         struct mmc_command *cmd;
1383
1384         cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1385         __dw_mci_start_request(host, slot, cmd);
1386 }
1387
1388 /* must be called with host->lock held */
1389 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1390                                  struct mmc_request *mrq)
1391 {
1392         dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1393                  host->state);
1394
1395         slot->mrq = mrq;
1396
1397         if (host->state == STATE_WAITING_CMD11_DONE) {
1398                 dev_warn(&slot->mmc->class_dev,
1399                          "Voltage change didn't complete\n");
1400                 /*
1401                  * this case isn't expected to happen, so we can
1402                  * either crash here or just try to continue on
1403                  * in the closest possible state
1404                  */
1405                 host->state = STATE_IDLE;
1406         }
1407
1408         if (host->state == STATE_IDLE) {
1409                 host->state = STATE_SENDING_CMD;
1410                 dw_mci_start_request(host, slot);
1411         } else {
1412                 list_add_tail(&slot->queue_node, &host->queue);
1413         }
1414 }
1415
1416 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1417 {
1418         struct dw_mci_slot *slot = mmc_priv(mmc);
1419         struct dw_mci *host = slot->host;
1420
1421         WARN_ON(slot->mrq);
1422
1423         /*
1424          * The check for card presence and queueing of the request must be
1425          * atomic, otherwise the card could be removed in between and the
1426          * request wouldn't fail until another card was inserted.
1427          */
1428
1429         if (!dw_mci_get_cd(mmc)) {
1430                 mrq->cmd->error = -ENOMEDIUM;
1431                 mmc_request_done(mmc, mrq);
1432                 return;
1433         }
1434
1435         spin_lock_bh(&host->lock);
1436
1437         dw_mci_queue_request(host, slot, mrq);
1438
1439         spin_unlock_bh(&host->lock);
1440 }
1441
1442 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1443 {
1444         struct dw_mci_slot *slot = mmc_priv(mmc);
1445         const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1446         u32 regs;
1447         int ret;
1448
1449         switch (ios->bus_width) {
1450         case MMC_BUS_WIDTH_4:
1451                 slot->ctype = SDMMC_CTYPE_4BIT;
1452                 break;
1453         case MMC_BUS_WIDTH_8:
1454                 slot->ctype = SDMMC_CTYPE_8BIT;
1455                 break;
1456         default:
1457                 /* set default 1 bit mode */
1458                 slot->ctype = SDMMC_CTYPE_1BIT;
1459         }
1460
1461         regs = mci_readl(slot->host, UHS_REG);
1462
1463         /* DDR mode set */
1464         if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1465             ios->timing == MMC_TIMING_UHS_DDR50 ||
1466             ios->timing == MMC_TIMING_MMC_HS400)
1467                 regs |= ((0x1 << slot->id) << 16);
1468         else
1469                 regs &= ~((0x1 << slot->id) << 16);
1470
1471         mci_writel(slot->host, UHS_REG, regs);
1472         slot->host->timing = ios->timing;
1473
1474         /*
1475          * Use mirror of ios->clock to prevent race with mmc
1476          * core ios update when finding the minimum.
1477          */
1478         slot->clock = ios->clock;
1479
1480         if (drv_data && drv_data->set_ios)
1481                 drv_data->set_ios(slot->host, ios);
1482
1483         switch (ios->power_mode) {
1484         case MMC_POWER_UP:
1485                 if (!IS_ERR(mmc->supply.vmmc)) {
1486                         ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1487                                         ios->vdd);
1488                         if (ret) {
1489                                 dev_err(slot->host->dev,
1490                                         "failed to enable vmmc regulator\n");
1491                                 /*return, if failed turn on vmmc*/
1492                                 return;
1493                         }
1494                 }
1495                 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1496                 regs = mci_readl(slot->host, PWREN);
1497                 regs |= (1 << slot->id);
1498                 mci_writel(slot->host, PWREN, regs);
1499                 break;
1500         case MMC_POWER_ON:
1501                 if (!slot->host->vqmmc_enabled) {
1502                         if (!IS_ERR(mmc->supply.vqmmc)) {
1503                                 ret = regulator_enable(mmc->supply.vqmmc);
1504                                 if (ret < 0)
1505                                         dev_err(slot->host->dev,
1506                                                 "failed to enable vqmmc\n");
1507                                 else
1508                                         slot->host->vqmmc_enabled = true;
1509
1510                         } else {
1511                                 /* Keep track so we don't reset again */
1512                                 slot->host->vqmmc_enabled = true;
1513                         }
1514
1515                         /* Reset our state machine after powering on */
1516                         dw_mci_ctrl_reset(slot->host,
1517                                           SDMMC_CTRL_ALL_RESET_FLAGS);
1518                 }
1519
1520                 /* Adjust clock / bus width after power is up */
1521                 dw_mci_setup_bus(slot, false);
1522
1523                 break;
1524         case MMC_POWER_OFF:
1525                 /* Turn clock off before power goes down */
1526                 dw_mci_setup_bus(slot, false);
1527
1528                 if (!IS_ERR(mmc->supply.vmmc))
1529                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1530
1531                 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1532                         regulator_disable(mmc->supply.vqmmc);
1533                 slot->host->vqmmc_enabled = false;
1534
1535                 regs = mci_readl(slot->host, PWREN);
1536                 regs &= ~(1 << slot->id);
1537                 mci_writel(slot->host, PWREN, regs);
1538                 break;
1539         default:
1540                 break;
1541         }
1542
1543         if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1544                 slot->host->state = STATE_IDLE;
1545 }
1546
1547 static int dw_mci_card_busy(struct mmc_host *mmc)
1548 {
1549         struct dw_mci_slot *slot = mmc_priv(mmc);
1550         u32 status;
1551
1552         /*
1553          * Check the busy bit which is low when DAT[3:0]
1554          * (the data lines) are 0000
1555          */
1556         status = mci_readl(slot->host, STATUS);
1557
1558         return !!(status & SDMMC_STATUS_BUSY);
1559 }
1560
1561 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1562 {
1563         struct dw_mci_slot *slot = mmc_priv(mmc);
1564         struct dw_mci *host = slot->host;
1565         const struct dw_mci_drv_data *drv_data = host->drv_data;
1566         u32 uhs;
1567         u32 v18 = SDMMC_UHS_18V << slot->id;
1568         int ret;
1569
1570         if (drv_data && drv_data->switch_voltage)
1571                 return drv_data->switch_voltage(mmc, ios);
1572
1573         /*
1574          * Program the voltage.  Note that some instances of dw_mmc may use
1575          * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1576          * does no harm but you need to set the regulator directly.  Try both.
1577          */
1578         uhs = mci_readl(host, UHS_REG);
1579         if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1580                 uhs &= ~v18;
1581         else
1582                 uhs |= v18;
1583
1584         if (!IS_ERR(mmc->supply.vqmmc)) {
1585                 ret = mmc_regulator_set_vqmmc(mmc, ios);
1586                 if (ret < 0) {
1587                         dev_dbg(&mmc->class_dev,
1588                                          "Regulator set error %d - %s V\n",
1589                                          ret, uhs & v18 ? "1.8" : "3.3");
1590                         return ret;
1591                 }
1592         }
1593         mci_writel(host, UHS_REG, uhs);
1594
1595         return 0;
1596 }
1597
1598 static int dw_mci_get_ro(struct mmc_host *mmc)
1599 {
1600         int read_only;
1601         struct dw_mci_slot *slot = mmc_priv(mmc);
1602         int gpio_ro = mmc_gpio_get_ro(mmc);
1603
1604         /* Use platform get_ro function, else try on board write protect */
1605         if (gpio_ro >= 0)
1606                 read_only = gpio_ro;
1607         else
1608                 read_only =
1609                         mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1610
1611         dev_dbg(&mmc->class_dev, "card is %s\n",
1612                 read_only ? "read-only" : "read-write");
1613
1614         return read_only;
1615 }
1616
1617 static void dw_mci_hw_reset(struct mmc_host *mmc)
1618 {
1619         struct dw_mci_slot *slot = mmc_priv(mmc);
1620         struct dw_mci *host = slot->host;
1621         int reset;
1622
1623         if (host->use_dma == TRANS_MODE_IDMAC)
1624                 dw_mci_idmac_reset(host);
1625
1626         if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627                                      SDMMC_CTRL_FIFO_RESET))
1628                 return;
1629
1630         /*
1631          * According to eMMC spec, card reset procedure:
1632          * tRstW >= 1us:   RST_n pulse width
1633          * tRSCA >= 200us: RST_n to Command time
1634          * tRSTH >= 1us:   RST_n high period
1635          */
1636         reset = mci_readl(host, RST_N);
1637         reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1638         mci_writel(host, RST_N, reset);
1639         usleep_range(1, 2);
1640         reset |= SDMMC_RST_HWACTIVE << slot->id;
1641         mci_writel(host, RST_N, reset);
1642         usleep_range(200, 300);
1643 }
1644
1645 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1646 {
1647         struct dw_mci *host = slot->host;
1648         const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1649         u32 clk_en_a_old;
1650         u32 clk_en_a;
1651
1652         /*
1653          * Low power mode will stop the card clock when idle.  According to the
1654          * description of the CLKENA register we should disable low power mode
1655          * for SDIO cards if we need SDIO interrupts to work.
1656          */
1657
1658         clk_en_a_old = mci_readl(host, CLKENA);
1659         if (prepare) {
1660                 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1661                 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1662         } else {
1663                 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664                 clk_en_a = clk_en_a_old | clken_low_pwr;
1665         }
1666
1667         if (clk_en_a != clk_en_a_old) {
1668                 mci_writel(host, CLKENA, clk_en_a);
1669                 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1670                              0);
1671         }
1672 }
1673
1674 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1675 {
1676         struct dw_mci *host = slot->host;
1677         unsigned long irqflags;
1678         u32 int_mask;
1679
1680         spin_lock_irqsave(&host->irq_lock, irqflags);
1681
1682         /* Enable/disable Slot Specific SDIO interrupt */
1683         int_mask = mci_readl(host, INTMASK);
1684         if (enb)
1685                 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1686         else
1687                 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1688         mci_writel(host, INTMASK, int_mask);
1689
1690         spin_unlock_irqrestore(&host->irq_lock, irqflags);
1691 }
1692
1693 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1694 {
1695         struct dw_mci_slot *slot = mmc_priv(mmc);
1696         struct dw_mci *host = slot->host;
1697
1698         dw_mci_prepare_sdio_irq(slot, enb);
1699         __dw_mci_enable_sdio_irq(slot, enb);
1700
1701         /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1702         if (enb)
1703                 pm_runtime_get_noresume(host->dev);
1704         else
1705                 pm_runtime_put_noidle(host->dev);
1706 }
1707
1708 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1709 {
1710         struct dw_mci_slot *slot = mmc_priv(mmc);
1711
1712         __dw_mci_enable_sdio_irq(slot, 1);
1713 }
1714
1715 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1716 {
1717         struct dw_mci_slot *slot = mmc_priv(mmc);
1718         struct dw_mci *host = slot->host;
1719         const struct dw_mci_drv_data *drv_data = host->drv_data;
1720         int err = -EINVAL;
1721
1722         if (drv_data && drv_data->execute_tuning)
1723                 err = drv_data->execute_tuning(slot, opcode);
1724         return err;
1725 }
1726
1727 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1728                                        struct mmc_ios *ios)
1729 {
1730         struct dw_mci_slot *slot = mmc_priv(mmc);
1731         struct dw_mci *host = slot->host;
1732         const struct dw_mci_drv_data *drv_data = host->drv_data;
1733
1734         if (drv_data && drv_data->prepare_hs400_tuning)
1735                 return drv_data->prepare_hs400_tuning(host, ios);
1736
1737         return 0;
1738 }
1739
1740 static bool dw_mci_reset(struct dw_mci *host)
1741 {
1742         u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1743         bool ret = false;
1744         u32 status = 0;
1745
1746         /*
1747          * Resetting generates a block interrupt, hence setting
1748          * the scatter-gather pointer to NULL.
1749          */
1750         if (host->sg) {
1751                 sg_miter_stop(&host->sg_miter);
1752                 host->sg = NULL;
1753         }
1754
1755         if (host->use_dma)
1756                 flags |= SDMMC_CTRL_DMA_RESET;
1757
1758         if (dw_mci_ctrl_reset(host, flags)) {
1759                 /*
1760                  * In all cases we clear the RAWINTS
1761                  * register to clear any interrupts.
1762                  */
1763                 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1764
1765                 if (!host->use_dma) {
1766                         ret = true;
1767                         goto ciu_out;
1768                 }
1769
1770                 /* Wait for dma_req to be cleared */
1771                 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1772                                               status,
1773                                               !(status & SDMMC_STATUS_DMA_REQ),
1774                                               1, 500 * USEC_PER_MSEC)) {
1775                         dev_err(host->dev,
1776                                 "%s: Timeout waiting for dma_req to be cleared\n",
1777                                 __func__);
1778                         goto ciu_out;
1779                 }
1780
1781                 /* when using DMA next we reset the fifo again */
1782                 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1783                         goto ciu_out;
1784         } else {
1785                 /* if the controller reset bit did clear, then set clock regs */
1786                 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1787                         dev_err(host->dev,
1788                                 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1789                                 __func__);
1790                         goto ciu_out;
1791                 }
1792         }
1793
1794         if (host->use_dma == TRANS_MODE_IDMAC)
1795                 /* It is also required that we reinit idmac */
1796                 dw_mci_idmac_init(host);
1797
1798         ret = true;
1799
1800 ciu_out:
1801         /* After a CTRL reset we need to have CIU set clock registers  */
1802         mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1803
1804         return ret;
1805 }
1806
1807 static const struct mmc_host_ops dw_mci_ops = {
1808         .request                = dw_mci_request,
1809         .pre_req                = dw_mci_pre_req,
1810         .post_req               = dw_mci_post_req,
1811         .set_ios                = dw_mci_set_ios,
1812         .get_ro                 = dw_mci_get_ro,
1813         .get_cd                 = dw_mci_get_cd,
1814         .card_hw_reset          = dw_mci_hw_reset,
1815         .enable_sdio_irq        = dw_mci_enable_sdio_irq,
1816         .ack_sdio_irq           = dw_mci_ack_sdio_irq,
1817         .execute_tuning         = dw_mci_execute_tuning,
1818         .card_busy              = dw_mci_card_busy,
1819         .start_signal_voltage_switch = dw_mci_switch_voltage,
1820         .prepare_hs400_tuning   = dw_mci_prepare_hs400_tuning,
1821 };
1822
1823 #ifdef CONFIG_FAULT_INJECTION
1824 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1825 {
1826         struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1827         unsigned long flags;
1828
1829         spin_lock_irqsave(&host->irq_lock, flags);
1830
1831         /*
1832          * Only inject an error if we haven't already got an error or data over
1833          * interrupt.
1834          */
1835         if (!host->data_status) {
1836                 host->data_status = SDMMC_INT_DCRC;
1837                 set_bit(EVENT_DATA_ERROR, &host->pending_events);
1838                 tasklet_schedule(&host->tasklet);
1839         }
1840
1841         spin_unlock_irqrestore(&host->irq_lock, flags);
1842
1843         return HRTIMER_NORESTART;
1844 }
1845
1846 static void dw_mci_start_fault_timer(struct dw_mci *host)
1847 {
1848         struct mmc_data *data = host->data;
1849
1850         if (!data || data->blocks <= 1)
1851                 return;
1852
1853         if (!should_fail(&host->fail_data_crc, 1))
1854                 return;
1855
1856         /*
1857          * Try to inject the error at random points during the data transfer.
1858          */
1859         hrtimer_start(&host->fault_timer,
1860                       ms_to_ktime(get_random_u32_below(25)),
1861                       HRTIMER_MODE_REL);
1862 }
1863
1864 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1865 {
1866         hrtimer_cancel(&host->fault_timer);
1867 }
1868
1869 static void dw_mci_init_fault(struct dw_mci *host)
1870 {
1871         host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1872
1873         hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874         host->fault_timer.function = dw_mci_fault_timer;
1875 }
1876 #else
1877 static void dw_mci_init_fault(struct dw_mci *host)
1878 {
1879 }
1880
1881 static void dw_mci_start_fault_timer(struct dw_mci *host)
1882 {
1883 }
1884
1885 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1886 {
1887 }
1888 #endif
1889
1890 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1891         __releases(&host->lock)
1892         __acquires(&host->lock)
1893 {
1894         struct dw_mci_slot *slot;
1895         struct mmc_host *prev_mmc = host->slot->mmc;
1896
1897         WARN_ON(host->cmd || host->data);
1898
1899         host->slot->mrq = NULL;
1900         host->mrq = NULL;
1901         if (!list_empty(&host->queue)) {
1902                 slot = list_entry(host->queue.next,
1903                                   struct dw_mci_slot, queue_node);
1904                 list_del(&slot->queue_node);
1905                 dev_vdbg(host->dev, "list not empty: %s is next\n",
1906                          mmc_hostname(slot->mmc));
1907                 host->state = STATE_SENDING_CMD;
1908                 dw_mci_start_request(host, slot);
1909         } else {
1910                 dev_vdbg(host->dev, "list empty\n");
1911
1912                 if (host->state == STATE_SENDING_CMD11)
1913                         host->state = STATE_WAITING_CMD11_DONE;
1914                 else
1915                         host->state = STATE_IDLE;
1916         }
1917
1918         spin_unlock(&host->lock);
1919         mmc_request_done(prev_mmc, mrq);
1920         spin_lock(&host->lock);
1921 }
1922
1923 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1924 {
1925         u32 status = host->cmd_status;
1926
1927         host->cmd_status = 0;
1928
1929         /* Read the response from the card (up to 16 bytes) */
1930         if (cmd->flags & MMC_RSP_PRESENT) {
1931                 if (cmd->flags & MMC_RSP_136) {
1932                         cmd->resp[3] = mci_readl(host, RESP0);
1933                         cmd->resp[2] = mci_readl(host, RESP1);
1934                         cmd->resp[1] = mci_readl(host, RESP2);
1935                         cmd->resp[0] = mci_readl(host, RESP3);
1936                 } else {
1937                         cmd->resp[0] = mci_readl(host, RESP0);
1938                         cmd->resp[1] = 0;
1939                         cmd->resp[2] = 0;
1940                         cmd->resp[3] = 0;
1941                 }
1942         }
1943
1944         if (status & SDMMC_INT_RTO)
1945                 cmd->error = -ETIMEDOUT;
1946         else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1947                 cmd->error = -EILSEQ;
1948         else if (status & SDMMC_INT_RESP_ERR)
1949                 cmd->error = -EIO;
1950         else
1951                 cmd->error = 0;
1952
1953         return cmd->error;
1954 }
1955
1956 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1957 {
1958         u32 status = host->data_status;
1959
1960         if (status & DW_MCI_DATA_ERROR_FLAGS) {
1961                 if (status & SDMMC_INT_DRTO) {
1962                         data->error = -ETIMEDOUT;
1963                 } else if (status & SDMMC_INT_DCRC) {
1964                         data->error = -EILSEQ;
1965                 } else if (status & SDMMC_INT_EBE) {
1966                         if (host->dir_status ==
1967                                 DW_MCI_SEND_STATUS) {
1968                                 /*
1969                                  * No data CRC status was returned.
1970                                  * The number of bytes transferred
1971                                  * will be exaggerated in PIO mode.
1972                                  */
1973                                 data->bytes_xfered = 0;
1974                                 data->error = -ETIMEDOUT;
1975                         } else if (host->dir_status ==
1976                                         DW_MCI_RECV_STATUS) {
1977                                 data->error = -EILSEQ;
1978                         }
1979                 } else {
1980                         /* SDMMC_INT_SBE is included */
1981                         data->error = -EILSEQ;
1982                 }
1983
1984                 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1985
1986                 /*
1987                  * After an error, there may be data lingering
1988                  * in the FIFO
1989                  */
1990                 dw_mci_reset(host);
1991         } else {
1992                 data->bytes_xfered = data->blocks * data->blksz;
1993                 data->error = 0;
1994         }
1995
1996         return data->error;
1997 }
1998
1999 static void dw_mci_set_drto(struct dw_mci *host)
2000 {
2001         const struct dw_mci_drv_data *drv_data = host->drv_data;
2002         unsigned int drto_clks;
2003         unsigned int drto_div;
2004         unsigned int drto_ms;
2005         unsigned long irqflags;
2006
2007         if (drv_data && drv_data->get_drto_clks)
2008                 drto_clks = drv_data->get_drto_clks(host);
2009         else
2010                 drto_clks = mci_readl(host, TMOUT) >> 8;
2011         drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2012         if (drto_div == 0)
2013                 drto_div = 1;
2014
2015         drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2016                                    host->bus_hz);
2017
2018         dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2019
2020         /* add a bit spare time */
2021         drto_ms += 10;
2022
2023         spin_lock_irqsave(&host->irq_lock, irqflags);
2024         if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2025                 mod_timer(&host->dto_timer,
2026                           jiffies + msecs_to_jiffies(drto_ms));
2027         spin_unlock_irqrestore(&host->irq_lock, irqflags);
2028 }
2029
2030 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2031 {
2032         if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2033                 return false;
2034
2035         /*
2036          * Really be certain that the timer has stopped.  This is a bit of
2037          * paranoia and could only really happen if we had really bad
2038          * interrupt latency and the interrupt routine and timeout were
2039          * running concurrently so that the del_timer() in the interrupt
2040          * handler couldn't run.
2041          */
2042         WARN_ON(del_timer_sync(&host->cto_timer));
2043         clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2044
2045         return true;
2046 }
2047
2048 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2049 {
2050         if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2051                 return false;
2052
2053         /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2054         WARN_ON(del_timer_sync(&host->dto_timer));
2055         clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2056
2057         return true;
2058 }
2059
2060 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2061 {
2062         struct dw_mci *host = from_tasklet(host, t, tasklet);
2063         struct mmc_data *data;
2064         struct mmc_command *cmd;
2065         struct mmc_request *mrq;
2066         enum dw_mci_state state;
2067         enum dw_mci_state prev_state;
2068         unsigned int err;
2069
2070         spin_lock(&host->lock);
2071
2072         state = host->state;
2073         data = host->data;
2074         mrq = host->mrq;
2075
2076         do {
2077                 prev_state = state;
2078
2079                 switch (state) {
2080                 case STATE_IDLE:
2081                 case STATE_WAITING_CMD11_DONE:
2082                         break;
2083
2084                 case STATE_SENDING_CMD11:
2085                 case STATE_SENDING_CMD:
2086                         if (!dw_mci_clear_pending_cmd_complete(host))
2087                                 break;
2088
2089                         cmd = host->cmd;
2090                         host->cmd = NULL;
2091                         set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2092                         err = dw_mci_command_complete(host, cmd);
2093                         if (cmd == mrq->sbc && !err) {
2094                                 __dw_mci_start_request(host, host->slot,
2095                                                        mrq->cmd);
2096                                 goto unlock;
2097                         }
2098
2099                         if (cmd->data && err) {
2100                                 /*
2101                                  * During UHS tuning sequence, sending the stop
2102                                  * command after the response CRC error would
2103                                  * throw the system into a confused state
2104                                  * causing all future tuning phases to report
2105                                  * failure.
2106                                  *
2107                                  * In such case controller will move into a data
2108                                  * transfer state after a response error or
2109                                  * response CRC error. Let's let that finish
2110                                  * before trying to send a stop, so we'll go to
2111                                  * STATE_SENDING_DATA.
2112                                  *
2113                                  * Although letting the data transfer take place
2114                                  * will waste a bit of time (we already know
2115                                  * the command was bad), it can't cause any
2116                                  * errors since it's possible it would have
2117                                  * taken place anyway if this tasklet got
2118                                  * delayed. Allowing the transfer to take place
2119                                  * avoids races and keeps things simple.
2120                                  */
2121                                 if (err != -ETIMEDOUT &&
2122                                     host->dir_status == DW_MCI_RECV_STATUS) {
2123                                         state = STATE_SENDING_DATA;
2124                                         continue;
2125                                 }
2126
2127                                 send_stop_abort(host, data);
2128                                 dw_mci_stop_dma(host);
2129                                 state = STATE_SENDING_STOP;
2130                                 break;
2131                         }
2132
2133                         if (!cmd->data || err) {
2134                                 dw_mci_request_end(host, mrq);
2135                                 goto unlock;
2136                         }
2137
2138                         prev_state = state = STATE_SENDING_DATA;
2139                         fallthrough;
2140
2141                 case STATE_SENDING_DATA:
2142                         /*
2143                          * We could get a data error and never a transfer
2144                          * complete so we'd better check for it here.
2145                          *
2146                          * Note that we don't really care if we also got a
2147                          * transfer complete; stopping the DMA and sending an
2148                          * abort won't hurt.
2149                          */
2150                         if (test_and_clear_bit(EVENT_DATA_ERROR,
2151                                                &host->pending_events)) {
2152                                 if (!(host->data_status & (SDMMC_INT_DRTO |
2153                                                            SDMMC_INT_EBE)))
2154                                         send_stop_abort(host, data);
2155                                 dw_mci_stop_dma(host);
2156                                 state = STATE_DATA_ERROR;
2157                                 break;
2158                         }
2159
2160                         if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2161                                                 &host->pending_events)) {
2162                                 /*
2163                                  * If all data-related interrupts don't come
2164                                  * within the given time in reading data state.
2165                                  */
2166                                 if (host->dir_status == DW_MCI_RECV_STATUS)
2167                                         dw_mci_set_drto(host);
2168                                 break;
2169                         }
2170
2171                         set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2172
2173                         /*
2174                          * Handle an EVENT_DATA_ERROR that might have shown up
2175                          * before the transfer completed.  This might not have
2176                          * been caught by the check above because the interrupt
2177                          * could have gone off between the previous check and
2178                          * the check for transfer complete.
2179                          *
2180                          * Technically this ought not be needed assuming we
2181                          * get a DATA_COMPLETE eventually (we'll notice the
2182                          * error and end the request), but it shouldn't hurt.
2183                          *
2184                          * This has the advantage of sending the stop command.
2185                          */
2186                         if (test_and_clear_bit(EVENT_DATA_ERROR,
2187                                                &host->pending_events)) {
2188                                 if (!(host->data_status & (SDMMC_INT_DRTO |
2189                                                            SDMMC_INT_EBE)))
2190                                         send_stop_abort(host, data);
2191                                 dw_mci_stop_dma(host);
2192                                 state = STATE_DATA_ERROR;
2193                                 break;
2194                         }
2195                         prev_state = state = STATE_DATA_BUSY;
2196
2197                         fallthrough;
2198
2199                 case STATE_DATA_BUSY:
2200                         if (!dw_mci_clear_pending_data_complete(host)) {
2201                                 /*
2202                                  * If data error interrupt comes but data over
2203                                  * interrupt doesn't come within the given time.
2204                                  * in reading data state.
2205                                  */
2206                                 if (host->dir_status == DW_MCI_RECV_STATUS)
2207                                         dw_mci_set_drto(host);
2208                                 break;
2209                         }
2210
2211                         dw_mci_stop_fault_timer(host);
2212                         host->data = NULL;
2213                         set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2214                         err = dw_mci_data_complete(host, data);
2215
2216                         if (!err) {
2217                                 if (!data->stop || mrq->sbc) {
2218                                         if (mrq->sbc && data->stop)
2219                                                 data->stop->error = 0;
2220                                         dw_mci_request_end(host, mrq);
2221                                         goto unlock;
2222                                 }
2223
2224                                 /* stop command for open-ended transfer*/
2225                                 if (data->stop)
2226                                         send_stop_abort(host, data);
2227                         } else {
2228                                 /*
2229                                  * If we don't have a command complete now we'll
2230                                  * never get one since we just reset everything;
2231                                  * better end the request.
2232                                  *
2233                                  * If we do have a command complete we'll fall
2234                                  * through to the SENDING_STOP command and
2235                                  * everything will be peachy keen.
2236                                  */
2237                                 if (!test_bit(EVENT_CMD_COMPLETE,
2238                                               &host->pending_events)) {
2239                                         host->cmd = NULL;
2240                                         dw_mci_request_end(host, mrq);
2241                                         goto unlock;
2242                                 }
2243                         }
2244
2245                         /*
2246                          * If err has non-zero,
2247                          * stop-abort command has been already issued.
2248                          */
2249                         prev_state = state = STATE_SENDING_STOP;
2250
2251                         fallthrough;
2252
2253                 case STATE_SENDING_STOP:
2254                         if (!dw_mci_clear_pending_cmd_complete(host))
2255                                 break;
2256
2257                         /* CMD error in data command */
2258                         if (mrq->cmd->error && mrq->data)
2259                                 dw_mci_reset(host);
2260
2261                         dw_mci_stop_fault_timer(host);
2262                         host->cmd = NULL;
2263                         host->data = NULL;
2264
2265                         if (!mrq->sbc && mrq->stop)
2266                                 dw_mci_command_complete(host, mrq->stop);
2267                         else
2268                                 host->cmd_status = 0;
2269
2270                         dw_mci_request_end(host, mrq);
2271                         goto unlock;
2272
2273                 case STATE_DATA_ERROR:
2274                         if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2275                                                 &host->pending_events))
2276                                 break;
2277
2278                         state = STATE_DATA_BUSY;
2279                         break;
2280                 }
2281         } while (state != prev_state);
2282
2283         host->state = state;
2284 unlock:
2285         spin_unlock(&host->lock);
2286
2287 }
2288
2289 /* push final bytes to part_buf, only use during push */
2290 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2291 {
2292         memcpy((void *)&host->part_buf, buf, cnt);
2293         host->part_buf_count = cnt;
2294 }
2295
2296 /* append bytes to part_buf, only use during push */
2297 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2298 {
2299         cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2300         memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2301         host->part_buf_count += cnt;
2302         return cnt;
2303 }
2304
2305 /* pull first bytes from part_buf, only use during pull */
2306 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2307 {
2308         cnt = min_t(int, cnt, host->part_buf_count);
2309         if (cnt) {
2310                 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2311                        cnt);
2312                 host->part_buf_count -= cnt;
2313                 host->part_buf_start += cnt;
2314         }
2315         return cnt;
2316 }
2317
2318 /* pull final bytes from the part_buf, assuming it's just been filled */
2319 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2320 {
2321         memcpy(buf, &host->part_buf, cnt);
2322         host->part_buf_start = cnt;
2323         host->part_buf_count = (1 << host->data_shift) - cnt;
2324 }
2325
2326 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2327 {
2328         struct mmc_data *data = host->data;
2329         int init_cnt = cnt;
2330
2331         /* try and push anything in the part_buf */
2332         if (unlikely(host->part_buf_count)) {
2333                 int len = dw_mci_push_part_bytes(host, buf, cnt);
2334
2335                 buf += len;
2336                 cnt -= len;
2337                 if (host->part_buf_count == 2) {
2338                         mci_fifo_writew(host->fifo_reg, host->part_buf16);
2339                         host->part_buf_count = 0;
2340                 }
2341         }
2342 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343         if (unlikely((unsigned long)buf & 0x1)) {
2344                 while (cnt >= 2) {
2345                         u16 aligned_buf[64];
2346                         int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347                         int items = len >> 1;
2348                         int i;
2349                         /* memcpy from input buffer into aligned buffer */
2350                         memcpy(aligned_buf, buf, len);
2351                         buf += len;
2352                         cnt -= len;
2353                         /* push data from aligned buffer into fifo */
2354                         for (i = 0; i < items; ++i)
2355                                 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2356                 }
2357         } else
2358 #endif
2359         {
2360                 u16 *pdata = buf;
2361
2362                 for (; cnt >= 2; cnt -= 2)
2363                         mci_fifo_writew(host->fifo_reg, *pdata++);
2364                 buf = pdata;
2365         }
2366         /* put anything remaining in the part_buf */
2367         if (cnt) {
2368                 dw_mci_set_part_bytes(host, buf, cnt);
2369                  /* Push data if we have reached the expected data length */
2370                 if ((data->bytes_xfered + init_cnt) ==
2371                     (data->blksz * data->blocks))
2372                         mci_fifo_writew(host->fifo_reg, host->part_buf16);
2373         }
2374 }
2375
2376 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2377 {
2378 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379         if (unlikely((unsigned long)buf & 0x1)) {
2380                 while (cnt >= 2) {
2381                         /* pull data from fifo into aligned buffer */
2382                         u16 aligned_buf[64];
2383                         int len = min(cnt & -2, (int)sizeof(aligned_buf));
2384                         int items = len >> 1;
2385                         int i;
2386
2387                         for (i = 0; i < items; ++i)
2388                                 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2389                         /* memcpy from aligned buffer into output buffer */
2390                         memcpy(buf, aligned_buf, len);
2391                         buf += len;
2392                         cnt -= len;
2393                 }
2394         } else
2395 #endif
2396         {
2397                 u16 *pdata = buf;
2398
2399                 for (; cnt >= 2; cnt -= 2)
2400                         *pdata++ = mci_fifo_readw(host->fifo_reg);
2401                 buf = pdata;
2402         }
2403         if (cnt) {
2404                 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2405                 dw_mci_pull_final_bytes(host, buf, cnt);
2406         }
2407 }
2408
2409 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2410 {
2411         struct mmc_data *data = host->data;
2412         int init_cnt = cnt;
2413
2414         /* try and push anything in the part_buf */
2415         if (unlikely(host->part_buf_count)) {
2416                 int len = dw_mci_push_part_bytes(host, buf, cnt);
2417
2418                 buf += len;
2419                 cnt -= len;
2420                 if (host->part_buf_count == 4) {
2421                         mci_fifo_writel(host->fifo_reg, host->part_buf32);
2422                         host->part_buf_count = 0;
2423                 }
2424         }
2425 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2426         if (unlikely((unsigned long)buf & 0x3)) {
2427                 while (cnt >= 4) {
2428                         u32 aligned_buf[32];
2429                         int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430                         int items = len >> 2;
2431                         int i;
2432                         /* memcpy from input buffer into aligned buffer */
2433                         memcpy(aligned_buf, buf, len);
2434                         buf += len;
2435                         cnt -= len;
2436                         /* push data from aligned buffer into fifo */
2437                         for (i = 0; i < items; ++i)
2438                                 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2439                 }
2440         } else
2441 #endif
2442         {
2443                 u32 *pdata = buf;
2444
2445                 for (; cnt >= 4; cnt -= 4)
2446                         mci_fifo_writel(host->fifo_reg, *pdata++);
2447                 buf = pdata;
2448         }
2449         /* put anything remaining in the part_buf */
2450         if (cnt) {
2451                 dw_mci_set_part_bytes(host, buf, cnt);
2452                  /* Push data if we have reached the expected data length */
2453                 if ((data->bytes_xfered + init_cnt) ==
2454                     (data->blksz * data->blocks))
2455                         mci_fifo_writel(host->fifo_reg, host->part_buf32);
2456         }
2457 }
2458
2459 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2460 {
2461 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2462         if (unlikely((unsigned long)buf & 0x3)) {
2463                 while (cnt >= 4) {
2464                         /* pull data from fifo into aligned buffer */
2465                         u32 aligned_buf[32];
2466                         int len = min(cnt & -4, (int)sizeof(aligned_buf));
2467                         int items = len >> 2;
2468                         int i;
2469
2470                         for (i = 0; i < items; ++i)
2471                                 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2472                         /* memcpy from aligned buffer into output buffer */
2473                         memcpy(buf, aligned_buf, len);
2474                         buf += len;
2475                         cnt -= len;
2476                 }
2477         } else
2478 #endif
2479         {
2480                 u32 *pdata = buf;
2481
2482                 for (; cnt >= 4; cnt -= 4)
2483                         *pdata++ = mci_fifo_readl(host->fifo_reg);
2484                 buf = pdata;
2485         }
2486         if (cnt) {
2487                 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2488                 dw_mci_pull_final_bytes(host, buf, cnt);
2489         }
2490 }
2491
2492 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2493 {
2494         struct mmc_data *data = host->data;
2495         int init_cnt = cnt;
2496
2497         /* try and push anything in the part_buf */
2498         if (unlikely(host->part_buf_count)) {
2499                 int len = dw_mci_push_part_bytes(host, buf, cnt);
2500
2501                 buf += len;
2502                 cnt -= len;
2503
2504                 if (host->part_buf_count == 8) {
2505                         mci_fifo_writeq(host->fifo_reg, host->part_buf);
2506                         host->part_buf_count = 0;
2507                 }
2508         }
2509 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2510         if (unlikely((unsigned long)buf & 0x7)) {
2511                 while (cnt >= 8) {
2512                         u64 aligned_buf[16];
2513                         int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514                         int items = len >> 3;
2515                         int i;
2516                         /* memcpy from input buffer into aligned buffer */
2517                         memcpy(aligned_buf, buf, len);
2518                         buf += len;
2519                         cnt -= len;
2520                         /* push data from aligned buffer into fifo */
2521                         for (i = 0; i < items; ++i)
2522                                 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2523                 }
2524         } else
2525 #endif
2526         {
2527                 u64 *pdata = buf;
2528
2529                 for (; cnt >= 8; cnt -= 8)
2530                         mci_fifo_writeq(host->fifo_reg, *pdata++);
2531                 buf = pdata;
2532         }
2533         /* put anything remaining in the part_buf */
2534         if (cnt) {
2535                 dw_mci_set_part_bytes(host, buf, cnt);
2536                 /* Push data if we have reached the expected data length */
2537                 if ((data->bytes_xfered + init_cnt) ==
2538                     (data->blksz * data->blocks))
2539                         mci_fifo_writeq(host->fifo_reg, host->part_buf);
2540         }
2541 }
2542
2543 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2544 {
2545 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2546         if (unlikely((unsigned long)buf & 0x7)) {
2547                 while (cnt >= 8) {
2548                         /* pull data from fifo into aligned buffer */
2549                         u64 aligned_buf[16];
2550                         int len = min(cnt & -8, (int)sizeof(aligned_buf));
2551                         int items = len >> 3;
2552                         int i;
2553
2554                         for (i = 0; i < items; ++i)
2555                                 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2556
2557                         /* memcpy from aligned buffer into output buffer */
2558                         memcpy(buf, aligned_buf, len);
2559                         buf += len;
2560                         cnt -= len;
2561                 }
2562         } else
2563 #endif
2564         {
2565                 u64 *pdata = buf;
2566
2567                 for (; cnt >= 8; cnt -= 8)
2568                         *pdata++ = mci_fifo_readq(host->fifo_reg);
2569                 buf = pdata;
2570         }
2571         if (cnt) {
2572                 host->part_buf = mci_fifo_readq(host->fifo_reg);
2573                 dw_mci_pull_final_bytes(host, buf, cnt);
2574         }
2575 }
2576
2577 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2578 {
2579         int len;
2580
2581         /* get remaining partial bytes */
2582         len = dw_mci_pull_part_bytes(host, buf, cnt);
2583         if (unlikely(len == cnt))
2584                 return;
2585         buf += len;
2586         cnt -= len;
2587
2588         /* get the rest of the data */
2589         host->pull_data(host, buf, cnt);
2590 }
2591
2592 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2593 {
2594         struct sg_mapping_iter *sg_miter = &host->sg_miter;
2595         void *buf;
2596         unsigned int offset;
2597         struct mmc_data *data = host->data;
2598         int shift = host->data_shift;
2599         u32 status;
2600         unsigned int len;
2601         unsigned int remain, fcnt;
2602
2603         do {
2604                 if (!sg_miter_next(sg_miter))
2605                         goto done;
2606
2607                 host->sg = sg_miter->piter.sg;
2608                 buf = sg_miter->addr;
2609                 remain = sg_miter->length;
2610                 offset = 0;
2611
2612                 do {
2613                         fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2614                                         << shift) + host->part_buf_count;
2615                         len = min(remain, fcnt);
2616                         if (!len)
2617                                 break;
2618                         dw_mci_pull_data(host, (void *)(buf + offset), len);
2619                         data->bytes_xfered += len;
2620                         offset += len;
2621                         remain -= len;
2622                 } while (remain);
2623
2624                 sg_miter->consumed = offset;
2625                 status = mci_readl(host, MINTSTS);
2626                 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2627         /* if the RXDR is ready read again */
2628         } while ((status & SDMMC_INT_RXDR) ||
2629                  (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2630
2631         if (!remain) {
2632                 if (!sg_miter_next(sg_miter))
2633                         goto done;
2634                 sg_miter->consumed = 0;
2635         }
2636         sg_miter_stop(sg_miter);
2637         return;
2638
2639 done:
2640         sg_miter_stop(sg_miter);
2641         host->sg = NULL;
2642         smp_wmb(); /* drain writebuffer */
2643         set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2644 }
2645
2646 static void dw_mci_write_data_pio(struct dw_mci *host)
2647 {
2648         struct sg_mapping_iter *sg_miter = &host->sg_miter;
2649         void *buf;
2650         unsigned int offset;
2651         struct mmc_data *data = host->data;
2652         int shift = host->data_shift;
2653         u32 status;
2654         unsigned int len;
2655         unsigned int fifo_depth = host->fifo_depth;
2656         unsigned int remain, fcnt;
2657
2658         do {
2659                 if (!sg_miter_next(sg_miter))
2660                         goto done;
2661
2662                 host->sg = sg_miter->piter.sg;
2663                 buf = sg_miter->addr;
2664                 remain = sg_miter->length;
2665                 offset = 0;
2666
2667                 do {
2668                         fcnt = ((fifo_depth -
2669                                  SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2670                                         << shift) - host->part_buf_count;
2671                         len = min(remain, fcnt);
2672                         if (!len)
2673                                 break;
2674                         host->push_data(host, (void *)(buf + offset), len);
2675                         data->bytes_xfered += len;
2676                         offset += len;
2677                         remain -= len;
2678                 } while (remain);
2679
2680                 sg_miter->consumed = offset;
2681                 status = mci_readl(host, MINTSTS);
2682                 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2683         } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2684
2685         if (!remain) {
2686                 if (!sg_miter_next(sg_miter))
2687                         goto done;
2688                 sg_miter->consumed = 0;
2689         }
2690         sg_miter_stop(sg_miter);
2691         return;
2692
2693 done:
2694         sg_miter_stop(sg_miter);
2695         host->sg = NULL;
2696         smp_wmb(); /* drain writebuffer */
2697         set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2698 }
2699
2700 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2701 {
2702         del_timer(&host->cto_timer);
2703
2704         if (!host->cmd_status)
2705                 host->cmd_status = status;
2706
2707         smp_wmb(); /* drain writebuffer */
2708
2709         set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2710         tasklet_schedule(&host->tasklet);
2711
2712         dw_mci_start_fault_timer(host);
2713 }
2714
2715 static void dw_mci_handle_cd(struct dw_mci *host)
2716 {
2717         struct dw_mci_slot *slot = host->slot;
2718
2719         mmc_detect_change(slot->mmc,
2720                 msecs_to_jiffies(host->pdata->detect_delay_ms));
2721 }
2722
2723 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2724 {
2725         struct dw_mci *host = dev_id;
2726         u32 pending;
2727         struct dw_mci_slot *slot = host->slot;
2728
2729         pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2730
2731         if (pending) {
2732                 /* Check volt switch first, since it can look like an error */
2733                 if ((host->state == STATE_SENDING_CMD11) &&
2734                     (pending & SDMMC_INT_VOLT_SWITCH)) {
2735                         mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2736                         pending &= ~SDMMC_INT_VOLT_SWITCH;
2737
2738                         /*
2739                          * Hold the lock; we know cmd11_timer can't be kicked
2740                          * off after the lock is released, so safe to delete.
2741                          */
2742                         spin_lock(&host->irq_lock);
2743                         dw_mci_cmd_interrupt(host, pending);
2744                         spin_unlock(&host->irq_lock);
2745
2746                         del_timer(&host->cmd11_timer);
2747                 }
2748
2749                 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2750                         spin_lock(&host->irq_lock);
2751
2752                         del_timer(&host->cto_timer);
2753                         mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2754                         host->cmd_status = pending;
2755                         smp_wmb(); /* drain writebuffer */
2756                         set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2757
2758                         spin_unlock(&host->irq_lock);
2759                 }
2760
2761                 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2762                         spin_lock(&host->irq_lock);
2763
2764                         if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2765                                 del_timer(&host->dto_timer);
2766
2767                         /* if there is an error report DATA_ERROR */
2768                         mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2769                         host->data_status = pending;
2770                         smp_wmb(); /* drain writebuffer */
2771                         set_bit(EVENT_DATA_ERROR, &host->pending_events);
2772
2773                         if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2774                                 /* In case of error, we cannot expect a DTO */
2775                                 set_bit(EVENT_DATA_COMPLETE,
2776                                         &host->pending_events);
2777
2778                         tasklet_schedule(&host->tasklet);
2779
2780                         spin_unlock(&host->irq_lock);
2781                 }
2782
2783                 if (pending & SDMMC_INT_DATA_OVER) {
2784                         spin_lock(&host->irq_lock);
2785
2786                         del_timer(&host->dto_timer);
2787
2788                         mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2789                         if (!host->data_status)
2790                                 host->data_status = pending;
2791                         smp_wmb(); /* drain writebuffer */
2792                         if (host->dir_status == DW_MCI_RECV_STATUS) {
2793                                 if (host->sg != NULL)
2794                                         dw_mci_read_data_pio(host, true);
2795                         }
2796                         set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2797                         tasklet_schedule(&host->tasklet);
2798
2799                         spin_unlock(&host->irq_lock);
2800                 }
2801
2802                 if (pending & SDMMC_INT_RXDR) {
2803                         mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2804                         if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2805                                 dw_mci_read_data_pio(host, false);
2806                 }
2807
2808                 if (pending & SDMMC_INT_TXDR) {
2809                         mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2810                         if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2811                                 dw_mci_write_data_pio(host);
2812                 }
2813
2814                 if (pending & SDMMC_INT_CMD_DONE) {
2815                         spin_lock(&host->irq_lock);
2816
2817                         mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2818                         dw_mci_cmd_interrupt(host, pending);
2819
2820                         spin_unlock(&host->irq_lock);
2821                 }
2822
2823                 if (pending & SDMMC_INT_CD) {
2824                         mci_writel(host, RINTSTS, SDMMC_INT_CD);
2825                         dw_mci_handle_cd(host);
2826                 }
2827
2828                 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2829                         mci_writel(host, RINTSTS,
2830                                    SDMMC_INT_SDIO(slot->sdio_id));
2831                         __dw_mci_enable_sdio_irq(slot, 0);
2832                         sdio_signal_irq(slot->mmc);
2833                 }
2834
2835         }
2836
2837         if (host->use_dma != TRANS_MODE_IDMAC)
2838                 return IRQ_HANDLED;
2839
2840         /* Handle IDMA interrupts */
2841         if (host->dma_64bit_address == 1) {
2842                 pending = mci_readl(host, IDSTS64);
2843                 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2844                         mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2845                                                         SDMMC_IDMAC_INT_RI);
2846                         mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2847                         if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2848                                 host->dma_ops->complete((void *)host);
2849                 }
2850         } else {
2851                 pending = mci_readl(host, IDSTS);
2852                 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2853                         mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2854                                                         SDMMC_IDMAC_INT_RI);
2855                         mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2856                         if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2857                                 host->dma_ops->complete((void *)host);
2858                 }
2859         }
2860
2861         return IRQ_HANDLED;
2862 }
2863
2864 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2865 {
2866         struct dw_mci *host = slot->host;
2867         const struct dw_mci_drv_data *drv_data = host->drv_data;
2868         struct mmc_host *mmc = slot->mmc;
2869         int ctrl_id;
2870
2871         if (host->pdata->caps)
2872                 mmc->caps = host->pdata->caps;
2873
2874         if (host->pdata->pm_caps)
2875                 mmc->pm_caps = host->pdata->pm_caps;
2876
2877         if (drv_data)
2878                 mmc->caps |= drv_data->common_caps;
2879
2880         if (host->dev->of_node) {
2881                 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2882                 if (ctrl_id < 0)
2883                         ctrl_id = 0;
2884         } else {
2885                 ctrl_id = to_platform_device(host->dev)->id;
2886         }
2887
2888         if (drv_data && drv_data->caps) {
2889                 if (ctrl_id >= drv_data->num_caps) {
2890                         dev_err(host->dev, "invalid controller id %d\n",
2891                                 ctrl_id);
2892                         return -EINVAL;
2893                 }
2894                 mmc->caps |= drv_data->caps[ctrl_id];
2895         }
2896
2897         if (host->pdata->caps2)
2898                 mmc->caps2 = host->pdata->caps2;
2899
2900         /* if host has set a minimum_freq, we should respect it */
2901         if (host->minimum_speed)
2902                 mmc->f_min = host->minimum_speed;
2903         else
2904                 mmc->f_min = DW_MCI_FREQ_MIN;
2905
2906         if (!mmc->f_max)
2907                 mmc->f_max = DW_MCI_FREQ_MAX;
2908
2909         /* Process SDIO IRQs through the sdio_irq_work. */
2910         if (mmc->caps & MMC_CAP_SDIO_IRQ)
2911                 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2912
2913         return 0;
2914 }
2915
2916 static int dw_mci_init_slot(struct dw_mci *host)
2917 {
2918         struct mmc_host *mmc;
2919         struct dw_mci_slot *slot;
2920         int ret;
2921
2922         mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2923         if (!mmc)
2924                 return -ENOMEM;
2925
2926         slot = mmc_priv(mmc);
2927         slot->id = 0;
2928         slot->sdio_id = host->sdio_id0 + slot->id;
2929         slot->mmc = mmc;
2930         slot->host = host;
2931         host->slot = slot;
2932
2933         mmc->ops = &dw_mci_ops;
2934
2935         /*if there are external regulators, get them*/
2936         ret = mmc_regulator_get_supply(mmc);
2937         if (ret)
2938                 goto err_host_allocated;
2939
2940         if (!mmc->ocr_avail)
2941                 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2942
2943         ret = mmc_of_parse(mmc);
2944         if (ret)
2945                 goto err_host_allocated;
2946
2947         ret = dw_mci_init_slot_caps(slot);
2948         if (ret)
2949                 goto err_host_allocated;
2950
2951         /* Useful defaults if platform data is unset. */
2952         if (host->use_dma == TRANS_MODE_IDMAC) {
2953                 mmc->max_segs = host->ring_size;
2954                 mmc->max_blk_size = 65535;
2955                 mmc->max_seg_size = 0x1000;
2956                 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2957                 mmc->max_blk_count = mmc->max_req_size / 512;
2958         } else if (host->use_dma == TRANS_MODE_EDMAC) {
2959                 mmc->max_segs = 64;
2960                 mmc->max_blk_size = 65535;
2961                 mmc->max_blk_count = 65535;
2962                 mmc->max_req_size =
2963                                 mmc->max_blk_size * mmc->max_blk_count;
2964                 mmc->max_seg_size = mmc->max_req_size;
2965         } else {
2966                 /* TRANS_MODE_PIO */
2967                 mmc->max_segs = 64;
2968                 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2969                 mmc->max_blk_count = 512;
2970                 mmc->max_req_size = mmc->max_blk_size *
2971                                     mmc->max_blk_count;
2972                 mmc->max_seg_size = mmc->max_req_size;
2973         }
2974
2975         dw_mci_get_cd(mmc);
2976
2977         ret = mmc_add_host(mmc);
2978         if (ret)
2979                 goto err_host_allocated;
2980
2981 #if defined(CONFIG_DEBUG_FS)
2982         dw_mci_init_debugfs(slot);
2983 #endif
2984
2985         return 0;
2986
2987 err_host_allocated:
2988         mmc_free_host(mmc);
2989         return ret;
2990 }
2991
2992 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2993 {
2994         /* Debugfs stuff is cleaned up by mmc core */
2995         mmc_remove_host(slot->mmc);
2996         slot->host->slot = NULL;
2997         mmc_free_host(slot->mmc);
2998 }
2999
3000 static void dw_mci_init_dma(struct dw_mci *host)
3001 {
3002         int addr_config;
3003         struct device *dev = host->dev;
3004
3005         /*
3006         * Check tansfer mode from HCON[17:16]
3007         * Clear the ambiguous description of dw_mmc databook:
3008         * 2b'00: No DMA Interface -> Actually means using Internal DMA block
3009         * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3010         * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3011         * 2b'11: Non DW DMA Interface -> pio only
3012         * Compared to DesignWare DMA Interface, Generic DMA Interface has a
3013         * simpler request/acknowledge handshake mechanism and both of them
3014         * are regarded as external dma master for dw_mmc.
3015         */
3016         host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3017         if (host->use_dma == DMA_INTERFACE_IDMA) {
3018                 host->use_dma = TRANS_MODE_IDMAC;
3019         } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3020                    host->use_dma == DMA_INTERFACE_GDMA) {
3021                 host->use_dma = TRANS_MODE_EDMAC;
3022         } else {
3023                 goto no_dma;
3024         }
3025
3026         /* Determine which DMA interface to use */
3027         if (host->use_dma == TRANS_MODE_IDMAC) {
3028                 /*
3029                 * Check ADDR_CONFIG bit in HCON to find
3030                 * IDMAC address bus width
3031                 */
3032                 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3033
3034                 if (addr_config == 1) {
3035                         /* host supports IDMAC in 64-bit address mode */
3036                         host->dma_64bit_address = 1;
3037                         dev_info(host->dev,
3038                                  "IDMAC supports 64-bit address mode.\n");
3039                         if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3040                                 dma_set_coherent_mask(host->dev,
3041                                                       DMA_BIT_MASK(64));
3042                 } else {
3043                         /* host supports IDMAC in 32-bit address mode */
3044                         host->dma_64bit_address = 0;
3045                         dev_info(host->dev,
3046                                  "IDMAC supports 32-bit address mode.\n");
3047                 }
3048
3049                 /* Alloc memory for sg translation */
3050                 host->sg_cpu = dmam_alloc_coherent(host->dev,
3051                                                    DESC_RING_BUF_SZ,
3052                                                    &host->sg_dma, GFP_KERNEL);
3053                 if (!host->sg_cpu) {
3054                         dev_err(host->dev,
3055                                 "%s: could not alloc DMA memory\n",
3056                                 __func__);
3057                         goto no_dma;
3058                 }
3059
3060                 host->dma_ops = &dw_mci_idmac_ops;
3061                 dev_info(host->dev, "Using internal DMA controller.\n");
3062         } else {
3063                 /* TRANS_MODE_EDMAC: check dma bindings again */
3064                 if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3065                     !device_property_present(dev, "dmas")) {
3066                         goto no_dma;
3067                 }
3068                 host->dma_ops = &dw_mci_edmac_ops;
3069                 dev_info(host->dev, "Using external DMA controller.\n");
3070         }
3071
3072         if (host->dma_ops->init && host->dma_ops->start &&
3073             host->dma_ops->stop && host->dma_ops->cleanup) {
3074                 if (host->dma_ops->init(host)) {
3075                         dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3076                                 __func__);
3077                         goto no_dma;
3078                 }
3079         } else {
3080                 dev_err(host->dev, "DMA initialization not found.\n");
3081                 goto no_dma;
3082         }
3083
3084         return;
3085
3086 no_dma:
3087         dev_info(host->dev, "Using PIO mode.\n");
3088         host->use_dma = TRANS_MODE_PIO;
3089 }
3090
3091 static void dw_mci_cmd11_timer(struct timer_list *t)
3092 {
3093         struct dw_mci *host = from_timer(host, t, cmd11_timer);
3094
3095         if (host->state != STATE_SENDING_CMD11) {
3096                 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3097                 return;
3098         }
3099
3100         host->cmd_status = SDMMC_INT_RTO;
3101         set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3102         tasklet_schedule(&host->tasklet);
3103 }
3104
3105 static void dw_mci_cto_timer(struct timer_list *t)
3106 {
3107         struct dw_mci *host = from_timer(host, t, cto_timer);
3108         unsigned long irqflags;
3109         u32 pending;
3110
3111         spin_lock_irqsave(&host->irq_lock, irqflags);
3112
3113         /*
3114          * If somehow we have very bad interrupt latency it's remotely possible
3115          * that the timer could fire while the interrupt is still pending or
3116          * while the interrupt is midway through running.  Let's be paranoid
3117          * and detect those two cases.  Note that this is paranoia is somewhat
3118          * justified because in this function we don't actually cancel the
3119          * pending command in the controller--we just assume it will never come.
3120          */
3121         pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3122         if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3123                 /* The interrupt should fire; no need to act but we can warn */
3124                 dev_warn(host->dev, "Unexpected interrupt latency\n");
3125                 goto exit;
3126         }
3127         if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3128                 /* Presumably interrupt handler couldn't delete the timer */
3129                 dev_warn(host->dev, "CTO timeout when already completed\n");
3130                 goto exit;
3131         }
3132
3133         /*
3134          * Continued paranoia to make sure we're in the state we expect.
3135          * This paranoia isn't really justified but it seems good to be safe.
3136          */
3137         switch (host->state) {
3138         case STATE_SENDING_CMD11:
3139         case STATE_SENDING_CMD:
3140         case STATE_SENDING_STOP:
3141                 /*
3142                  * If CMD_DONE interrupt does NOT come in sending command
3143                  * state, we should notify the driver to terminate current
3144                  * transfer and report a command timeout to the core.
3145                  */
3146                 host->cmd_status = SDMMC_INT_RTO;
3147                 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3148                 tasklet_schedule(&host->tasklet);
3149                 break;
3150         default:
3151                 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3152                          host->state);
3153                 break;
3154         }
3155
3156 exit:
3157         spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158 }
3159
3160 static void dw_mci_dto_timer(struct timer_list *t)
3161 {
3162         struct dw_mci *host = from_timer(host, t, dto_timer);
3163         unsigned long irqflags;
3164         u32 pending;
3165
3166         spin_lock_irqsave(&host->irq_lock, irqflags);
3167
3168         /*
3169          * The DTO timer is much longer than the CTO timer, so it's even less
3170          * likely that we'll these cases, but it pays to be paranoid.
3171          */
3172         pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3173         if (pending & SDMMC_INT_DATA_OVER) {
3174                 /* The interrupt should fire; no need to act but we can warn */
3175                 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3176                 goto exit;
3177         }
3178         if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3179                 /* Presumably interrupt handler couldn't delete the timer */
3180                 dev_warn(host->dev, "DTO timeout when already completed\n");
3181                 goto exit;
3182         }
3183
3184         /*
3185          * Continued paranoia to make sure we're in the state we expect.
3186          * This paranoia isn't really justified but it seems good to be safe.
3187          */
3188         switch (host->state) {
3189         case STATE_SENDING_DATA:
3190         case STATE_DATA_BUSY:
3191                 /*
3192                  * If DTO interrupt does NOT come in sending data state,
3193                  * we should notify the driver to terminate current transfer
3194                  * and report a data timeout to the core.
3195                  */
3196                 host->data_status = SDMMC_INT_DRTO;
3197                 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3198                 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3199                 tasklet_schedule(&host->tasklet);
3200                 break;
3201         default:
3202                 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3203                          host->state);
3204                 break;
3205         }
3206
3207 exit:
3208         spin_unlock_irqrestore(&host->irq_lock, irqflags);
3209 }
3210
3211 #ifdef CONFIG_OF
3212 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3213 {
3214         struct dw_mci_board *pdata;
3215         struct device *dev = host->dev;
3216         const struct dw_mci_drv_data *drv_data = host->drv_data;
3217         int ret;
3218         u32 clock_frequency;
3219
3220         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3221         if (!pdata)
3222                 return ERR_PTR(-ENOMEM);
3223
3224         /* find reset controller when exist */
3225         pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3226         if (IS_ERR(pdata->rstc))
3227                 return ERR_CAST(pdata->rstc);
3228
3229         if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3230                 dev_info(dev,
3231                          "fifo-depth property not found, using value of FIFOTH register as default\n");
3232
3233         device_property_read_u32(dev, "card-detect-delay",
3234                                  &pdata->detect_delay_ms);
3235
3236         device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3237
3238         if (device_property_present(dev, "fifo-watermark-aligned"))
3239                 host->wm_aligned = true;
3240
3241         if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3242                 pdata->bus_hz = clock_frequency;
3243
3244         if (drv_data && drv_data->parse_dt) {
3245                 ret = drv_data->parse_dt(host);
3246                 if (ret)
3247                         return ERR_PTR(ret);
3248         }
3249
3250         return pdata;
3251 }
3252
3253 #else /* CONFIG_OF */
3254 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3255 {
3256         return ERR_PTR(-EINVAL);
3257 }
3258 #endif /* CONFIG_OF */
3259
3260 static void dw_mci_enable_cd(struct dw_mci *host)
3261 {
3262         unsigned long irqflags;
3263         u32 temp;
3264
3265         /*
3266          * No need for CD if all slots have a non-error GPIO
3267          * as well as broken card detection is found.
3268          */
3269         if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3270                 return;
3271
3272         if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3273                 spin_lock_irqsave(&host->irq_lock, irqflags);
3274                 temp = mci_readl(host, INTMASK);
3275                 temp  |= SDMMC_INT_CD;
3276                 mci_writel(host, INTMASK, temp);
3277                 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3278         }
3279 }
3280
3281 int dw_mci_probe(struct dw_mci *host)
3282 {
3283         const struct dw_mci_drv_data *drv_data = host->drv_data;
3284         int width, i, ret = 0;
3285         u32 fifo_size;
3286
3287         if (!host->pdata) {
3288                 host->pdata = dw_mci_parse_dt(host);
3289                 if (IS_ERR(host->pdata))
3290                         return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3291                                              "platform data not available\n");
3292         }
3293
3294         host->biu_clk = devm_clk_get(host->dev, "biu");
3295         if (IS_ERR(host->biu_clk)) {
3296                 dev_dbg(host->dev, "biu clock not available\n");
3297         } else {
3298                 ret = clk_prepare_enable(host->biu_clk);
3299                 if (ret) {
3300                         dev_err(host->dev, "failed to enable biu clock\n");
3301                         return ret;
3302                 }
3303         }
3304
3305         host->ciu_clk = devm_clk_get(host->dev, "ciu");
3306         if (IS_ERR(host->ciu_clk)) {
3307                 dev_dbg(host->dev, "ciu clock not available\n");
3308                 host->bus_hz = host->pdata->bus_hz;
3309         } else {
3310                 ret = clk_prepare_enable(host->ciu_clk);
3311                 if (ret) {
3312                         dev_err(host->dev, "failed to enable ciu clock\n");
3313                         goto err_clk_biu;
3314                 }
3315
3316                 if (host->pdata->bus_hz) {
3317                         ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3318                         if (ret)
3319                                 dev_warn(host->dev,
3320                                          "Unable to set bus rate to %uHz\n",
3321                                          host->pdata->bus_hz);
3322                 }
3323                 host->bus_hz = clk_get_rate(host->ciu_clk);
3324         }
3325
3326         if (!host->bus_hz) {
3327                 dev_err(host->dev,
3328                         "Platform data must supply bus speed\n");
3329                 ret = -ENODEV;
3330                 goto err_clk_ciu;
3331         }
3332
3333         if (host->pdata->rstc) {
3334                 reset_control_assert(host->pdata->rstc);
3335                 usleep_range(10, 50);
3336                 reset_control_deassert(host->pdata->rstc);
3337         }
3338
3339         if (drv_data && drv_data->init) {
3340                 ret = drv_data->init(host);
3341                 if (ret) {
3342                         dev_err(host->dev,
3343                                 "implementation specific init failed\n");
3344                         goto err_clk_ciu;
3345                 }
3346         }
3347
3348         timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3349         timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3350         timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3351
3352         spin_lock_init(&host->lock);
3353         spin_lock_init(&host->irq_lock);
3354         INIT_LIST_HEAD(&host->queue);
3355
3356         dw_mci_init_fault(host);
3357
3358         /*
3359          * Get the host data width - this assumes that HCON has been set with
3360          * the correct values.
3361          */
3362         i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3363         if (!i) {
3364                 host->push_data = dw_mci_push_data16;
3365                 host->pull_data = dw_mci_pull_data16;
3366                 width = 16;
3367                 host->data_shift = 1;
3368         } else if (i == 2) {
3369                 host->push_data = dw_mci_push_data64;
3370                 host->pull_data = dw_mci_pull_data64;
3371                 width = 64;
3372                 host->data_shift = 3;
3373         } else {
3374                 /* Check for a reserved value, and warn if it is */
3375                 WARN((i != 1),
3376                      "HCON reports a reserved host data width!\n"
3377                      "Defaulting to 32-bit access.\n");
3378                 host->push_data = dw_mci_push_data32;
3379                 host->pull_data = dw_mci_pull_data32;
3380                 width = 32;
3381                 host->data_shift = 2;
3382         }
3383
3384         /* Reset all blocks */
3385         if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3386                 ret = -ENODEV;
3387                 goto err_clk_ciu;
3388         }
3389
3390         host->dma_ops = host->pdata->dma_ops;
3391         dw_mci_init_dma(host);
3392
3393         /* Clear the interrupts for the host controller */
3394         mci_writel(host, RINTSTS, 0xFFFFFFFF);
3395         mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3396
3397         /* Put in max timeout */
3398         mci_writel(host, TMOUT, 0xFFFFFFFF);
3399
3400         /*
3401          * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3402          *                          Tx Mark = fifo_size / 2 DMA Size = 8
3403          */
3404         if (!host->pdata->fifo_depth) {
3405                 /*
3406                  * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3407                  * have been overwritten by the bootloader, just like we're
3408                  * about to do, so if you know the value for your hardware, you
3409                  * should put it in the platform data.
3410                  */
3411                 fifo_size = mci_readl(host, FIFOTH);
3412                 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3413         } else {
3414                 fifo_size = host->pdata->fifo_depth;
3415         }
3416         host->fifo_depth = fifo_size;
3417         host->fifoth_val =
3418                 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3419         mci_writel(host, FIFOTH, host->fifoth_val);
3420
3421         /* disable clock to CIU */
3422         mci_writel(host, CLKENA, 0);
3423         mci_writel(host, CLKSRC, 0);
3424
3425         /*
3426          * In 2.40a spec, Data offset is changed.
3427          * Need to check the version-id and set data-offset for DATA register.
3428          */
3429         host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3430         dev_info(host->dev, "Version ID is %04x\n", host->verid);
3431
3432         if (host->data_addr_override)
3433                 host->fifo_reg = host->regs + host->data_addr_override;
3434         else if (host->verid < DW_MMC_240A)
3435                 host->fifo_reg = host->regs + DATA_OFFSET;
3436         else
3437                 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3438
3439         tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3440         ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3441                                host->irq_flags, "dw-mci", host);
3442         if (ret)
3443                 goto err_dmaunmap;
3444
3445         /*
3446          * Enable interrupts for command done, data over, data empty,
3447          * receive ready and error such as transmit, receive timeout, crc error
3448          */
3449         mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3450                    SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3451                    DW_MCI_ERROR_FLAGS);
3452         /* Enable mci interrupt */
3453         mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3454
3455         dev_info(host->dev,
3456                  "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3457                  host->irq, width, fifo_size);
3458
3459         /* We need at least one slot to succeed */
3460         ret = dw_mci_init_slot(host);
3461         if (ret) {
3462                 dev_dbg(host->dev, "slot %d init failed\n", i);
3463                 goto err_dmaunmap;
3464         }
3465
3466         /* Now that slots are all setup, we can enable card detect */
3467         dw_mci_enable_cd(host);
3468
3469         return 0;
3470
3471 err_dmaunmap:
3472         if (host->use_dma && host->dma_ops->exit)
3473                 host->dma_ops->exit(host);
3474
3475         reset_control_assert(host->pdata->rstc);
3476
3477 err_clk_ciu:
3478         clk_disable_unprepare(host->ciu_clk);
3479
3480 err_clk_biu:
3481         clk_disable_unprepare(host->biu_clk);
3482
3483         return ret;
3484 }
3485 EXPORT_SYMBOL(dw_mci_probe);
3486
3487 void dw_mci_remove(struct dw_mci *host)
3488 {
3489         dev_dbg(host->dev, "remove slot\n");
3490         if (host->slot)
3491                 dw_mci_cleanup_slot(host->slot);
3492
3493         mci_writel(host, RINTSTS, 0xFFFFFFFF);
3494         mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3495
3496         /* disable clock to CIU */
3497         mci_writel(host, CLKENA, 0);
3498         mci_writel(host, CLKSRC, 0);
3499
3500         if (host->use_dma && host->dma_ops->exit)
3501                 host->dma_ops->exit(host);
3502
3503         reset_control_assert(host->pdata->rstc);
3504
3505         clk_disable_unprepare(host->ciu_clk);
3506         clk_disable_unprepare(host->biu_clk);
3507 }
3508 EXPORT_SYMBOL(dw_mci_remove);
3509
3510
3511
3512 #ifdef CONFIG_PM
3513 int dw_mci_runtime_suspend(struct device *dev)
3514 {
3515         struct dw_mci *host = dev_get_drvdata(dev);
3516
3517         if (host->use_dma && host->dma_ops->exit)
3518                 host->dma_ops->exit(host);
3519
3520         clk_disable_unprepare(host->ciu_clk);
3521
3522         if (host->slot &&
3523             (mmc_can_gpio_cd(host->slot->mmc) ||
3524              !mmc_card_is_removable(host->slot->mmc)))
3525                 clk_disable_unprepare(host->biu_clk);
3526
3527         return 0;
3528 }
3529 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3530
3531 int dw_mci_runtime_resume(struct device *dev)
3532 {
3533         int ret = 0;
3534         struct dw_mci *host = dev_get_drvdata(dev);
3535
3536         if (host->slot &&
3537             (mmc_can_gpio_cd(host->slot->mmc) ||
3538              !mmc_card_is_removable(host->slot->mmc))) {
3539                 ret = clk_prepare_enable(host->biu_clk);
3540                 if (ret)
3541                         return ret;
3542         }
3543
3544         ret = clk_prepare_enable(host->ciu_clk);
3545         if (ret)
3546                 goto err;
3547
3548         if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3549                 clk_disable_unprepare(host->ciu_clk);
3550                 ret = -ENODEV;
3551                 goto err;
3552         }
3553
3554         if (host->use_dma && host->dma_ops->init)
3555                 host->dma_ops->init(host);
3556
3557         /*
3558          * Restore the initial value at FIFOTH register
3559          * And Invalidate the prev_blksz with zero
3560          */
3561         mci_writel(host, FIFOTH, host->fifoth_val);
3562         host->prev_blksz = 0;
3563
3564         /* Put in max timeout */
3565         mci_writel(host, TMOUT, 0xFFFFFFFF);
3566
3567         mci_writel(host, RINTSTS, 0xFFFFFFFF);
3568         mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3569                    SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3570                    DW_MCI_ERROR_FLAGS);
3571         mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3572
3573
3574         if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3575                 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3576
3577         /* Force setup bus to guarantee available clock output */
3578         dw_mci_setup_bus(host->slot, true);
3579
3580         /* Re-enable SDIO interrupts. */
3581         if (sdio_irq_claimed(host->slot->mmc))
3582                 __dw_mci_enable_sdio_irq(host->slot, 1);
3583
3584         /* Now that slots are all setup, we can enable card detect */
3585         dw_mci_enable_cd(host);
3586
3587         return 0;
3588
3589 err:
3590         if (host->slot &&
3591             (mmc_can_gpio_cd(host->slot->mmc) ||
3592              !mmc_card_is_removable(host->slot->mmc)))
3593                 clk_disable_unprepare(host->biu_clk);
3594
3595         return ret;
3596 }
3597 EXPORT_SYMBOL(dw_mci_runtime_resume);
3598 #endif /* CONFIG_PM */
3599
3600 static int __init dw_mci_init(void)
3601 {
3602         pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3603         return 0;
3604 }
3605
3606 static void __exit dw_mci_exit(void)
3607 {
3608 }
3609
3610 module_init(dw_mci_init);
3611 module_exit(dw_mci_exit);
3612
3613 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3614 MODULE_AUTHOR("NXP Semiconductor VietNam");
3615 MODULE_AUTHOR("Imagination Technologies Ltd");
3616 MODULE_LICENSE("GPL v2");