GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126         struct mutex __mutex;   /* Protects the queue. */
127         struct mutex *mutex;    /* Shared by producer and consumer queues. */
128         size_t num_pages;       /* Number of pages incl. header. */
129         bool host;              /* Host or guest? */
130         union {
131                 struct {
132                         dma_addr_t *pas;
133                         void **vas;
134                 } g;            /* Used by the guest. */
135                 struct {
136                         struct page **page;
137                         struct page **header_page;
138                 } h;            /* Used by the host. */
139         } u;
140 };
141
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146         struct vmci_handle handle;
147         struct vmci_queue *produce_q;
148         struct vmci_queue *consume_q;
149         u64 produce_q_size;
150         u64 consume_q_size;
151         u32 peer;
152         u32 flags;
153         u32 priv_flags;
154         bool guest_endpoint;
155         unsigned int blocked;
156         unsigned int generation;
157         wait_queue_head_t event;
158 };
159
160 enum qp_broker_state {
161         VMCIQPB_NEW,
162         VMCIQPB_CREATED_NO_MEM,
163         VMCIQPB_CREATED_MEM,
164         VMCIQPB_ATTACHED_NO_MEM,
165         VMCIQPB_ATTACHED_MEM,
166         VMCIQPB_SHUTDOWN_NO_MEM,
167         VMCIQPB_SHUTDOWN_MEM,
168         VMCIQPB_GONE
169 };
170
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
173                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185         struct list_head list_item;
186         struct vmci_handle handle;
187         u32 peer;
188         u32 flags;
189         u64 produce_size;
190         u64 consume_size;
191         u32 ref_count;
192 };
193
194 struct qp_broker_entry {
195         struct vmci_resource resource;
196         struct qp_entry qp;
197         u32 create_id;
198         u32 attach_id;
199         enum qp_broker_state state;
200         bool require_trusted_attach;
201         bool created_by_trusted;
202         bool vmci_page_files;   /* Created by VMX using VMCI page files */
203         struct vmci_queue *produce_q;
204         struct vmci_queue *consume_q;
205         struct vmci_queue_header saved_produce_q;
206         struct vmci_queue_header saved_consume_q;
207         vmci_event_release_cb wakeup_cb;
208         void *client_data;
209         void *local_mem;        /* Kernel memory for local queue pair */
210 };
211
212 struct qp_guest_endpoint {
213         struct vmci_resource resource;
214         struct qp_entry qp;
215         u64 num_ppns;
216         void *produce_q;
217         void *consume_q;
218         struct ppn_set ppn_set;
219 };
220
221 struct qp_list {
222         struct list_head head;
223         struct mutex mutex;     /* Protect queue list. */
224 };
225
226 static struct qp_list qp_broker_list = {
227         .head = LIST_HEAD_INIT(qp_broker_list.head),
228         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230
231 static struct qp_list qp_guest_endpoints = {
232         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240
241
242 /*
243  * Frees kernel VA space for a given queue and its queue header, and
244  * frees physical data pages.
245  */
246 static void qp_free_queue(void *q, u64 size)
247 {
248         struct vmci_queue *queue = q;
249
250         if (queue) {
251                 u64 i;
252
253                 /* Given size does not include header, so add in a page here. */
254                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
255                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
256                                           queue->kernel_if->u.g.vas[i],
257                                           queue->kernel_if->u.g.pas[i]);
258                 }
259
260                 vfree(queue);
261         }
262 }
263
264 /*
265  * Allocates kernel queue pages of specified size with IOMMU mappings,
266  * plus space for the queue structure/kernel interface and the queue
267  * header.
268  */
269 static void *qp_alloc_queue(u64 size, u32 flags)
270 {
271         u64 i;
272         struct vmci_queue *queue;
273         size_t pas_size;
274         size_t vas_size;
275         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
276         u64 num_pages;
277
278         if (size > SIZE_MAX - PAGE_SIZE)
279                 return NULL;
280         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
281         if (num_pages >
282                  (SIZE_MAX - queue_size) /
283                  (sizeof(*queue->kernel_if->u.g.pas) +
284                   sizeof(*queue->kernel_if->u.g.vas)))
285                 return NULL;
286
287         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
288         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
289         queue_size += pas_size + vas_size;
290
291         queue = vmalloc(queue_size);
292         if (!queue)
293                 return NULL;
294
295         queue->q_header = NULL;
296         queue->saved_header = NULL;
297         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
298         queue->kernel_if->mutex = NULL;
299         queue->kernel_if->num_pages = num_pages;
300         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
301         queue->kernel_if->u.g.vas =
302                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
303         queue->kernel_if->host = false;
304
305         for (i = 0; i < num_pages; i++) {
306                 queue->kernel_if->u.g.vas[i] =
307                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
308                                            &queue->kernel_if->u.g.pas[i],
309                                            GFP_KERNEL);
310                 if (!queue->kernel_if->u.g.vas[i]) {
311                         /* Size excl. the header. */
312                         qp_free_queue(queue, i * PAGE_SIZE);
313                         return NULL;
314                 }
315         }
316
317         /* Queue header is the first page. */
318         queue->q_header = queue->kernel_if->u.g.vas[0];
319
320         return queue;
321 }
322
323 /*
324  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
325  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
326  * by traversing the offset -> page translation structure for the queue.
327  * Assumes that offset + size does not wrap around in the queue.
328  */
329 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
330                                   u64 queue_offset,
331                                   struct iov_iter *from,
332                                   size_t size)
333 {
334         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
335         size_t bytes_copied = 0;
336
337         while (bytes_copied < size) {
338                 const u64 page_index =
339                         (queue_offset + bytes_copied) / PAGE_SIZE;
340                 const size_t page_offset =
341                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
342                 void *va;
343                 size_t to_copy;
344
345                 if (kernel_if->host)
346                         va = kmap(kernel_if->u.h.page[page_index]);
347                 else
348                         va = kernel_if->u.g.vas[page_index + 1];
349                         /* Skip header. */
350
351                 if (size - bytes_copied > PAGE_SIZE - page_offset)
352                         /* Enough payload to fill up from this page. */
353                         to_copy = PAGE_SIZE - page_offset;
354                 else
355                         to_copy = size - bytes_copied;
356
357                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
358                                          from)) {
359                         if (kernel_if->host)
360                                 kunmap(kernel_if->u.h.page[page_index]);
361                         return VMCI_ERROR_INVALID_ARGS;
362                 }
363                 bytes_copied += to_copy;
364                 if (kernel_if->host)
365                         kunmap(kernel_if->u.h.page[page_index]);
366         }
367
368         return VMCI_SUCCESS;
369 }
370
371 /*
372  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
373  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
374  * by traversing the offset -> page translation structure for the queue.
375  * Assumes that offset + size does not wrap around in the queue.
376  */
377 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
378                                     const struct vmci_queue *queue,
379                                     u64 queue_offset, size_t size)
380 {
381         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
382         size_t bytes_copied = 0;
383
384         while (bytes_copied < size) {
385                 const u64 page_index =
386                         (queue_offset + bytes_copied) / PAGE_SIZE;
387                 const size_t page_offset =
388                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
389                 void *va;
390                 size_t to_copy;
391                 int err;
392
393                 if (kernel_if->host)
394                         va = kmap(kernel_if->u.h.page[page_index]);
395                 else
396                         va = kernel_if->u.g.vas[page_index + 1];
397                         /* Skip header. */
398
399                 if (size - bytes_copied > PAGE_SIZE - page_offset)
400                         /* Enough payload to fill up this page. */
401                         to_copy = PAGE_SIZE - page_offset;
402                 else
403                         to_copy = size - bytes_copied;
404
405                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
406                 if (err != to_copy) {
407                         if (kernel_if->host)
408                                 kunmap(kernel_if->u.h.page[page_index]);
409                         return VMCI_ERROR_INVALID_ARGS;
410                 }
411                 bytes_copied += to_copy;
412                 if (kernel_if->host)
413                         kunmap(kernel_if->u.h.page[page_index]);
414         }
415
416         return VMCI_SUCCESS;
417 }
418
419 /*
420  * Allocates two list of PPNs --- one for the pages in the produce queue,
421  * and the other for the pages in the consume queue. Intializes the list
422  * of PPNs with the page frame numbers of the KVA for the two queues (and
423  * the queue headers).
424  */
425 static int qp_alloc_ppn_set(void *prod_q,
426                             u64 num_produce_pages,
427                             void *cons_q,
428                             u64 num_consume_pages, struct ppn_set *ppn_set)
429 {
430         u64 *produce_ppns;
431         u64 *consume_ppns;
432         struct vmci_queue *produce_q = prod_q;
433         struct vmci_queue *consume_q = cons_q;
434         u64 i;
435
436         if (!produce_q || !num_produce_pages || !consume_q ||
437             !num_consume_pages || !ppn_set)
438                 return VMCI_ERROR_INVALID_ARGS;
439
440         if (ppn_set->initialized)
441                 return VMCI_ERROR_ALREADY_EXISTS;
442
443         produce_ppns =
444             kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
445                           GFP_KERNEL);
446         if (!produce_ppns)
447                 return VMCI_ERROR_NO_MEM;
448
449         consume_ppns =
450             kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
451                           GFP_KERNEL);
452         if (!consume_ppns) {
453                 kfree(produce_ppns);
454                 return VMCI_ERROR_NO_MEM;
455         }
456
457         for (i = 0; i < num_produce_pages; i++)
458                 produce_ppns[i] =
459                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
460
461         for (i = 0; i < num_consume_pages; i++)
462                 consume_ppns[i] =
463                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
464
465         ppn_set->num_produce_pages = num_produce_pages;
466         ppn_set->num_consume_pages = num_consume_pages;
467         ppn_set->produce_ppns = produce_ppns;
468         ppn_set->consume_ppns = consume_ppns;
469         ppn_set->initialized = true;
470         return VMCI_SUCCESS;
471 }
472
473 /*
474  * Frees the two list of PPNs for a queue pair.
475  */
476 static void qp_free_ppn_set(struct ppn_set *ppn_set)
477 {
478         if (ppn_set->initialized) {
479                 /* Do not call these functions on NULL inputs. */
480                 kfree(ppn_set->produce_ppns);
481                 kfree(ppn_set->consume_ppns);
482         }
483         memset(ppn_set, 0, sizeof(*ppn_set));
484 }
485
486 /*
487  * Populates the list of PPNs in the hypercall structure with the PPNS
488  * of the produce queue and the consume queue.
489  */
490 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
491 {
492         if (vmci_use_ppn64()) {
493                 memcpy(call_buf, ppn_set->produce_ppns,
494                        ppn_set->num_produce_pages *
495                        sizeof(*ppn_set->produce_ppns));
496                 memcpy(call_buf +
497                        ppn_set->num_produce_pages *
498                        sizeof(*ppn_set->produce_ppns),
499                        ppn_set->consume_ppns,
500                        ppn_set->num_consume_pages *
501                        sizeof(*ppn_set->consume_ppns));
502         } else {
503                 int i;
504                 u32 *ppns = (u32 *) call_buf;
505
506                 for (i = 0; i < ppn_set->num_produce_pages; i++)
507                         ppns[i] = (u32) ppn_set->produce_ppns[i];
508
509                 ppns = &ppns[ppn_set->num_produce_pages];
510
511                 for (i = 0; i < ppn_set->num_consume_pages; i++)
512                         ppns[i] = (u32) ppn_set->consume_ppns[i];
513         }
514
515         return VMCI_SUCCESS;
516 }
517
518 /*
519  * Allocates kernel VA space of specified size plus space for the queue
520  * and kernel interface.  This is different from the guest queue allocator,
521  * because we do not allocate our own queue header/data pages here but
522  * share those of the guest.
523  */
524 static struct vmci_queue *qp_host_alloc_queue(u64 size)
525 {
526         struct vmci_queue *queue;
527         size_t queue_page_size;
528         u64 num_pages;
529         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
530
531         if (size > SIZE_MAX - PAGE_SIZE)
532                 return NULL;
533         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
534         if (num_pages > (SIZE_MAX - queue_size) /
535                  sizeof(*queue->kernel_if->u.h.page))
536                 return NULL;
537
538         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
539
540         if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
541                 return NULL;
542
543         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
544         if (queue) {
545                 queue->q_header = NULL;
546                 queue->saved_header = NULL;
547                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
548                 queue->kernel_if->host = true;
549                 queue->kernel_if->mutex = NULL;
550                 queue->kernel_if->num_pages = num_pages;
551                 queue->kernel_if->u.h.header_page =
552                     (struct page **)((u8 *)queue + queue_size);
553                 queue->kernel_if->u.h.page =
554                         &queue->kernel_if->u.h.header_page[1];
555         }
556
557         return queue;
558 }
559
560 /*
561  * Frees kernel memory for a given queue (header plus translation
562  * structure).
563  */
564 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
565 {
566         kfree(queue);
567 }
568
569 /*
570  * Initialize the mutex for the pair of queues.  This mutex is used to
571  * protect the q_header and the buffer from changing out from under any
572  * users of either queue.  Of course, it's only any good if the mutexes
573  * are actually acquired.  Queue structure must lie on non-paged memory
574  * or we cannot guarantee access to the mutex.
575  */
576 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
577                                 struct vmci_queue *consume_q)
578 {
579         /*
580          * Only the host queue has shared state - the guest queues do not
581          * need to synchronize access using a queue mutex.
582          */
583
584         if (produce_q->kernel_if->host) {
585                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
586                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
587                 mutex_init(produce_q->kernel_if->mutex);
588         }
589 }
590
591 /*
592  * Cleans up the mutex for the pair of queues.
593  */
594 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
595                                    struct vmci_queue *consume_q)
596 {
597         if (produce_q->kernel_if->host) {
598                 produce_q->kernel_if->mutex = NULL;
599                 consume_q->kernel_if->mutex = NULL;
600         }
601 }
602
603 /*
604  * Acquire the mutex for the queue.  Note that the produce_q and
605  * the consume_q share a mutex.  So, only one of the two need to
606  * be passed in to this routine.  Either will work just fine.
607  */
608 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
609 {
610         if (queue->kernel_if->host)
611                 mutex_lock(queue->kernel_if->mutex);
612 }
613
614 /*
615  * Release the mutex for the queue.  Note that the produce_q and
616  * the consume_q share a mutex.  So, only one of the two need to
617  * be passed in to this routine.  Either will work just fine.
618  */
619 static void qp_release_queue_mutex(struct vmci_queue *queue)
620 {
621         if (queue->kernel_if->host)
622                 mutex_unlock(queue->kernel_if->mutex);
623 }
624
625 /*
626  * Helper function to release pages in the PageStoreAttachInfo
627  * previously obtained using get_user_pages.
628  */
629 static void qp_release_pages(struct page **pages,
630                              u64 num_pages, bool dirty)
631 {
632         int i;
633
634         for (i = 0; i < num_pages; i++) {
635                 if (dirty)
636                         set_page_dirty_lock(pages[i]);
637
638                 put_page(pages[i]);
639                 pages[i] = NULL;
640         }
641 }
642
643 /*
644  * Lock the user pages referenced by the {produce,consume}Buffer
645  * struct into memory and populate the {produce,consume}Pages
646  * arrays in the attach structure with them.
647  */
648 static int qp_host_get_user_memory(u64 produce_uva,
649                                    u64 consume_uva,
650                                    struct vmci_queue *produce_q,
651                                    struct vmci_queue *consume_q)
652 {
653         int retval;
654         int err = VMCI_SUCCESS;
655
656         retval = get_user_pages_fast((uintptr_t) produce_uva,
657                                      produce_q->kernel_if->num_pages,
658                                      FOLL_WRITE,
659                                      produce_q->kernel_if->u.h.header_page);
660         if (retval < (int)produce_q->kernel_if->num_pages) {
661                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
662                         retval);
663                 if (retval > 0)
664                         qp_release_pages(produce_q->kernel_if->u.h.header_page,
665                                         retval, false);
666                 err = VMCI_ERROR_NO_MEM;
667                 goto out;
668         }
669
670         retval = get_user_pages_fast((uintptr_t) consume_uva,
671                                      consume_q->kernel_if->num_pages,
672                                      FOLL_WRITE,
673                                      consume_q->kernel_if->u.h.header_page);
674         if (retval < (int)consume_q->kernel_if->num_pages) {
675                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
676                         retval);
677                 if (retval > 0)
678                         qp_release_pages(consume_q->kernel_if->u.h.header_page,
679                                         retval, false);
680                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
681                                  produce_q->kernel_if->num_pages, false);
682                 err = VMCI_ERROR_NO_MEM;
683         }
684
685  out:
686         return err;
687 }
688
689 /*
690  * Registers the specification of the user pages used for backing a queue
691  * pair. Enough information to map in pages is stored in the OS specific
692  * part of the struct vmci_queue structure.
693  */
694 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
695                                         struct vmci_queue *produce_q,
696                                         struct vmci_queue *consume_q)
697 {
698         u64 produce_uva;
699         u64 consume_uva;
700
701         /*
702          * The new style and the old style mapping only differs in
703          * that we either get a single or two UVAs, so we split the
704          * single UVA range at the appropriate spot.
705          */
706         produce_uva = page_store->pages;
707         consume_uva = page_store->pages +
708             produce_q->kernel_if->num_pages * PAGE_SIZE;
709         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
710                                        consume_q);
711 }
712
713 /*
714  * Releases and removes the references to user pages stored in the attach
715  * struct.  Pages are released from the page cache and may become
716  * swappable again.
717  */
718 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
719                                            struct vmci_queue *consume_q)
720 {
721         qp_release_pages(produce_q->kernel_if->u.h.header_page,
722                          produce_q->kernel_if->num_pages, true);
723         memset(produce_q->kernel_if->u.h.header_page, 0,
724                sizeof(*produce_q->kernel_if->u.h.header_page) *
725                produce_q->kernel_if->num_pages);
726         qp_release_pages(consume_q->kernel_if->u.h.header_page,
727                          consume_q->kernel_if->num_pages, true);
728         memset(consume_q->kernel_if->u.h.header_page, 0,
729                sizeof(*consume_q->kernel_if->u.h.header_page) *
730                consume_q->kernel_if->num_pages);
731 }
732
733 /*
734  * Once qp_host_register_user_memory has been performed on a
735  * queue, the queue pair headers can be mapped into the
736  * kernel. Once mapped, they must be unmapped with
737  * qp_host_unmap_queues prior to calling
738  * qp_host_unregister_user_memory.
739  * Pages are pinned.
740  */
741 static int qp_host_map_queues(struct vmci_queue *produce_q,
742                               struct vmci_queue *consume_q)
743 {
744         int result;
745
746         if (!produce_q->q_header || !consume_q->q_header) {
747                 struct page *headers[2];
748
749                 if (produce_q->q_header != consume_q->q_header)
750                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
751
752                 if (produce_q->kernel_if->u.h.header_page == NULL ||
753                     *produce_q->kernel_if->u.h.header_page == NULL)
754                         return VMCI_ERROR_UNAVAILABLE;
755
756                 headers[0] = *produce_q->kernel_if->u.h.header_page;
757                 headers[1] = *consume_q->kernel_if->u.h.header_page;
758
759                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
760                 if (produce_q->q_header != NULL) {
761                         consume_q->q_header =
762                             (struct vmci_queue_header *)((u8 *)
763                                                          produce_q->q_header +
764                                                          PAGE_SIZE);
765                         result = VMCI_SUCCESS;
766                 } else {
767                         pr_warn("vmap failed\n");
768                         result = VMCI_ERROR_NO_MEM;
769                 }
770         } else {
771                 result = VMCI_SUCCESS;
772         }
773
774         return result;
775 }
776
777 /*
778  * Unmaps previously mapped queue pair headers from the kernel.
779  * Pages are unpinned.
780  */
781 static int qp_host_unmap_queues(u32 gid,
782                                 struct vmci_queue *produce_q,
783                                 struct vmci_queue *consume_q)
784 {
785         if (produce_q->q_header) {
786                 if (produce_q->q_header < consume_q->q_header)
787                         vunmap(produce_q->q_header);
788                 else
789                         vunmap(consume_q->q_header);
790
791                 produce_q->q_header = NULL;
792                 consume_q->q_header = NULL;
793         }
794
795         return VMCI_SUCCESS;
796 }
797
798 /*
799  * Finds the entry in the list corresponding to a given handle. Assumes
800  * that the list is locked.
801  */
802 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
803                                      struct vmci_handle handle)
804 {
805         struct qp_entry *entry;
806
807         if (vmci_handle_is_invalid(handle))
808                 return NULL;
809
810         list_for_each_entry(entry, &qp_list->head, list_item) {
811                 if (vmci_handle_is_equal(entry->handle, handle))
812                         return entry;
813         }
814
815         return NULL;
816 }
817
818 /*
819  * Finds the entry in the list corresponding to a given handle.
820  */
821 static struct qp_guest_endpoint *
822 qp_guest_handle_to_entry(struct vmci_handle handle)
823 {
824         struct qp_guest_endpoint *entry;
825         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
826
827         entry = qp ? container_of(
828                 qp, struct qp_guest_endpoint, qp) : NULL;
829         return entry;
830 }
831
832 /*
833  * Finds the entry in the list corresponding to a given handle.
834  */
835 static struct qp_broker_entry *
836 qp_broker_handle_to_entry(struct vmci_handle handle)
837 {
838         struct qp_broker_entry *entry;
839         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
840
841         entry = qp ? container_of(
842                 qp, struct qp_broker_entry, qp) : NULL;
843         return entry;
844 }
845
846 /*
847  * Dispatches a queue pair event message directly into the local event
848  * queue.
849  */
850 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
851 {
852         u32 context_id = vmci_get_context_id();
853         struct vmci_event_qp ev;
854
855         memset(&ev, 0, sizeof(ev));
856         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
857         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
858                                           VMCI_CONTEXT_RESOURCE_ID);
859         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
860         ev.msg.event_data.event =
861             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
862         ev.payload.peer_id = context_id;
863         ev.payload.handle = handle;
864
865         return vmci_event_dispatch(&ev.msg.hdr);
866 }
867
868 /*
869  * Allocates and initializes a qp_guest_endpoint structure.
870  * Allocates a queue_pair rid (and handle) iff the given entry has
871  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
872  * are reserved handles.  Assumes that the QP list mutex is held
873  * by the caller.
874  */
875 static struct qp_guest_endpoint *
876 qp_guest_endpoint_create(struct vmci_handle handle,
877                          u32 peer,
878                          u32 flags,
879                          u64 produce_size,
880                          u64 consume_size,
881                          void *produce_q,
882                          void *consume_q)
883 {
884         int result;
885         struct qp_guest_endpoint *entry;
886         /* One page each for the queue headers. */
887         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
888             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
889
890         if (vmci_handle_is_invalid(handle)) {
891                 u32 context_id = vmci_get_context_id();
892
893                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
894         }
895
896         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
897         if (entry) {
898                 entry->qp.peer = peer;
899                 entry->qp.flags = flags;
900                 entry->qp.produce_size = produce_size;
901                 entry->qp.consume_size = consume_size;
902                 entry->qp.ref_count = 0;
903                 entry->num_ppns = num_ppns;
904                 entry->produce_q = produce_q;
905                 entry->consume_q = consume_q;
906                 INIT_LIST_HEAD(&entry->qp.list_item);
907
908                 /* Add resource obj */
909                 result = vmci_resource_add(&entry->resource,
910                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
911                                            handle);
912                 entry->qp.handle = vmci_resource_handle(&entry->resource);
913                 if ((result != VMCI_SUCCESS) ||
914                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
915                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
916                                 handle.context, handle.resource, result);
917                         kfree(entry);
918                         entry = NULL;
919                 }
920         }
921         return entry;
922 }
923
924 /*
925  * Frees a qp_guest_endpoint structure.
926  */
927 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
928 {
929         qp_free_ppn_set(&entry->ppn_set);
930         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
931         qp_free_queue(entry->produce_q, entry->qp.produce_size);
932         qp_free_queue(entry->consume_q, entry->qp.consume_size);
933         /* Unlink from resource hash table and free callback */
934         vmci_resource_remove(&entry->resource);
935
936         kfree(entry);
937 }
938
939 /*
940  * Helper to make a queue_pairAlloc hypercall when the driver is
941  * supporting a guest device.
942  */
943 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
944 {
945         struct vmci_qp_alloc_msg *alloc_msg;
946         size_t msg_size;
947         size_t ppn_size;
948         int result;
949
950         if (!entry || entry->num_ppns <= 2)
951                 return VMCI_ERROR_INVALID_ARGS;
952
953         ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
954         msg_size = sizeof(*alloc_msg) +
955             (size_t) entry->num_ppns * ppn_size;
956         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
957         if (!alloc_msg)
958                 return VMCI_ERROR_NO_MEM;
959
960         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
961                                               VMCI_QUEUEPAIR_ALLOC);
962         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
963         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
964         alloc_msg->handle = entry->qp.handle;
965         alloc_msg->peer = entry->qp.peer;
966         alloc_msg->flags = entry->qp.flags;
967         alloc_msg->produce_size = entry->qp.produce_size;
968         alloc_msg->consume_size = entry->qp.consume_size;
969         alloc_msg->num_ppns = entry->num_ppns;
970
971         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
972                                      &entry->ppn_set);
973         if (result == VMCI_SUCCESS)
974                 result = vmci_send_datagram(&alloc_msg->hdr);
975
976         kfree(alloc_msg);
977
978         return result;
979 }
980
981 /*
982  * Helper to make a queue_pairDetach hypercall when the driver is
983  * supporting a guest device.
984  */
985 static int qp_detatch_hypercall(struct vmci_handle handle)
986 {
987         struct vmci_qp_detach_msg detach_msg;
988
989         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
990                                               VMCI_QUEUEPAIR_DETACH);
991         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
992         detach_msg.hdr.payload_size = sizeof(handle);
993         detach_msg.handle = handle;
994
995         return vmci_send_datagram(&detach_msg.hdr);
996 }
997
998 /*
999  * Adds the given entry to the list. Assumes that the list is locked.
1000  */
1001 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1002 {
1003         if (entry)
1004                 list_add(&entry->list_item, &qp_list->head);
1005 }
1006
1007 /*
1008  * Removes the given entry from the list. Assumes that the list is locked.
1009  */
1010 static void qp_list_remove_entry(struct qp_list *qp_list,
1011                                  struct qp_entry *entry)
1012 {
1013         if (entry)
1014                 list_del(&entry->list_item);
1015 }
1016
1017 /*
1018  * Helper for VMCI queue_pair detach interface. Frees the physical
1019  * pages for the queue pair.
1020  */
1021 static int qp_detatch_guest_work(struct vmci_handle handle)
1022 {
1023         int result;
1024         struct qp_guest_endpoint *entry;
1025         u32 ref_count = ~0;     /* To avoid compiler warning below */
1026
1027         mutex_lock(&qp_guest_endpoints.mutex);
1028
1029         entry = qp_guest_handle_to_entry(handle);
1030         if (!entry) {
1031                 mutex_unlock(&qp_guest_endpoints.mutex);
1032                 return VMCI_ERROR_NOT_FOUND;
1033         }
1034
1035         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1036                 result = VMCI_SUCCESS;
1037
1038                 if (entry->qp.ref_count > 1) {
1039                         result = qp_notify_peer_local(false, handle);
1040                         /*
1041                          * We can fail to notify a local queuepair
1042                          * because we can't allocate.  We still want
1043                          * to release the entry if that happens, so
1044                          * don't bail out yet.
1045                          */
1046                 }
1047         } else {
1048                 result = qp_detatch_hypercall(handle);
1049                 if (result < VMCI_SUCCESS) {
1050                         /*
1051                          * We failed to notify a non-local queuepair.
1052                          * That other queuepair might still be
1053                          * accessing the shared memory, so don't
1054                          * release the entry yet.  It will get cleaned
1055                          * up by VMCIqueue_pair_Exit() if necessary
1056                          * (assuming we are going away, otherwise why
1057                          * did this fail?).
1058                          */
1059
1060                         mutex_unlock(&qp_guest_endpoints.mutex);
1061                         return result;
1062                 }
1063         }
1064
1065         /*
1066          * If we get here then we either failed to notify a local queuepair, or
1067          * we succeeded in all cases.  Release the entry if required.
1068          */
1069
1070         entry->qp.ref_count--;
1071         if (entry->qp.ref_count == 0)
1072                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1073
1074         /* If we didn't remove the entry, this could change once we unlock. */
1075         if (entry)
1076                 ref_count = entry->qp.ref_count;
1077
1078         mutex_unlock(&qp_guest_endpoints.mutex);
1079
1080         if (ref_count == 0)
1081                 qp_guest_endpoint_destroy(entry);
1082
1083         return result;
1084 }
1085
1086 /*
1087  * This functions handles the actual allocation of a VMCI queue
1088  * pair guest endpoint. Allocates physical pages for the queue
1089  * pair. It makes OS dependent calls through generic wrappers.
1090  */
1091 static int qp_alloc_guest_work(struct vmci_handle *handle,
1092                                struct vmci_queue **produce_q,
1093                                u64 produce_size,
1094                                struct vmci_queue **consume_q,
1095                                u64 consume_size,
1096                                u32 peer,
1097                                u32 flags,
1098                                u32 priv_flags)
1099 {
1100         const u64 num_produce_pages =
1101             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1102         const u64 num_consume_pages =
1103             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1104         void *my_produce_q = NULL;
1105         void *my_consume_q = NULL;
1106         int result;
1107         struct qp_guest_endpoint *queue_pair_entry = NULL;
1108
1109         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1110                 return VMCI_ERROR_NO_ACCESS;
1111
1112         mutex_lock(&qp_guest_endpoints.mutex);
1113
1114         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1115         if (queue_pair_entry) {
1116                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1117                         /* Local attach case. */
1118                         if (queue_pair_entry->qp.ref_count > 1) {
1119                                 pr_devel("Error attempting to attach more than once\n");
1120                                 result = VMCI_ERROR_UNAVAILABLE;
1121                                 goto error_keep_entry;
1122                         }
1123
1124                         if (queue_pair_entry->qp.produce_size != consume_size ||
1125                             queue_pair_entry->qp.consume_size !=
1126                             produce_size ||
1127                             queue_pair_entry->qp.flags !=
1128                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1129                                 pr_devel("Error mismatched queue pair in local attach\n");
1130                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1131                                 goto error_keep_entry;
1132                         }
1133
1134                         /*
1135                          * Do a local attach.  We swap the consume and
1136                          * produce queues for the attacher and deliver
1137                          * an attach event.
1138                          */
1139                         result = qp_notify_peer_local(true, *handle);
1140                         if (result < VMCI_SUCCESS)
1141                                 goto error_keep_entry;
1142
1143                         my_produce_q = queue_pair_entry->consume_q;
1144                         my_consume_q = queue_pair_entry->produce_q;
1145                         goto out;
1146                 }
1147
1148                 result = VMCI_ERROR_ALREADY_EXISTS;
1149                 goto error_keep_entry;
1150         }
1151
1152         my_produce_q = qp_alloc_queue(produce_size, flags);
1153         if (!my_produce_q) {
1154                 pr_warn("Error allocating pages for produce queue\n");
1155                 result = VMCI_ERROR_NO_MEM;
1156                 goto error;
1157         }
1158
1159         my_consume_q = qp_alloc_queue(consume_size, flags);
1160         if (!my_consume_q) {
1161                 pr_warn("Error allocating pages for consume queue\n");
1162                 result = VMCI_ERROR_NO_MEM;
1163                 goto error;
1164         }
1165
1166         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1167                                                     produce_size, consume_size,
1168                                                     my_produce_q, my_consume_q);
1169         if (!queue_pair_entry) {
1170                 pr_warn("Error allocating memory in %s\n", __func__);
1171                 result = VMCI_ERROR_NO_MEM;
1172                 goto error;
1173         }
1174
1175         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1176                                   num_consume_pages,
1177                                   &queue_pair_entry->ppn_set);
1178         if (result < VMCI_SUCCESS) {
1179                 pr_warn("qp_alloc_ppn_set failed\n");
1180                 goto error;
1181         }
1182
1183         /*
1184          * It's only necessary to notify the host if this queue pair will be
1185          * attached to from another context.
1186          */
1187         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188                 /* Local create case. */
1189                 u32 context_id = vmci_get_context_id();
1190
1191                 /*
1192                  * Enforce similar checks on local queue pairs as we
1193                  * do for regular ones.  The handle's context must
1194                  * match the creator or attacher context id (here they
1195                  * are both the current context id) and the
1196                  * attach-only flag cannot exist during create.  We
1197                  * also ensure specified peer is this context or an
1198                  * invalid one.
1199                  */
1200                 if (queue_pair_entry->qp.handle.context != context_id ||
1201                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1202                      queue_pair_entry->qp.peer != context_id)) {
1203                         result = VMCI_ERROR_NO_ACCESS;
1204                         goto error;
1205                 }
1206
1207                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1208                         result = VMCI_ERROR_NOT_FOUND;
1209                         goto error;
1210                 }
1211         } else {
1212                 result = qp_alloc_hypercall(queue_pair_entry);
1213                 if (result < VMCI_SUCCESS) {
1214                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1215                         goto error;
1216                 }
1217         }
1218
1219         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1220                             (struct vmci_queue *)my_consume_q);
1221
1222         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1223
1224  out:
1225         queue_pair_entry->qp.ref_count++;
1226         *handle = queue_pair_entry->qp.handle;
1227         *produce_q = (struct vmci_queue *)my_produce_q;
1228         *consume_q = (struct vmci_queue *)my_consume_q;
1229
1230         /*
1231          * We should initialize the queue pair header pages on a local
1232          * queue pair create.  For non-local queue pairs, the
1233          * hypervisor initializes the header pages in the create step.
1234          */
1235         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1236             queue_pair_entry->qp.ref_count == 1) {
1237                 vmci_q_header_init((*produce_q)->q_header, *handle);
1238                 vmci_q_header_init((*consume_q)->q_header, *handle);
1239         }
1240
1241         mutex_unlock(&qp_guest_endpoints.mutex);
1242
1243         return VMCI_SUCCESS;
1244
1245  error:
1246         mutex_unlock(&qp_guest_endpoints.mutex);
1247         if (queue_pair_entry) {
1248                 /* The queues will be freed inside the destroy routine. */
1249                 qp_guest_endpoint_destroy(queue_pair_entry);
1250         } else {
1251                 qp_free_queue(my_produce_q, produce_size);
1252                 qp_free_queue(my_consume_q, consume_size);
1253         }
1254         return result;
1255
1256  error_keep_entry:
1257         /* This path should only be used when an existing entry was found. */
1258         mutex_unlock(&qp_guest_endpoints.mutex);
1259         return result;
1260 }
1261
1262 /*
1263  * The first endpoint issuing a queue pair allocation will create the state
1264  * of the queue pair in the queue pair broker.
1265  *
1266  * If the creator is a guest, it will associate a VMX virtual address range
1267  * with the queue pair as specified by the page_store. For compatibility with
1268  * older VMX'en, that would use a separate step to set the VMX virtual
1269  * address range, the virtual address range can be registered later using
1270  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1271  * used.
1272  *
1273  * If the creator is the host, a page_store of NULL should be used as well,
1274  * since the host is not able to supply a page store for the queue pair.
1275  *
1276  * For older VMX and host callers, the queue pair will be created in the
1277  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1278  * created in VMCOQPB_CREATED_MEM state.
1279  */
1280 static int qp_broker_create(struct vmci_handle handle,
1281                             u32 peer,
1282                             u32 flags,
1283                             u32 priv_flags,
1284                             u64 produce_size,
1285                             u64 consume_size,
1286                             struct vmci_qp_page_store *page_store,
1287                             struct vmci_ctx *context,
1288                             vmci_event_release_cb wakeup_cb,
1289                             void *client_data, struct qp_broker_entry **ent)
1290 {
1291         struct qp_broker_entry *entry = NULL;
1292         const u32 context_id = vmci_ctx_get_id(context);
1293         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1294         int result;
1295         u64 guest_produce_size;
1296         u64 guest_consume_size;
1297
1298         /* Do not create if the caller asked not to. */
1299         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1300                 return VMCI_ERROR_NOT_FOUND;
1301
1302         /*
1303          * Creator's context ID should match handle's context ID or the creator
1304          * must allow the context in handle's context ID as the "peer".
1305          */
1306         if (handle.context != context_id && handle.context != peer)
1307                 return VMCI_ERROR_NO_ACCESS;
1308
1309         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1310                 return VMCI_ERROR_DST_UNREACHABLE;
1311
1312         /*
1313          * Creator's context ID for local queue pairs should match the
1314          * peer, if a peer is specified.
1315          */
1316         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1317                 return VMCI_ERROR_NO_ACCESS;
1318
1319         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1320         if (!entry)
1321                 return VMCI_ERROR_NO_MEM;
1322
1323         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1324                 /*
1325                  * The queue pair broker entry stores values from the guest
1326                  * point of view, so a creating host side endpoint should swap
1327                  * produce and consume values -- unless it is a local queue
1328                  * pair, in which case no swapping is necessary, since the local
1329                  * attacher will swap queues.
1330                  */
1331
1332                 guest_produce_size = consume_size;
1333                 guest_consume_size = produce_size;
1334         } else {
1335                 guest_produce_size = produce_size;
1336                 guest_consume_size = consume_size;
1337         }
1338
1339         entry->qp.handle = handle;
1340         entry->qp.peer = peer;
1341         entry->qp.flags = flags;
1342         entry->qp.produce_size = guest_produce_size;
1343         entry->qp.consume_size = guest_consume_size;
1344         entry->qp.ref_count = 1;
1345         entry->create_id = context_id;
1346         entry->attach_id = VMCI_INVALID_ID;
1347         entry->state = VMCIQPB_NEW;
1348         entry->require_trusted_attach =
1349             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1350         entry->created_by_trusted =
1351             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1352         entry->vmci_page_files = false;
1353         entry->wakeup_cb = wakeup_cb;
1354         entry->client_data = client_data;
1355         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1356         if (entry->produce_q == NULL) {
1357                 result = VMCI_ERROR_NO_MEM;
1358                 goto error;
1359         }
1360         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1361         if (entry->consume_q == NULL) {
1362                 result = VMCI_ERROR_NO_MEM;
1363                 goto error;
1364         }
1365
1366         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1367
1368         INIT_LIST_HEAD(&entry->qp.list_item);
1369
1370         if (is_local) {
1371                 u8 *tmp;
1372
1373                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1374                                            PAGE_SIZE, GFP_KERNEL);
1375                 if (entry->local_mem == NULL) {
1376                         result = VMCI_ERROR_NO_MEM;
1377                         goto error;
1378                 }
1379                 entry->state = VMCIQPB_CREATED_MEM;
1380                 entry->produce_q->q_header = entry->local_mem;
1381                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1382                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1383                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1384         } else if (page_store) {
1385                 /*
1386                  * The VMX already initialized the queue pair headers, so no
1387                  * need for the kernel side to do that.
1388                  */
1389                 result = qp_host_register_user_memory(page_store,
1390                                                       entry->produce_q,
1391                                                       entry->consume_q);
1392                 if (result < VMCI_SUCCESS)
1393                         goto error;
1394
1395                 entry->state = VMCIQPB_CREATED_MEM;
1396         } else {
1397                 /*
1398                  * A create without a page_store may be either a host
1399                  * side create (in which case we are waiting for the
1400                  * guest side to supply the memory) or an old style
1401                  * queue pair create (in which case we will expect a
1402                  * set page store call as the next step).
1403                  */
1404                 entry->state = VMCIQPB_CREATED_NO_MEM;
1405         }
1406
1407         qp_list_add_entry(&qp_broker_list, &entry->qp);
1408         if (ent != NULL)
1409                 *ent = entry;
1410
1411         /* Add to resource obj */
1412         result = vmci_resource_add(&entry->resource,
1413                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1414                                    handle);
1415         if (result != VMCI_SUCCESS) {
1416                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1417                         handle.context, handle.resource, result);
1418                 goto error;
1419         }
1420
1421         entry->qp.handle = vmci_resource_handle(&entry->resource);
1422         if (is_local) {
1423                 vmci_q_header_init(entry->produce_q->q_header,
1424                                    entry->qp.handle);
1425                 vmci_q_header_init(entry->consume_q->q_header,
1426                                    entry->qp.handle);
1427         }
1428
1429         vmci_ctx_qp_create(context, entry->qp.handle);
1430
1431         return VMCI_SUCCESS;
1432
1433  error:
1434         if (entry != NULL) {
1435                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1436                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1437                 kfree(entry);
1438         }
1439
1440         return result;
1441 }
1442
1443 /*
1444  * Enqueues an event datagram to notify the peer VM attached to
1445  * the given queue pair handle about attach/detach event by the
1446  * given VM.  Returns Payload size of datagram enqueued on
1447  * success, error code otherwise.
1448  */
1449 static int qp_notify_peer(bool attach,
1450                           struct vmci_handle handle,
1451                           u32 my_id,
1452                           u32 peer_id)
1453 {
1454         int rv;
1455         struct vmci_event_qp ev;
1456
1457         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1458             peer_id == VMCI_INVALID_ID)
1459                 return VMCI_ERROR_INVALID_ARGS;
1460
1461         /*
1462          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1463          * number of pending events from the hypervisor to a given VM
1464          * otherwise a rogue VM could do an arbitrary number of attach
1465          * and detach operations causing memory pressure in the host
1466          * kernel.
1467          */
1468
1469         memset(&ev, 0, sizeof(ev));
1470         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1471         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1472                                           VMCI_CONTEXT_RESOURCE_ID);
1473         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1474         ev.msg.event_data.event = attach ?
1475             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1476         ev.payload.handle = handle;
1477         ev.payload.peer_id = my_id;
1478
1479         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1480                                     &ev.msg.hdr, false);
1481         if (rv < VMCI_SUCCESS)
1482                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1483                         attach ? "ATTACH" : "DETACH", peer_id);
1484
1485         return rv;
1486 }
1487
1488 /*
1489  * The second endpoint issuing a queue pair allocation will attach to
1490  * the queue pair registered with the queue pair broker.
1491  *
1492  * If the attacher is a guest, it will associate a VMX virtual address
1493  * range with the queue pair as specified by the page_store. At this
1494  * point, the already attach host endpoint may start using the queue
1495  * pair, and an attach event is sent to it. For compatibility with
1496  * older VMX'en, that used a separate step to set the VMX virtual
1497  * address range, the virtual address range can be registered later
1498  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1499  * NULL should be used, and the attach event will be generated once
1500  * the actual page store has been set.
1501  *
1502  * If the attacher is the host, a page_store of NULL should be used as
1503  * well, since the page store information is already set by the guest.
1504  *
1505  * For new VMX and host callers, the queue pair will be moved to the
1506  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1507  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1508  */
1509 static int qp_broker_attach(struct qp_broker_entry *entry,
1510                             u32 peer,
1511                             u32 flags,
1512                             u32 priv_flags,
1513                             u64 produce_size,
1514                             u64 consume_size,
1515                             struct vmci_qp_page_store *page_store,
1516                             struct vmci_ctx *context,
1517                             vmci_event_release_cb wakeup_cb,
1518                             void *client_data,
1519                             struct qp_broker_entry **ent)
1520 {
1521         const u32 context_id = vmci_ctx_get_id(context);
1522         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1523         int result;
1524
1525         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1526             entry->state != VMCIQPB_CREATED_MEM)
1527                 return VMCI_ERROR_UNAVAILABLE;
1528
1529         if (is_local) {
1530                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1531                     context_id != entry->create_id) {
1532                         return VMCI_ERROR_INVALID_ARGS;
1533                 }
1534         } else if (context_id == entry->create_id ||
1535                    context_id == entry->attach_id) {
1536                 return VMCI_ERROR_ALREADY_EXISTS;
1537         }
1538
1539         if (VMCI_CONTEXT_IS_VM(context_id) &&
1540             VMCI_CONTEXT_IS_VM(entry->create_id))
1541                 return VMCI_ERROR_DST_UNREACHABLE;
1542
1543         /*
1544          * If we are attaching from a restricted context then the queuepair
1545          * must have been created by a trusted endpoint.
1546          */
1547         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1548             !entry->created_by_trusted)
1549                 return VMCI_ERROR_NO_ACCESS;
1550
1551         /*
1552          * If we are attaching to a queuepair that was created by a restricted
1553          * context then we must be trusted.
1554          */
1555         if (entry->require_trusted_attach &&
1556             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1557                 return VMCI_ERROR_NO_ACCESS;
1558
1559         /*
1560          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1561          * control check is not performed.
1562          */
1563         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1564                 return VMCI_ERROR_NO_ACCESS;
1565
1566         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1567                 /*
1568                  * Do not attach if the caller doesn't support Host Queue Pairs
1569                  * and a host created this queue pair.
1570                  */
1571
1572                 if (!vmci_ctx_supports_host_qp(context))
1573                         return VMCI_ERROR_INVALID_RESOURCE;
1574
1575         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1576                 struct vmci_ctx *create_context;
1577                 bool supports_host_qp;
1578
1579                 /*
1580                  * Do not attach a host to a user created queue pair if that
1581                  * user doesn't support host queue pair end points.
1582                  */
1583
1584                 create_context = vmci_ctx_get(entry->create_id);
1585                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1586                 vmci_ctx_put(create_context);
1587
1588                 if (!supports_host_qp)
1589                         return VMCI_ERROR_INVALID_RESOURCE;
1590         }
1591
1592         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1593                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1594
1595         if (context_id != VMCI_HOST_CONTEXT_ID) {
1596                 /*
1597                  * The queue pair broker entry stores values from the guest
1598                  * point of view, so an attaching guest should match the values
1599                  * stored in the entry.
1600                  */
1601
1602                 if (entry->qp.produce_size != produce_size ||
1603                     entry->qp.consume_size != consume_size) {
1604                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605                 }
1606         } else if (entry->qp.produce_size != consume_size ||
1607                    entry->qp.consume_size != produce_size) {
1608                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1609         }
1610
1611         if (context_id != VMCI_HOST_CONTEXT_ID) {
1612                 /*
1613                  * If a guest attached to a queue pair, it will supply
1614                  * the backing memory.  If this is a pre NOVMVM vmx,
1615                  * the backing memory will be supplied by calling
1616                  * vmci_qp_broker_set_page_store() following the
1617                  * return of the vmci_qp_broker_alloc() call. If it is
1618                  * a vmx of version NOVMVM or later, the page store
1619                  * must be supplied as part of the
1620                  * vmci_qp_broker_alloc call.  Under all circumstances
1621                  * must the initially created queue pair not have any
1622                  * memory associated with it already.
1623                  */
1624
1625                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1626                         return VMCI_ERROR_INVALID_ARGS;
1627
1628                 if (page_store != NULL) {
1629                         /*
1630                          * Patch up host state to point to guest
1631                          * supplied memory. The VMX already
1632                          * initialized the queue pair headers, so no
1633                          * need for the kernel side to do that.
1634                          */
1635
1636                         result = qp_host_register_user_memory(page_store,
1637                                                               entry->produce_q,
1638                                                               entry->consume_q);
1639                         if (result < VMCI_SUCCESS)
1640                                 return result;
1641
1642                         entry->state = VMCIQPB_ATTACHED_MEM;
1643                 } else {
1644                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1645                 }
1646         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1647                 /*
1648                  * The host side is attempting to attach to a queue
1649                  * pair that doesn't have any memory associated with
1650                  * it. This must be a pre NOVMVM vmx that hasn't set
1651                  * the page store information yet, or a quiesced VM.
1652                  */
1653
1654                 return VMCI_ERROR_UNAVAILABLE;
1655         } else {
1656                 /* The host side has successfully attached to a queue pair. */
1657                 entry->state = VMCIQPB_ATTACHED_MEM;
1658         }
1659
1660         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1661                 result =
1662                     qp_notify_peer(true, entry->qp.handle, context_id,
1663                                    entry->create_id);
1664                 if (result < VMCI_SUCCESS)
1665                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1666                                 entry->create_id, entry->qp.handle.context,
1667                                 entry->qp.handle.resource);
1668         }
1669
1670         entry->attach_id = context_id;
1671         entry->qp.ref_count++;
1672         if (wakeup_cb) {
1673                 entry->wakeup_cb = wakeup_cb;
1674                 entry->client_data = client_data;
1675         }
1676
1677         /*
1678          * When attaching to local queue pairs, the context already has
1679          * an entry tracking the queue pair, so don't add another one.
1680          */
1681         if (!is_local)
1682                 vmci_ctx_qp_create(context, entry->qp.handle);
1683
1684         if (ent != NULL)
1685                 *ent = entry;
1686
1687         return VMCI_SUCCESS;
1688 }
1689
1690 /*
1691  * queue_pair_Alloc for use when setting up queue pair endpoints
1692  * on the host.
1693  */
1694 static int qp_broker_alloc(struct vmci_handle handle,
1695                            u32 peer,
1696                            u32 flags,
1697                            u32 priv_flags,
1698                            u64 produce_size,
1699                            u64 consume_size,
1700                            struct vmci_qp_page_store *page_store,
1701                            struct vmci_ctx *context,
1702                            vmci_event_release_cb wakeup_cb,
1703                            void *client_data,
1704                            struct qp_broker_entry **ent,
1705                            bool *swap)
1706 {
1707         const u32 context_id = vmci_ctx_get_id(context);
1708         bool create;
1709         struct qp_broker_entry *entry = NULL;
1710         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1711         int result;
1712
1713         if (vmci_handle_is_invalid(handle) ||
1714             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1715             !(produce_size || consume_size) ||
1716             !context || context_id == VMCI_INVALID_ID ||
1717             handle.context == VMCI_INVALID_ID) {
1718                 return VMCI_ERROR_INVALID_ARGS;
1719         }
1720
1721         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1722                 return VMCI_ERROR_INVALID_ARGS;
1723
1724         /*
1725          * In the initial argument check, we ensure that non-vmkernel hosts
1726          * are not allowed to create local queue pairs.
1727          */
1728
1729         mutex_lock(&qp_broker_list.mutex);
1730
1731         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1732                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1733                          context_id, handle.context, handle.resource);
1734                 mutex_unlock(&qp_broker_list.mutex);
1735                 return VMCI_ERROR_ALREADY_EXISTS;
1736         }
1737
1738         if (handle.resource != VMCI_INVALID_ID)
1739                 entry = qp_broker_handle_to_entry(handle);
1740
1741         if (!entry) {
1742                 create = true;
1743                 result =
1744                     qp_broker_create(handle, peer, flags, priv_flags,
1745                                      produce_size, consume_size, page_store,
1746                                      context, wakeup_cb, client_data, ent);
1747         } else {
1748                 create = false;
1749                 result =
1750                     qp_broker_attach(entry, peer, flags, priv_flags,
1751                                      produce_size, consume_size, page_store,
1752                                      context, wakeup_cb, client_data, ent);
1753         }
1754
1755         mutex_unlock(&qp_broker_list.mutex);
1756
1757         if (swap)
1758                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1759                     !(create && is_local);
1760
1761         return result;
1762 }
1763
1764 /*
1765  * This function implements the kernel API for allocating a queue
1766  * pair.
1767  */
1768 static int qp_alloc_host_work(struct vmci_handle *handle,
1769                               struct vmci_queue **produce_q,
1770                               u64 produce_size,
1771                               struct vmci_queue **consume_q,
1772                               u64 consume_size,
1773                               u32 peer,
1774                               u32 flags,
1775                               u32 priv_flags,
1776                               vmci_event_release_cb wakeup_cb,
1777                               void *client_data)
1778 {
1779         struct vmci_handle new_handle;
1780         struct vmci_ctx *context;
1781         struct qp_broker_entry *entry;
1782         int result;
1783         bool swap;
1784
1785         if (vmci_handle_is_invalid(*handle)) {
1786                 new_handle = vmci_make_handle(
1787                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1788         } else
1789                 new_handle = *handle;
1790
1791         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1792         entry = NULL;
1793         result =
1794             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1795                             produce_size, consume_size, NULL, context,
1796                             wakeup_cb, client_data, &entry, &swap);
1797         if (result == VMCI_SUCCESS) {
1798                 if (swap) {
1799                         /*
1800                          * If this is a local queue pair, the attacher
1801                          * will swap around produce and consume
1802                          * queues.
1803                          */
1804
1805                         *produce_q = entry->consume_q;
1806                         *consume_q = entry->produce_q;
1807                 } else {
1808                         *produce_q = entry->produce_q;
1809                         *consume_q = entry->consume_q;
1810                 }
1811
1812                 *handle = vmci_resource_handle(&entry->resource);
1813         } else {
1814                 *handle = VMCI_INVALID_HANDLE;
1815                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1816                          result);
1817         }
1818         vmci_ctx_put(context);
1819         return result;
1820 }
1821
1822 /*
1823  * Allocates a VMCI queue_pair. Only checks validity of input
1824  * arguments. The real work is done in the host or guest
1825  * specific function.
1826  */
1827 int vmci_qp_alloc(struct vmci_handle *handle,
1828                   struct vmci_queue **produce_q,
1829                   u64 produce_size,
1830                   struct vmci_queue **consume_q,
1831                   u64 consume_size,
1832                   u32 peer,
1833                   u32 flags,
1834                   u32 priv_flags,
1835                   bool guest_endpoint,
1836                   vmci_event_release_cb wakeup_cb,
1837                   void *client_data)
1838 {
1839         if (!handle || !produce_q || !consume_q ||
1840             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1841                 return VMCI_ERROR_INVALID_ARGS;
1842
1843         if (guest_endpoint) {
1844                 return qp_alloc_guest_work(handle, produce_q,
1845                                            produce_size, consume_q,
1846                                            consume_size, peer,
1847                                            flags, priv_flags);
1848         } else {
1849                 return qp_alloc_host_work(handle, produce_q,
1850                                           produce_size, consume_q,
1851                                           consume_size, peer, flags,
1852                                           priv_flags, wakeup_cb, client_data);
1853         }
1854 }
1855
1856 /*
1857  * This function implements the host kernel API for detaching from
1858  * a queue pair.
1859  */
1860 static int qp_detatch_host_work(struct vmci_handle handle)
1861 {
1862         int result;
1863         struct vmci_ctx *context;
1864
1865         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1866
1867         result = vmci_qp_broker_detach(handle, context);
1868
1869         vmci_ctx_put(context);
1870         return result;
1871 }
1872
1873 /*
1874  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1875  * Real work is done in the host or guest specific function.
1876  */
1877 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1878 {
1879         if (vmci_handle_is_invalid(handle))
1880                 return VMCI_ERROR_INVALID_ARGS;
1881
1882         if (guest_endpoint)
1883                 return qp_detatch_guest_work(handle);
1884         else
1885                 return qp_detatch_host_work(handle);
1886 }
1887
1888 /*
1889  * Returns the entry from the head of the list. Assumes that the list is
1890  * locked.
1891  */
1892 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1893 {
1894         if (!list_empty(&qp_list->head)) {
1895                 struct qp_entry *entry =
1896                     list_first_entry(&qp_list->head, struct qp_entry,
1897                                      list_item);
1898                 return entry;
1899         }
1900
1901         return NULL;
1902 }
1903
1904 void vmci_qp_broker_exit(void)
1905 {
1906         struct qp_entry *entry;
1907         struct qp_broker_entry *be;
1908
1909         mutex_lock(&qp_broker_list.mutex);
1910
1911         while ((entry = qp_list_get_head(&qp_broker_list))) {
1912                 be = (struct qp_broker_entry *)entry;
1913
1914                 qp_list_remove_entry(&qp_broker_list, entry);
1915                 kfree(be);
1916         }
1917
1918         mutex_unlock(&qp_broker_list.mutex);
1919 }
1920
1921 /*
1922  * Requests that a queue pair be allocated with the VMCI queue
1923  * pair broker. Allocates a queue pair entry if one does not
1924  * exist. Attaches to one if it exists, and retrieves the page
1925  * files backing that queue_pair.  Assumes that the queue pair
1926  * broker lock is held.
1927  */
1928 int vmci_qp_broker_alloc(struct vmci_handle handle,
1929                          u32 peer,
1930                          u32 flags,
1931                          u32 priv_flags,
1932                          u64 produce_size,
1933                          u64 consume_size,
1934                          struct vmci_qp_page_store *page_store,
1935                          struct vmci_ctx *context)
1936 {
1937         return qp_broker_alloc(handle, peer, flags, priv_flags,
1938                                produce_size, consume_size,
1939                                page_store, context, NULL, NULL, NULL, NULL);
1940 }
1941
1942 /*
1943  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1944  * step to add the UVAs of the VMX mapping of the queue pair. This function
1945  * provides backwards compatibility with such VMX'en, and takes care of
1946  * registering the page store for a queue pair previously allocated by the
1947  * VMX during create or attach. This function will move the queue pair state
1948  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1949  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1950  * attached state with memory, the queue pair is ready to be used by the
1951  * host peer, and an attached event will be generated.
1952  *
1953  * Assumes that the queue pair broker lock is held.
1954  *
1955  * This function is only used by the hosted platform, since there is no
1956  * issue with backwards compatibility for vmkernel.
1957  */
1958 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1959                                   u64 produce_uva,
1960                                   u64 consume_uva,
1961                                   struct vmci_ctx *context)
1962 {
1963         struct qp_broker_entry *entry;
1964         int result;
1965         const u32 context_id = vmci_ctx_get_id(context);
1966
1967         if (vmci_handle_is_invalid(handle) || !context ||
1968             context_id == VMCI_INVALID_ID)
1969                 return VMCI_ERROR_INVALID_ARGS;
1970
1971         /*
1972          * We only support guest to host queue pairs, so the VMX must
1973          * supply UVAs for the mapped page files.
1974          */
1975
1976         if (produce_uva == 0 || consume_uva == 0)
1977                 return VMCI_ERROR_INVALID_ARGS;
1978
1979         mutex_lock(&qp_broker_list.mutex);
1980
1981         if (!vmci_ctx_qp_exists(context, handle)) {
1982                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1983                         context_id, handle.context, handle.resource);
1984                 result = VMCI_ERROR_NOT_FOUND;
1985                 goto out;
1986         }
1987
1988         entry = qp_broker_handle_to_entry(handle);
1989         if (!entry) {
1990                 result = VMCI_ERROR_NOT_FOUND;
1991                 goto out;
1992         }
1993
1994         /*
1995          * If I'm the owner then I can set the page store.
1996          *
1997          * Or, if a host created the queue_pair and I'm the attached peer
1998          * then I can set the page store.
1999          */
2000         if (entry->create_id != context_id &&
2001             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2002              entry->attach_id != context_id)) {
2003                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2004                 goto out;
2005         }
2006
2007         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2008             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2009                 result = VMCI_ERROR_UNAVAILABLE;
2010                 goto out;
2011         }
2012
2013         result = qp_host_get_user_memory(produce_uva, consume_uva,
2014                                          entry->produce_q, entry->consume_q);
2015         if (result < VMCI_SUCCESS)
2016                 goto out;
2017
2018         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2019         if (result < VMCI_SUCCESS) {
2020                 qp_host_unregister_user_memory(entry->produce_q,
2021                                                entry->consume_q);
2022                 goto out;
2023         }
2024
2025         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2026                 entry->state = VMCIQPB_CREATED_MEM;
2027         else
2028                 entry->state = VMCIQPB_ATTACHED_MEM;
2029
2030         entry->vmci_page_files = true;
2031
2032         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2033                 result =
2034                     qp_notify_peer(true, handle, context_id, entry->create_id);
2035                 if (result < VMCI_SUCCESS) {
2036                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2037                                 entry->create_id, entry->qp.handle.context,
2038                                 entry->qp.handle.resource);
2039                 }
2040         }
2041
2042         result = VMCI_SUCCESS;
2043  out:
2044         mutex_unlock(&qp_broker_list.mutex);
2045         return result;
2046 }
2047
2048 /*
2049  * Resets saved queue headers for the given QP broker
2050  * entry. Should be used when guest memory becomes available
2051  * again, or the guest detaches.
2052  */
2053 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2054 {
2055         entry->produce_q->saved_header = NULL;
2056         entry->consume_q->saved_header = NULL;
2057 }
2058
2059 /*
2060  * The main entry point for detaching from a queue pair registered with the
2061  * queue pair broker. If more than one endpoint is attached to the queue
2062  * pair, the first endpoint will mainly decrement a reference count and
2063  * generate a notification to its peer. The last endpoint will clean up
2064  * the queue pair state registered with the broker.
2065  *
2066  * When a guest endpoint detaches, it will unmap and unregister the guest
2067  * memory backing the queue pair. If the host is still attached, it will
2068  * no longer be able to access the queue pair content.
2069  *
2070  * If the queue pair is already in a state where there is no memory
2071  * registered for the queue pair (any *_NO_MEM state), it will transition to
2072  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2073  * endpoint is the first of two endpoints to detach. If the host endpoint is
2074  * the first out of two to detach, the queue pair will move to the
2075  * VMCIQPB_SHUTDOWN_MEM state.
2076  */
2077 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2078 {
2079         struct qp_broker_entry *entry;
2080         const u32 context_id = vmci_ctx_get_id(context);
2081         u32 peer_id;
2082         bool is_local = false;
2083         int result;
2084
2085         if (vmci_handle_is_invalid(handle) || !context ||
2086             context_id == VMCI_INVALID_ID) {
2087                 return VMCI_ERROR_INVALID_ARGS;
2088         }
2089
2090         mutex_lock(&qp_broker_list.mutex);
2091
2092         if (!vmci_ctx_qp_exists(context, handle)) {
2093                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2094                          context_id, handle.context, handle.resource);
2095                 result = VMCI_ERROR_NOT_FOUND;
2096                 goto out;
2097         }
2098
2099         entry = qp_broker_handle_to_entry(handle);
2100         if (!entry) {
2101                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2102                          context_id, handle.context, handle.resource);
2103                 result = VMCI_ERROR_NOT_FOUND;
2104                 goto out;
2105         }
2106
2107         if (context_id != entry->create_id && context_id != entry->attach_id) {
2108                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2109                 goto out;
2110         }
2111
2112         if (context_id == entry->create_id) {
2113                 peer_id = entry->attach_id;
2114                 entry->create_id = VMCI_INVALID_ID;
2115         } else {
2116                 peer_id = entry->create_id;
2117                 entry->attach_id = VMCI_INVALID_ID;
2118         }
2119         entry->qp.ref_count--;
2120
2121         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2122
2123         if (context_id != VMCI_HOST_CONTEXT_ID) {
2124                 bool headers_mapped;
2125
2126                 /*
2127                  * Pre NOVMVM vmx'en may detach from a queue pair
2128                  * before setting the page store, and in that case
2129                  * there is no user memory to detach from. Also, more
2130                  * recent VMX'en may detach from a queue pair in the
2131                  * quiesced state.
2132                  */
2133
2134                 qp_acquire_queue_mutex(entry->produce_q);
2135                 headers_mapped = entry->produce_q->q_header ||
2136                     entry->consume_q->q_header;
2137                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2138                         result =
2139                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2140                                                  entry->produce_q,
2141                                                  entry->consume_q);
2142                         if (result < VMCI_SUCCESS)
2143                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2144                                         handle.context, handle.resource,
2145                                         result);
2146
2147                         qp_host_unregister_user_memory(entry->produce_q,
2148                                                        entry->consume_q);
2149
2150                 }
2151
2152                 if (!headers_mapped)
2153                         qp_reset_saved_headers(entry);
2154
2155                 qp_release_queue_mutex(entry->produce_q);
2156
2157                 if (!headers_mapped && entry->wakeup_cb)
2158                         entry->wakeup_cb(entry->client_data);
2159
2160         } else {
2161                 if (entry->wakeup_cb) {
2162                         entry->wakeup_cb = NULL;
2163                         entry->client_data = NULL;
2164                 }
2165         }
2166
2167         if (entry->qp.ref_count == 0) {
2168                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2169
2170                 if (is_local)
2171                         kfree(entry->local_mem);
2172
2173                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2174                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2175                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2176                 /* Unlink from resource hash table and free callback */
2177                 vmci_resource_remove(&entry->resource);
2178
2179                 kfree(entry);
2180
2181                 vmci_ctx_qp_destroy(context, handle);
2182         } else {
2183                 qp_notify_peer(false, handle, context_id, peer_id);
2184                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2185                     QPBROKERSTATE_HAS_MEM(entry)) {
2186                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2187                 } else {
2188                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2189                 }
2190
2191                 if (!is_local)
2192                         vmci_ctx_qp_destroy(context, handle);
2193
2194         }
2195         result = VMCI_SUCCESS;
2196  out:
2197         mutex_unlock(&qp_broker_list.mutex);
2198         return result;
2199 }
2200
2201 /*
2202  * Establishes the necessary mappings for a queue pair given a
2203  * reference to the queue pair guest memory. This is usually
2204  * called when a guest is unquiesced and the VMX is allowed to
2205  * map guest memory once again.
2206  */
2207 int vmci_qp_broker_map(struct vmci_handle handle,
2208                        struct vmci_ctx *context,
2209                        u64 guest_mem)
2210 {
2211         struct qp_broker_entry *entry;
2212         const u32 context_id = vmci_ctx_get_id(context);
2213         int result;
2214
2215         if (vmci_handle_is_invalid(handle) || !context ||
2216             context_id == VMCI_INVALID_ID)
2217                 return VMCI_ERROR_INVALID_ARGS;
2218
2219         mutex_lock(&qp_broker_list.mutex);
2220
2221         if (!vmci_ctx_qp_exists(context, handle)) {
2222                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2223                          context_id, handle.context, handle.resource);
2224                 result = VMCI_ERROR_NOT_FOUND;
2225                 goto out;
2226         }
2227
2228         entry = qp_broker_handle_to_entry(handle);
2229         if (!entry) {
2230                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2231                          context_id, handle.context, handle.resource);
2232                 result = VMCI_ERROR_NOT_FOUND;
2233                 goto out;
2234         }
2235
2236         if (context_id != entry->create_id && context_id != entry->attach_id) {
2237                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2238                 goto out;
2239         }
2240
2241         result = VMCI_SUCCESS;
2242
2243         if (context_id != VMCI_HOST_CONTEXT_ID &&
2244             !QPBROKERSTATE_HAS_MEM(entry)) {
2245                 struct vmci_qp_page_store page_store;
2246
2247                 page_store.pages = guest_mem;
2248                 page_store.len = QPE_NUM_PAGES(entry->qp);
2249
2250                 qp_acquire_queue_mutex(entry->produce_q);
2251                 qp_reset_saved_headers(entry);
2252                 result =
2253                     qp_host_register_user_memory(&page_store,
2254                                                  entry->produce_q,
2255                                                  entry->consume_q);
2256                 qp_release_queue_mutex(entry->produce_q);
2257                 if (result == VMCI_SUCCESS) {
2258                         /* Move state from *_NO_MEM to *_MEM */
2259
2260                         entry->state++;
2261
2262                         if (entry->wakeup_cb)
2263                                 entry->wakeup_cb(entry->client_data);
2264                 }
2265         }
2266
2267  out:
2268         mutex_unlock(&qp_broker_list.mutex);
2269         return result;
2270 }
2271
2272 /*
2273  * Saves a snapshot of the queue headers for the given QP broker
2274  * entry. Should be used when guest memory is unmapped.
2275  * Results:
2276  * VMCI_SUCCESS on success, appropriate error code if guest memory
2277  * can't be accessed..
2278  */
2279 static int qp_save_headers(struct qp_broker_entry *entry)
2280 {
2281         int result;
2282
2283         if (entry->produce_q->saved_header != NULL &&
2284             entry->consume_q->saved_header != NULL) {
2285                 /*
2286                  *  If the headers have already been saved, we don't need to do
2287                  *  it again, and we don't want to map in the headers
2288                  *  unnecessarily.
2289                  */
2290
2291                 return VMCI_SUCCESS;
2292         }
2293
2294         if (NULL == entry->produce_q->q_header ||
2295             NULL == entry->consume_q->q_header) {
2296                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2297                 if (result < VMCI_SUCCESS)
2298                         return result;
2299         }
2300
2301         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2302                sizeof(entry->saved_produce_q));
2303         entry->produce_q->saved_header = &entry->saved_produce_q;
2304         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2305                sizeof(entry->saved_consume_q));
2306         entry->consume_q->saved_header = &entry->saved_consume_q;
2307
2308         return VMCI_SUCCESS;
2309 }
2310
2311 /*
2312  * Removes all references to the guest memory of a given queue pair, and
2313  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2314  * called when a VM is being quiesced where access to guest memory should
2315  * avoided.
2316  */
2317 int vmci_qp_broker_unmap(struct vmci_handle handle,
2318                          struct vmci_ctx *context,
2319                          u32 gid)
2320 {
2321         struct qp_broker_entry *entry;
2322         const u32 context_id = vmci_ctx_get_id(context);
2323         int result;
2324
2325         if (vmci_handle_is_invalid(handle) || !context ||
2326             context_id == VMCI_INVALID_ID)
2327                 return VMCI_ERROR_INVALID_ARGS;
2328
2329         mutex_lock(&qp_broker_list.mutex);
2330
2331         if (!vmci_ctx_qp_exists(context, handle)) {
2332                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2333                          context_id, handle.context, handle.resource);
2334                 result = VMCI_ERROR_NOT_FOUND;
2335                 goto out;
2336         }
2337
2338         entry = qp_broker_handle_to_entry(handle);
2339         if (!entry) {
2340                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2341                          context_id, handle.context, handle.resource);
2342                 result = VMCI_ERROR_NOT_FOUND;
2343                 goto out;
2344         }
2345
2346         if (context_id != entry->create_id && context_id != entry->attach_id) {
2347                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2348                 goto out;
2349         }
2350
2351         if (context_id != VMCI_HOST_CONTEXT_ID &&
2352             QPBROKERSTATE_HAS_MEM(entry)) {
2353                 qp_acquire_queue_mutex(entry->produce_q);
2354                 result = qp_save_headers(entry);
2355                 if (result < VMCI_SUCCESS)
2356                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2357                                 handle.context, handle.resource, result);
2358
2359                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2360
2361                 /*
2362                  * On hosted, when we unmap queue pairs, the VMX will also
2363                  * unmap the guest memory, so we invalidate the previously
2364                  * registered memory. If the queue pair is mapped again at a
2365                  * later point in time, we will need to reregister the user
2366                  * memory with a possibly new user VA.
2367                  */
2368                 qp_host_unregister_user_memory(entry->produce_q,
2369                                                entry->consume_q);
2370
2371                 /*
2372                  * Move state from *_MEM to *_NO_MEM.
2373                  */
2374                 entry->state--;
2375
2376                 qp_release_queue_mutex(entry->produce_q);
2377         }
2378
2379         result = VMCI_SUCCESS;
2380
2381  out:
2382         mutex_unlock(&qp_broker_list.mutex);
2383         return result;
2384 }
2385
2386 /*
2387  * Destroys all guest queue pair endpoints. If active guest queue
2388  * pairs still exist, hypercalls to attempt detach from these
2389  * queue pairs will be made. Any failure to detach is silently
2390  * ignored.
2391  */
2392 void vmci_qp_guest_endpoints_exit(void)
2393 {
2394         struct qp_entry *entry;
2395         struct qp_guest_endpoint *ep;
2396
2397         mutex_lock(&qp_guest_endpoints.mutex);
2398
2399         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2400                 ep = (struct qp_guest_endpoint *)entry;
2401
2402                 /* Don't make a hypercall for local queue_pairs. */
2403                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2404                         qp_detatch_hypercall(entry->handle);
2405
2406                 /* We cannot fail the exit, so let's reset ref_count. */
2407                 entry->ref_count = 0;
2408                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2409
2410                 qp_guest_endpoint_destroy(ep);
2411         }
2412
2413         mutex_unlock(&qp_guest_endpoints.mutex);
2414 }
2415
2416 /*
2417  * Helper routine that will lock the queue pair before subsequent
2418  * operations.
2419  * Note: Non-blocking on the host side is currently only implemented in ESX.
2420  * Since non-blocking isn't yet implemented on the host personality we
2421  * have no reason to acquire a spin lock.  So to avoid the use of an
2422  * unnecessary lock only acquire the mutex if we can block.
2423  */
2424 static void qp_lock(const struct vmci_qp *qpair)
2425 {
2426         qp_acquire_queue_mutex(qpair->produce_q);
2427 }
2428
2429 /*
2430  * Helper routine that unlocks the queue pair after calling
2431  * qp_lock.
2432  */
2433 static void qp_unlock(const struct vmci_qp *qpair)
2434 {
2435         qp_release_queue_mutex(qpair->produce_q);
2436 }
2437
2438 /*
2439  * The queue headers may not be mapped at all times. If a queue is
2440  * currently not mapped, it will be attempted to do so.
2441  */
2442 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2443                                 struct vmci_queue *consume_q)
2444 {
2445         int result;
2446
2447         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2448                 result = qp_host_map_queues(produce_q, consume_q);
2449                 if (result < VMCI_SUCCESS)
2450                         return (produce_q->saved_header &&
2451                                 consume_q->saved_header) ?
2452                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2453                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2454         }
2455
2456         return VMCI_SUCCESS;
2457 }
2458
2459 /*
2460  * Helper routine that will retrieve the produce and consume
2461  * headers of a given queue pair. If the guest memory of the
2462  * queue pair is currently not available, the saved queue headers
2463  * will be returned, if these are available.
2464  */
2465 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2466                                 struct vmci_queue_header **produce_q_header,
2467                                 struct vmci_queue_header **consume_q_header)
2468 {
2469         int result;
2470
2471         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2472         if (result == VMCI_SUCCESS) {
2473                 *produce_q_header = qpair->produce_q->q_header;
2474                 *consume_q_header = qpair->consume_q->q_header;
2475         } else if (qpair->produce_q->saved_header &&
2476                    qpair->consume_q->saved_header) {
2477                 *produce_q_header = qpair->produce_q->saved_header;
2478                 *consume_q_header = qpair->consume_q->saved_header;
2479                 result = VMCI_SUCCESS;
2480         }
2481
2482         return result;
2483 }
2484
2485 /*
2486  * Callback from VMCI queue pair broker indicating that a queue
2487  * pair that was previously not ready, now either is ready or
2488  * gone forever.
2489  */
2490 static int qp_wakeup_cb(void *client_data)
2491 {
2492         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2493
2494         qp_lock(qpair);
2495         while (qpair->blocked > 0) {
2496                 qpair->blocked--;
2497                 qpair->generation++;
2498                 wake_up(&qpair->event);
2499         }
2500         qp_unlock(qpair);
2501
2502         return VMCI_SUCCESS;
2503 }
2504
2505 /*
2506  * Makes the calling thread wait for the queue pair to become
2507  * ready for host side access.  Returns true when thread is
2508  * woken up after queue pair state change, false otherwise.
2509  */
2510 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2511 {
2512         unsigned int generation;
2513
2514         qpair->blocked++;
2515         generation = qpair->generation;
2516         qp_unlock(qpair);
2517         wait_event(qpair->event, generation != qpair->generation);
2518         qp_lock(qpair);
2519
2520         return true;
2521 }
2522
2523 /*
2524  * Enqueues a given buffer to the produce queue using the provided
2525  * function. As many bytes as possible (space available in the queue)
2526  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2527  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2528  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2529  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2530  * an error occured when accessing the buffer,
2531  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2532  * available.  Otherwise, the number of bytes written to the queue is
2533  * returned.  Updates the tail pointer of the produce queue.
2534  */
2535 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2536                                  struct vmci_queue *consume_q,
2537                                  const u64 produce_q_size,
2538                                  struct iov_iter *from)
2539 {
2540         s64 free_space;
2541         u64 tail;
2542         size_t buf_size = iov_iter_count(from);
2543         size_t written;
2544         ssize_t result;
2545
2546         result = qp_map_queue_headers(produce_q, consume_q);
2547         if (unlikely(result != VMCI_SUCCESS))
2548                 return result;
2549
2550         free_space = vmci_q_header_free_space(produce_q->q_header,
2551                                               consume_q->q_header,
2552                                               produce_q_size);
2553         if (free_space == 0)
2554                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2555
2556         if (free_space < VMCI_SUCCESS)
2557                 return (ssize_t) free_space;
2558
2559         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2560         tail = vmci_q_header_producer_tail(produce_q->q_header);
2561         if (likely(tail + written < produce_q_size)) {
2562                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2563         } else {
2564                 /* Tail pointer wraps around. */
2565
2566                 const size_t tmp = (size_t) (produce_q_size - tail);
2567
2568                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2569                 if (result >= VMCI_SUCCESS)
2570                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2571                                                  written - tmp);
2572         }
2573
2574         if (result < VMCI_SUCCESS)
2575                 return result;
2576
2577         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2578                                         produce_q_size);
2579         return written;
2580 }
2581
2582 /*
2583  * Dequeues data (if available) from the given consume queue. Writes data
2584  * to the user provided buffer using the provided function.
2585  * Assumes the queue->mutex has been acquired.
2586  * Results:
2587  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2588  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2589  * (as defined by the queue size).
2590  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2591  * Otherwise the number of bytes dequeued is returned.
2592  * Side effects:
2593  * Updates the head pointer of the consume queue.
2594  */
2595 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2596                                  struct vmci_queue *consume_q,
2597                                  const u64 consume_q_size,
2598                                  struct iov_iter *to,
2599                                  bool update_consumer)
2600 {
2601         size_t buf_size = iov_iter_count(to);
2602         s64 buf_ready;
2603         u64 head;
2604         size_t read;
2605         ssize_t result;
2606
2607         result = qp_map_queue_headers(produce_q, consume_q);
2608         if (unlikely(result != VMCI_SUCCESS))
2609                 return result;
2610
2611         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2612                                             produce_q->q_header,
2613                                             consume_q_size);
2614         if (buf_ready == 0)
2615                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2616
2617         if (buf_ready < VMCI_SUCCESS)
2618                 return (ssize_t) buf_ready;
2619
2620         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2621         head = vmci_q_header_consumer_head(produce_q->q_header);
2622         if (likely(head + read < consume_q_size)) {
2623                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2624         } else {
2625                 /* Head pointer wraps around. */
2626
2627                 const size_t tmp = (size_t) (consume_q_size - head);
2628
2629                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2630                 if (result >= VMCI_SUCCESS)
2631                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2632                                                    read - tmp);
2633
2634         }
2635
2636         if (result < VMCI_SUCCESS)
2637                 return result;
2638
2639         if (update_consumer)
2640                 vmci_q_header_add_consumer_head(produce_q->q_header,
2641                                                 read, consume_q_size);
2642
2643         return read;
2644 }
2645
2646 /*
2647  * vmci_qpair_alloc() - Allocates a queue pair.
2648  * @qpair:      Pointer for the new vmci_qp struct.
2649  * @handle:     Handle to track the resource.
2650  * @produce_qsize:      Desired size of the producer queue.
2651  * @consume_qsize:      Desired size of the consumer queue.
2652  * @peer:       ContextID of the peer.
2653  * @flags:      VMCI flags.
2654  * @priv_flags: VMCI priviledge flags.
2655  *
2656  * This is the client interface for allocating the memory for a
2657  * vmci_qp structure and then attaching to the underlying
2658  * queue.  If an error occurs allocating the memory for the
2659  * vmci_qp structure no attempt is made to attach.  If an
2660  * error occurs attaching, then the structure is freed.
2661  */
2662 int vmci_qpair_alloc(struct vmci_qp **qpair,
2663                      struct vmci_handle *handle,
2664                      u64 produce_qsize,
2665                      u64 consume_qsize,
2666                      u32 peer,
2667                      u32 flags,
2668                      u32 priv_flags)
2669 {
2670         struct vmci_qp *my_qpair;
2671         int retval;
2672         struct vmci_handle src = VMCI_INVALID_HANDLE;
2673         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2674         enum vmci_route route;
2675         vmci_event_release_cb wakeup_cb;
2676         void *client_data;
2677
2678         /*
2679          * Restrict the size of a queuepair.  The device already
2680          * enforces a limit on the total amount of memory that can be
2681          * allocated to queuepairs for a guest.  However, we try to
2682          * allocate this memory before we make the queuepair
2683          * allocation hypercall.  On Linux, we allocate each page
2684          * separately, which means rather than fail, the guest will
2685          * thrash while it tries to allocate, and will become
2686          * increasingly unresponsive to the point where it appears to
2687          * be hung.  So we place a limit on the size of an individual
2688          * queuepair here, and leave the device to enforce the
2689          * restriction on total queuepair memory.  (Note that this
2690          * doesn't prevent all cases; a user with only this much
2691          * physical memory could still get into trouble.)  The error
2692          * used by the device is NO_RESOURCES, so use that here too.
2693          */
2694
2695         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2696             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2697                 return VMCI_ERROR_NO_RESOURCES;
2698
2699         retval = vmci_route(&src, &dst, false, &route);
2700         if (retval < VMCI_SUCCESS)
2701                 route = vmci_guest_code_active() ?
2702                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2703
2704         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2705                 pr_devel("NONBLOCK OR PINNED set");
2706                 return VMCI_ERROR_INVALID_ARGS;
2707         }
2708
2709         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2710         if (!my_qpair)
2711                 return VMCI_ERROR_NO_MEM;
2712
2713         my_qpair->produce_q_size = produce_qsize;
2714         my_qpair->consume_q_size = consume_qsize;
2715         my_qpair->peer = peer;
2716         my_qpair->flags = flags;
2717         my_qpair->priv_flags = priv_flags;
2718
2719         wakeup_cb = NULL;
2720         client_data = NULL;
2721
2722         if (VMCI_ROUTE_AS_HOST == route) {
2723                 my_qpair->guest_endpoint = false;
2724                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2725                         my_qpair->blocked = 0;
2726                         my_qpair->generation = 0;
2727                         init_waitqueue_head(&my_qpair->event);
2728                         wakeup_cb = qp_wakeup_cb;
2729                         client_data = (void *)my_qpair;
2730                 }
2731         } else {
2732                 my_qpair->guest_endpoint = true;
2733         }
2734
2735         retval = vmci_qp_alloc(handle,
2736                                &my_qpair->produce_q,
2737                                my_qpair->produce_q_size,
2738                                &my_qpair->consume_q,
2739                                my_qpair->consume_q_size,
2740                                my_qpair->peer,
2741                                my_qpair->flags,
2742                                my_qpair->priv_flags,
2743                                my_qpair->guest_endpoint,
2744                                wakeup_cb, client_data);
2745
2746         if (retval < VMCI_SUCCESS) {
2747                 kfree(my_qpair);
2748                 return retval;
2749         }
2750
2751         *qpair = my_qpair;
2752         my_qpair->handle = *handle;
2753
2754         return retval;
2755 }
2756 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2757
2758 /*
2759  * vmci_qpair_detach() - Detatches the client from a queue pair.
2760  * @qpair:      Reference of a pointer to the qpair struct.
2761  *
2762  * This is the client interface for detaching from a VMCIQPair.
2763  * Note that this routine will free the memory allocated for the
2764  * vmci_qp structure too.
2765  */
2766 int vmci_qpair_detach(struct vmci_qp **qpair)
2767 {
2768         int result;
2769         struct vmci_qp *old_qpair;
2770
2771         if (!qpair || !(*qpair))
2772                 return VMCI_ERROR_INVALID_ARGS;
2773
2774         old_qpair = *qpair;
2775         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2776
2777         /*
2778          * The guest can fail to detach for a number of reasons, and
2779          * if it does so, it will cleanup the entry (if there is one).
2780          * The host can fail too, but it won't cleanup the entry
2781          * immediately, it will do that later when the context is
2782          * freed.  Either way, we need to release the qpair struct
2783          * here; there isn't much the caller can do, and we don't want
2784          * to leak.
2785          */
2786
2787         memset(old_qpair, 0, sizeof(*old_qpair));
2788         old_qpair->handle = VMCI_INVALID_HANDLE;
2789         old_qpair->peer = VMCI_INVALID_ID;
2790         kfree(old_qpair);
2791         *qpair = NULL;
2792
2793         return result;
2794 }
2795 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2796
2797 /*
2798  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2799  * @qpair:      Pointer to the queue pair struct.
2800  * @producer_tail:      Reference used for storing producer tail index.
2801  * @consumer_head:      Reference used for storing the consumer head index.
2802  *
2803  * This is the client interface for getting the current indexes of the
2804  * QPair from the point of the view of the caller as the producer.
2805  */
2806 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2807                                    u64 *producer_tail,
2808                                    u64 *consumer_head)
2809 {
2810         struct vmci_queue_header *produce_q_header;
2811         struct vmci_queue_header *consume_q_header;
2812         int result;
2813
2814         if (!qpair)
2815                 return VMCI_ERROR_INVALID_ARGS;
2816
2817         qp_lock(qpair);
2818         result =
2819             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2820         if (result == VMCI_SUCCESS)
2821                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2822                                            producer_tail, consumer_head);
2823         qp_unlock(qpair);
2824
2825         if (result == VMCI_SUCCESS &&
2826             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2827              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2828                 return VMCI_ERROR_INVALID_SIZE;
2829
2830         return result;
2831 }
2832 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2833
2834 /*
2835  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2836  * @qpair:      Pointer to the queue pair struct.
2837  * @consumer_tail:      Reference used for storing consumer tail index.
2838  * @producer_head:      Reference used for storing the producer head index.
2839  *
2840  * This is the client interface for getting the current indexes of the
2841  * QPair from the point of the view of the caller as the consumer.
2842  */
2843 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2844                                    u64 *consumer_tail,
2845                                    u64 *producer_head)
2846 {
2847         struct vmci_queue_header *produce_q_header;
2848         struct vmci_queue_header *consume_q_header;
2849         int result;
2850
2851         if (!qpair)
2852                 return VMCI_ERROR_INVALID_ARGS;
2853
2854         qp_lock(qpair);
2855         result =
2856             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2857         if (result == VMCI_SUCCESS)
2858                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2859                                            consumer_tail, producer_head);
2860         qp_unlock(qpair);
2861
2862         if (result == VMCI_SUCCESS &&
2863             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2864              (producer_head && *producer_head >= qpair->consume_q_size)))
2865                 return VMCI_ERROR_INVALID_SIZE;
2866
2867         return result;
2868 }
2869 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2870
2871 /*
2872  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2873  * @qpair:      Pointer to the queue pair struct.
2874  *
2875  * This is the client interface for getting the amount of free
2876  * space in the QPair from the point of the view of the caller as
2877  * the producer which is the common case.  Returns < 0 if err, else
2878  * available bytes into which data can be enqueued if > 0.
2879  */
2880 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2881 {
2882         struct vmci_queue_header *produce_q_header;
2883         struct vmci_queue_header *consume_q_header;
2884         s64 result;
2885
2886         if (!qpair)
2887                 return VMCI_ERROR_INVALID_ARGS;
2888
2889         qp_lock(qpair);
2890         result =
2891             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2892         if (result == VMCI_SUCCESS)
2893                 result = vmci_q_header_free_space(produce_q_header,
2894                                                   consume_q_header,
2895                                                   qpair->produce_q_size);
2896         else
2897                 result = 0;
2898
2899         qp_unlock(qpair);
2900
2901         return result;
2902 }
2903 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2904
2905 /*
2906  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2907  * @qpair:      Pointer to the queue pair struct.
2908  *
2909  * This is the client interface for getting the amount of free
2910  * space in the QPair from the point of the view of the caller as
2911  * the consumer which is not the common case.  Returns < 0 if err, else
2912  * available bytes into which data can be enqueued if > 0.
2913  */
2914 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2915 {
2916         struct vmci_queue_header *produce_q_header;
2917         struct vmci_queue_header *consume_q_header;
2918         s64 result;
2919
2920         if (!qpair)
2921                 return VMCI_ERROR_INVALID_ARGS;
2922
2923         qp_lock(qpair);
2924         result =
2925             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2926         if (result == VMCI_SUCCESS)
2927                 result = vmci_q_header_free_space(consume_q_header,
2928                                                   produce_q_header,
2929                                                   qpair->consume_q_size);
2930         else
2931                 result = 0;
2932
2933         qp_unlock(qpair);
2934
2935         return result;
2936 }
2937 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2938
2939 /*
2940  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2941  * producer queue.
2942  * @qpair:      Pointer to the queue pair struct.
2943  *
2944  * This is the client interface for getting the amount of
2945  * enqueued data in the QPair from the point of the view of the
2946  * caller as the producer which is not the common case.  Returns < 0 if err,
2947  * else available bytes that may be read.
2948  */
2949 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2950 {
2951         struct vmci_queue_header *produce_q_header;
2952         struct vmci_queue_header *consume_q_header;
2953         s64 result;
2954
2955         if (!qpair)
2956                 return VMCI_ERROR_INVALID_ARGS;
2957
2958         qp_lock(qpair);
2959         result =
2960             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2961         if (result == VMCI_SUCCESS)
2962                 result = vmci_q_header_buf_ready(produce_q_header,
2963                                                  consume_q_header,
2964                                                  qpair->produce_q_size);
2965         else
2966                 result = 0;
2967
2968         qp_unlock(qpair);
2969
2970         return result;
2971 }
2972 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2973
2974 /*
2975  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2976  * consumer queue.
2977  * @qpair:      Pointer to the queue pair struct.
2978  *
2979  * This is the client interface for getting the amount of
2980  * enqueued data in the QPair from the point of the view of the
2981  * caller as the consumer which is the normal case.  Returns < 0 if err,
2982  * else available bytes that may be read.
2983  */
2984 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2985 {
2986         struct vmci_queue_header *produce_q_header;
2987         struct vmci_queue_header *consume_q_header;
2988         s64 result;
2989
2990         if (!qpair)
2991                 return VMCI_ERROR_INVALID_ARGS;
2992
2993         qp_lock(qpair);
2994         result =
2995             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2996         if (result == VMCI_SUCCESS)
2997                 result = vmci_q_header_buf_ready(consume_q_header,
2998                                                  produce_q_header,
2999                                                  qpair->consume_q_size);
3000         else
3001                 result = 0;
3002
3003         qp_unlock(qpair);
3004
3005         return result;
3006 }
3007 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3008
3009 /*
3010  * vmci_qpair_enqueue() - Throw data on the queue.
3011  * @qpair:      Pointer to the queue pair struct.
3012  * @buf:        Pointer to buffer containing data
3013  * @buf_size:   Length of buffer.
3014  * @buf_type:   Buffer type (Unused).
3015  *
3016  * This is the client interface for enqueueing data into the queue.
3017  * Returns number of bytes enqueued or < 0 on error.
3018  */
3019 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3020                            const void *buf,
3021                            size_t buf_size,
3022                            int buf_type)
3023 {
3024         ssize_t result;
3025         struct iov_iter from;
3026         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3027
3028         if (!qpair || !buf)
3029                 return VMCI_ERROR_INVALID_ARGS;
3030
3031         iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3032
3033         qp_lock(qpair);
3034
3035         do {
3036                 result = qp_enqueue_locked(qpair->produce_q,
3037                                            qpair->consume_q,
3038                                            qpair->produce_q_size,
3039                                            &from);
3040
3041                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3042                     !qp_wait_for_ready_queue(qpair))
3043                         result = VMCI_ERROR_WOULD_BLOCK;
3044
3045         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3046
3047         qp_unlock(qpair);
3048
3049         return result;
3050 }
3051 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3052
3053 /*
3054  * vmci_qpair_dequeue() - Get data from the queue.
3055  * @qpair:      Pointer to the queue pair struct.
3056  * @buf:        Pointer to buffer for the data
3057  * @buf_size:   Length of buffer.
3058  * @buf_type:   Buffer type (Unused).
3059  *
3060  * This is the client interface for dequeueing data from the queue.
3061  * Returns number of bytes dequeued or < 0 on error.
3062  */
3063 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3064                            void *buf,
3065                            size_t buf_size,
3066                            int buf_type)
3067 {
3068         ssize_t result;
3069         struct iov_iter to;
3070         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3071
3072         if (!qpair || !buf)
3073                 return VMCI_ERROR_INVALID_ARGS;
3074
3075         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3076
3077         qp_lock(qpair);
3078
3079         do {
3080                 result = qp_dequeue_locked(qpair->produce_q,
3081                                            qpair->consume_q,
3082                                            qpair->consume_q_size,
3083                                            &to, true);
3084
3085                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3086                     !qp_wait_for_ready_queue(qpair))
3087                         result = VMCI_ERROR_WOULD_BLOCK;
3088
3089         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3090
3091         qp_unlock(qpair);
3092
3093         return result;
3094 }
3095 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3096
3097 /*
3098  * vmci_qpair_peek() - Peek at the data in the queue.
3099  * @qpair:      Pointer to the queue pair struct.
3100  * @buf:        Pointer to buffer for the data
3101  * @buf_size:   Length of buffer.
3102  * @buf_type:   Buffer type (Unused on Linux).
3103  *
3104  * This is the client interface for peeking into a queue.  (I.e.,
3105  * copy data from the queue without updating the head pointer.)
3106  * Returns number of bytes dequeued or < 0 on error.
3107  */
3108 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3109                         void *buf,
3110                         size_t buf_size,
3111                         int buf_type)
3112 {
3113         struct iov_iter to;
3114         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3115         ssize_t result;
3116
3117         if (!qpair || !buf)
3118                 return VMCI_ERROR_INVALID_ARGS;
3119
3120         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3121
3122         qp_lock(qpair);
3123
3124         do {
3125                 result = qp_dequeue_locked(qpair->produce_q,
3126                                            qpair->consume_q,
3127                                            qpair->consume_q_size,
3128                                            &to, false);
3129
3130                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3131                     !qp_wait_for_ready_queue(qpair))
3132                         result = VMCI_ERROR_WOULD_BLOCK;
3133
3134         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3135
3136         qp_unlock(qpair);
3137
3138         return result;
3139 }
3140 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3141
3142 /*
3143  * vmci_qpair_enquev() - Throw data on the queue using iov.
3144  * @qpair:      Pointer to the queue pair struct.
3145  * @iov:        Pointer to buffer containing data
3146  * @iov_size:   Length of buffer.
3147  * @buf_type:   Buffer type (Unused).
3148  *
3149  * This is the client interface for enqueueing data into the queue.
3150  * This function uses IO vectors to handle the work. Returns number
3151  * of bytes enqueued or < 0 on error.
3152  */
3153 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3154                           struct msghdr *msg,
3155                           size_t iov_size,
3156                           int buf_type)
3157 {
3158         ssize_t result;
3159
3160         if (!qpair)
3161                 return VMCI_ERROR_INVALID_ARGS;
3162
3163         qp_lock(qpair);
3164
3165         do {
3166                 result = qp_enqueue_locked(qpair->produce_q,
3167                                            qpair->consume_q,
3168                                            qpair->produce_q_size,
3169                                            &msg->msg_iter);
3170
3171                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3172                     !qp_wait_for_ready_queue(qpair))
3173                         result = VMCI_ERROR_WOULD_BLOCK;
3174
3175         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3176
3177         qp_unlock(qpair);
3178
3179         return result;
3180 }
3181 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3182
3183 /*
3184  * vmci_qpair_dequev() - Get data from the queue using iov.
3185  * @qpair:      Pointer to the queue pair struct.
3186  * @iov:        Pointer to buffer for the data
3187  * @iov_size:   Length of buffer.
3188  * @buf_type:   Buffer type (Unused).
3189  *
3190  * This is the client interface for dequeueing data from the queue.
3191  * This function uses IO vectors to handle the work. Returns number
3192  * of bytes dequeued or < 0 on error.
3193  */
3194 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3195                           struct msghdr *msg,
3196                           size_t iov_size,
3197                           int buf_type)
3198 {
3199         ssize_t result;
3200
3201         if (!qpair)
3202                 return VMCI_ERROR_INVALID_ARGS;
3203
3204         qp_lock(qpair);
3205
3206         do {
3207                 result = qp_dequeue_locked(qpair->produce_q,
3208                                            qpair->consume_q,
3209                                            qpair->consume_q_size,
3210                                            &msg->msg_iter, true);
3211
3212                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3213                     !qp_wait_for_ready_queue(qpair))
3214                         result = VMCI_ERROR_WOULD_BLOCK;
3215
3216         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3217
3218         qp_unlock(qpair);
3219
3220         return result;
3221 }
3222 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3223
3224 /*
3225  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3226  * @qpair:      Pointer to the queue pair struct.
3227  * @iov:        Pointer to buffer for the data
3228  * @iov_size:   Length of buffer.
3229  * @buf_type:   Buffer type (Unused on Linux).
3230  *
3231  * This is the client interface for peeking into a queue.  (I.e.,
3232  * copy data from the queue without updating the head pointer.)
3233  * This function uses IO vectors to handle the work. Returns number
3234  * of bytes peeked or < 0 on error.
3235  */
3236 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3237                          struct msghdr *msg,
3238                          size_t iov_size,
3239                          int buf_type)
3240 {
3241         ssize_t result;
3242
3243         if (!qpair)
3244                 return VMCI_ERROR_INVALID_ARGS;
3245
3246         qp_lock(qpair);
3247
3248         do {
3249                 result = qp_dequeue_locked(qpair->produce_q,
3250                                            qpair->consume_q,
3251                                            qpair->consume_q_size,
3252                                            &msg->msg_iter, false);
3253
3254                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3255                     !qp_wait_for_ready_queue(qpair))
3256                         result = VMCI_ERROR_WOULD_BLOCK;
3257
3258         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3259
3260         qp_unlock(qpair);
3261         return result;
3262 }
3263 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);