GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126         struct mutex __mutex;   /* Protects the queue. */
127         struct mutex *mutex;    /* Shared by producer and consumer queues. */
128         size_t num_pages;       /* Number of pages incl. header. */
129         bool host;              /* Host or guest? */
130         union {
131                 struct {
132                         dma_addr_t *pas;
133                         void **vas;
134                 } g;            /* Used by the guest. */
135                 struct {
136                         struct page **page;
137                         struct page **header_page;
138                 } h;            /* Used by the host. */
139         } u;
140 };
141
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146         struct vmci_handle handle;
147         struct vmci_queue *produce_q;
148         struct vmci_queue *consume_q;
149         u64 produce_q_size;
150         u64 consume_q_size;
151         u32 peer;
152         u32 flags;
153         u32 priv_flags;
154         bool guest_endpoint;
155         unsigned int blocked;
156         unsigned int generation;
157         wait_queue_head_t event;
158 };
159
160 enum qp_broker_state {
161         VMCIQPB_NEW,
162         VMCIQPB_CREATED_NO_MEM,
163         VMCIQPB_CREATED_MEM,
164         VMCIQPB_ATTACHED_NO_MEM,
165         VMCIQPB_ATTACHED_MEM,
166         VMCIQPB_SHUTDOWN_NO_MEM,
167         VMCIQPB_SHUTDOWN_MEM,
168         VMCIQPB_GONE
169 };
170
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
173                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185         struct list_head list_item;
186         struct vmci_handle handle;
187         u32 peer;
188         u32 flags;
189         u64 produce_size;
190         u64 consume_size;
191         u32 ref_count;
192 };
193
194 struct qp_broker_entry {
195         struct vmci_resource resource;
196         struct qp_entry qp;
197         u32 create_id;
198         u32 attach_id;
199         enum qp_broker_state state;
200         bool require_trusted_attach;
201         bool created_by_trusted;
202         bool vmci_page_files;   /* Created by VMX using VMCI page files */
203         struct vmci_queue *produce_q;
204         struct vmci_queue *consume_q;
205         struct vmci_queue_header saved_produce_q;
206         struct vmci_queue_header saved_consume_q;
207         vmci_event_release_cb wakeup_cb;
208         void *client_data;
209         void *local_mem;        /* Kernel memory for local queue pair */
210 };
211
212 struct qp_guest_endpoint {
213         struct vmci_resource resource;
214         struct qp_entry qp;
215         u64 num_ppns;
216         void *produce_q;
217         void *consume_q;
218         struct ppn_set ppn_set;
219 };
220
221 struct qp_list {
222         struct list_head head;
223         struct mutex mutex;     /* Protect queue list. */
224 };
225
226 static struct qp_list qp_broker_list = {
227         .head = LIST_HEAD_INIT(qp_broker_list.head),
228         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230
231 static struct qp_list qp_guest_endpoints = {
232         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240
241
242 /*
243  * Frees kernel VA space for a given queue and its queue header, and
244  * frees physical data pages.
245  */
246 static void qp_free_queue(void *q, u64 size)
247 {
248         struct vmci_queue *queue = q;
249
250         if (queue) {
251                 u64 i;
252
253                 /* Given size does not include header, so add in a page here. */
254                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
255                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
256                                           queue->kernel_if->u.g.vas[i],
257                                           queue->kernel_if->u.g.pas[i]);
258                 }
259
260                 vfree(queue);
261         }
262 }
263
264 /*
265  * Allocates kernel queue pages of specified size with IOMMU mappings,
266  * plus space for the queue structure/kernel interface and the queue
267  * header.
268  */
269 static void *qp_alloc_queue(u64 size, u32 flags)
270 {
271         u64 i;
272         struct vmci_queue *queue;
273         size_t pas_size;
274         size_t vas_size;
275         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
276         u64 num_pages;
277
278         if (size > SIZE_MAX - PAGE_SIZE)
279                 return NULL;
280         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
281         if (num_pages >
282                  (SIZE_MAX - queue_size) /
283                  (sizeof(*queue->kernel_if->u.g.pas) +
284                   sizeof(*queue->kernel_if->u.g.vas)))
285                 return NULL;
286
287         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
288         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
289         queue_size += pas_size + vas_size;
290
291         queue = vmalloc(queue_size);
292         if (!queue)
293                 return NULL;
294
295         queue->q_header = NULL;
296         queue->saved_header = NULL;
297         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
298         queue->kernel_if->mutex = NULL;
299         queue->kernel_if->num_pages = num_pages;
300         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
301         queue->kernel_if->u.g.vas =
302                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
303         queue->kernel_if->host = false;
304
305         for (i = 0; i < num_pages; i++) {
306                 queue->kernel_if->u.g.vas[i] =
307                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
308                                            &queue->kernel_if->u.g.pas[i],
309                                            GFP_KERNEL);
310                 if (!queue->kernel_if->u.g.vas[i]) {
311                         /* Size excl. the header. */
312                         qp_free_queue(queue, i * PAGE_SIZE);
313                         return NULL;
314                 }
315         }
316
317         /* Queue header is the first page. */
318         queue->q_header = queue->kernel_if->u.g.vas[0];
319
320         return queue;
321 }
322
323 /*
324  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
325  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
326  * by traversing the offset -> page translation structure for the queue.
327  * Assumes that offset + size does not wrap around in the queue.
328  */
329 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
330                                   u64 queue_offset,
331                                   struct iov_iter *from,
332                                   size_t size)
333 {
334         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
335         size_t bytes_copied = 0;
336
337         while (bytes_copied < size) {
338                 const u64 page_index =
339                         (queue_offset + bytes_copied) / PAGE_SIZE;
340                 const size_t page_offset =
341                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
342                 void *va;
343                 size_t to_copy;
344
345                 if (kernel_if->host)
346                         va = kmap(kernel_if->u.h.page[page_index]);
347                 else
348                         va = kernel_if->u.g.vas[page_index + 1];
349                         /* Skip header. */
350
351                 if (size - bytes_copied > PAGE_SIZE - page_offset)
352                         /* Enough payload to fill up from this page. */
353                         to_copy = PAGE_SIZE - page_offset;
354                 else
355                         to_copy = size - bytes_copied;
356
357                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
358                                          from)) {
359                         if (kernel_if->host)
360                                 kunmap(kernel_if->u.h.page[page_index]);
361                         return VMCI_ERROR_INVALID_ARGS;
362                 }
363                 bytes_copied += to_copy;
364                 if (kernel_if->host)
365                         kunmap(kernel_if->u.h.page[page_index]);
366         }
367
368         return VMCI_SUCCESS;
369 }
370
371 /*
372  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
373  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
374  * by traversing the offset -> page translation structure for the queue.
375  * Assumes that offset + size does not wrap around in the queue.
376  */
377 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
378                                     const struct vmci_queue *queue,
379                                     u64 queue_offset, size_t size)
380 {
381         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
382         size_t bytes_copied = 0;
383
384         while (bytes_copied < size) {
385                 const u64 page_index =
386                         (queue_offset + bytes_copied) / PAGE_SIZE;
387                 const size_t page_offset =
388                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
389                 void *va;
390                 size_t to_copy;
391                 int err;
392
393                 if (kernel_if->host)
394                         va = kmap(kernel_if->u.h.page[page_index]);
395                 else
396                         va = kernel_if->u.g.vas[page_index + 1];
397                         /* Skip header. */
398
399                 if (size - bytes_copied > PAGE_SIZE - page_offset)
400                         /* Enough payload to fill up this page. */
401                         to_copy = PAGE_SIZE - page_offset;
402                 else
403                         to_copy = size - bytes_copied;
404
405                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
406                 if (err != to_copy) {
407                         if (kernel_if->host)
408                                 kunmap(kernel_if->u.h.page[page_index]);
409                         return VMCI_ERROR_INVALID_ARGS;
410                 }
411                 bytes_copied += to_copy;
412                 if (kernel_if->host)
413                         kunmap(kernel_if->u.h.page[page_index]);
414         }
415
416         return VMCI_SUCCESS;
417 }
418
419 /*
420  * Allocates two list of PPNs --- one for the pages in the produce queue,
421  * and the other for the pages in the consume queue. Intializes the list
422  * of PPNs with the page frame numbers of the KVA for the two queues (and
423  * the queue headers).
424  */
425 static int qp_alloc_ppn_set(void *prod_q,
426                             u64 num_produce_pages,
427                             void *cons_q,
428                             u64 num_consume_pages, struct ppn_set *ppn_set)
429 {
430         u64 *produce_ppns;
431         u64 *consume_ppns;
432         struct vmci_queue *produce_q = prod_q;
433         struct vmci_queue *consume_q = cons_q;
434         u64 i;
435
436         if (!produce_q || !num_produce_pages || !consume_q ||
437             !num_consume_pages || !ppn_set)
438                 return VMCI_ERROR_INVALID_ARGS;
439
440         if (ppn_set->initialized)
441                 return VMCI_ERROR_ALREADY_EXISTS;
442
443         produce_ppns =
444             kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
445                           GFP_KERNEL);
446         if (!produce_ppns)
447                 return VMCI_ERROR_NO_MEM;
448
449         consume_ppns =
450             kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
451                           GFP_KERNEL);
452         if (!consume_ppns) {
453                 kfree(produce_ppns);
454                 return VMCI_ERROR_NO_MEM;
455         }
456
457         for (i = 0; i < num_produce_pages; i++)
458                 produce_ppns[i] =
459                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
460
461         for (i = 0; i < num_consume_pages; i++)
462                 consume_ppns[i] =
463                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
464
465         ppn_set->num_produce_pages = num_produce_pages;
466         ppn_set->num_consume_pages = num_consume_pages;
467         ppn_set->produce_ppns = produce_ppns;
468         ppn_set->consume_ppns = consume_ppns;
469         ppn_set->initialized = true;
470         return VMCI_SUCCESS;
471 }
472
473 /*
474  * Frees the two list of PPNs for a queue pair.
475  */
476 static void qp_free_ppn_set(struct ppn_set *ppn_set)
477 {
478         if (ppn_set->initialized) {
479                 /* Do not call these functions on NULL inputs. */
480                 kfree(ppn_set->produce_ppns);
481                 kfree(ppn_set->consume_ppns);
482         }
483         memset(ppn_set, 0, sizeof(*ppn_set));
484 }
485
486 /*
487  * Populates the list of PPNs in the hypercall structure with the PPNS
488  * of the produce queue and the consume queue.
489  */
490 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
491 {
492         if (vmci_use_ppn64()) {
493                 memcpy(call_buf, ppn_set->produce_ppns,
494                        ppn_set->num_produce_pages *
495                        sizeof(*ppn_set->produce_ppns));
496                 memcpy(call_buf +
497                        ppn_set->num_produce_pages *
498                        sizeof(*ppn_set->produce_ppns),
499                        ppn_set->consume_ppns,
500                        ppn_set->num_consume_pages *
501                        sizeof(*ppn_set->consume_ppns));
502         } else {
503                 int i;
504                 u32 *ppns = (u32 *) call_buf;
505
506                 for (i = 0; i < ppn_set->num_produce_pages; i++)
507                         ppns[i] = (u32) ppn_set->produce_ppns[i];
508
509                 ppns = &ppns[ppn_set->num_produce_pages];
510
511                 for (i = 0; i < ppn_set->num_consume_pages; i++)
512                         ppns[i] = (u32) ppn_set->consume_ppns[i];
513         }
514
515         return VMCI_SUCCESS;
516 }
517
518 /*
519  * Allocates kernel VA space of specified size plus space for the queue
520  * and kernel interface.  This is different from the guest queue allocator,
521  * because we do not allocate our own queue header/data pages here but
522  * share those of the guest.
523  */
524 static struct vmci_queue *qp_host_alloc_queue(u64 size)
525 {
526         struct vmci_queue *queue;
527         size_t queue_page_size;
528         u64 num_pages;
529         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
530
531         if (size > SIZE_MAX - PAGE_SIZE)
532                 return NULL;
533         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
534         if (num_pages > (SIZE_MAX - queue_size) /
535                  sizeof(*queue->kernel_if->u.h.page))
536                 return NULL;
537
538         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
539
540         if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
541                 return NULL;
542
543         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
544         if (queue) {
545                 queue->q_header = NULL;
546                 queue->saved_header = NULL;
547                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
548                 queue->kernel_if->host = true;
549                 queue->kernel_if->mutex = NULL;
550                 queue->kernel_if->num_pages = num_pages;
551                 queue->kernel_if->u.h.header_page =
552                     (struct page **)((u8 *)queue + queue_size);
553                 queue->kernel_if->u.h.page =
554                         &queue->kernel_if->u.h.header_page[1];
555         }
556
557         return queue;
558 }
559
560 /*
561  * Frees kernel memory for a given queue (header plus translation
562  * structure).
563  */
564 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
565 {
566         kfree(queue);
567 }
568
569 /*
570  * Initialize the mutex for the pair of queues.  This mutex is used to
571  * protect the q_header and the buffer from changing out from under any
572  * users of either queue.  Of course, it's only any good if the mutexes
573  * are actually acquired.  Queue structure must lie on non-paged memory
574  * or we cannot guarantee access to the mutex.
575  */
576 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
577                                 struct vmci_queue *consume_q)
578 {
579         /*
580          * Only the host queue has shared state - the guest queues do not
581          * need to synchronize access using a queue mutex.
582          */
583
584         if (produce_q->kernel_if->host) {
585                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
586                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
587                 mutex_init(produce_q->kernel_if->mutex);
588         }
589 }
590
591 /*
592  * Cleans up the mutex for the pair of queues.
593  */
594 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
595                                    struct vmci_queue *consume_q)
596 {
597         if (produce_q->kernel_if->host) {
598                 produce_q->kernel_if->mutex = NULL;
599                 consume_q->kernel_if->mutex = NULL;
600         }
601 }
602
603 /*
604  * Acquire the mutex for the queue.  Note that the produce_q and
605  * the consume_q share a mutex.  So, only one of the two need to
606  * be passed in to this routine.  Either will work just fine.
607  */
608 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
609 {
610         if (queue->kernel_if->host)
611                 mutex_lock(queue->kernel_if->mutex);
612 }
613
614 /*
615  * Release the mutex for the queue.  Note that the produce_q and
616  * the consume_q share a mutex.  So, only one of the two need to
617  * be passed in to this routine.  Either will work just fine.
618  */
619 static void qp_release_queue_mutex(struct vmci_queue *queue)
620 {
621         if (queue->kernel_if->host)
622                 mutex_unlock(queue->kernel_if->mutex);
623 }
624
625 /*
626  * Helper function to release pages in the PageStoreAttachInfo
627  * previously obtained using get_user_pages.
628  */
629 static void qp_release_pages(struct page **pages,
630                              u64 num_pages, bool dirty)
631 {
632         int i;
633
634         for (i = 0; i < num_pages; i++) {
635                 if (dirty)
636                         set_page_dirty_lock(pages[i]);
637
638                 put_page(pages[i]);
639                 pages[i] = NULL;
640         }
641 }
642
643 /*
644  * Lock the user pages referenced by the {produce,consume}Buffer
645  * struct into memory and populate the {produce,consume}Pages
646  * arrays in the attach structure with them.
647  */
648 static int qp_host_get_user_memory(u64 produce_uva,
649                                    u64 consume_uva,
650                                    struct vmci_queue *produce_q,
651                                    struct vmci_queue *consume_q)
652 {
653         int retval;
654         int err = VMCI_SUCCESS;
655
656         retval = get_user_pages_fast((uintptr_t) produce_uva,
657                                      produce_q->kernel_if->num_pages,
658                                      FOLL_WRITE,
659                                      produce_q->kernel_if->u.h.header_page);
660         if (retval < (int)produce_q->kernel_if->num_pages) {
661                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
662                         retval);
663                 if (retval > 0)
664                         qp_release_pages(produce_q->kernel_if->u.h.header_page,
665                                         retval, false);
666                 err = VMCI_ERROR_NO_MEM;
667                 goto out;
668         }
669
670         retval = get_user_pages_fast((uintptr_t) consume_uva,
671                                      consume_q->kernel_if->num_pages,
672                                      FOLL_WRITE,
673                                      consume_q->kernel_if->u.h.header_page);
674         if (retval < (int)consume_q->kernel_if->num_pages) {
675                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
676                         retval);
677                 if (retval > 0)
678                         qp_release_pages(consume_q->kernel_if->u.h.header_page,
679                                         retval, false);
680                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
681                                  produce_q->kernel_if->num_pages, false);
682                 err = VMCI_ERROR_NO_MEM;
683         }
684
685  out:
686         return err;
687 }
688
689 /*
690  * Registers the specification of the user pages used for backing a queue
691  * pair. Enough information to map in pages is stored in the OS specific
692  * part of the struct vmci_queue structure.
693  */
694 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
695                                         struct vmci_queue *produce_q,
696                                         struct vmci_queue *consume_q)
697 {
698         u64 produce_uva;
699         u64 consume_uva;
700
701         /*
702          * The new style and the old style mapping only differs in
703          * that we either get a single or two UVAs, so we split the
704          * single UVA range at the appropriate spot.
705          */
706         produce_uva = page_store->pages;
707         consume_uva = page_store->pages +
708             produce_q->kernel_if->num_pages * PAGE_SIZE;
709         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
710                                        consume_q);
711 }
712
713 /*
714  * Releases and removes the references to user pages stored in the attach
715  * struct.  Pages are released from the page cache and may become
716  * swappable again.
717  */
718 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
719                                            struct vmci_queue *consume_q)
720 {
721         qp_release_pages(produce_q->kernel_if->u.h.header_page,
722                          produce_q->kernel_if->num_pages, true);
723         memset(produce_q->kernel_if->u.h.header_page, 0,
724                sizeof(*produce_q->kernel_if->u.h.header_page) *
725                produce_q->kernel_if->num_pages);
726         qp_release_pages(consume_q->kernel_if->u.h.header_page,
727                          consume_q->kernel_if->num_pages, true);
728         memset(consume_q->kernel_if->u.h.header_page, 0,
729                sizeof(*consume_q->kernel_if->u.h.header_page) *
730                consume_q->kernel_if->num_pages);
731 }
732
733 /*
734  * Once qp_host_register_user_memory has been performed on a
735  * queue, the queue pair headers can be mapped into the
736  * kernel. Once mapped, they must be unmapped with
737  * qp_host_unmap_queues prior to calling
738  * qp_host_unregister_user_memory.
739  * Pages are pinned.
740  */
741 static int qp_host_map_queues(struct vmci_queue *produce_q,
742                               struct vmci_queue *consume_q)
743 {
744         int result;
745
746         if (!produce_q->q_header || !consume_q->q_header) {
747                 struct page *headers[2];
748
749                 if (produce_q->q_header != consume_q->q_header)
750                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
751
752                 if (produce_q->kernel_if->u.h.header_page == NULL ||
753                     *produce_q->kernel_if->u.h.header_page == NULL)
754                         return VMCI_ERROR_UNAVAILABLE;
755
756                 headers[0] = *produce_q->kernel_if->u.h.header_page;
757                 headers[1] = *consume_q->kernel_if->u.h.header_page;
758
759                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
760                 if (produce_q->q_header != NULL) {
761                         consume_q->q_header =
762                             (struct vmci_queue_header *)((u8 *)
763                                                          produce_q->q_header +
764                                                          PAGE_SIZE);
765                         result = VMCI_SUCCESS;
766                 } else {
767                         pr_warn("vmap failed\n");
768                         result = VMCI_ERROR_NO_MEM;
769                 }
770         } else {
771                 result = VMCI_SUCCESS;
772         }
773
774         return result;
775 }
776
777 /*
778  * Unmaps previously mapped queue pair headers from the kernel.
779  * Pages are unpinned.
780  */
781 static int qp_host_unmap_queues(u32 gid,
782                                 struct vmci_queue *produce_q,
783                                 struct vmci_queue *consume_q)
784 {
785         if (produce_q->q_header) {
786                 if (produce_q->q_header < consume_q->q_header)
787                         vunmap(produce_q->q_header);
788                 else
789                         vunmap(consume_q->q_header);
790
791                 produce_q->q_header = NULL;
792                 consume_q->q_header = NULL;
793         }
794
795         return VMCI_SUCCESS;
796 }
797
798 /*
799  * Finds the entry in the list corresponding to a given handle. Assumes
800  * that the list is locked.
801  */
802 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
803                                      struct vmci_handle handle)
804 {
805         struct qp_entry *entry;
806
807         if (vmci_handle_is_invalid(handle))
808                 return NULL;
809
810         list_for_each_entry(entry, &qp_list->head, list_item) {
811                 if (vmci_handle_is_equal(entry->handle, handle))
812                         return entry;
813         }
814
815         return NULL;
816 }
817
818 /*
819  * Finds the entry in the list corresponding to a given handle.
820  */
821 static struct qp_guest_endpoint *
822 qp_guest_handle_to_entry(struct vmci_handle handle)
823 {
824         struct qp_guest_endpoint *entry;
825         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
826
827         entry = qp ? container_of(
828                 qp, struct qp_guest_endpoint, qp) : NULL;
829         return entry;
830 }
831
832 /*
833  * Finds the entry in the list corresponding to a given handle.
834  */
835 static struct qp_broker_entry *
836 qp_broker_handle_to_entry(struct vmci_handle handle)
837 {
838         struct qp_broker_entry *entry;
839         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
840
841         entry = qp ? container_of(
842                 qp, struct qp_broker_entry, qp) : NULL;
843         return entry;
844 }
845
846 /*
847  * Dispatches a queue pair event message directly into the local event
848  * queue.
849  */
850 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
851 {
852         u32 context_id = vmci_get_context_id();
853         struct vmci_event_qp ev;
854
855         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
856         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
857                                           VMCI_CONTEXT_RESOURCE_ID);
858         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
859         ev.msg.event_data.event =
860             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
861         ev.payload.peer_id = context_id;
862         ev.payload.handle = handle;
863
864         return vmci_event_dispatch(&ev.msg.hdr);
865 }
866
867 /*
868  * Allocates and initializes a qp_guest_endpoint structure.
869  * Allocates a queue_pair rid (and handle) iff the given entry has
870  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
871  * are reserved handles.  Assumes that the QP list mutex is held
872  * by the caller.
873  */
874 static struct qp_guest_endpoint *
875 qp_guest_endpoint_create(struct vmci_handle handle,
876                          u32 peer,
877                          u32 flags,
878                          u64 produce_size,
879                          u64 consume_size,
880                          void *produce_q,
881                          void *consume_q)
882 {
883         int result;
884         struct qp_guest_endpoint *entry;
885         /* One page each for the queue headers. */
886         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
887             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
888
889         if (vmci_handle_is_invalid(handle)) {
890                 u32 context_id = vmci_get_context_id();
891
892                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
893         }
894
895         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
896         if (entry) {
897                 entry->qp.peer = peer;
898                 entry->qp.flags = flags;
899                 entry->qp.produce_size = produce_size;
900                 entry->qp.consume_size = consume_size;
901                 entry->qp.ref_count = 0;
902                 entry->num_ppns = num_ppns;
903                 entry->produce_q = produce_q;
904                 entry->consume_q = consume_q;
905                 INIT_LIST_HEAD(&entry->qp.list_item);
906
907                 /* Add resource obj */
908                 result = vmci_resource_add(&entry->resource,
909                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
910                                            handle);
911                 entry->qp.handle = vmci_resource_handle(&entry->resource);
912                 if ((result != VMCI_SUCCESS) ||
913                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
914                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
915                                 handle.context, handle.resource, result);
916                         kfree(entry);
917                         entry = NULL;
918                 }
919         }
920         return entry;
921 }
922
923 /*
924  * Frees a qp_guest_endpoint structure.
925  */
926 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
927 {
928         qp_free_ppn_set(&entry->ppn_set);
929         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
930         qp_free_queue(entry->produce_q, entry->qp.produce_size);
931         qp_free_queue(entry->consume_q, entry->qp.consume_size);
932         /* Unlink from resource hash table and free callback */
933         vmci_resource_remove(&entry->resource);
934
935         kfree(entry);
936 }
937
938 /*
939  * Helper to make a queue_pairAlloc hypercall when the driver is
940  * supporting a guest device.
941  */
942 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
943 {
944         struct vmci_qp_alloc_msg *alloc_msg;
945         size_t msg_size;
946         size_t ppn_size;
947         int result;
948
949         if (!entry || entry->num_ppns <= 2)
950                 return VMCI_ERROR_INVALID_ARGS;
951
952         ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
953         msg_size = sizeof(*alloc_msg) +
954             (size_t) entry->num_ppns * ppn_size;
955         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
956         if (!alloc_msg)
957                 return VMCI_ERROR_NO_MEM;
958
959         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
960                                               VMCI_QUEUEPAIR_ALLOC);
961         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
962         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
963         alloc_msg->handle = entry->qp.handle;
964         alloc_msg->peer = entry->qp.peer;
965         alloc_msg->flags = entry->qp.flags;
966         alloc_msg->produce_size = entry->qp.produce_size;
967         alloc_msg->consume_size = entry->qp.consume_size;
968         alloc_msg->num_ppns = entry->num_ppns;
969
970         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
971                                      &entry->ppn_set);
972         if (result == VMCI_SUCCESS)
973                 result = vmci_send_datagram(&alloc_msg->hdr);
974
975         kfree(alloc_msg);
976
977         return result;
978 }
979
980 /*
981  * Helper to make a queue_pairDetach hypercall when the driver is
982  * supporting a guest device.
983  */
984 static int qp_detatch_hypercall(struct vmci_handle handle)
985 {
986         struct vmci_qp_detach_msg detach_msg;
987
988         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
989                                               VMCI_QUEUEPAIR_DETACH);
990         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
991         detach_msg.hdr.payload_size = sizeof(handle);
992         detach_msg.handle = handle;
993
994         return vmci_send_datagram(&detach_msg.hdr);
995 }
996
997 /*
998  * Adds the given entry to the list. Assumes that the list is locked.
999  */
1000 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1001 {
1002         if (entry)
1003                 list_add(&entry->list_item, &qp_list->head);
1004 }
1005
1006 /*
1007  * Removes the given entry from the list. Assumes that the list is locked.
1008  */
1009 static void qp_list_remove_entry(struct qp_list *qp_list,
1010                                  struct qp_entry *entry)
1011 {
1012         if (entry)
1013                 list_del(&entry->list_item);
1014 }
1015
1016 /*
1017  * Helper for VMCI queue_pair detach interface. Frees the physical
1018  * pages for the queue pair.
1019  */
1020 static int qp_detatch_guest_work(struct vmci_handle handle)
1021 {
1022         int result;
1023         struct qp_guest_endpoint *entry;
1024         u32 ref_count = ~0;     /* To avoid compiler warning below */
1025
1026         mutex_lock(&qp_guest_endpoints.mutex);
1027
1028         entry = qp_guest_handle_to_entry(handle);
1029         if (!entry) {
1030                 mutex_unlock(&qp_guest_endpoints.mutex);
1031                 return VMCI_ERROR_NOT_FOUND;
1032         }
1033
1034         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1035                 result = VMCI_SUCCESS;
1036
1037                 if (entry->qp.ref_count > 1) {
1038                         result = qp_notify_peer_local(false, handle);
1039                         /*
1040                          * We can fail to notify a local queuepair
1041                          * because we can't allocate.  We still want
1042                          * to release the entry if that happens, so
1043                          * don't bail out yet.
1044                          */
1045                 }
1046         } else {
1047                 result = qp_detatch_hypercall(handle);
1048                 if (result < VMCI_SUCCESS) {
1049                         /*
1050                          * We failed to notify a non-local queuepair.
1051                          * That other queuepair might still be
1052                          * accessing the shared memory, so don't
1053                          * release the entry yet.  It will get cleaned
1054                          * up by VMCIqueue_pair_Exit() if necessary
1055                          * (assuming we are going away, otherwise why
1056                          * did this fail?).
1057                          */
1058
1059                         mutex_unlock(&qp_guest_endpoints.mutex);
1060                         return result;
1061                 }
1062         }
1063
1064         /*
1065          * If we get here then we either failed to notify a local queuepair, or
1066          * we succeeded in all cases.  Release the entry if required.
1067          */
1068
1069         entry->qp.ref_count--;
1070         if (entry->qp.ref_count == 0)
1071                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1072
1073         /* If we didn't remove the entry, this could change once we unlock. */
1074         if (entry)
1075                 ref_count = entry->qp.ref_count;
1076
1077         mutex_unlock(&qp_guest_endpoints.mutex);
1078
1079         if (ref_count == 0)
1080                 qp_guest_endpoint_destroy(entry);
1081
1082         return result;
1083 }
1084
1085 /*
1086  * This functions handles the actual allocation of a VMCI queue
1087  * pair guest endpoint. Allocates physical pages for the queue
1088  * pair. It makes OS dependent calls through generic wrappers.
1089  */
1090 static int qp_alloc_guest_work(struct vmci_handle *handle,
1091                                struct vmci_queue **produce_q,
1092                                u64 produce_size,
1093                                struct vmci_queue **consume_q,
1094                                u64 consume_size,
1095                                u32 peer,
1096                                u32 flags,
1097                                u32 priv_flags)
1098 {
1099         const u64 num_produce_pages =
1100             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1101         const u64 num_consume_pages =
1102             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1103         void *my_produce_q = NULL;
1104         void *my_consume_q = NULL;
1105         int result;
1106         struct qp_guest_endpoint *queue_pair_entry = NULL;
1107
1108         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1109                 return VMCI_ERROR_NO_ACCESS;
1110
1111         mutex_lock(&qp_guest_endpoints.mutex);
1112
1113         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1114         if (queue_pair_entry) {
1115                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1116                         /* Local attach case. */
1117                         if (queue_pair_entry->qp.ref_count > 1) {
1118                                 pr_devel("Error attempting to attach more than once\n");
1119                                 result = VMCI_ERROR_UNAVAILABLE;
1120                                 goto error_keep_entry;
1121                         }
1122
1123                         if (queue_pair_entry->qp.produce_size != consume_size ||
1124                             queue_pair_entry->qp.consume_size !=
1125                             produce_size ||
1126                             queue_pair_entry->qp.flags !=
1127                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1128                                 pr_devel("Error mismatched queue pair in local attach\n");
1129                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1130                                 goto error_keep_entry;
1131                         }
1132
1133                         /*
1134                          * Do a local attach.  We swap the consume and
1135                          * produce queues for the attacher and deliver
1136                          * an attach event.
1137                          */
1138                         result = qp_notify_peer_local(true, *handle);
1139                         if (result < VMCI_SUCCESS)
1140                                 goto error_keep_entry;
1141
1142                         my_produce_q = queue_pair_entry->consume_q;
1143                         my_consume_q = queue_pair_entry->produce_q;
1144                         goto out;
1145                 }
1146
1147                 result = VMCI_ERROR_ALREADY_EXISTS;
1148                 goto error_keep_entry;
1149         }
1150
1151         my_produce_q = qp_alloc_queue(produce_size, flags);
1152         if (!my_produce_q) {
1153                 pr_warn("Error allocating pages for produce queue\n");
1154                 result = VMCI_ERROR_NO_MEM;
1155                 goto error;
1156         }
1157
1158         my_consume_q = qp_alloc_queue(consume_size, flags);
1159         if (!my_consume_q) {
1160                 pr_warn("Error allocating pages for consume queue\n");
1161                 result = VMCI_ERROR_NO_MEM;
1162                 goto error;
1163         }
1164
1165         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1166                                                     produce_size, consume_size,
1167                                                     my_produce_q, my_consume_q);
1168         if (!queue_pair_entry) {
1169                 pr_warn("Error allocating memory in %s\n", __func__);
1170                 result = VMCI_ERROR_NO_MEM;
1171                 goto error;
1172         }
1173
1174         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1175                                   num_consume_pages,
1176                                   &queue_pair_entry->ppn_set);
1177         if (result < VMCI_SUCCESS) {
1178                 pr_warn("qp_alloc_ppn_set failed\n");
1179                 goto error;
1180         }
1181
1182         /*
1183          * It's only necessary to notify the host if this queue pair will be
1184          * attached to from another context.
1185          */
1186         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1187                 /* Local create case. */
1188                 u32 context_id = vmci_get_context_id();
1189
1190                 /*
1191                  * Enforce similar checks on local queue pairs as we
1192                  * do for regular ones.  The handle's context must
1193                  * match the creator or attacher context id (here they
1194                  * are both the current context id) and the
1195                  * attach-only flag cannot exist during create.  We
1196                  * also ensure specified peer is this context or an
1197                  * invalid one.
1198                  */
1199                 if (queue_pair_entry->qp.handle.context != context_id ||
1200                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1201                      queue_pair_entry->qp.peer != context_id)) {
1202                         result = VMCI_ERROR_NO_ACCESS;
1203                         goto error;
1204                 }
1205
1206                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1207                         result = VMCI_ERROR_NOT_FOUND;
1208                         goto error;
1209                 }
1210         } else {
1211                 result = qp_alloc_hypercall(queue_pair_entry);
1212                 if (result < VMCI_SUCCESS) {
1213                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1214                         goto error;
1215                 }
1216         }
1217
1218         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1219                             (struct vmci_queue *)my_consume_q);
1220
1221         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1222
1223  out:
1224         queue_pair_entry->qp.ref_count++;
1225         *handle = queue_pair_entry->qp.handle;
1226         *produce_q = (struct vmci_queue *)my_produce_q;
1227         *consume_q = (struct vmci_queue *)my_consume_q;
1228
1229         /*
1230          * We should initialize the queue pair header pages on a local
1231          * queue pair create.  For non-local queue pairs, the
1232          * hypervisor initializes the header pages in the create step.
1233          */
1234         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1235             queue_pair_entry->qp.ref_count == 1) {
1236                 vmci_q_header_init((*produce_q)->q_header, *handle);
1237                 vmci_q_header_init((*consume_q)->q_header, *handle);
1238         }
1239
1240         mutex_unlock(&qp_guest_endpoints.mutex);
1241
1242         return VMCI_SUCCESS;
1243
1244  error:
1245         mutex_unlock(&qp_guest_endpoints.mutex);
1246         if (queue_pair_entry) {
1247                 /* The queues will be freed inside the destroy routine. */
1248                 qp_guest_endpoint_destroy(queue_pair_entry);
1249         } else {
1250                 qp_free_queue(my_produce_q, produce_size);
1251                 qp_free_queue(my_consume_q, consume_size);
1252         }
1253         return result;
1254
1255  error_keep_entry:
1256         /* This path should only be used when an existing entry was found. */
1257         mutex_unlock(&qp_guest_endpoints.mutex);
1258         return result;
1259 }
1260
1261 /*
1262  * The first endpoint issuing a queue pair allocation will create the state
1263  * of the queue pair in the queue pair broker.
1264  *
1265  * If the creator is a guest, it will associate a VMX virtual address range
1266  * with the queue pair as specified by the page_store. For compatibility with
1267  * older VMX'en, that would use a separate step to set the VMX virtual
1268  * address range, the virtual address range can be registered later using
1269  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1270  * used.
1271  *
1272  * If the creator is the host, a page_store of NULL should be used as well,
1273  * since the host is not able to supply a page store for the queue pair.
1274  *
1275  * For older VMX and host callers, the queue pair will be created in the
1276  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1277  * created in VMCOQPB_CREATED_MEM state.
1278  */
1279 static int qp_broker_create(struct vmci_handle handle,
1280                             u32 peer,
1281                             u32 flags,
1282                             u32 priv_flags,
1283                             u64 produce_size,
1284                             u64 consume_size,
1285                             struct vmci_qp_page_store *page_store,
1286                             struct vmci_ctx *context,
1287                             vmci_event_release_cb wakeup_cb,
1288                             void *client_data, struct qp_broker_entry **ent)
1289 {
1290         struct qp_broker_entry *entry = NULL;
1291         const u32 context_id = vmci_ctx_get_id(context);
1292         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1293         int result;
1294         u64 guest_produce_size;
1295         u64 guest_consume_size;
1296
1297         /* Do not create if the caller asked not to. */
1298         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1299                 return VMCI_ERROR_NOT_FOUND;
1300
1301         /*
1302          * Creator's context ID should match handle's context ID or the creator
1303          * must allow the context in handle's context ID as the "peer".
1304          */
1305         if (handle.context != context_id && handle.context != peer)
1306                 return VMCI_ERROR_NO_ACCESS;
1307
1308         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1309                 return VMCI_ERROR_DST_UNREACHABLE;
1310
1311         /*
1312          * Creator's context ID for local queue pairs should match the
1313          * peer, if a peer is specified.
1314          */
1315         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1316                 return VMCI_ERROR_NO_ACCESS;
1317
1318         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1319         if (!entry)
1320                 return VMCI_ERROR_NO_MEM;
1321
1322         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1323                 /*
1324                  * The queue pair broker entry stores values from the guest
1325                  * point of view, so a creating host side endpoint should swap
1326                  * produce and consume values -- unless it is a local queue
1327                  * pair, in which case no swapping is necessary, since the local
1328                  * attacher will swap queues.
1329                  */
1330
1331                 guest_produce_size = consume_size;
1332                 guest_consume_size = produce_size;
1333         } else {
1334                 guest_produce_size = produce_size;
1335                 guest_consume_size = consume_size;
1336         }
1337
1338         entry->qp.handle = handle;
1339         entry->qp.peer = peer;
1340         entry->qp.flags = flags;
1341         entry->qp.produce_size = guest_produce_size;
1342         entry->qp.consume_size = guest_consume_size;
1343         entry->qp.ref_count = 1;
1344         entry->create_id = context_id;
1345         entry->attach_id = VMCI_INVALID_ID;
1346         entry->state = VMCIQPB_NEW;
1347         entry->require_trusted_attach =
1348             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1349         entry->created_by_trusted =
1350             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1351         entry->vmci_page_files = false;
1352         entry->wakeup_cb = wakeup_cb;
1353         entry->client_data = client_data;
1354         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1355         if (entry->produce_q == NULL) {
1356                 result = VMCI_ERROR_NO_MEM;
1357                 goto error;
1358         }
1359         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1360         if (entry->consume_q == NULL) {
1361                 result = VMCI_ERROR_NO_MEM;
1362                 goto error;
1363         }
1364
1365         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1366
1367         INIT_LIST_HEAD(&entry->qp.list_item);
1368
1369         if (is_local) {
1370                 u8 *tmp;
1371
1372                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1373                                            PAGE_SIZE, GFP_KERNEL);
1374                 if (entry->local_mem == NULL) {
1375                         result = VMCI_ERROR_NO_MEM;
1376                         goto error;
1377                 }
1378                 entry->state = VMCIQPB_CREATED_MEM;
1379                 entry->produce_q->q_header = entry->local_mem;
1380                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1381                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1382                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1383         } else if (page_store) {
1384                 /*
1385                  * The VMX already initialized the queue pair headers, so no
1386                  * need for the kernel side to do that.
1387                  */
1388                 result = qp_host_register_user_memory(page_store,
1389                                                       entry->produce_q,
1390                                                       entry->consume_q);
1391                 if (result < VMCI_SUCCESS)
1392                         goto error;
1393
1394                 entry->state = VMCIQPB_CREATED_MEM;
1395         } else {
1396                 /*
1397                  * A create without a page_store may be either a host
1398                  * side create (in which case we are waiting for the
1399                  * guest side to supply the memory) or an old style
1400                  * queue pair create (in which case we will expect a
1401                  * set page store call as the next step).
1402                  */
1403                 entry->state = VMCIQPB_CREATED_NO_MEM;
1404         }
1405
1406         qp_list_add_entry(&qp_broker_list, &entry->qp);
1407         if (ent != NULL)
1408                 *ent = entry;
1409
1410         /* Add to resource obj */
1411         result = vmci_resource_add(&entry->resource,
1412                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1413                                    handle);
1414         if (result != VMCI_SUCCESS) {
1415                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1416                         handle.context, handle.resource, result);
1417                 goto error;
1418         }
1419
1420         entry->qp.handle = vmci_resource_handle(&entry->resource);
1421         if (is_local) {
1422                 vmci_q_header_init(entry->produce_q->q_header,
1423                                    entry->qp.handle);
1424                 vmci_q_header_init(entry->consume_q->q_header,
1425                                    entry->qp.handle);
1426         }
1427
1428         vmci_ctx_qp_create(context, entry->qp.handle);
1429
1430         return VMCI_SUCCESS;
1431
1432  error:
1433         if (entry != NULL) {
1434                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1435                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1436                 kfree(entry);
1437         }
1438
1439         return result;
1440 }
1441
1442 /*
1443  * Enqueues an event datagram to notify the peer VM attached to
1444  * the given queue pair handle about attach/detach event by the
1445  * given VM.  Returns Payload size of datagram enqueued on
1446  * success, error code otherwise.
1447  */
1448 static int qp_notify_peer(bool attach,
1449                           struct vmci_handle handle,
1450                           u32 my_id,
1451                           u32 peer_id)
1452 {
1453         int rv;
1454         struct vmci_event_qp ev;
1455
1456         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1457             peer_id == VMCI_INVALID_ID)
1458                 return VMCI_ERROR_INVALID_ARGS;
1459
1460         /*
1461          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1462          * number of pending events from the hypervisor to a given VM
1463          * otherwise a rogue VM could do an arbitrary number of attach
1464          * and detach operations causing memory pressure in the host
1465          * kernel.
1466          */
1467
1468         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1469         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1470                                           VMCI_CONTEXT_RESOURCE_ID);
1471         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1472         ev.msg.event_data.event = attach ?
1473             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1474         ev.payload.handle = handle;
1475         ev.payload.peer_id = my_id;
1476
1477         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1478                                     &ev.msg.hdr, false);
1479         if (rv < VMCI_SUCCESS)
1480                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1481                         attach ? "ATTACH" : "DETACH", peer_id);
1482
1483         return rv;
1484 }
1485
1486 /*
1487  * The second endpoint issuing a queue pair allocation will attach to
1488  * the queue pair registered with the queue pair broker.
1489  *
1490  * If the attacher is a guest, it will associate a VMX virtual address
1491  * range with the queue pair as specified by the page_store. At this
1492  * point, the already attach host endpoint may start using the queue
1493  * pair, and an attach event is sent to it. For compatibility with
1494  * older VMX'en, that used a separate step to set the VMX virtual
1495  * address range, the virtual address range can be registered later
1496  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1497  * NULL should be used, and the attach event will be generated once
1498  * the actual page store has been set.
1499  *
1500  * If the attacher is the host, a page_store of NULL should be used as
1501  * well, since the page store information is already set by the guest.
1502  *
1503  * For new VMX and host callers, the queue pair will be moved to the
1504  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1505  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1506  */
1507 static int qp_broker_attach(struct qp_broker_entry *entry,
1508                             u32 peer,
1509                             u32 flags,
1510                             u32 priv_flags,
1511                             u64 produce_size,
1512                             u64 consume_size,
1513                             struct vmci_qp_page_store *page_store,
1514                             struct vmci_ctx *context,
1515                             vmci_event_release_cb wakeup_cb,
1516                             void *client_data,
1517                             struct qp_broker_entry **ent)
1518 {
1519         const u32 context_id = vmci_ctx_get_id(context);
1520         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1521         int result;
1522
1523         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1524             entry->state != VMCIQPB_CREATED_MEM)
1525                 return VMCI_ERROR_UNAVAILABLE;
1526
1527         if (is_local) {
1528                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1529                     context_id != entry->create_id) {
1530                         return VMCI_ERROR_INVALID_ARGS;
1531                 }
1532         } else if (context_id == entry->create_id ||
1533                    context_id == entry->attach_id) {
1534                 return VMCI_ERROR_ALREADY_EXISTS;
1535         }
1536
1537         if (VMCI_CONTEXT_IS_VM(context_id) &&
1538             VMCI_CONTEXT_IS_VM(entry->create_id))
1539                 return VMCI_ERROR_DST_UNREACHABLE;
1540
1541         /*
1542          * If we are attaching from a restricted context then the queuepair
1543          * must have been created by a trusted endpoint.
1544          */
1545         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1546             !entry->created_by_trusted)
1547                 return VMCI_ERROR_NO_ACCESS;
1548
1549         /*
1550          * If we are attaching to a queuepair that was created by a restricted
1551          * context then we must be trusted.
1552          */
1553         if (entry->require_trusted_attach &&
1554             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1555                 return VMCI_ERROR_NO_ACCESS;
1556
1557         /*
1558          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1559          * control check is not performed.
1560          */
1561         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1562                 return VMCI_ERROR_NO_ACCESS;
1563
1564         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1565                 /*
1566                  * Do not attach if the caller doesn't support Host Queue Pairs
1567                  * and a host created this queue pair.
1568                  */
1569
1570                 if (!vmci_ctx_supports_host_qp(context))
1571                         return VMCI_ERROR_INVALID_RESOURCE;
1572
1573         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1574                 struct vmci_ctx *create_context;
1575                 bool supports_host_qp;
1576
1577                 /*
1578                  * Do not attach a host to a user created queue pair if that
1579                  * user doesn't support host queue pair end points.
1580                  */
1581
1582                 create_context = vmci_ctx_get(entry->create_id);
1583                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1584                 vmci_ctx_put(create_context);
1585
1586                 if (!supports_host_qp)
1587                         return VMCI_ERROR_INVALID_RESOURCE;
1588         }
1589
1590         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1591                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1592
1593         if (context_id != VMCI_HOST_CONTEXT_ID) {
1594                 /*
1595                  * The queue pair broker entry stores values from the guest
1596                  * point of view, so an attaching guest should match the values
1597                  * stored in the entry.
1598                  */
1599
1600                 if (entry->qp.produce_size != produce_size ||
1601                     entry->qp.consume_size != consume_size) {
1602                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1603                 }
1604         } else if (entry->qp.produce_size != consume_size ||
1605                    entry->qp.consume_size != produce_size) {
1606                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607         }
1608
1609         if (context_id != VMCI_HOST_CONTEXT_ID) {
1610                 /*
1611                  * If a guest attached to a queue pair, it will supply
1612                  * the backing memory.  If this is a pre NOVMVM vmx,
1613                  * the backing memory will be supplied by calling
1614                  * vmci_qp_broker_set_page_store() following the
1615                  * return of the vmci_qp_broker_alloc() call. If it is
1616                  * a vmx of version NOVMVM or later, the page store
1617                  * must be supplied as part of the
1618                  * vmci_qp_broker_alloc call.  Under all circumstances
1619                  * must the initially created queue pair not have any
1620                  * memory associated with it already.
1621                  */
1622
1623                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1624                         return VMCI_ERROR_INVALID_ARGS;
1625
1626                 if (page_store != NULL) {
1627                         /*
1628                          * Patch up host state to point to guest
1629                          * supplied memory. The VMX already
1630                          * initialized the queue pair headers, so no
1631                          * need for the kernel side to do that.
1632                          */
1633
1634                         result = qp_host_register_user_memory(page_store,
1635                                                               entry->produce_q,
1636                                                               entry->consume_q);
1637                         if (result < VMCI_SUCCESS)
1638                                 return result;
1639
1640                         entry->state = VMCIQPB_ATTACHED_MEM;
1641                 } else {
1642                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1643                 }
1644         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1645                 /*
1646                  * The host side is attempting to attach to a queue
1647                  * pair that doesn't have any memory associated with
1648                  * it. This must be a pre NOVMVM vmx that hasn't set
1649                  * the page store information yet, or a quiesced VM.
1650                  */
1651
1652                 return VMCI_ERROR_UNAVAILABLE;
1653         } else {
1654                 /* The host side has successfully attached to a queue pair. */
1655                 entry->state = VMCIQPB_ATTACHED_MEM;
1656         }
1657
1658         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1659                 result =
1660                     qp_notify_peer(true, entry->qp.handle, context_id,
1661                                    entry->create_id);
1662                 if (result < VMCI_SUCCESS)
1663                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1664                                 entry->create_id, entry->qp.handle.context,
1665                                 entry->qp.handle.resource);
1666         }
1667
1668         entry->attach_id = context_id;
1669         entry->qp.ref_count++;
1670         if (wakeup_cb) {
1671                 entry->wakeup_cb = wakeup_cb;
1672                 entry->client_data = client_data;
1673         }
1674
1675         /*
1676          * When attaching to local queue pairs, the context already has
1677          * an entry tracking the queue pair, so don't add another one.
1678          */
1679         if (!is_local)
1680                 vmci_ctx_qp_create(context, entry->qp.handle);
1681
1682         if (ent != NULL)
1683                 *ent = entry;
1684
1685         return VMCI_SUCCESS;
1686 }
1687
1688 /*
1689  * queue_pair_Alloc for use when setting up queue pair endpoints
1690  * on the host.
1691  */
1692 static int qp_broker_alloc(struct vmci_handle handle,
1693                            u32 peer,
1694                            u32 flags,
1695                            u32 priv_flags,
1696                            u64 produce_size,
1697                            u64 consume_size,
1698                            struct vmci_qp_page_store *page_store,
1699                            struct vmci_ctx *context,
1700                            vmci_event_release_cb wakeup_cb,
1701                            void *client_data,
1702                            struct qp_broker_entry **ent,
1703                            bool *swap)
1704 {
1705         const u32 context_id = vmci_ctx_get_id(context);
1706         bool create;
1707         struct qp_broker_entry *entry = NULL;
1708         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1709         int result;
1710
1711         if (vmci_handle_is_invalid(handle) ||
1712             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1713             !(produce_size || consume_size) ||
1714             !context || context_id == VMCI_INVALID_ID ||
1715             handle.context == VMCI_INVALID_ID) {
1716                 return VMCI_ERROR_INVALID_ARGS;
1717         }
1718
1719         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1720                 return VMCI_ERROR_INVALID_ARGS;
1721
1722         /*
1723          * In the initial argument check, we ensure that non-vmkernel hosts
1724          * are not allowed to create local queue pairs.
1725          */
1726
1727         mutex_lock(&qp_broker_list.mutex);
1728
1729         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1730                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1731                          context_id, handle.context, handle.resource);
1732                 mutex_unlock(&qp_broker_list.mutex);
1733                 return VMCI_ERROR_ALREADY_EXISTS;
1734         }
1735
1736         if (handle.resource != VMCI_INVALID_ID)
1737                 entry = qp_broker_handle_to_entry(handle);
1738
1739         if (!entry) {
1740                 create = true;
1741                 result =
1742                     qp_broker_create(handle, peer, flags, priv_flags,
1743                                      produce_size, consume_size, page_store,
1744                                      context, wakeup_cb, client_data, ent);
1745         } else {
1746                 create = false;
1747                 result =
1748                     qp_broker_attach(entry, peer, flags, priv_flags,
1749                                      produce_size, consume_size, page_store,
1750                                      context, wakeup_cb, client_data, ent);
1751         }
1752
1753         mutex_unlock(&qp_broker_list.mutex);
1754
1755         if (swap)
1756                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1757                     !(create && is_local);
1758
1759         return result;
1760 }
1761
1762 /*
1763  * This function implements the kernel API for allocating a queue
1764  * pair.
1765  */
1766 static int qp_alloc_host_work(struct vmci_handle *handle,
1767                               struct vmci_queue **produce_q,
1768                               u64 produce_size,
1769                               struct vmci_queue **consume_q,
1770                               u64 consume_size,
1771                               u32 peer,
1772                               u32 flags,
1773                               u32 priv_flags,
1774                               vmci_event_release_cb wakeup_cb,
1775                               void *client_data)
1776 {
1777         struct vmci_handle new_handle;
1778         struct vmci_ctx *context;
1779         struct qp_broker_entry *entry;
1780         int result;
1781         bool swap;
1782
1783         if (vmci_handle_is_invalid(*handle)) {
1784                 new_handle = vmci_make_handle(
1785                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1786         } else
1787                 new_handle = *handle;
1788
1789         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1790         entry = NULL;
1791         result =
1792             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1793                             produce_size, consume_size, NULL, context,
1794                             wakeup_cb, client_data, &entry, &swap);
1795         if (result == VMCI_SUCCESS) {
1796                 if (swap) {
1797                         /*
1798                          * If this is a local queue pair, the attacher
1799                          * will swap around produce and consume
1800                          * queues.
1801                          */
1802
1803                         *produce_q = entry->consume_q;
1804                         *consume_q = entry->produce_q;
1805                 } else {
1806                         *produce_q = entry->produce_q;
1807                         *consume_q = entry->consume_q;
1808                 }
1809
1810                 *handle = vmci_resource_handle(&entry->resource);
1811         } else {
1812                 *handle = VMCI_INVALID_HANDLE;
1813                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1814                          result);
1815         }
1816         vmci_ctx_put(context);
1817         return result;
1818 }
1819
1820 /*
1821  * Allocates a VMCI queue_pair. Only checks validity of input
1822  * arguments. The real work is done in the host or guest
1823  * specific function.
1824  */
1825 int vmci_qp_alloc(struct vmci_handle *handle,
1826                   struct vmci_queue **produce_q,
1827                   u64 produce_size,
1828                   struct vmci_queue **consume_q,
1829                   u64 consume_size,
1830                   u32 peer,
1831                   u32 flags,
1832                   u32 priv_flags,
1833                   bool guest_endpoint,
1834                   vmci_event_release_cb wakeup_cb,
1835                   void *client_data)
1836 {
1837         if (!handle || !produce_q || !consume_q ||
1838             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1839                 return VMCI_ERROR_INVALID_ARGS;
1840
1841         if (guest_endpoint) {
1842                 return qp_alloc_guest_work(handle, produce_q,
1843                                            produce_size, consume_q,
1844                                            consume_size, peer,
1845                                            flags, priv_flags);
1846         } else {
1847                 return qp_alloc_host_work(handle, produce_q,
1848                                           produce_size, consume_q,
1849                                           consume_size, peer, flags,
1850                                           priv_flags, wakeup_cb, client_data);
1851         }
1852 }
1853
1854 /*
1855  * This function implements the host kernel API for detaching from
1856  * a queue pair.
1857  */
1858 static int qp_detatch_host_work(struct vmci_handle handle)
1859 {
1860         int result;
1861         struct vmci_ctx *context;
1862
1863         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1864
1865         result = vmci_qp_broker_detach(handle, context);
1866
1867         vmci_ctx_put(context);
1868         return result;
1869 }
1870
1871 /*
1872  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1873  * Real work is done in the host or guest specific function.
1874  */
1875 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1876 {
1877         if (vmci_handle_is_invalid(handle))
1878                 return VMCI_ERROR_INVALID_ARGS;
1879
1880         if (guest_endpoint)
1881                 return qp_detatch_guest_work(handle);
1882         else
1883                 return qp_detatch_host_work(handle);
1884 }
1885
1886 /*
1887  * Returns the entry from the head of the list. Assumes that the list is
1888  * locked.
1889  */
1890 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1891 {
1892         if (!list_empty(&qp_list->head)) {
1893                 struct qp_entry *entry =
1894                     list_first_entry(&qp_list->head, struct qp_entry,
1895                                      list_item);
1896                 return entry;
1897         }
1898
1899         return NULL;
1900 }
1901
1902 void vmci_qp_broker_exit(void)
1903 {
1904         struct qp_entry *entry;
1905         struct qp_broker_entry *be;
1906
1907         mutex_lock(&qp_broker_list.mutex);
1908
1909         while ((entry = qp_list_get_head(&qp_broker_list))) {
1910                 be = (struct qp_broker_entry *)entry;
1911
1912                 qp_list_remove_entry(&qp_broker_list, entry);
1913                 kfree(be);
1914         }
1915
1916         mutex_unlock(&qp_broker_list.mutex);
1917 }
1918
1919 /*
1920  * Requests that a queue pair be allocated with the VMCI queue
1921  * pair broker. Allocates a queue pair entry if one does not
1922  * exist. Attaches to one if it exists, and retrieves the page
1923  * files backing that queue_pair.  Assumes that the queue pair
1924  * broker lock is held.
1925  */
1926 int vmci_qp_broker_alloc(struct vmci_handle handle,
1927                          u32 peer,
1928                          u32 flags,
1929                          u32 priv_flags,
1930                          u64 produce_size,
1931                          u64 consume_size,
1932                          struct vmci_qp_page_store *page_store,
1933                          struct vmci_ctx *context)
1934 {
1935         return qp_broker_alloc(handle, peer, flags, priv_flags,
1936                                produce_size, consume_size,
1937                                page_store, context, NULL, NULL, NULL, NULL);
1938 }
1939
1940 /*
1941  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1942  * step to add the UVAs of the VMX mapping of the queue pair. This function
1943  * provides backwards compatibility with such VMX'en, and takes care of
1944  * registering the page store for a queue pair previously allocated by the
1945  * VMX during create or attach. This function will move the queue pair state
1946  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1947  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1948  * attached state with memory, the queue pair is ready to be used by the
1949  * host peer, and an attached event will be generated.
1950  *
1951  * Assumes that the queue pair broker lock is held.
1952  *
1953  * This function is only used by the hosted platform, since there is no
1954  * issue with backwards compatibility for vmkernel.
1955  */
1956 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1957                                   u64 produce_uva,
1958                                   u64 consume_uva,
1959                                   struct vmci_ctx *context)
1960 {
1961         struct qp_broker_entry *entry;
1962         int result;
1963         const u32 context_id = vmci_ctx_get_id(context);
1964
1965         if (vmci_handle_is_invalid(handle) || !context ||
1966             context_id == VMCI_INVALID_ID)
1967                 return VMCI_ERROR_INVALID_ARGS;
1968
1969         /*
1970          * We only support guest to host queue pairs, so the VMX must
1971          * supply UVAs for the mapped page files.
1972          */
1973
1974         if (produce_uva == 0 || consume_uva == 0)
1975                 return VMCI_ERROR_INVALID_ARGS;
1976
1977         mutex_lock(&qp_broker_list.mutex);
1978
1979         if (!vmci_ctx_qp_exists(context, handle)) {
1980                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1981                         context_id, handle.context, handle.resource);
1982                 result = VMCI_ERROR_NOT_FOUND;
1983                 goto out;
1984         }
1985
1986         entry = qp_broker_handle_to_entry(handle);
1987         if (!entry) {
1988                 result = VMCI_ERROR_NOT_FOUND;
1989                 goto out;
1990         }
1991
1992         /*
1993          * If I'm the owner then I can set the page store.
1994          *
1995          * Or, if a host created the queue_pair and I'm the attached peer
1996          * then I can set the page store.
1997          */
1998         if (entry->create_id != context_id &&
1999             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2000              entry->attach_id != context_id)) {
2001                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2002                 goto out;
2003         }
2004
2005         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2006             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2007                 result = VMCI_ERROR_UNAVAILABLE;
2008                 goto out;
2009         }
2010
2011         result = qp_host_get_user_memory(produce_uva, consume_uva,
2012                                          entry->produce_q, entry->consume_q);
2013         if (result < VMCI_SUCCESS)
2014                 goto out;
2015
2016         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2017         if (result < VMCI_SUCCESS) {
2018                 qp_host_unregister_user_memory(entry->produce_q,
2019                                                entry->consume_q);
2020                 goto out;
2021         }
2022
2023         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2024                 entry->state = VMCIQPB_CREATED_MEM;
2025         else
2026                 entry->state = VMCIQPB_ATTACHED_MEM;
2027
2028         entry->vmci_page_files = true;
2029
2030         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2031                 result =
2032                     qp_notify_peer(true, handle, context_id, entry->create_id);
2033                 if (result < VMCI_SUCCESS) {
2034                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2035                                 entry->create_id, entry->qp.handle.context,
2036                                 entry->qp.handle.resource);
2037                 }
2038         }
2039
2040         result = VMCI_SUCCESS;
2041  out:
2042         mutex_unlock(&qp_broker_list.mutex);
2043         return result;
2044 }
2045
2046 /*
2047  * Resets saved queue headers for the given QP broker
2048  * entry. Should be used when guest memory becomes available
2049  * again, or the guest detaches.
2050  */
2051 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2052 {
2053         entry->produce_q->saved_header = NULL;
2054         entry->consume_q->saved_header = NULL;
2055 }
2056
2057 /*
2058  * The main entry point for detaching from a queue pair registered with the
2059  * queue pair broker. If more than one endpoint is attached to the queue
2060  * pair, the first endpoint will mainly decrement a reference count and
2061  * generate a notification to its peer. The last endpoint will clean up
2062  * the queue pair state registered with the broker.
2063  *
2064  * When a guest endpoint detaches, it will unmap and unregister the guest
2065  * memory backing the queue pair. If the host is still attached, it will
2066  * no longer be able to access the queue pair content.
2067  *
2068  * If the queue pair is already in a state where there is no memory
2069  * registered for the queue pair (any *_NO_MEM state), it will transition to
2070  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2071  * endpoint is the first of two endpoints to detach. If the host endpoint is
2072  * the first out of two to detach, the queue pair will move to the
2073  * VMCIQPB_SHUTDOWN_MEM state.
2074  */
2075 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2076 {
2077         struct qp_broker_entry *entry;
2078         const u32 context_id = vmci_ctx_get_id(context);
2079         u32 peer_id;
2080         bool is_local = false;
2081         int result;
2082
2083         if (vmci_handle_is_invalid(handle) || !context ||
2084             context_id == VMCI_INVALID_ID) {
2085                 return VMCI_ERROR_INVALID_ARGS;
2086         }
2087
2088         mutex_lock(&qp_broker_list.mutex);
2089
2090         if (!vmci_ctx_qp_exists(context, handle)) {
2091                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2092                          context_id, handle.context, handle.resource);
2093                 result = VMCI_ERROR_NOT_FOUND;
2094                 goto out;
2095         }
2096
2097         entry = qp_broker_handle_to_entry(handle);
2098         if (!entry) {
2099                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2100                          context_id, handle.context, handle.resource);
2101                 result = VMCI_ERROR_NOT_FOUND;
2102                 goto out;
2103         }
2104
2105         if (context_id != entry->create_id && context_id != entry->attach_id) {
2106                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2107                 goto out;
2108         }
2109
2110         if (context_id == entry->create_id) {
2111                 peer_id = entry->attach_id;
2112                 entry->create_id = VMCI_INVALID_ID;
2113         } else {
2114                 peer_id = entry->create_id;
2115                 entry->attach_id = VMCI_INVALID_ID;
2116         }
2117         entry->qp.ref_count--;
2118
2119         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2120
2121         if (context_id != VMCI_HOST_CONTEXT_ID) {
2122                 bool headers_mapped;
2123
2124                 /*
2125                  * Pre NOVMVM vmx'en may detach from a queue pair
2126                  * before setting the page store, and in that case
2127                  * there is no user memory to detach from. Also, more
2128                  * recent VMX'en may detach from a queue pair in the
2129                  * quiesced state.
2130                  */
2131
2132                 qp_acquire_queue_mutex(entry->produce_q);
2133                 headers_mapped = entry->produce_q->q_header ||
2134                     entry->consume_q->q_header;
2135                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2136                         result =
2137                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2138                                                  entry->produce_q,
2139                                                  entry->consume_q);
2140                         if (result < VMCI_SUCCESS)
2141                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2142                                         handle.context, handle.resource,
2143                                         result);
2144
2145                         qp_host_unregister_user_memory(entry->produce_q,
2146                                                        entry->consume_q);
2147
2148                 }
2149
2150                 if (!headers_mapped)
2151                         qp_reset_saved_headers(entry);
2152
2153                 qp_release_queue_mutex(entry->produce_q);
2154
2155                 if (!headers_mapped && entry->wakeup_cb)
2156                         entry->wakeup_cb(entry->client_data);
2157
2158         } else {
2159                 if (entry->wakeup_cb) {
2160                         entry->wakeup_cb = NULL;
2161                         entry->client_data = NULL;
2162                 }
2163         }
2164
2165         if (entry->qp.ref_count == 0) {
2166                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2167
2168                 if (is_local)
2169                         kfree(entry->local_mem);
2170
2171                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2172                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2173                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2174                 /* Unlink from resource hash table and free callback */
2175                 vmci_resource_remove(&entry->resource);
2176
2177                 kfree(entry);
2178
2179                 vmci_ctx_qp_destroy(context, handle);
2180         } else {
2181                 qp_notify_peer(false, handle, context_id, peer_id);
2182                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2183                     QPBROKERSTATE_HAS_MEM(entry)) {
2184                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2185                 } else {
2186                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2187                 }
2188
2189                 if (!is_local)
2190                         vmci_ctx_qp_destroy(context, handle);
2191
2192         }
2193         result = VMCI_SUCCESS;
2194  out:
2195         mutex_unlock(&qp_broker_list.mutex);
2196         return result;
2197 }
2198
2199 /*
2200  * Establishes the necessary mappings for a queue pair given a
2201  * reference to the queue pair guest memory. This is usually
2202  * called when a guest is unquiesced and the VMX is allowed to
2203  * map guest memory once again.
2204  */
2205 int vmci_qp_broker_map(struct vmci_handle handle,
2206                        struct vmci_ctx *context,
2207                        u64 guest_mem)
2208 {
2209         struct qp_broker_entry *entry;
2210         const u32 context_id = vmci_ctx_get_id(context);
2211         int result;
2212
2213         if (vmci_handle_is_invalid(handle) || !context ||
2214             context_id == VMCI_INVALID_ID)
2215                 return VMCI_ERROR_INVALID_ARGS;
2216
2217         mutex_lock(&qp_broker_list.mutex);
2218
2219         if (!vmci_ctx_qp_exists(context, handle)) {
2220                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2221                          context_id, handle.context, handle.resource);
2222                 result = VMCI_ERROR_NOT_FOUND;
2223                 goto out;
2224         }
2225
2226         entry = qp_broker_handle_to_entry(handle);
2227         if (!entry) {
2228                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2229                          context_id, handle.context, handle.resource);
2230                 result = VMCI_ERROR_NOT_FOUND;
2231                 goto out;
2232         }
2233
2234         if (context_id != entry->create_id && context_id != entry->attach_id) {
2235                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2236                 goto out;
2237         }
2238
2239         result = VMCI_SUCCESS;
2240
2241         if (context_id != VMCI_HOST_CONTEXT_ID &&
2242             !QPBROKERSTATE_HAS_MEM(entry)) {
2243                 struct vmci_qp_page_store page_store;
2244
2245                 page_store.pages = guest_mem;
2246                 page_store.len = QPE_NUM_PAGES(entry->qp);
2247
2248                 qp_acquire_queue_mutex(entry->produce_q);
2249                 qp_reset_saved_headers(entry);
2250                 result =
2251                     qp_host_register_user_memory(&page_store,
2252                                                  entry->produce_q,
2253                                                  entry->consume_q);
2254                 qp_release_queue_mutex(entry->produce_q);
2255                 if (result == VMCI_SUCCESS) {
2256                         /* Move state from *_NO_MEM to *_MEM */
2257
2258                         entry->state++;
2259
2260                         if (entry->wakeup_cb)
2261                                 entry->wakeup_cb(entry->client_data);
2262                 }
2263         }
2264
2265  out:
2266         mutex_unlock(&qp_broker_list.mutex);
2267         return result;
2268 }
2269
2270 /*
2271  * Saves a snapshot of the queue headers for the given QP broker
2272  * entry. Should be used when guest memory is unmapped.
2273  * Results:
2274  * VMCI_SUCCESS on success, appropriate error code if guest memory
2275  * can't be accessed..
2276  */
2277 static int qp_save_headers(struct qp_broker_entry *entry)
2278 {
2279         int result;
2280
2281         if (entry->produce_q->saved_header != NULL &&
2282             entry->consume_q->saved_header != NULL) {
2283                 /*
2284                  *  If the headers have already been saved, we don't need to do
2285                  *  it again, and we don't want to map in the headers
2286                  *  unnecessarily.
2287                  */
2288
2289                 return VMCI_SUCCESS;
2290         }
2291
2292         if (NULL == entry->produce_q->q_header ||
2293             NULL == entry->consume_q->q_header) {
2294                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2295                 if (result < VMCI_SUCCESS)
2296                         return result;
2297         }
2298
2299         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2300                sizeof(entry->saved_produce_q));
2301         entry->produce_q->saved_header = &entry->saved_produce_q;
2302         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2303                sizeof(entry->saved_consume_q));
2304         entry->consume_q->saved_header = &entry->saved_consume_q;
2305
2306         return VMCI_SUCCESS;
2307 }
2308
2309 /*
2310  * Removes all references to the guest memory of a given queue pair, and
2311  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2312  * called when a VM is being quiesced where access to guest memory should
2313  * avoided.
2314  */
2315 int vmci_qp_broker_unmap(struct vmci_handle handle,
2316                          struct vmci_ctx *context,
2317                          u32 gid)
2318 {
2319         struct qp_broker_entry *entry;
2320         const u32 context_id = vmci_ctx_get_id(context);
2321         int result;
2322
2323         if (vmci_handle_is_invalid(handle) || !context ||
2324             context_id == VMCI_INVALID_ID)
2325                 return VMCI_ERROR_INVALID_ARGS;
2326
2327         mutex_lock(&qp_broker_list.mutex);
2328
2329         if (!vmci_ctx_qp_exists(context, handle)) {
2330                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2331                          context_id, handle.context, handle.resource);
2332                 result = VMCI_ERROR_NOT_FOUND;
2333                 goto out;
2334         }
2335
2336         entry = qp_broker_handle_to_entry(handle);
2337         if (!entry) {
2338                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2339                          context_id, handle.context, handle.resource);
2340                 result = VMCI_ERROR_NOT_FOUND;
2341                 goto out;
2342         }
2343
2344         if (context_id != entry->create_id && context_id != entry->attach_id) {
2345                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2346                 goto out;
2347         }
2348
2349         if (context_id != VMCI_HOST_CONTEXT_ID &&
2350             QPBROKERSTATE_HAS_MEM(entry)) {
2351                 qp_acquire_queue_mutex(entry->produce_q);
2352                 result = qp_save_headers(entry);
2353                 if (result < VMCI_SUCCESS)
2354                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2355                                 handle.context, handle.resource, result);
2356
2357                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2358
2359                 /*
2360                  * On hosted, when we unmap queue pairs, the VMX will also
2361                  * unmap the guest memory, so we invalidate the previously
2362                  * registered memory. If the queue pair is mapped again at a
2363                  * later point in time, we will need to reregister the user
2364                  * memory with a possibly new user VA.
2365                  */
2366                 qp_host_unregister_user_memory(entry->produce_q,
2367                                                entry->consume_q);
2368
2369                 /*
2370                  * Move state from *_MEM to *_NO_MEM.
2371                  */
2372                 entry->state--;
2373
2374                 qp_release_queue_mutex(entry->produce_q);
2375         }
2376
2377         result = VMCI_SUCCESS;
2378
2379  out:
2380         mutex_unlock(&qp_broker_list.mutex);
2381         return result;
2382 }
2383
2384 /*
2385  * Destroys all guest queue pair endpoints. If active guest queue
2386  * pairs still exist, hypercalls to attempt detach from these
2387  * queue pairs will be made. Any failure to detach is silently
2388  * ignored.
2389  */
2390 void vmci_qp_guest_endpoints_exit(void)
2391 {
2392         struct qp_entry *entry;
2393         struct qp_guest_endpoint *ep;
2394
2395         mutex_lock(&qp_guest_endpoints.mutex);
2396
2397         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2398                 ep = (struct qp_guest_endpoint *)entry;
2399
2400                 /* Don't make a hypercall for local queue_pairs. */
2401                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2402                         qp_detatch_hypercall(entry->handle);
2403
2404                 /* We cannot fail the exit, so let's reset ref_count. */
2405                 entry->ref_count = 0;
2406                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2407
2408                 qp_guest_endpoint_destroy(ep);
2409         }
2410
2411         mutex_unlock(&qp_guest_endpoints.mutex);
2412 }
2413
2414 /*
2415  * Helper routine that will lock the queue pair before subsequent
2416  * operations.
2417  * Note: Non-blocking on the host side is currently only implemented in ESX.
2418  * Since non-blocking isn't yet implemented on the host personality we
2419  * have no reason to acquire a spin lock.  So to avoid the use of an
2420  * unnecessary lock only acquire the mutex if we can block.
2421  */
2422 static void qp_lock(const struct vmci_qp *qpair)
2423 {
2424         qp_acquire_queue_mutex(qpair->produce_q);
2425 }
2426
2427 /*
2428  * Helper routine that unlocks the queue pair after calling
2429  * qp_lock.
2430  */
2431 static void qp_unlock(const struct vmci_qp *qpair)
2432 {
2433         qp_release_queue_mutex(qpair->produce_q);
2434 }
2435
2436 /*
2437  * The queue headers may not be mapped at all times. If a queue is
2438  * currently not mapped, it will be attempted to do so.
2439  */
2440 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2441                                 struct vmci_queue *consume_q)
2442 {
2443         int result;
2444
2445         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2446                 result = qp_host_map_queues(produce_q, consume_q);
2447                 if (result < VMCI_SUCCESS)
2448                         return (produce_q->saved_header &&
2449                                 consume_q->saved_header) ?
2450                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2451                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2452         }
2453
2454         return VMCI_SUCCESS;
2455 }
2456
2457 /*
2458  * Helper routine that will retrieve the produce and consume
2459  * headers of a given queue pair. If the guest memory of the
2460  * queue pair is currently not available, the saved queue headers
2461  * will be returned, if these are available.
2462  */
2463 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2464                                 struct vmci_queue_header **produce_q_header,
2465                                 struct vmci_queue_header **consume_q_header)
2466 {
2467         int result;
2468
2469         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2470         if (result == VMCI_SUCCESS) {
2471                 *produce_q_header = qpair->produce_q->q_header;
2472                 *consume_q_header = qpair->consume_q->q_header;
2473         } else if (qpair->produce_q->saved_header &&
2474                    qpair->consume_q->saved_header) {
2475                 *produce_q_header = qpair->produce_q->saved_header;
2476                 *consume_q_header = qpair->consume_q->saved_header;
2477                 result = VMCI_SUCCESS;
2478         }
2479
2480         return result;
2481 }
2482
2483 /*
2484  * Callback from VMCI queue pair broker indicating that a queue
2485  * pair that was previously not ready, now either is ready or
2486  * gone forever.
2487  */
2488 static int qp_wakeup_cb(void *client_data)
2489 {
2490         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2491
2492         qp_lock(qpair);
2493         while (qpair->blocked > 0) {
2494                 qpair->blocked--;
2495                 qpair->generation++;
2496                 wake_up(&qpair->event);
2497         }
2498         qp_unlock(qpair);
2499
2500         return VMCI_SUCCESS;
2501 }
2502
2503 /*
2504  * Makes the calling thread wait for the queue pair to become
2505  * ready for host side access.  Returns true when thread is
2506  * woken up after queue pair state change, false otherwise.
2507  */
2508 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2509 {
2510         unsigned int generation;
2511
2512         qpair->blocked++;
2513         generation = qpair->generation;
2514         qp_unlock(qpair);
2515         wait_event(qpair->event, generation != qpair->generation);
2516         qp_lock(qpair);
2517
2518         return true;
2519 }
2520
2521 /*
2522  * Enqueues a given buffer to the produce queue using the provided
2523  * function. As many bytes as possible (space available in the queue)
2524  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2525  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2526  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2527  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2528  * an error occured when accessing the buffer,
2529  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2530  * available.  Otherwise, the number of bytes written to the queue is
2531  * returned.  Updates the tail pointer of the produce queue.
2532  */
2533 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2534                                  struct vmci_queue *consume_q,
2535                                  const u64 produce_q_size,
2536                                  struct iov_iter *from)
2537 {
2538         s64 free_space;
2539         u64 tail;
2540         size_t buf_size = iov_iter_count(from);
2541         size_t written;
2542         ssize_t result;
2543
2544         result = qp_map_queue_headers(produce_q, consume_q);
2545         if (unlikely(result != VMCI_SUCCESS))
2546                 return result;
2547
2548         free_space = vmci_q_header_free_space(produce_q->q_header,
2549                                               consume_q->q_header,
2550                                               produce_q_size);
2551         if (free_space == 0)
2552                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2553
2554         if (free_space < VMCI_SUCCESS)
2555                 return (ssize_t) free_space;
2556
2557         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2558         tail = vmci_q_header_producer_tail(produce_q->q_header);
2559         if (likely(tail + written < produce_q_size)) {
2560                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2561         } else {
2562                 /* Tail pointer wraps around. */
2563
2564                 const size_t tmp = (size_t) (produce_q_size - tail);
2565
2566                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2567                 if (result >= VMCI_SUCCESS)
2568                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2569                                                  written - tmp);
2570         }
2571
2572         if (result < VMCI_SUCCESS)
2573                 return result;
2574
2575         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2576                                         produce_q_size);
2577         return written;
2578 }
2579
2580 /*
2581  * Dequeues data (if available) from the given consume queue. Writes data
2582  * to the user provided buffer using the provided function.
2583  * Assumes the queue->mutex has been acquired.
2584  * Results:
2585  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2586  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2587  * (as defined by the queue size).
2588  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2589  * Otherwise the number of bytes dequeued is returned.
2590  * Side effects:
2591  * Updates the head pointer of the consume queue.
2592  */
2593 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2594                                  struct vmci_queue *consume_q,
2595                                  const u64 consume_q_size,
2596                                  struct iov_iter *to,
2597                                  bool update_consumer)
2598 {
2599         size_t buf_size = iov_iter_count(to);
2600         s64 buf_ready;
2601         u64 head;
2602         size_t read;
2603         ssize_t result;
2604
2605         result = qp_map_queue_headers(produce_q, consume_q);
2606         if (unlikely(result != VMCI_SUCCESS))
2607                 return result;
2608
2609         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2610                                             produce_q->q_header,
2611                                             consume_q_size);
2612         if (buf_ready == 0)
2613                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2614
2615         if (buf_ready < VMCI_SUCCESS)
2616                 return (ssize_t) buf_ready;
2617
2618         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2619         head = vmci_q_header_consumer_head(produce_q->q_header);
2620         if (likely(head + read < consume_q_size)) {
2621                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2622         } else {
2623                 /* Head pointer wraps around. */
2624
2625                 const size_t tmp = (size_t) (consume_q_size - head);
2626
2627                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2628                 if (result >= VMCI_SUCCESS)
2629                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2630                                                    read - tmp);
2631
2632         }
2633
2634         if (result < VMCI_SUCCESS)
2635                 return result;
2636
2637         if (update_consumer)
2638                 vmci_q_header_add_consumer_head(produce_q->q_header,
2639                                                 read, consume_q_size);
2640
2641         return read;
2642 }
2643
2644 /*
2645  * vmci_qpair_alloc() - Allocates a queue pair.
2646  * @qpair:      Pointer for the new vmci_qp struct.
2647  * @handle:     Handle to track the resource.
2648  * @produce_qsize:      Desired size of the producer queue.
2649  * @consume_qsize:      Desired size of the consumer queue.
2650  * @peer:       ContextID of the peer.
2651  * @flags:      VMCI flags.
2652  * @priv_flags: VMCI priviledge flags.
2653  *
2654  * This is the client interface for allocating the memory for a
2655  * vmci_qp structure and then attaching to the underlying
2656  * queue.  If an error occurs allocating the memory for the
2657  * vmci_qp structure no attempt is made to attach.  If an
2658  * error occurs attaching, then the structure is freed.
2659  */
2660 int vmci_qpair_alloc(struct vmci_qp **qpair,
2661                      struct vmci_handle *handle,
2662                      u64 produce_qsize,
2663                      u64 consume_qsize,
2664                      u32 peer,
2665                      u32 flags,
2666                      u32 priv_flags)
2667 {
2668         struct vmci_qp *my_qpair;
2669         int retval;
2670         struct vmci_handle src = VMCI_INVALID_HANDLE;
2671         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2672         enum vmci_route route;
2673         vmci_event_release_cb wakeup_cb;
2674         void *client_data;
2675
2676         /*
2677          * Restrict the size of a queuepair.  The device already
2678          * enforces a limit on the total amount of memory that can be
2679          * allocated to queuepairs for a guest.  However, we try to
2680          * allocate this memory before we make the queuepair
2681          * allocation hypercall.  On Linux, we allocate each page
2682          * separately, which means rather than fail, the guest will
2683          * thrash while it tries to allocate, and will become
2684          * increasingly unresponsive to the point where it appears to
2685          * be hung.  So we place a limit on the size of an individual
2686          * queuepair here, and leave the device to enforce the
2687          * restriction on total queuepair memory.  (Note that this
2688          * doesn't prevent all cases; a user with only this much
2689          * physical memory could still get into trouble.)  The error
2690          * used by the device is NO_RESOURCES, so use that here too.
2691          */
2692
2693         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2694             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2695                 return VMCI_ERROR_NO_RESOURCES;
2696
2697         retval = vmci_route(&src, &dst, false, &route);
2698         if (retval < VMCI_SUCCESS)
2699                 route = vmci_guest_code_active() ?
2700                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2701
2702         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2703                 pr_devel("NONBLOCK OR PINNED set");
2704                 return VMCI_ERROR_INVALID_ARGS;
2705         }
2706
2707         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2708         if (!my_qpair)
2709                 return VMCI_ERROR_NO_MEM;
2710
2711         my_qpair->produce_q_size = produce_qsize;
2712         my_qpair->consume_q_size = consume_qsize;
2713         my_qpair->peer = peer;
2714         my_qpair->flags = flags;
2715         my_qpair->priv_flags = priv_flags;
2716
2717         wakeup_cb = NULL;
2718         client_data = NULL;
2719
2720         if (VMCI_ROUTE_AS_HOST == route) {
2721                 my_qpair->guest_endpoint = false;
2722                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2723                         my_qpair->blocked = 0;
2724                         my_qpair->generation = 0;
2725                         init_waitqueue_head(&my_qpair->event);
2726                         wakeup_cb = qp_wakeup_cb;
2727                         client_data = (void *)my_qpair;
2728                 }
2729         } else {
2730                 my_qpair->guest_endpoint = true;
2731         }
2732
2733         retval = vmci_qp_alloc(handle,
2734                                &my_qpair->produce_q,
2735                                my_qpair->produce_q_size,
2736                                &my_qpair->consume_q,
2737                                my_qpair->consume_q_size,
2738                                my_qpair->peer,
2739                                my_qpair->flags,
2740                                my_qpair->priv_flags,
2741                                my_qpair->guest_endpoint,
2742                                wakeup_cb, client_data);
2743
2744         if (retval < VMCI_SUCCESS) {
2745                 kfree(my_qpair);
2746                 return retval;
2747         }
2748
2749         *qpair = my_qpair;
2750         my_qpair->handle = *handle;
2751
2752         return retval;
2753 }
2754 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2755
2756 /*
2757  * vmci_qpair_detach() - Detatches the client from a queue pair.
2758  * @qpair:      Reference of a pointer to the qpair struct.
2759  *
2760  * This is the client interface for detaching from a VMCIQPair.
2761  * Note that this routine will free the memory allocated for the
2762  * vmci_qp structure too.
2763  */
2764 int vmci_qpair_detach(struct vmci_qp **qpair)
2765 {
2766         int result;
2767         struct vmci_qp *old_qpair;
2768
2769         if (!qpair || !(*qpair))
2770                 return VMCI_ERROR_INVALID_ARGS;
2771
2772         old_qpair = *qpair;
2773         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2774
2775         /*
2776          * The guest can fail to detach for a number of reasons, and
2777          * if it does so, it will cleanup the entry (if there is one).
2778          * The host can fail too, but it won't cleanup the entry
2779          * immediately, it will do that later when the context is
2780          * freed.  Either way, we need to release the qpair struct
2781          * here; there isn't much the caller can do, and we don't want
2782          * to leak.
2783          */
2784
2785         memset(old_qpair, 0, sizeof(*old_qpair));
2786         old_qpair->handle = VMCI_INVALID_HANDLE;
2787         old_qpair->peer = VMCI_INVALID_ID;
2788         kfree(old_qpair);
2789         *qpair = NULL;
2790
2791         return result;
2792 }
2793 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2794
2795 /*
2796  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2797  * @qpair:      Pointer to the queue pair struct.
2798  * @producer_tail:      Reference used for storing producer tail index.
2799  * @consumer_head:      Reference used for storing the consumer head index.
2800  *
2801  * This is the client interface for getting the current indexes of the
2802  * QPair from the point of the view of the caller as the producer.
2803  */
2804 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2805                                    u64 *producer_tail,
2806                                    u64 *consumer_head)
2807 {
2808         struct vmci_queue_header *produce_q_header;
2809         struct vmci_queue_header *consume_q_header;
2810         int result;
2811
2812         if (!qpair)
2813                 return VMCI_ERROR_INVALID_ARGS;
2814
2815         qp_lock(qpair);
2816         result =
2817             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2818         if (result == VMCI_SUCCESS)
2819                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2820                                            producer_tail, consumer_head);
2821         qp_unlock(qpair);
2822
2823         if (result == VMCI_SUCCESS &&
2824             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2825              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2826                 return VMCI_ERROR_INVALID_SIZE;
2827
2828         return result;
2829 }
2830 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2831
2832 /*
2833  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2834  * @qpair:      Pointer to the queue pair struct.
2835  * @consumer_tail:      Reference used for storing consumer tail index.
2836  * @producer_head:      Reference used for storing the producer head index.
2837  *
2838  * This is the client interface for getting the current indexes of the
2839  * QPair from the point of the view of the caller as the consumer.
2840  */
2841 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2842                                    u64 *consumer_tail,
2843                                    u64 *producer_head)
2844 {
2845         struct vmci_queue_header *produce_q_header;
2846         struct vmci_queue_header *consume_q_header;
2847         int result;
2848
2849         if (!qpair)
2850                 return VMCI_ERROR_INVALID_ARGS;
2851
2852         qp_lock(qpair);
2853         result =
2854             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2855         if (result == VMCI_SUCCESS)
2856                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2857                                            consumer_tail, producer_head);
2858         qp_unlock(qpair);
2859
2860         if (result == VMCI_SUCCESS &&
2861             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2862              (producer_head && *producer_head >= qpair->consume_q_size)))
2863                 return VMCI_ERROR_INVALID_SIZE;
2864
2865         return result;
2866 }
2867 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2868
2869 /*
2870  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2871  * @qpair:      Pointer to the queue pair struct.
2872  *
2873  * This is the client interface for getting the amount of free
2874  * space in the QPair from the point of the view of the caller as
2875  * the producer which is the common case.  Returns < 0 if err, else
2876  * available bytes into which data can be enqueued if > 0.
2877  */
2878 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2879 {
2880         struct vmci_queue_header *produce_q_header;
2881         struct vmci_queue_header *consume_q_header;
2882         s64 result;
2883
2884         if (!qpair)
2885                 return VMCI_ERROR_INVALID_ARGS;
2886
2887         qp_lock(qpair);
2888         result =
2889             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2890         if (result == VMCI_SUCCESS)
2891                 result = vmci_q_header_free_space(produce_q_header,
2892                                                   consume_q_header,
2893                                                   qpair->produce_q_size);
2894         else
2895                 result = 0;
2896
2897         qp_unlock(qpair);
2898
2899         return result;
2900 }
2901 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2902
2903 /*
2904  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2905  * @qpair:      Pointer to the queue pair struct.
2906  *
2907  * This is the client interface for getting the amount of free
2908  * space in the QPair from the point of the view of the caller as
2909  * the consumer which is not the common case.  Returns < 0 if err, else
2910  * available bytes into which data can be enqueued if > 0.
2911  */
2912 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2913 {
2914         struct vmci_queue_header *produce_q_header;
2915         struct vmci_queue_header *consume_q_header;
2916         s64 result;
2917
2918         if (!qpair)
2919                 return VMCI_ERROR_INVALID_ARGS;
2920
2921         qp_lock(qpair);
2922         result =
2923             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2924         if (result == VMCI_SUCCESS)
2925                 result = vmci_q_header_free_space(consume_q_header,
2926                                                   produce_q_header,
2927                                                   qpair->consume_q_size);
2928         else
2929                 result = 0;
2930
2931         qp_unlock(qpair);
2932
2933         return result;
2934 }
2935 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2936
2937 /*
2938  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2939  * producer queue.
2940  * @qpair:      Pointer to the queue pair struct.
2941  *
2942  * This is the client interface for getting the amount of
2943  * enqueued data in the QPair from the point of the view of the
2944  * caller as the producer which is not the common case.  Returns < 0 if err,
2945  * else available bytes that may be read.
2946  */
2947 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2948 {
2949         struct vmci_queue_header *produce_q_header;
2950         struct vmci_queue_header *consume_q_header;
2951         s64 result;
2952
2953         if (!qpair)
2954                 return VMCI_ERROR_INVALID_ARGS;
2955
2956         qp_lock(qpair);
2957         result =
2958             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2959         if (result == VMCI_SUCCESS)
2960                 result = vmci_q_header_buf_ready(produce_q_header,
2961                                                  consume_q_header,
2962                                                  qpair->produce_q_size);
2963         else
2964                 result = 0;
2965
2966         qp_unlock(qpair);
2967
2968         return result;
2969 }
2970 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2971
2972 /*
2973  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2974  * consumer queue.
2975  * @qpair:      Pointer to the queue pair struct.
2976  *
2977  * This is the client interface for getting the amount of
2978  * enqueued data in the QPair from the point of the view of the
2979  * caller as the consumer which is the normal case.  Returns < 0 if err,
2980  * else available bytes that may be read.
2981  */
2982 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2983 {
2984         struct vmci_queue_header *produce_q_header;
2985         struct vmci_queue_header *consume_q_header;
2986         s64 result;
2987
2988         if (!qpair)
2989                 return VMCI_ERROR_INVALID_ARGS;
2990
2991         qp_lock(qpair);
2992         result =
2993             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2994         if (result == VMCI_SUCCESS)
2995                 result = vmci_q_header_buf_ready(consume_q_header,
2996                                                  produce_q_header,
2997                                                  qpair->consume_q_size);
2998         else
2999                 result = 0;
3000
3001         qp_unlock(qpair);
3002
3003         return result;
3004 }
3005 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3006
3007 /*
3008  * vmci_qpair_enqueue() - Throw data on the queue.
3009  * @qpair:      Pointer to the queue pair struct.
3010  * @buf:        Pointer to buffer containing data
3011  * @buf_size:   Length of buffer.
3012  * @buf_type:   Buffer type (Unused).
3013  *
3014  * This is the client interface for enqueueing data into the queue.
3015  * Returns number of bytes enqueued or < 0 on error.
3016  */
3017 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3018                            const void *buf,
3019                            size_t buf_size,
3020                            int buf_type)
3021 {
3022         ssize_t result;
3023         struct iov_iter from;
3024         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3025
3026         if (!qpair || !buf)
3027                 return VMCI_ERROR_INVALID_ARGS;
3028
3029         iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3030
3031         qp_lock(qpair);
3032
3033         do {
3034                 result = qp_enqueue_locked(qpair->produce_q,
3035                                            qpair->consume_q,
3036                                            qpair->produce_q_size,
3037                                            &from);
3038
3039                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3040                     !qp_wait_for_ready_queue(qpair))
3041                         result = VMCI_ERROR_WOULD_BLOCK;
3042
3043         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3044
3045         qp_unlock(qpair);
3046
3047         return result;
3048 }
3049 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3050
3051 /*
3052  * vmci_qpair_dequeue() - Get data from the queue.
3053  * @qpair:      Pointer to the queue pair struct.
3054  * @buf:        Pointer to buffer for the data
3055  * @buf_size:   Length of buffer.
3056  * @buf_type:   Buffer type (Unused).
3057  *
3058  * This is the client interface for dequeueing data from the queue.
3059  * Returns number of bytes dequeued or < 0 on error.
3060  */
3061 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3062                            void *buf,
3063                            size_t buf_size,
3064                            int buf_type)
3065 {
3066         ssize_t result;
3067         struct iov_iter to;
3068         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3069
3070         if (!qpair || !buf)
3071                 return VMCI_ERROR_INVALID_ARGS;
3072
3073         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3074
3075         qp_lock(qpair);
3076
3077         do {
3078                 result = qp_dequeue_locked(qpair->produce_q,
3079                                            qpair->consume_q,
3080                                            qpair->consume_q_size,
3081                                            &to, true);
3082
3083                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3084                     !qp_wait_for_ready_queue(qpair))
3085                         result = VMCI_ERROR_WOULD_BLOCK;
3086
3087         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3088
3089         qp_unlock(qpair);
3090
3091         return result;
3092 }
3093 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3094
3095 /*
3096  * vmci_qpair_peek() - Peek at the data in the queue.
3097  * @qpair:      Pointer to the queue pair struct.
3098  * @buf:        Pointer to buffer for the data
3099  * @buf_size:   Length of buffer.
3100  * @buf_type:   Buffer type (Unused on Linux).
3101  *
3102  * This is the client interface for peeking into a queue.  (I.e.,
3103  * copy data from the queue without updating the head pointer.)
3104  * Returns number of bytes dequeued or < 0 on error.
3105  */
3106 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3107                         void *buf,
3108                         size_t buf_size,
3109                         int buf_type)
3110 {
3111         struct iov_iter to;
3112         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3113         ssize_t result;
3114
3115         if (!qpair || !buf)
3116                 return VMCI_ERROR_INVALID_ARGS;
3117
3118         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3119
3120         qp_lock(qpair);
3121
3122         do {
3123                 result = qp_dequeue_locked(qpair->produce_q,
3124                                            qpair->consume_q,
3125                                            qpair->consume_q_size,
3126                                            &to, false);
3127
3128                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3129                     !qp_wait_for_ready_queue(qpair))
3130                         result = VMCI_ERROR_WOULD_BLOCK;
3131
3132         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3133
3134         qp_unlock(qpair);
3135
3136         return result;
3137 }
3138 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3139
3140 /*
3141  * vmci_qpair_enquev() - Throw data on the queue using iov.
3142  * @qpair:      Pointer to the queue pair struct.
3143  * @iov:        Pointer to buffer containing data
3144  * @iov_size:   Length of buffer.
3145  * @buf_type:   Buffer type (Unused).
3146  *
3147  * This is the client interface for enqueueing data into the queue.
3148  * This function uses IO vectors to handle the work. Returns number
3149  * of bytes enqueued or < 0 on error.
3150  */
3151 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3152                           struct msghdr *msg,
3153                           size_t iov_size,
3154                           int buf_type)
3155 {
3156         ssize_t result;
3157
3158         if (!qpair)
3159                 return VMCI_ERROR_INVALID_ARGS;
3160
3161         qp_lock(qpair);
3162
3163         do {
3164                 result = qp_enqueue_locked(qpair->produce_q,
3165                                            qpair->consume_q,
3166                                            qpair->produce_q_size,
3167                                            &msg->msg_iter);
3168
3169                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3170                     !qp_wait_for_ready_queue(qpair))
3171                         result = VMCI_ERROR_WOULD_BLOCK;
3172
3173         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3174
3175         qp_unlock(qpair);
3176
3177         return result;
3178 }
3179 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3180
3181 /*
3182  * vmci_qpair_dequev() - Get data from the queue using iov.
3183  * @qpair:      Pointer to the queue pair struct.
3184  * @iov:        Pointer to buffer for the data
3185  * @iov_size:   Length of buffer.
3186  * @buf_type:   Buffer type (Unused).
3187  *
3188  * This is the client interface for dequeueing data from the queue.
3189  * This function uses IO vectors to handle the work. Returns number
3190  * of bytes dequeued or < 0 on error.
3191  */
3192 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3193                           struct msghdr *msg,
3194                           size_t iov_size,
3195                           int buf_type)
3196 {
3197         ssize_t result;
3198
3199         if (!qpair)
3200                 return VMCI_ERROR_INVALID_ARGS;
3201
3202         qp_lock(qpair);
3203
3204         do {
3205                 result = qp_dequeue_locked(qpair->produce_q,
3206                                            qpair->consume_q,
3207                                            qpair->consume_q_size,
3208                                            &msg->msg_iter, true);
3209
3210                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3211                     !qp_wait_for_ready_queue(qpair))
3212                         result = VMCI_ERROR_WOULD_BLOCK;
3213
3214         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3215
3216         qp_unlock(qpair);
3217
3218         return result;
3219 }
3220 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3221
3222 /*
3223  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3224  * @qpair:      Pointer to the queue pair struct.
3225  * @iov:        Pointer to buffer for the data
3226  * @iov_size:   Length of buffer.
3227  * @buf_type:   Buffer type (Unused on Linux).
3228  *
3229  * This is the client interface for peeking into a queue.  (I.e.,
3230  * copy data from the queue without updating the head pointer.)
3231  * This function uses IO vectors to handle the work. Returns number
3232  * of bytes peeked or < 0 on error.
3233  */
3234 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3235                          struct msghdr *msg,
3236                          size_t iov_size,
3237                          int buf_type)
3238 {
3239         ssize_t result;
3240
3241         if (!qpair)
3242                 return VMCI_ERROR_INVALID_ARGS;
3243
3244         qp_lock(qpair);
3245
3246         do {
3247                 result = qp_dequeue_locked(qpair->produce_q,
3248                                            qpair->consume_q,
3249                                            qpair->consume_q_size,
3250                                            &msg->msg_iter, false);
3251
3252                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3253                     !qp_wait_for_ready_queue(qpair))
3254                         result = VMCI_ERROR_WOULD_BLOCK;
3255
3256         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3257
3258         qp_unlock(qpair);
3259         return result;
3260 }
3261 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);