GNU Linux-libre 4.4.294-gnu1
[releases.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /*
133  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
134  * types are passed around to enqueue and dequeue routines.  Note that
135  * often the functions passed are simply wrappers around memcpy
136  * itself.
137  *
138  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139  * there's an unused last parameter for the hosted side.  In
140  * ESX, that parameter holds a buffer type.
141  */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143                                       u64 queue_offset, const void *src,
144                                       size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146                                         const struct vmci_queue *queue,
147                                         u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151         struct mutex __mutex;   /* Protects the queue. */
152         struct mutex *mutex;    /* Shared by producer and consumer queues. */
153         size_t num_pages;       /* Number of pages incl. header. */
154         bool host;              /* Host or guest? */
155         union {
156                 struct {
157                         dma_addr_t *pas;
158                         void **vas;
159                 } g;            /* Used by the guest. */
160                 struct {
161                         struct page **page;
162                         struct page **header_page;
163                 } h;            /* Used by the host. */
164         } u;
165 };
166
167 /*
168  * This structure is opaque to the clients.
169  */
170 struct vmci_qp {
171         struct vmci_handle handle;
172         struct vmci_queue *produce_q;
173         struct vmci_queue *consume_q;
174         u64 produce_q_size;
175         u64 consume_q_size;
176         u32 peer;
177         u32 flags;
178         u32 priv_flags;
179         bool guest_endpoint;
180         unsigned int blocked;
181         unsigned int generation;
182         wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186         VMCIQPB_NEW,
187         VMCIQPB_CREATED_NO_MEM,
188         VMCIQPB_CREATED_MEM,
189         VMCIQPB_ATTACHED_NO_MEM,
190         VMCIQPB_ATTACHED_MEM,
191         VMCIQPB_SHUTDOWN_NO_MEM,
192         VMCIQPB_SHUTDOWN_MEM,
193         VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
198                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201  * In the queue pair broker, we always use the guest point of view for
202  * the produce and consume queue values and references, e.g., the
203  * produce queue size stored is the guests produce queue size. The
204  * host endpoint will need to swap these around. The only exception is
205  * the local queue pairs on the host, in which case the host endpoint
206  * that creates the queue pair will have the right orientation, and
207  * the attaching host endpoint will need to swap.
208  */
209 struct qp_entry {
210         struct list_head list_item;
211         struct vmci_handle handle;
212         u32 peer;
213         u32 flags;
214         u64 produce_size;
215         u64 consume_size;
216         u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220         struct vmci_resource resource;
221         struct qp_entry qp;
222         u32 create_id;
223         u32 attach_id;
224         enum qp_broker_state state;
225         bool require_trusted_attach;
226         bool created_by_trusted;
227         bool vmci_page_files;   /* Created by VMX using VMCI page files */
228         struct vmci_queue *produce_q;
229         struct vmci_queue *consume_q;
230         struct vmci_queue_header saved_produce_q;
231         struct vmci_queue_header saved_consume_q;
232         vmci_event_release_cb wakeup_cb;
233         void *client_data;
234         void *local_mem;        /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238         struct vmci_resource resource;
239         struct qp_entry qp;
240         u64 num_ppns;
241         void *produce_q;
242         void *consume_q;
243         struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247         struct list_head head;
248         struct mutex mutex;     /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252         .head = LIST_HEAD_INIT(qp_broker_list.head),
253         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID  0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268  * Frees kernel VA space for a given queue and its queue header, and
269  * frees physical data pages.
270  */
271 static void qp_free_queue(void *q, u64 size)
272 {
273         struct vmci_queue *queue = q;
274
275         if (queue) {
276                 u64 i;
277
278                 /* Given size does not include header, so add in a page here. */
279                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281                                           queue->kernel_if->u.g.vas[i],
282                                           queue->kernel_if->u.g.pas[i]);
283                 }
284
285                 vfree(queue);
286         }
287 }
288
289 /*
290  * Allocates kernel queue pages of specified size with IOMMU mappings,
291  * plus space for the queue structure/kernel interface and the queue
292  * header.
293  */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296         u64 i;
297         struct vmci_queue *queue;
298         size_t pas_size;
299         size_t vas_size;
300         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
301         u64 num_pages;
302
303         if (size > SIZE_MAX - PAGE_SIZE)
304                 return NULL;
305         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
306         if (num_pages >
307                  (SIZE_MAX - queue_size) /
308                  (sizeof(*queue->kernel_if->u.g.pas) +
309                   sizeof(*queue->kernel_if->u.g.vas)))
310                 return NULL;
311
312         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
313         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
314         queue_size += pas_size + vas_size;
315
316         queue = vmalloc(queue_size);
317         if (!queue)
318                 return NULL;
319
320         queue->q_header = NULL;
321         queue->saved_header = NULL;
322         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
323         queue->kernel_if->mutex = NULL;
324         queue->kernel_if->num_pages = num_pages;
325         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
326         queue->kernel_if->u.g.vas =
327                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
328         queue->kernel_if->host = false;
329
330         for (i = 0; i < num_pages; i++) {
331                 queue->kernel_if->u.g.vas[i] =
332                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
333                                            &queue->kernel_if->u.g.pas[i],
334                                            GFP_KERNEL);
335                 if (!queue->kernel_if->u.g.vas[i]) {
336                         /* Size excl. the header. */
337                         qp_free_queue(queue, i * PAGE_SIZE);
338                         return NULL;
339                 }
340         }
341
342         /* Queue header is the first page. */
343         queue->q_header = queue->kernel_if->u.g.vas[0];
344
345         return queue;
346 }
347
348 /*
349  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
350  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
351  * by traversing the offset -> page translation structure for the queue.
352  * Assumes that offset + size does not wrap around in the queue.
353  */
354 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
355                                 u64 queue_offset,
356                                 const void *src,
357                                 size_t size,
358                                 bool is_iovec)
359 {
360         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
361         size_t bytes_copied = 0;
362
363         while (bytes_copied < size) {
364                 const u64 page_index =
365                         (queue_offset + bytes_copied) / PAGE_SIZE;
366                 const size_t page_offset =
367                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
368                 void *va;
369                 size_t to_copy;
370
371                 if (kernel_if->host)
372                         va = kmap(kernel_if->u.h.page[page_index]);
373                 else
374                         va = kernel_if->u.g.vas[page_index + 1];
375                         /* Skip header. */
376
377                 if (size - bytes_copied > PAGE_SIZE - page_offset)
378                         /* Enough payload to fill up from this page. */
379                         to_copy = PAGE_SIZE - page_offset;
380                 else
381                         to_copy = size - bytes_copied;
382
383                 if (is_iovec) {
384                         struct msghdr *msg = (struct msghdr *)src;
385                         int err;
386
387                         /* The iovec will track bytes_copied internally. */
388                         err = memcpy_from_msg((u8 *)va + page_offset,
389                                               msg, to_copy);
390                         if (err != 0) {
391                                 if (kernel_if->host)
392                                         kunmap(kernel_if->u.h.page[page_index]);
393                                 return VMCI_ERROR_INVALID_ARGS;
394                         }
395                 } else {
396                         memcpy((u8 *)va + page_offset,
397                                (u8 *)src + bytes_copied, to_copy);
398                 }
399
400                 bytes_copied += to_copy;
401                 if (kernel_if->host)
402                         kunmap(kernel_if->u.h.page[page_index]);
403         }
404
405         return VMCI_SUCCESS;
406 }
407
408 /*
409  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
410  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
411  * by traversing the offset -> page translation structure for the queue.
412  * Assumes that offset + size does not wrap around in the queue.
413  */
414 static int __qp_memcpy_from_queue(void *dest,
415                                   const struct vmci_queue *queue,
416                                   u64 queue_offset,
417                                   size_t size,
418                                   bool is_iovec)
419 {
420         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
421         size_t bytes_copied = 0;
422
423         while (bytes_copied < size) {
424                 const u64 page_index =
425                         (queue_offset + bytes_copied) / PAGE_SIZE;
426                 const size_t page_offset =
427                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
428                 void *va;
429                 size_t to_copy;
430
431                 if (kernel_if->host)
432                         va = kmap(kernel_if->u.h.page[page_index]);
433                 else
434                         va = kernel_if->u.g.vas[page_index + 1];
435                         /* Skip header. */
436
437                 if (size - bytes_copied > PAGE_SIZE - page_offset)
438                         /* Enough payload to fill up this page. */
439                         to_copy = PAGE_SIZE - page_offset;
440                 else
441                         to_copy = size - bytes_copied;
442
443                 if (is_iovec) {
444                         struct msghdr *msg = dest;
445                         int err;
446
447                         /* The iovec will track bytes_copied internally. */
448                         err = memcpy_to_msg(msg, (u8 *)va + page_offset,
449                                              to_copy);
450                         if (err != 0) {
451                                 if (kernel_if->host)
452                                         kunmap(kernel_if->u.h.page[page_index]);
453                                 return VMCI_ERROR_INVALID_ARGS;
454                         }
455                 } else {
456                         memcpy((u8 *)dest + bytes_copied,
457                                (u8 *)va + page_offset, to_copy);
458                 }
459
460                 bytes_copied += to_copy;
461                 if (kernel_if->host)
462                         kunmap(kernel_if->u.h.page[page_index]);
463         }
464
465         return VMCI_SUCCESS;
466 }
467
468 /*
469  * Allocates two list of PPNs --- one for the pages in the produce queue,
470  * and the other for the pages in the consume queue. Intializes the list
471  * of PPNs with the page frame numbers of the KVA for the two queues (and
472  * the queue headers).
473  */
474 static int qp_alloc_ppn_set(void *prod_q,
475                             u64 num_produce_pages,
476                             void *cons_q,
477                             u64 num_consume_pages, struct ppn_set *ppn_set)
478 {
479         u32 *produce_ppns;
480         u32 *consume_ppns;
481         struct vmci_queue *produce_q = prod_q;
482         struct vmci_queue *consume_q = cons_q;
483         u64 i;
484
485         if (!produce_q || !num_produce_pages || !consume_q ||
486             !num_consume_pages || !ppn_set)
487                 return VMCI_ERROR_INVALID_ARGS;
488
489         if (ppn_set->initialized)
490                 return VMCI_ERROR_ALREADY_EXISTS;
491
492         produce_ppns =
493             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
494         if (!produce_ppns)
495                 return VMCI_ERROR_NO_MEM;
496
497         consume_ppns =
498             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
499         if (!consume_ppns) {
500                 kfree(produce_ppns);
501                 return VMCI_ERROR_NO_MEM;
502         }
503
504         for (i = 0; i < num_produce_pages; i++) {
505                 unsigned long pfn;
506
507                 produce_ppns[i] =
508                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
509                 pfn = produce_ppns[i];
510
511                 /* Fail allocation if PFN isn't supported by hypervisor. */
512                 if (sizeof(pfn) > sizeof(*produce_ppns)
513                     && pfn != produce_ppns[i])
514                         goto ppn_error;
515         }
516
517         for (i = 0; i < num_consume_pages; i++) {
518                 unsigned long pfn;
519
520                 consume_ppns[i] =
521                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
522                 pfn = consume_ppns[i];
523
524                 /* Fail allocation if PFN isn't supported by hypervisor. */
525                 if (sizeof(pfn) > sizeof(*consume_ppns)
526                     && pfn != consume_ppns[i])
527                         goto ppn_error;
528         }
529
530         ppn_set->num_produce_pages = num_produce_pages;
531         ppn_set->num_consume_pages = num_consume_pages;
532         ppn_set->produce_ppns = produce_ppns;
533         ppn_set->consume_ppns = consume_ppns;
534         ppn_set->initialized = true;
535         return VMCI_SUCCESS;
536
537  ppn_error:
538         kfree(produce_ppns);
539         kfree(consume_ppns);
540         return VMCI_ERROR_INVALID_ARGS;
541 }
542
543 /*
544  * Frees the two list of PPNs for a queue pair.
545  */
546 static void qp_free_ppn_set(struct ppn_set *ppn_set)
547 {
548         if (ppn_set->initialized) {
549                 /* Do not call these functions on NULL inputs. */
550                 kfree(ppn_set->produce_ppns);
551                 kfree(ppn_set->consume_ppns);
552         }
553         memset(ppn_set, 0, sizeof(*ppn_set));
554 }
555
556 /*
557  * Populates the list of PPNs in the hypercall structure with the PPNS
558  * of the produce queue and the consume queue.
559  */
560 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
561 {
562         memcpy(call_buf, ppn_set->produce_ppns,
563                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
564         memcpy(call_buf +
565                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
566                ppn_set->consume_ppns,
567                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
568
569         return VMCI_SUCCESS;
570 }
571
572 static int qp_memcpy_to_queue(struct vmci_queue *queue,
573                               u64 queue_offset,
574                               const void *src, size_t src_offset, size_t size)
575 {
576         return __qp_memcpy_to_queue(queue, queue_offset,
577                                     (u8 *)src + src_offset, size, false);
578 }
579
580 static int qp_memcpy_from_queue(void *dest,
581                                 size_t dest_offset,
582                                 const struct vmci_queue *queue,
583                                 u64 queue_offset, size_t size)
584 {
585         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
586                                       queue, queue_offset, size, false);
587 }
588
589 /*
590  * Copies from a given iovec from a VMCI Queue.
591  */
592 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
593                                   u64 queue_offset,
594                                   const void *msg,
595                                   size_t src_offset, size_t size)
596 {
597
598         /*
599          * We ignore src_offset because src is really a struct iovec * and will
600          * maintain offset internally.
601          */
602         return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
603 }
604
605 /*
606  * Copies to a given iovec from a VMCI Queue.
607  */
608 static int qp_memcpy_from_queue_iov(void *dest,
609                                     size_t dest_offset,
610                                     const struct vmci_queue *queue,
611                                     u64 queue_offset, size_t size)
612 {
613         /*
614          * We ignore dest_offset because dest is really a struct iovec * and
615          * will maintain offset internally.
616          */
617         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
618 }
619
620 /*
621  * Allocates kernel VA space of specified size plus space for the queue
622  * and kernel interface.  This is different from the guest queue allocator,
623  * because we do not allocate our own queue header/data pages here but
624  * share those of the guest.
625  */
626 static struct vmci_queue *qp_host_alloc_queue(u64 size)
627 {
628         struct vmci_queue *queue;
629         size_t queue_page_size;
630         u64 num_pages;
631         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
632
633         if (size > SIZE_MAX - PAGE_SIZE)
634                 return NULL;
635         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
636         if (num_pages > (SIZE_MAX - queue_size) /
637                  sizeof(*queue->kernel_if->u.h.page))
638                 return NULL;
639
640         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
641
642         if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
643                 return NULL;
644
645         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
646         if (queue) {
647                 queue->q_header = NULL;
648                 queue->saved_header = NULL;
649                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
650                 queue->kernel_if->host = true;
651                 queue->kernel_if->mutex = NULL;
652                 queue->kernel_if->num_pages = num_pages;
653                 queue->kernel_if->u.h.header_page =
654                     (struct page **)((u8 *)queue + queue_size);
655                 queue->kernel_if->u.h.page =
656                         &queue->kernel_if->u.h.header_page[1];
657         }
658
659         return queue;
660 }
661
662 /*
663  * Frees kernel memory for a given queue (header plus translation
664  * structure).
665  */
666 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
667 {
668         kfree(queue);
669 }
670
671 /*
672  * Initialize the mutex for the pair of queues.  This mutex is used to
673  * protect the q_header and the buffer from changing out from under any
674  * users of either queue.  Of course, it's only any good if the mutexes
675  * are actually acquired.  Queue structure must lie on non-paged memory
676  * or we cannot guarantee access to the mutex.
677  */
678 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
679                                 struct vmci_queue *consume_q)
680 {
681         /*
682          * Only the host queue has shared state - the guest queues do not
683          * need to synchronize access using a queue mutex.
684          */
685
686         if (produce_q->kernel_if->host) {
687                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
688                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
689                 mutex_init(produce_q->kernel_if->mutex);
690         }
691 }
692
693 /*
694  * Cleans up the mutex for the pair of queues.
695  */
696 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
697                                    struct vmci_queue *consume_q)
698 {
699         if (produce_q->kernel_if->host) {
700                 produce_q->kernel_if->mutex = NULL;
701                 consume_q->kernel_if->mutex = NULL;
702         }
703 }
704
705 /*
706  * Acquire the mutex for the queue.  Note that the produce_q and
707  * the consume_q share a mutex.  So, only one of the two need to
708  * be passed in to this routine.  Either will work just fine.
709  */
710 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
711 {
712         if (queue->kernel_if->host)
713                 mutex_lock(queue->kernel_if->mutex);
714 }
715
716 /*
717  * Release the mutex for the queue.  Note that the produce_q and
718  * the consume_q share a mutex.  So, only one of the two need to
719  * be passed in to this routine.  Either will work just fine.
720  */
721 static void qp_release_queue_mutex(struct vmci_queue *queue)
722 {
723         if (queue->kernel_if->host)
724                 mutex_unlock(queue->kernel_if->mutex);
725 }
726
727 /*
728  * Helper function to release pages in the PageStoreAttachInfo
729  * previously obtained using get_user_pages.
730  */
731 static void qp_release_pages(struct page **pages,
732                              u64 num_pages, bool dirty)
733 {
734         int i;
735
736         for (i = 0; i < num_pages; i++) {
737                 if (dirty)
738                         set_page_dirty_lock(pages[i]);
739
740                 page_cache_release(pages[i]);
741                 pages[i] = NULL;
742         }
743 }
744
745 /*
746  * Lock the user pages referenced by the {produce,consume}Buffer
747  * struct into memory and populate the {produce,consume}Pages
748  * arrays in the attach structure with them.
749  */
750 static int qp_host_get_user_memory(u64 produce_uva,
751                                    u64 consume_uva,
752                                    struct vmci_queue *produce_q,
753                                    struct vmci_queue *consume_q)
754 {
755         int retval;
756         int err = VMCI_SUCCESS;
757
758         retval = get_user_pages_fast((uintptr_t) produce_uva,
759                                      produce_q->kernel_if->num_pages, 1,
760                                      produce_q->kernel_if->u.h.header_page);
761         if (retval < (int)produce_q->kernel_if->num_pages) {
762                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
763                         retval);
764                 if (retval > 0)
765                         qp_release_pages(produce_q->kernel_if->u.h.header_page,
766                                         retval, false);
767                 err = VMCI_ERROR_NO_MEM;
768                 goto out;
769         }
770
771         retval = get_user_pages_fast((uintptr_t) consume_uva,
772                                      consume_q->kernel_if->num_pages, 1,
773                                      consume_q->kernel_if->u.h.header_page);
774         if (retval < (int)consume_q->kernel_if->num_pages) {
775                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
776                         retval);
777                 if (retval > 0)
778                         qp_release_pages(consume_q->kernel_if->u.h.header_page,
779                                         retval, false);
780                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
781                                  produce_q->kernel_if->num_pages, false);
782                 err = VMCI_ERROR_NO_MEM;
783         }
784
785  out:
786         return err;
787 }
788
789 /*
790  * Registers the specification of the user pages used for backing a queue
791  * pair. Enough information to map in pages is stored in the OS specific
792  * part of the struct vmci_queue structure.
793  */
794 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
795                                         struct vmci_queue *produce_q,
796                                         struct vmci_queue *consume_q)
797 {
798         u64 produce_uva;
799         u64 consume_uva;
800
801         /*
802          * The new style and the old style mapping only differs in
803          * that we either get a single or two UVAs, so we split the
804          * single UVA range at the appropriate spot.
805          */
806         produce_uva = page_store->pages;
807         consume_uva = page_store->pages +
808             produce_q->kernel_if->num_pages * PAGE_SIZE;
809         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
810                                        consume_q);
811 }
812
813 /*
814  * Releases and removes the references to user pages stored in the attach
815  * struct.  Pages are released from the page cache and may become
816  * swappable again.
817  */
818 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
819                                            struct vmci_queue *consume_q)
820 {
821         qp_release_pages(produce_q->kernel_if->u.h.header_page,
822                          produce_q->kernel_if->num_pages, true);
823         memset(produce_q->kernel_if->u.h.header_page, 0,
824                sizeof(*produce_q->kernel_if->u.h.header_page) *
825                produce_q->kernel_if->num_pages);
826         qp_release_pages(consume_q->kernel_if->u.h.header_page,
827                          consume_q->kernel_if->num_pages, true);
828         memset(consume_q->kernel_if->u.h.header_page, 0,
829                sizeof(*consume_q->kernel_if->u.h.header_page) *
830                consume_q->kernel_if->num_pages);
831 }
832
833 /*
834  * Once qp_host_register_user_memory has been performed on a
835  * queue, the queue pair headers can be mapped into the
836  * kernel. Once mapped, they must be unmapped with
837  * qp_host_unmap_queues prior to calling
838  * qp_host_unregister_user_memory.
839  * Pages are pinned.
840  */
841 static int qp_host_map_queues(struct vmci_queue *produce_q,
842                               struct vmci_queue *consume_q)
843 {
844         int result;
845
846         if (!produce_q->q_header || !consume_q->q_header) {
847                 struct page *headers[2];
848
849                 if (produce_q->q_header != consume_q->q_header)
850                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
851
852                 if (produce_q->kernel_if->u.h.header_page == NULL ||
853                     *produce_q->kernel_if->u.h.header_page == NULL)
854                         return VMCI_ERROR_UNAVAILABLE;
855
856                 headers[0] = *produce_q->kernel_if->u.h.header_page;
857                 headers[1] = *consume_q->kernel_if->u.h.header_page;
858
859                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
860                 if (produce_q->q_header != NULL) {
861                         consume_q->q_header =
862                             (struct vmci_queue_header *)((u8 *)
863                                                          produce_q->q_header +
864                                                          PAGE_SIZE);
865                         result = VMCI_SUCCESS;
866                 } else {
867                         pr_warn("vmap failed\n");
868                         result = VMCI_ERROR_NO_MEM;
869                 }
870         } else {
871                 result = VMCI_SUCCESS;
872         }
873
874         return result;
875 }
876
877 /*
878  * Unmaps previously mapped queue pair headers from the kernel.
879  * Pages are unpinned.
880  */
881 static int qp_host_unmap_queues(u32 gid,
882                                 struct vmci_queue *produce_q,
883                                 struct vmci_queue *consume_q)
884 {
885         if (produce_q->q_header) {
886                 if (produce_q->q_header < consume_q->q_header)
887                         vunmap(produce_q->q_header);
888                 else
889                         vunmap(consume_q->q_header);
890
891                 produce_q->q_header = NULL;
892                 consume_q->q_header = NULL;
893         }
894
895         return VMCI_SUCCESS;
896 }
897
898 /*
899  * Finds the entry in the list corresponding to a given handle. Assumes
900  * that the list is locked.
901  */
902 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
903                                      struct vmci_handle handle)
904 {
905         struct qp_entry *entry;
906
907         if (vmci_handle_is_invalid(handle))
908                 return NULL;
909
910         list_for_each_entry(entry, &qp_list->head, list_item) {
911                 if (vmci_handle_is_equal(entry->handle, handle))
912                         return entry;
913         }
914
915         return NULL;
916 }
917
918 /*
919  * Finds the entry in the list corresponding to a given handle.
920  */
921 static struct qp_guest_endpoint *
922 qp_guest_handle_to_entry(struct vmci_handle handle)
923 {
924         struct qp_guest_endpoint *entry;
925         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
926
927         entry = qp ? container_of(
928                 qp, struct qp_guest_endpoint, qp) : NULL;
929         return entry;
930 }
931
932 /*
933  * Finds the entry in the list corresponding to a given handle.
934  */
935 static struct qp_broker_entry *
936 qp_broker_handle_to_entry(struct vmci_handle handle)
937 {
938         struct qp_broker_entry *entry;
939         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
940
941         entry = qp ? container_of(
942                 qp, struct qp_broker_entry, qp) : NULL;
943         return entry;
944 }
945
946 /*
947  * Dispatches a queue pair event message directly into the local event
948  * queue.
949  */
950 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
951 {
952         u32 context_id = vmci_get_context_id();
953         struct vmci_event_qp ev;
954
955         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
956         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
957                                           VMCI_CONTEXT_RESOURCE_ID);
958         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
959         ev.msg.event_data.event =
960             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
961         ev.payload.peer_id = context_id;
962         ev.payload.handle = handle;
963
964         return vmci_event_dispatch(&ev.msg.hdr);
965 }
966
967 /*
968  * Allocates and initializes a qp_guest_endpoint structure.
969  * Allocates a queue_pair rid (and handle) iff the given entry has
970  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
971  * are reserved handles.  Assumes that the QP list mutex is held
972  * by the caller.
973  */
974 static struct qp_guest_endpoint *
975 qp_guest_endpoint_create(struct vmci_handle handle,
976                          u32 peer,
977                          u32 flags,
978                          u64 produce_size,
979                          u64 consume_size,
980                          void *produce_q,
981                          void *consume_q)
982 {
983         int result;
984         struct qp_guest_endpoint *entry;
985         /* One page each for the queue headers. */
986         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
987             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
988
989         if (vmci_handle_is_invalid(handle)) {
990                 u32 context_id = vmci_get_context_id();
991
992                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
993         }
994
995         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
996         if (entry) {
997                 entry->qp.peer = peer;
998                 entry->qp.flags = flags;
999                 entry->qp.produce_size = produce_size;
1000                 entry->qp.consume_size = consume_size;
1001                 entry->qp.ref_count = 0;
1002                 entry->num_ppns = num_ppns;
1003                 entry->produce_q = produce_q;
1004                 entry->consume_q = consume_q;
1005                 INIT_LIST_HEAD(&entry->qp.list_item);
1006
1007                 /* Add resource obj */
1008                 result = vmci_resource_add(&entry->resource,
1009                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
1010                                            handle);
1011                 entry->qp.handle = vmci_resource_handle(&entry->resource);
1012                 if ((result != VMCI_SUCCESS) ||
1013                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1014                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1015                                 handle.context, handle.resource, result);
1016                         kfree(entry);
1017                         entry = NULL;
1018                 }
1019         }
1020         return entry;
1021 }
1022
1023 /*
1024  * Frees a qp_guest_endpoint structure.
1025  */
1026 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1027 {
1028         qp_free_ppn_set(&entry->ppn_set);
1029         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1030         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1031         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1032         /* Unlink from resource hash table and free callback */
1033         vmci_resource_remove(&entry->resource);
1034
1035         kfree(entry);
1036 }
1037
1038 /*
1039  * Helper to make a queue_pairAlloc hypercall when the driver is
1040  * supporting a guest device.
1041  */
1042 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1043 {
1044         struct vmci_qp_alloc_msg *alloc_msg;
1045         size_t msg_size;
1046         int result;
1047
1048         if (!entry || entry->num_ppns <= 2)
1049                 return VMCI_ERROR_INVALID_ARGS;
1050
1051         msg_size = sizeof(*alloc_msg) +
1052             (size_t) entry->num_ppns * sizeof(u32);
1053         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1054         if (!alloc_msg)
1055                 return VMCI_ERROR_NO_MEM;
1056
1057         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1058                                               VMCI_QUEUEPAIR_ALLOC);
1059         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1060         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1061         alloc_msg->handle = entry->qp.handle;
1062         alloc_msg->peer = entry->qp.peer;
1063         alloc_msg->flags = entry->qp.flags;
1064         alloc_msg->produce_size = entry->qp.produce_size;
1065         alloc_msg->consume_size = entry->qp.consume_size;
1066         alloc_msg->num_ppns = entry->num_ppns;
1067
1068         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1069                                      &entry->ppn_set);
1070         if (result == VMCI_SUCCESS)
1071                 result = vmci_send_datagram(&alloc_msg->hdr);
1072
1073         kfree(alloc_msg);
1074
1075         return result;
1076 }
1077
1078 /*
1079  * Helper to make a queue_pairDetach hypercall when the driver is
1080  * supporting a guest device.
1081  */
1082 static int qp_detatch_hypercall(struct vmci_handle handle)
1083 {
1084         struct vmci_qp_detach_msg detach_msg;
1085
1086         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1087                                               VMCI_QUEUEPAIR_DETACH);
1088         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1089         detach_msg.hdr.payload_size = sizeof(handle);
1090         detach_msg.handle = handle;
1091
1092         return vmci_send_datagram(&detach_msg.hdr);
1093 }
1094
1095 /*
1096  * Adds the given entry to the list. Assumes that the list is locked.
1097  */
1098 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1099 {
1100         if (entry)
1101                 list_add(&entry->list_item, &qp_list->head);
1102 }
1103
1104 /*
1105  * Removes the given entry from the list. Assumes that the list is locked.
1106  */
1107 static void qp_list_remove_entry(struct qp_list *qp_list,
1108                                  struct qp_entry *entry)
1109 {
1110         if (entry)
1111                 list_del(&entry->list_item);
1112 }
1113
1114 /*
1115  * Helper for VMCI queue_pair detach interface. Frees the physical
1116  * pages for the queue pair.
1117  */
1118 static int qp_detatch_guest_work(struct vmci_handle handle)
1119 {
1120         int result;
1121         struct qp_guest_endpoint *entry;
1122         u32 ref_count = ~0;     /* To avoid compiler warning below */
1123
1124         mutex_lock(&qp_guest_endpoints.mutex);
1125
1126         entry = qp_guest_handle_to_entry(handle);
1127         if (!entry) {
1128                 mutex_unlock(&qp_guest_endpoints.mutex);
1129                 return VMCI_ERROR_NOT_FOUND;
1130         }
1131
1132         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1133                 result = VMCI_SUCCESS;
1134
1135                 if (entry->qp.ref_count > 1) {
1136                         result = qp_notify_peer_local(false, handle);
1137                         /*
1138                          * We can fail to notify a local queuepair
1139                          * because we can't allocate.  We still want
1140                          * to release the entry if that happens, so
1141                          * don't bail out yet.
1142                          */
1143                 }
1144         } else {
1145                 result = qp_detatch_hypercall(handle);
1146                 if (result < VMCI_SUCCESS) {
1147                         /*
1148                          * We failed to notify a non-local queuepair.
1149                          * That other queuepair might still be
1150                          * accessing the shared memory, so don't
1151                          * release the entry yet.  It will get cleaned
1152                          * up by VMCIqueue_pair_Exit() if necessary
1153                          * (assuming we are going away, otherwise why
1154                          * did this fail?).
1155                          */
1156
1157                         mutex_unlock(&qp_guest_endpoints.mutex);
1158                         return result;
1159                 }
1160         }
1161
1162         /*
1163          * If we get here then we either failed to notify a local queuepair, or
1164          * we succeeded in all cases.  Release the entry if required.
1165          */
1166
1167         entry->qp.ref_count--;
1168         if (entry->qp.ref_count == 0)
1169                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1170
1171         /* If we didn't remove the entry, this could change once we unlock. */
1172         if (entry)
1173                 ref_count = entry->qp.ref_count;
1174
1175         mutex_unlock(&qp_guest_endpoints.mutex);
1176
1177         if (ref_count == 0)
1178                 qp_guest_endpoint_destroy(entry);
1179
1180         return result;
1181 }
1182
1183 /*
1184  * This functions handles the actual allocation of a VMCI queue
1185  * pair guest endpoint. Allocates physical pages for the queue
1186  * pair. It makes OS dependent calls through generic wrappers.
1187  */
1188 static int qp_alloc_guest_work(struct vmci_handle *handle,
1189                                struct vmci_queue **produce_q,
1190                                u64 produce_size,
1191                                struct vmci_queue **consume_q,
1192                                u64 consume_size,
1193                                u32 peer,
1194                                u32 flags,
1195                                u32 priv_flags)
1196 {
1197         const u64 num_produce_pages =
1198             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1199         const u64 num_consume_pages =
1200             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1201         void *my_produce_q = NULL;
1202         void *my_consume_q = NULL;
1203         int result;
1204         struct qp_guest_endpoint *queue_pair_entry = NULL;
1205
1206         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1207                 return VMCI_ERROR_NO_ACCESS;
1208
1209         mutex_lock(&qp_guest_endpoints.mutex);
1210
1211         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1212         if (queue_pair_entry) {
1213                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1214                         /* Local attach case. */
1215                         if (queue_pair_entry->qp.ref_count > 1) {
1216                                 pr_devel("Error attempting to attach more than once\n");
1217                                 result = VMCI_ERROR_UNAVAILABLE;
1218                                 goto error_keep_entry;
1219                         }
1220
1221                         if (queue_pair_entry->qp.produce_size != consume_size ||
1222                             queue_pair_entry->qp.consume_size !=
1223                             produce_size ||
1224                             queue_pair_entry->qp.flags !=
1225                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1226                                 pr_devel("Error mismatched queue pair in local attach\n");
1227                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1228                                 goto error_keep_entry;
1229                         }
1230
1231                         /*
1232                          * Do a local attach.  We swap the consume and
1233                          * produce queues for the attacher and deliver
1234                          * an attach event.
1235                          */
1236                         result = qp_notify_peer_local(true, *handle);
1237                         if (result < VMCI_SUCCESS)
1238                                 goto error_keep_entry;
1239
1240                         my_produce_q = queue_pair_entry->consume_q;
1241                         my_consume_q = queue_pair_entry->produce_q;
1242                         goto out;
1243                 }
1244
1245                 result = VMCI_ERROR_ALREADY_EXISTS;
1246                 goto error_keep_entry;
1247         }
1248
1249         my_produce_q = qp_alloc_queue(produce_size, flags);
1250         if (!my_produce_q) {
1251                 pr_warn("Error allocating pages for produce queue\n");
1252                 result = VMCI_ERROR_NO_MEM;
1253                 goto error;
1254         }
1255
1256         my_consume_q = qp_alloc_queue(consume_size, flags);
1257         if (!my_consume_q) {
1258                 pr_warn("Error allocating pages for consume queue\n");
1259                 result = VMCI_ERROR_NO_MEM;
1260                 goto error;
1261         }
1262
1263         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1264                                                     produce_size, consume_size,
1265                                                     my_produce_q, my_consume_q);
1266         if (!queue_pair_entry) {
1267                 pr_warn("Error allocating memory in %s\n", __func__);
1268                 result = VMCI_ERROR_NO_MEM;
1269                 goto error;
1270         }
1271
1272         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1273                                   num_consume_pages,
1274                                   &queue_pair_entry->ppn_set);
1275         if (result < VMCI_SUCCESS) {
1276                 pr_warn("qp_alloc_ppn_set failed\n");
1277                 goto error;
1278         }
1279
1280         /*
1281          * It's only necessary to notify the host if this queue pair will be
1282          * attached to from another context.
1283          */
1284         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1285                 /* Local create case. */
1286                 u32 context_id = vmci_get_context_id();
1287
1288                 /*
1289                  * Enforce similar checks on local queue pairs as we
1290                  * do for regular ones.  The handle's context must
1291                  * match the creator or attacher context id (here they
1292                  * are both the current context id) and the
1293                  * attach-only flag cannot exist during create.  We
1294                  * also ensure specified peer is this context or an
1295                  * invalid one.
1296                  */
1297                 if (queue_pair_entry->qp.handle.context != context_id ||
1298                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1299                      queue_pair_entry->qp.peer != context_id)) {
1300                         result = VMCI_ERROR_NO_ACCESS;
1301                         goto error;
1302                 }
1303
1304                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1305                         result = VMCI_ERROR_NOT_FOUND;
1306                         goto error;
1307                 }
1308         } else {
1309                 result = qp_alloc_hypercall(queue_pair_entry);
1310                 if (result < VMCI_SUCCESS) {
1311                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1312                         goto error;
1313                 }
1314         }
1315
1316         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1317                             (struct vmci_queue *)my_consume_q);
1318
1319         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1320
1321  out:
1322         queue_pair_entry->qp.ref_count++;
1323         *handle = queue_pair_entry->qp.handle;
1324         *produce_q = (struct vmci_queue *)my_produce_q;
1325         *consume_q = (struct vmci_queue *)my_consume_q;
1326
1327         /*
1328          * We should initialize the queue pair header pages on a local
1329          * queue pair create.  For non-local queue pairs, the
1330          * hypervisor initializes the header pages in the create step.
1331          */
1332         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1333             queue_pair_entry->qp.ref_count == 1) {
1334                 vmci_q_header_init((*produce_q)->q_header, *handle);
1335                 vmci_q_header_init((*consume_q)->q_header, *handle);
1336         }
1337
1338         mutex_unlock(&qp_guest_endpoints.mutex);
1339
1340         return VMCI_SUCCESS;
1341
1342  error:
1343         mutex_unlock(&qp_guest_endpoints.mutex);
1344         if (queue_pair_entry) {
1345                 /* The queues will be freed inside the destroy routine. */
1346                 qp_guest_endpoint_destroy(queue_pair_entry);
1347         } else {
1348                 qp_free_queue(my_produce_q, produce_size);
1349                 qp_free_queue(my_consume_q, consume_size);
1350         }
1351         return result;
1352
1353  error_keep_entry:
1354         /* This path should only be used when an existing entry was found. */
1355         mutex_unlock(&qp_guest_endpoints.mutex);
1356         return result;
1357 }
1358
1359 /*
1360  * The first endpoint issuing a queue pair allocation will create the state
1361  * of the queue pair in the queue pair broker.
1362  *
1363  * If the creator is a guest, it will associate a VMX virtual address range
1364  * with the queue pair as specified by the page_store. For compatibility with
1365  * older VMX'en, that would use a separate step to set the VMX virtual
1366  * address range, the virtual address range can be registered later using
1367  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1368  * used.
1369  *
1370  * If the creator is the host, a page_store of NULL should be used as well,
1371  * since the host is not able to supply a page store for the queue pair.
1372  *
1373  * For older VMX and host callers, the queue pair will be created in the
1374  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1375  * created in VMCOQPB_CREATED_MEM state.
1376  */
1377 static int qp_broker_create(struct vmci_handle handle,
1378                             u32 peer,
1379                             u32 flags,
1380                             u32 priv_flags,
1381                             u64 produce_size,
1382                             u64 consume_size,
1383                             struct vmci_qp_page_store *page_store,
1384                             struct vmci_ctx *context,
1385                             vmci_event_release_cb wakeup_cb,
1386                             void *client_data, struct qp_broker_entry **ent)
1387 {
1388         struct qp_broker_entry *entry = NULL;
1389         const u32 context_id = vmci_ctx_get_id(context);
1390         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1391         int result;
1392         u64 guest_produce_size;
1393         u64 guest_consume_size;
1394
1395         /* Do not create if the caller asked not to. */
1396         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1397                 return VMCI_ERROR_NOT_FOUND;
1398
1399         /*
1400          * Creator's context ID should match handle's context ID or the creator
1401          * must allow the context in handle's context ID as the "peer".
1402          */
1403         if (handle.context != context_id && handle.context != peer)
1404                 return VMCI_ERROR_NO_ACCESS;
1405
1406         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1407                 return VMCI_ERROR_DST_UNREACHABLE;
1408
1409         /*
1410          * Creator's context ID for local queue pairs should match the
1411          * peer, if a peer is specified.
1412          */
1413         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1414                 return VMCI_ERROR_NO_ACCESS;
1415
1416         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1417         if (!entry)
1418                 return VMCI_ERROR_NO_MEM;
1419
1420         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1421                 /*
1422                  * The queue pair broker entry stores values from the guest
1423                  * point of view, so a creating host side endpoint should swap
1424                  * produce and consume values -- unless it is a local queue
1425                  * pair, in which case no swapping is necessary, since the local
1426                  * attacher will swap queues.
1427                  */
1428
1429                 guest_produce_size = consume_size;
1430                 guest_consume_size = produce_size;
1431         } else {
1432                 guest_produce_size = produce_size;
1433                 guest_consume_size = consume_size;
1434         }
1435
1436         entry->qp.handle = handle;
1437         entry->qp.peer = peer;
1438         entry->qp.flags = flags;
1439         entry->qp.produce_size = guest_produce_size;
1440         entry->qp.consume_size = guest_consume_size;
1441         entry->qp.ref_count = 1;
1442         entry->create_id = context_id;
1443         entry->attach_id = VMCI_INVALID_ID;
1444         entry->state = VMCIQPB_NEW;
1445         entry->require_trusted_attach =
1446             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1447         entry->created_by_trusted =
1448             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1449         entry->vmci_page_files = false;
1450         entry->wakeup_cb = wakeup_cb;
1451         entry->client_data = client_data;
1452         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1453         if (entry->produce_q == NULL) {
1454                 result = VMCI_ERROR_NO_MEM;
1455                 goto error;
1456         }
1457         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1458         if (entry->consume_q == NULL) {
1459                 result = VMCI_ERROR_NO_MEM;
1460                 goto error;
1461         }
1462
1463         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1464
1465         INIT_LIST_HEAD(&entry->qp.list_item);
1466
1467         if (is_local) {
1468                 u8 *tmp;
1469
1470                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1471                                            PAGE_SIZE, GFP_KERNEL);
1472                 if (entry->local_mem == NULL) {
1473                         result = VMCI_ERROR_NO_MEM;
1474                         goto error;
1475                 }
1476                 entry->state = VMCIQPB_CREATED_MEM;
1477                 entry->produce_q->q_header = entry->local_mem;
1478                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1479                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1480                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1481         } else if (page_store) {
1482                 /*
1483                  * The VMX already initialized the queue pair headers, so no
1484                  * need for the kernel side to do that.
1485                  */
1486                 result = qp_host_register_user_memory(page_store,
1487                                                       entry->produce_q,
1488                                                       entry->consume_q);
1489                 if (result < VMCI_SUCCESS)
1490                         goto error;
1491
1492                 entry->state = VMCIQPB_CREATED_MEM;
1493         } else {
1494                 /*
1495                  * A create without a page_store may be either a host
1496                  * side create (in which case we are waiting for the
1497                  * guest side to supply the memory) or an old style
1498                  * queue pair create (in which case we will expect a
1499                  * set page store call as the next step).
1500                  */
1501                 entry->state = VMCIQPB_CREATED_NO_MEM;
1502         }
1503
1504         qp_list_add_entry(&qp_broker_list, &entry->qp);
1505         if (ent != NULL)
1506                 *ent = entry;
1507
1508         /* Add to resource obj */
1509         result = vmci_resource_add(&entry->resource,
1510                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1511                                    handle);
1512         if (result != VMCI_SUCCESS) {
1513                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1514                         handle.context, handle.resource, result);
1515                 goto error;
1516         }
1517
1518         entry->qp.handle = vmci_resource_handle(&entry->resource);
1519         if (is_local) {
1520                 vmci_q_header_init(entry->produce_q->q_header,
1521                                    entry->qp.handle);
1522                 vmci_q_header_init(entry->consume_q->q_header,
1523                                    entry->qp.handle);
1524         }
1525
1526         vmci_ctx_qp_create(context, entry->qp.handle);
1527
1528         return VMCI_SUCCESS;
1529
1530  error:
1531         if (entry != NULL) {
1532                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1533                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1534                 kfree(entry);
1535         }
1536
1537         return result;
1538 }
1539
1540 /*
1541  * Enqueues an event datagram to notify the peer VM attached to
1542  * the given queue pair handle about attach/detach event by the
1543  * given VM.  Returns Payload size of datagram enqueued on
1544  * success, error code otherwise.
1545  */
1546 static int qp_notify_peer(bool attach,
1547                           struct vmci_handle handle,
1548                           u32 my_id,
1549                           u32 peer_id)
1550 {
1551         int rv;
1552         struct vmci_event_qp ev;
1553
1554         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1555             peer_id == VMCI_INVALID_ID)
1556                 return VMCI_ERROR_INVALID_ARGS;
1557
1558         /*
1559          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1560          * number of pending events from the hypervisor to a given VM
1561          * otherwise a rogue VM could do an arbitrary number of attach
1562          * and detach operations causing memory pressure in the host
1563          * kernel.
1564          */
1565
1566         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1567         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1568                                           VMCI_CONTEXT_RESOURCE_ID);
1569         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1570         ev.msg.event_data.event = attach ?
1571             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1572         ev.payload.handle = handle;
1573         ev.payload.peer_id = my_id;
1574
1575         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1576                                     &ev.msg.hdr, false);
1577         if (rv < VMCI_SUCCESS)
1578                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1579                         attach ? "ATTACH" : "DETACH", peer_id);
1580
1581         return rv;
1582 }
1583
1584 /*
1585  * The second endpoint issuing a queue pair allocation will attach to
1586  * the queue pair registered with the queue pair broker.
1587  *
1588  * If the attacher is a guest, it will associate a VMX virtual address
1589  * range with the queue pair as specified by the page_store. At this
1590  * point, the already attach host endpoint may start using the queue
1591  * pair, and an attach event is sent to it. For compatibility with
1592  * older VMX'en, that used a separate step to set the VMX virtual
1593  * address range, the virtual address range can be registered later
1594  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1595  * NULL should be used, and the attach event will be generated once
1596  * the actual page store has been set.
1597  *
1598  * If the attacher is the host, a page_store of NULL should be used as
1599  * well, since the page store information is already set by the guest.
1600  *
1601  * For new VMX and host callers, the queue pair will be moved to the
1602  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1603  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1604  */
1605 static int qp_broker_attach(struct qp_broker_entry *entry,
1606                             u32 peer,
1607                             u32 flags,
1608                             u32 priv_flags,
1609                             u64 produce_size,
1610                             u64 consume_size,
1611                             struct vmci_qp_page_store *page_store,
1612                             struct vmci_ctx *context,
1613                             vmci_event_release_cb wakeup_cb,
1614                             void *client_data,
1615                             struct qp_broker_entry **ent)
1616 {
1617         const u32 context_id = vmci_ctx_get_id(context);
1618         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1619         int result;
1620
1621         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1622             entry->state != VMCIQPB_CREATED_MEM)
1623                 return VMCI_ERROR_UNAVAILABLE;
1624
1625         if (is_local) {
1626                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1627                     context_id != entry->create_id) {
1628                         return VMCI_ERROR_INVALID_ARGS;
1629                 }
1630         } else if (context_id == entry->create_id ||
1631                    context_id == entry->attach_id) {
1632                 return VMCI_ERROR_ALREADY_EXISTS;
1633         }
1634
1635         if (VMCI_CONTEXT_IS_VM(context_id) &&
1636             VMCI_CONTEXT_IS_VM(entry->create_id))
1637                 return VMCI_ERROR_DST_UNREACHABLE;
1638
1639         /*
1640          * If we are attaching from a restricted context then the queuepair
1641          * must have been created by a trusted endpoint.
1642          */
1643         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1644             !entry->created_by_trusted)
1645                 return VMCI_ERROR_NO_ACCESS;
1646
1647         /*
1648          * If we are attaching to a queuepair that was created by a restricted
1649          * context then we must be trusted.
1650          */
1651         if (entry->require_trusted_attach &&
1652             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1653                 return VMCI_ERROR_NO_ACCESS;
1654
1655         /*
1656          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1657          * control check is not performed.
1658          */
1659         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1660                 return VMCI_ERROR_NO_ACCESS;
1661
1662         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1663                 /*
1664                  * Do not attach if the caller doesn't support Host Queue Pairs
1665                  * and a host created this queue pair.
1666                  */
1667
1668                 if (!vmci_ctx_supports_host_qp(context))
1669                         return VMCI_ERROR_INVALID_RESOURCE;
1670
1671         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1672                 struct vmci_ctx *create_context;
1673                 bool supports_host_qp;
1674
1675                 /*
1676                  * Do not attach a host to a user created queue pair if that
1677                  * user doesn't support host queue pair end points.
1678                  */
1679
1680                 create_context = vmci_ctx_get(entry->create_id);
1681                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1682                 vmci_ctx_put(create_context);
1683
1684                 if (!supports_host_qp)
1685                         return VMCI_ERROR_INVALID_RESOURCE;
1686         }
1687
1688         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1689                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1690
1691         if (context_id != VMCI_HOST_CONTEXT_ID) {
1692                 /*
1693                  * The queue pair broker entry stores values from the guest
1694                  * point of view, so an attaching guest should match the values
1695                  * stored in the entry.
1696                  */
1697
1698                 if (entry->qp.produce_size != produce_size ||
1699                     entry->qp.consume_size != consume_size) {
1700                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1701                 }
1702         } else if (entry->qp.produce_size != consume_size ||
1703                    entry->qp.consume_size != produce_size) {
1704                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1705         }
1706
1707         if (context_id != VMCI_HOST_CONTEXT_ID) {
1708                 /*
1709                  * If a guest attached to a queue pair, it will supply
1710                  * the backing memory.  If this is a pre NOVMVM vmx,
1711                  * the backing memory will be supplied by calling
1712                  * vmci_qp_broker_set_page_store() following the
1713                  * return of the vmci_qp_broker_alloc() call. If it is
1714                  * a vmx of version NOVMVM or later, the page store
1715                  * must be supplied as part of the
1716                  * vmci_qp_broker_alloc call.  Under all circumstances
1717                  * must the initially created queue pair not have any
1718                  * memory associated with it already.
1719                  */
1720
1721                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1722                         return VMCI_ERROR_INVALID_ARGS;
1723
1724                 if (page_store != NULL) {
1725                         /*
1726                          * Patch up host state to point to guest
1727                          * supplied memory. The VMX already
1728                          * initialized the queue pair headers, so no
1729                          * need for the kernel side to do that.
1730                          */
1731
1732                         result = qp_host_register_user_memory(page_store,
1733                                                               entry->produce_q,
1734                                                               entry->consume_q);
1735                         if (result < VMCI_SUCCESS)
1736                                 return result;
1737
1738                         entry->state = VMCIQPB_ATTACHED_MEM;
1739                 } else {
1740                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1741                 }
1742         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1743                 /*
1744                  * The host side is attempting to attach to a queue
1745                  * pair that doesn't have any memory associated with
1746                  * it. This must be a pre NOVMVM vmx that hasn't set
1747                  * the page store information yet, or a quiesced VM.
1748                  */
1749
1750                 return VMCI_ERROR_UNAVAILABLE;
1751         } else {
1752                 /* The host side has successfully attached to a queue pair. */
1753                 entry->state = VMCIQPB_ATTACHED_MEM;
1754         }
1755
1756         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1757                 result =
1758                     qp_notify_peer(true, entry->qp.handle, context_id,
1759                                    entry->create_id);
1760                 if (result < VMCI_SUCCESS)
1761                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1762                                 entry->create_id, entry->qp.handle.context,
1763                                 entry->qp.handle.resource);
1764         }
1765
1766         entry->attach_id = context_id;
1767         entry->qp.ref_count++;
1768         if (wakeup_cb) {
1769                 entry->wakeup_cb = wakeup_cb;
1770                 entry->client_data = client_data;
1771         }
1772
1773         /*
1774          * When attaching to local queue pairs, the context already has
1775          * an entry tracking the queue pair, so don't add another one.
1776          */
1777         if (!is_local)
1778                 vmci_ctx_qp_create(context, entry->qp.handle);
1779
1780         if (ent != NULL)
1781                 *ent = entry;
1782
1783         return VMCI_SUCCESS;
1784 }
1785
1786 /*
1787  * queue_pair_Alloc for use when setting up queue pair endpoints
1788  * on the host.
1789  */
1790 static int qp_broker_alloc(struct vmci_handle handle,
1791                            u32 peer,
1792                            u32 flags,
1793                            u32 priv_flags,
1794                            u64 produce_size,
1795                            u64 consume_size,
1796                            struct vmci_qp_page_store *page_store,
1797                            struct vmci_ctx *context,
1798                            vmci_event_release_cb wakeup_cb,
1799                            void *client_data,
1800                            struct qp_broker_entry **ent,
1801                            bool *swap)
1802 {
1803         const u32 context_id = vmci_ctx_get_id(context);
1804         bool create;
1805         struct qp_broker_entry *entry = NULL;
1806         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1807         int result;
1808
1809         if (vmci_handle_is_invalid(handle) ||
1810             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1811             !(produce_size || consume_size) ||
1812             !context || context_id == VMCI_INVALID_ID ||
1813             handle.context == VMCI_INVALID_ID) {
1814                 return VMCI_ERROR_INVALID_ARGS;
1815         }
1816
1817         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1818                 return VMCI_ERROR_INVALID_ARGS;
1819
1820         /*
1821          * In the initial argument check, we ensure that non-vmkernel hosts
1822          * are not allowed to create local queue pairs.
1823          */
1824
1825         mutex_lock(&qp_broker_list.mutex);
1826
1827         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1828                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1829                          context_id, handle.context, handle.resource);
1830                 mutex_unlock(&qp_broker_list.mutex);
1831                 return VMCI_ERROR_ALREADY_EXISTS;
1832         }
1833
1834         if (handle.resource != VMCI_INVALID_ID)
1835                 entry = qp_broker_handle_to_entry(handle);
1836
1837         if (!entry) {
1838                 create = true;
1839                 result =
1840                     qp_broker_create(handle, peer, flags, priv_flags,
1841                                      produce_size, consume_size, page_store,
1842                                      context, wakeup_cb, client_data, ent);
1843         } else {
1844                 create = false;
1845                 result =
1846                     qp_broker_attach(entry, peer, flags, priv_flags,
1847                                      produce_size, consume_size, page_store,
1848                                      context, wakeup_cb, client_data, ent);
1849         }
1850
1851         mutex_unlock(&qp_broker_list.mutex);
1852
1853         if (swap)
1854                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1855                     !(create && is_local);
1856
1857         return result;
1858 }
1859
1860 /*
1861  * This function implements the kernel API for allocating a queue
1862  * pair.
1863  */
1864 static int qp_alloc_host_work(struct vmci_handle *handle,
1865                               struct vmci_queue **produce_q,
1866                               u64 produce_size,
1867                               struct vmci_queue **consume_q,
1868                               u64 consume_size,
1869                               u32 peer,
1870                               u32 flags,
1871                               u32 priv_flags,
1872                               vmci_event_release_cb wakeup_cb,
1873                               void *client_data)
1874 {
1875         struct vmci_handle new_handle;
1876         struct vmci_ctx *context;
1877         struct qp_broker_entry *entry;
1878         int result;
1879         bool swap;
1880
1881         if (vmci_handle_is_invalid(*handle)) {
1882                 new_handle = vmci_make_handle(
1883                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1884         } else
1885                 new_handle = *handle;
1886
1887         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1888         entry = NULL;
1889         result =
1890             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1891                             produce_size, consume_size, NULL, context,
1892                             wakeup_cb, client_data, &entry, &swap);
1893         if (result == VMCI_SUCCESS) {
1894                 if (swap) {
1895                         /*
1896                          * If this is a local queue pair, the attacher
1897                          * will swap around produce and consume
1898                          * queues.
1899                          */
1900
1901                         *produce_q = entry->consume_q;
1902                         *consume_q = entry->produce_q;
1903                 } else {
1904                         *produce_q = entry->produce_q;
1905                         *consume_q = entry->consume_q;
1906                 }
1907
1908                 *handle = vmci_resource_handle(&entry->resource);
1909         } else {
1910                 *handle = VMCI_INVALID_HANDLE;
1911                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1912                          result);
1913         }
1914         vmci_ctx_put(context);
1915         return result;
1916 }
1917
1918 /*
1919  * Allocates a VMCI queue_pair. Only checks validity of input
1920  * arguments. The real work is done in the host or guest
1921  * specific function.
1922  */
1923 int vmci_qp_alloc(struct vmci_handle *handle,
1924                   struct vmci_queue **produce_q,
1925                   u64 produce_size,
1926                   struct vmci_queue **consume_q,
1927                   u64 consume_size,
1928                   u32 peer,
1929                   u32 flags,
1930                   u32 priv_flags,
1931                   bool guest_endpoint,
1932                   vmci_event_release_cb wakeup_cb,
1933                   void *client_data)
1934 {
1935         if (!handle || !produce_q || !consume_q ||
1936             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1937                 return VMCI_ERROR_INVALID_ARGS;
1938
1939         if (guest_endpoint) {
1940                 return qp_alloc_guest_work(handle, produce_q,
1941                                            produce_size, consume_q,
1942                                            consume_size, peer,
1943                                            flags, priv_flags);
1944         } else {
1945                 return qp_alloc_host_work(handle, produce_q,
1946                                           produce_size, consume_q,
1947                                           consume_size, peer, flags,
1948                                           priv_flags, wakeup_cb, client_data);
1949         }
1950 }
1951
1952 /*
1953  * This function implements the host kernel API for detaching from
1954  * a queue pair.
1955  */
1956 static int qp_detatch_host_work(struct vmci_handle handle)
1957 {
1958         int result;
1959         struct vmci_ctx *context;
1960
1961         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1962
1963         result = vmci_qp_broker_detach(handle, context);
1964
1965         vmci_ctx_put(context);
1966         return result;
1967 }
1968
1969 /*
1970  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1971  * Real work is done in the host or guest specific function.
1972  */
1973 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1974 {
1975         if (vmci_handle_is_invalid(handle))
1976                 return VMCI_ERROR_INVALID_ARGS;
1977
1978         if (guest_endpoint)
1979                 return qp_detatch_guest_work(handle);
1980         else
1981                 return qp_detatch_host_work(handle);
1982 }
1983
1984 /*
1985  * Returns the entry from the head of the list. Assumes that the list is
1986  * locked.
1987  */
1988 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1989 {
1990         if (!list_empty(&qp_list->head)) {
1991                 struct qp_entry *entry =
1992                     list_first_entry(&qp_list->head, struct qp_entry,
1993                                      list_item);
1994                 return entry;
1995         }
1996
1997         return NULL;
1998 }
1999
2000 void vmci_qp_broker_exit(void)
2001 {
2002         struct qp_entry *entry;
2003         struct qp_broker_entry *be;
2004
2005         mutex_lock(&qp_broker_list.mutex);
2006
2007         while ((entry = qp_list_get_head(&qp_broker_list))) {
2008                 be = (struct qp_broker_entry *)entry;
2009
2010                 qp_list_remove_entry(&qp_broker_list, entry);
2011                 kfree(be);
2012         }
2013
2014         mutex_unlock(&qp_broker_list.mutex);
2015 }
2016
2017 /*
2018  * Requests that a queue pair be allocated with the VMCI queue
2019  * pair broker. Allocates a queue pair entry if one does not
2020  * exist. Attaches to one if it exists, and retrieves the page
2021  * files backing that queue_pair.  Assumes that the queue pair
2022  * broker lock is held.
2023  */
2024 int vmci_qp_broker_alloc(struct vmci_handle handle,
2025                          u32 peer,
2026                          u32 flags,
2027                          u32 priv_flags,
2028                          u64 produce_size,
2029                          u64 consume_size,
2030                          struct vmci_qp_page_store *page_store,
2031                          struct vmci_ctx *context)
2032 {
2033         return qp_broker_alloc(handle, peer, flags, priv_flags,
2034                                produce_size, consume_size,
2035                                page_store, context, NULL, NULL, NULL, NULL);
2036 }
2037
2038 /*
2039  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2040  * step to add the UVAs of the VMX mapping of the queue pair. This function
2041  * provides backwards compatibility with such VMX'en, and takes care of
2042  * registering the page store for a queue pair previously allocated by the
2043  * VMX during create or attach. This function will move the queue pair state
2044  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2045  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2046  * attached state with memory, the queue pair is ready to be used by the
2047  * host peer, and an attached event will be generated.
2048  *
2049  * Assumes that the queue pair broker lock is held.
2050  *
2051  * This function is only used by the hosted platform, since there is no
2052  * issue with backwards compatibility for vmkernel.
2053  */
2054 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2055                                   u64 produce_uva,
2056                                   u64 consume_uva,
2057                                   struct vmci_ctx *context)
2058 {
2059         struct qp_broker_entry *entry;
2060         int result;
2061         const u32 context_id = vmci_ctx_get_id(context);
2062
2063         if (vmci_handle_is_invalid(handle) || !context ||
2064             context_id == VMCI_INVALID_ID)
2065                 return VMCI_ERROR_INVALID_ARGS;
2066
2067         /*
2068          * We only support guest to host queue pairs, so the VMX must
2069          * supply UVAs for the mapped page files.
2070          */
2071
2072         if (produce_uva == 0 || consume_uva == 0)
2073                 return VMCI_ERROR_INVALID_ARGS;
2074
2075         mutex_lock(&qp_broker_list.mutex);
2076
2077         if (!vmci_ctx_qp_exists(context, handle)) {
2078                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2079                         context_id, handle.context, handle.resource);
2080                 result = VMCI_ERROR_NOT_FOUND;
2081                 goto out;
2082         }
2083
2084         entry = qp_broker_handle_to_entry(handle);
2085         if (!entry) {
2086                 result = VMCI_ERROR_NOT_FOUND;
2087                 goto out;
2088         }
2089
2090         /*
2091          * If I'm the owner then I can set the page store.
2092          *
2093          * Or, if a host created the queue_pair and I'm the attached peer
2094          * then I can set the page store.
2095          */
2096         if (entry->create_id != context_id &&
2097             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2098              entry->attach_id != context_id)) {
2099                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2100                 goto out;
2101         }
2102
2103         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2104             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2105                 result = VMCI_ERROR_UNAVAILABLE;
2106                 goto out;
2107         }
2108
2109         result = qp_host_get_user_memory(produce_uva, consume_uva,
2110                                          entry->produce_q, entry->consume_q);
2111         if (result < VMCI_SUCCESS)
2112                 goto out;
2113
2114         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2115         if (result < VMCI_SUCCESS) {
2116                 qp_host_unregister_user_memory(entry->produce_q,
2117                                                entry->consume_q);
2118                 goto out;
2119         }
2120
2121         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2122                 entry->state = VMCIQPB_CREATED_MEM;
2123         else
2124                 entry->state = VMCIQPB_ATTACHED_MEM;
2125
2126         entry->vmci_page_files = true;
2127
2128         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2129                 result =
2130                     qp_notify_peer(true, handle, context_id, entry->create_id);
2131                 if (result < VMCI_SUCCESS) {
2132                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2133                                 entry->create_id, entry->qp.handle.context,
2134                                 entry->qp.handle.resource);
2135                 }
2136         }
2137
2138         result = VMCI_SUCCESS;
2139  out:
2140         mutex_unlock(&qp_broker_list.mutex);
2141         return result;
2142 }
2143
2144 /*
2145  * Resets saved queue headers for the given QP broker
2146  * entry. Should be used when guest memory becomes available
2147  * again, or the guest detaches.
2148  */
2149 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2150 {
2151         entry->produce_q->saved_header = NULL;
2152         entry->consume_q->saved_header = NULL;
2153 }
2154
2155 /*
2156  * The main entry point for detaching from a queue pair registered with the
2157  * queue pair broker. If more than one endpoint is attached to the queue
2158  * pair, the first endpoint will mainly decrement a reference count and
2159  * generate a notification to its peer. The last endpoint will clean up
2160  * the queue pair state registered with the broker.
2161  *
2162  * When a guest endpoint detaches, it will unmap and unregister the guest
2163  * memory backing the queue pair. If the host is still attached, it will
2164  * no longer be able to access the queue pair content.
2165  *
2166  * If the queue pair is already in a state where there is no memory
2167  * registered for the queue pair (any *_NO_MEM state), it will transition to
2168  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2169  * endpoint is the first of two endpoints to detach. If the host endpoint is
2170  * the first out of two to detach, the queue pair will move to the
2171  * VMCIQPB_SHUTDOWN_MEM state.
2172  */
2173 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2174 {
2175         struct qp_broker_entry *entry;
2176         const u32 context_id = vmci_ctx_get_id(context);
2177         u32 peer_id;
2178         bool is_local = false;
2179         int result;
2180
2181         if (vmci_handle_is_invalid(handle) || !context ||
2182             context_id == VMCI_INVALID_ID) {
2183                 return VMCI_ERROR_INVALID_ARGS;
2184         }
2185
2186         mutex_lock(&qp_broker_list.mutex);
2187
2188         if (!vmci_ctx_qp_exists(context, handle)) {
2189                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2190                          context_id, handle.context, handle.resource);
2191                 result = VMCI_ERROR_NOT_FOUND;
2192                 goto out;
2193         }
2194
2195         entry = qp_broker_handle_to_entry(handle);
2196         if (!entry) {
2197                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2198                          context_id, handle.context, handle.resource);
2199                 result = VMCI_ERROR_NOT_FOUND;
2200                 goto out;
2201         }
2202
2203         if (context_id != entry->create_id && context_id != entry->attach_id) {
2204                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2205                 goto out;
2206         }
2207
2208         if (context_id == entry->create_id) {
2209                 peer_id = entry->attach_id;
2210                 entry->create_id = VMCI_INVALID_ID;
2211         } else {
2212                 peer_id = entry->create_id;
2213                 entry->attach_id = VMCI_INVALID_ID;
2214         }
2215         entry->qp.ref_count--;
2216
2217         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2218
2219         if (context_id != VMCI_HOST_CONTEXT_ID) {
2220                 bool headers_mapped;
2221
2222                 /*
2223                  * Pre NOVMVM vmx'en may detach from a queue pair
2224                  * before setting the page store, and in that case
2225                  * there is no user memory to detach from. Also, more
2226                  * recent VMX'en may detach from a queue pair in the
2227                  * quiesced state.
2228                  */
2229
2230                 qp_acquire_queue_mutex(entry->produce_q);
2231                 headers_mapped = entry->produce_q->q_header ||
2232                     entry->consume_q->q_header;
2233                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2234                         result =
2235                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2236                                                  entry->produce_q,
2237                                                  entry->consume_q);
2238                         if (result < VMCI_SUCCESS)
2239                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2240                                         handle.context, handle.resource,
2241                                         result);
2242
2243                         if (entry->vmci_page_files)
2244                                 qp_host_unregister_user_memory(entry->produce_q,
2245                                                                entry->
2246                                                                consume_q);
2247                         else
2248                                 qp_host_unregister_user_memory(entry->produce_q,
2249                                                                entry->
2250                                                                consume_q);
2251
2252                 }
2253
2254                 if (!headers_mapped)
2255                         qp_reset_saved_headers(entry);
2256
2257                 qp_release_queue_mutex(entry->produce_q);
2258
2259                 if (!headers_mapped && entry->wakeup_cb)
2260                         entry->wakeup_cb(entry->client_data);
2261
2262         } else {
2263                 if (entry->wakeup_cb) {
2264                         entry->wakeup_cb = NULL;
2265                         entry->client_data = NULL;
2266                 }
2267         }
2268
2269         if (entry->qp.ref_count == 0) {
2270                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2271
2272                 if (is_local)
2273                         kfree(entry->local_mem);
2274
2275                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2276                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2277                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2278                 /* Unlink from resource hash table and free callback */
2279                 vmci_resource_remove(&entry->resource);
2280
2281                 kfree(entry);
2282
2283                 vmci_ctx_qp_destroy(context, handle);
2284         } else {
2285                 qp_notify_peer(false, handle, context_id, peer_id);
2286                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2287                     QPBROKERSTATE_HAS_MEM(entry)) {
2288                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2289                 } else {
2290                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2291                 }
2292
2293                 if (!is_local)
2294                         vmci_ctx_qp_destroy(context, handle);
2295
2296         }
2297         result = VMCI_SUCCESS;
2298  out:
2299         mutex_unlock(&qp_broker_list.mutex);
2300         return result;
2301 }
2302
2303 /*
2304  * Establishes the necessary mappings for a queue pair given a
2305  * reference to the queue pair guest memory. This is usually
2306  * called when a guest is unquiesced and the VMX is allowed to
2307  * map guest memory once again.
2308  */
2309 int vmci_qp_broker_map(struct vmci_handle handle,
2310                        struct vmci_ctx *context,
2311                        u64 guest_mem)
2312 {
2313         struct qp_broker_entry *entry;
2314         const u32 context_id = vmci_ctx_get_id(context);
2315         bool is_local = false;
2316         int result;
2317
2318         if (vmci_handle_is_invalid(handle) || !context ||
2319             context_id == VMCI_INVALID_ID)
2320                 return VMCI_ERROR_INVALID_ARGS;
2321
2322         mutex_lock(&qp_broker_list.mutex);
2323
2324         if (!vmci_ctx_qp_exists(context, handle)) {
2325                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2326                          context_id, handle.context, handle.resource);
2327                 result = VMCI_ERROR_NOT_FOUND;
2328                 goto out;
2329         }
2330
2331         entry = qp_broker_handle_to_entry(handle);
2332         if (!entry) {
2333                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2334                          context_id, handle.context, handle.resource);
2335                 result = VMCI_ERROR_NOT_FOUND;
2336                 goto out;
2337         }
2338
2339         if (context_id != entry->create_id && context_id != entry->attach_id) {
2340                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2341                 goto out;
2342         }
2343
2344         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2345         result = VMCI_SUCCESS;
2346
2347         if (context_id != VMCI_HOST_CONTEXT_ID &&
2348             !QPBROKERSTATE_HAS_MEM(entry)) {
2349                 struct vmci_qp_page_store page_store;
2350
2351                 page_store.pages = guest_mem;
2352                 page_store.len = QPE_NUM_PAGES(entry->qp);
2353
2354                 qp_acquire_queue_mutex(entry->produce_q);
2355                 qp_reset_saved_headers(entry);
2356                 result =
2357                     qp_host_register_user_memory(&page_store,
2358                                                  entry->produce_q,
2359                                                  entry->consume_q);
2360                 qp_release_queue_mutex(entry->produce_q);
2361                 if (result == VMCI_SUCCESS) {
2362                         /* Move state from *_NO_MEM to *_MEM */
2363
2364                         entry->state++;
2365
2366                         if (entry->wakeup_cb)
2367                                 entry->wakeup_cb(entry->client_data);
2368                 }
2369         }
2370
2371  out:
2372         mutex_unlock(&qp_broker_list.mutex);
2373         return result;
2374 }
2375
2376 /*
2377  * Saves a snapshot of the queue headers for the given QP broker
2378  * entry. Should be used when guest memory is unmapped.
2379  * Results:
2380  * VMCI_SUCCESS on success, appropriate error code if guest memory
2381  * can't be accessed..
2382  */
2383 static int qp_save_headers(struct qp_broker_entry *entry)
2384 {
2385         int result;
2386
2387         if (entry->produce_q->saved_header != NULL &&
2388             entry->consume_q->saved_header != NULL) {
2389                 /*
2390                  *  If the headers have already been saved, we don't need to do
2391                  *  it again, and we don't want to map in the headers
2392                  *  unnecessarily.
2393                  */
2394
2395                 return VMCI_SUCCESS;
2396         }
2397
2398         if (NULL == entry->produce_q->q_header ||
2399             NULL == entry->consume_q->q_header) {
2400                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2401                 if (result < VMCI_SUCCESS)
2402                         return result;
2403         }
2404
2405         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2406                sizeof(entry->saved_produce_q));
2407         entry->produce_q->saved_header = &entry->saved_produce_q;
2408         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2409                sizeof(entry->saved_consume_q));
2410         entry->consume_q->saved_header = &entry->saved_consume_q;
2411
2412         return VMCI_SUCCESS;
2413 }
2414
2415 /*
2416  * Removes all references to the guest memory of a given queue pair, and
2417  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2418  * called when a VM is being quiesced where access to guest memory should
2419  * avoided.
2420  */
2421 int vmci_qp_broker_unmap(struct vmci_handle handle,
2422                          struct vmci_ctx *context,
2423                          u32 gid)
2424 {
2425         struct qp_broker_entry *entry;
2426         const u32 context_id = vmci_ctx_get_id(context);
2427         bool is_local = false;
2428         int result;
2429
2430         if (vmci_handle_is_invalid(handle) || !context ||
2431             context_id == VMCI_INVALID_ID)
2432                 return VMCI_ERROR_INVALID_ARGS;
2433
2434         mutex_lock(&qp_broker_list.mutex);
2435
2436         if (!vmci_ctx_qp_exists(context, handle)) {
2437                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2438                          context_id, handle.context, handle.resource);
2439                 result = VMCI_ERROR_NOT_FOUND;
2440                 goto out;
2441         }
2442
2443         entry = qp_broker_handle_to_entry(handle);
2444         if (!entry) {
2445                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2446                          context_id, handle.context, handle.resource);
2447                 result = VMCI_ERROR_NOT_FOUND;
2448                 goto out;
2449         }
2450
2451         if (context_id != entry->create_id && context_id != entry->attach_id) {
2452                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2453                 goto out;
2454         }
2455
2456         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2457
2458         if (context_id != VMCI_HOST_CONTEXT_ID &&
2459             QPBROKERSTATE_HAS_MEM(entry)) {
2460                 qp_acquire_queue_mutex(entry->produce_q);
2461                 result = qp_save_headers(entry);
2462                 if (result < VMCI_SUCCESS)
2463                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2464                                 handle.context, handle.resource, result);
2465
2466                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2467
2468                 /*
2469                  * On hosted, when we unmap queue pairs, the VMX will also
2470                  * unmap the guest memory, so we invalidate the previously
2471                  * registered memory. If the queue pair is mapped again at a
2472                  * later point in time, we will need to reregister the user
2473                  * memory with a possibly new user VA.
2474                  */
2475                 qp_host_unregister_user_memory(entry->produce_q,
2476                                                entry->consume_q);
2477
2478                 /*
2479                  * Move state from *_MEM to *_NO_MEM.
2480                  */
2481                 entry->state--;
2482
2483                 qp_release_queue_mutex(entry->produce_q);
2484         }
2485
2486         result = VMCI_SUCCESS;
2487
2488  out:
2489         mutex_unlock(&qp_broker_list.mutex);
2490         return result;
2491 }
2492
2493 /*
2494  * Destroys all guest queue pair endpoints. If active guest queue
2495  * pairs still exist, hypercalls to attempt detach from these
2496  * queue pairs will be made. Any failure to detach is silently
2497  * ignored.
2498  */
2499 void vmci_qp_guest_endpoints_exit(void)
2500 {
2501         struct qp_entry *entry;
2502         struct qp_guest_endpoint *ep;
2503
2504         mutex_lock(&qp_guest_endpoints.mutex);
2505
2506         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2507                 ep = (struct qp_guest_endpoint *)entry;
2508
2509                 /* Don't make a hypercall for local queue_pairs. */
2510                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2511                         qp_detatch_hypercall(entry->handle);
2512
2513                 /* We cannot fail the exit, so let's reset ref_count. */
2514                 entry->ref_count = 0;
2515                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2516
2517                 qp_guest_endpoint_destroy(ep);
2518         }
2519
2520         mutex_unlock(&qp_guest_endpoints.mutex);
2521 }
2522
2523 /*
2524  * Helper routine that will lock the queue pair before subsequent
2525  * operations.
2526  * Note: Non-blocking on the host side is currently only implemented in ESX.
2527  * Since non-blocking isn't yet implemented on the host personality we
2528  * have no reason to acquire a spin lock.  So to avoid the use of an
2529  * unnecessary lock only acquire the mutex if we can block.
2530  */
2531 static void qp_lock(const struct vmci_qp *qpair)
2532 {
2533         qp_acquire_queue_mutex(qpair->produce_q);
2534 }
2535
2536 /*
2537  * Helper routine that unlocks the queue pair after calling
2538  * qp_lock.
2539  */
2540 static void qp_unlock(const struct vmci_qp *qpair)
2541 {
2542         qp_release_queue_mutex(qpair->produce_q);
2543 }
2544
2545 /*
2546  * The queue headers may not be mapped at all times. If a queue is
2547  * currently not mapped, it will be attempted to do so.
2548  */
2549 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2550                                 struct vmci_queue *consume_q)
2551 {
2552         int result;
2553
2554         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2555                 result = qp_host_map_queues(produce_q, consume_q);
2556                 if (result < VMCI_SUCCESS)
2557                         return (produce_q->saved_header &&
2558                                 consume_q->saved_header) ?
2559                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2560                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2561         }
2562
2563         return VMCI_SUCCESS;
2564 }
2565
2566 /*
2567  * Helper routine that will retrieve the produce and consume
2568  * headers of a given queue pair. If the guest memory of the
2569  * queue pair is currently not available, the saved queue headers
2570  * will be returned, if these are available.
2571  */
2572 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2573                                 struct vmci_queue_header **produce_q_header,
2574                                 struct vmci_queue_header **consume_q_header)
2575 {
2576         int result;
2577
2578         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2579         if (result == VMCI_SUCCESS) {
2580                 *produce_q_header = qpair->produce_q->q_header;
2581                 *consume_q_header = qpair->consume_q->q_header;
2582         } else if (qpair->produce_q->saved_header &&
2583                    qpair->consume_q->saved_header) {
2584                 *produce_q_header = qpair->produce_q->saved_header;
2585                 *consume_q_header = qpair->consume_q->saved_header;
2586                 result = VMCI_SUCCESS;
2587         }
2588
2589         return result;
2590 }
2591
2592 /*
2593  * Callback from VMCI queue pair broker indicating that a queue
2594  * pair that was previously not ready, now either is ready or
2595  * gone forever.
2596  */
2597 static int qp_wakeup_cb(void *client_data)
2598 {
2599         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2600
2601         qp_lock(qpair);
2602         while (qpair->blocked > 0) {
2603                 qpair->blocked--;
2604                 qpair->generation++;
2605                 wake_up(&qpair->event);
2606         }
2607         qp_unlock(qpair);
2608
2609         return VMCI_SUCCESS;
2610 }
2611
2612 /*
2613  * Makes the calling thread wait for the queue pair to become
2614  * ready for host side access.  Returns true when thread is
2615  * woken up after queue pair state change, false otherwise.
2616  */
2617 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2618 {
2619         unsigned int generation;
2620
2621         qpair->blocked++;
2622         generation = qpair->generation;
2623         qp_unlock(qpair);
2624         wait_event(qpair->event, generation != qpair->generation);
2625         qp_lock(qpair);
2626
2627         return true;
2628 }
2629
2630 /*
2631  * Enqueues a given buffer to the produce queue using the provided
2632  * function. As many bytes as possible (space available in the queue)
2633  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2634  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2635  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2636  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2637  * an error occured when accessing the buffer,
2638  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2639  * available.  Otherwise, the number of bytes written to the queue is
2640  * returned.  Updates the tail pointer of the produce queue.
2641  */
2642 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2643                                  struct vmci_queue *consume_q,
2644                                  const u64 produce_q_size,
2645                                  const void *buf,
2646                                  size_t buf_size,
2647                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2648 {
2649         s64 free_space;
2650         u64 tail;
2651         size_t written;
2652         ssize_t result;
2653
2654         result = qp_map_queue_headers(produce_q, consume_q);
2655         if (unlikely(result != VMCI_SUCCESS))
2656                 return result;
2657
2658         free_space = vmci_q_header_free_space(produce_q->q_header,
2659                                               consume_q->q_header,
2660                                               produce_q_size);
2661         if (free_space == 0)
2662                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2663
2664         if (free_space < VMCI_SUCCESS)
2665                 return (ssize_t) free_space;
2666
2667         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2668         tail = vmci_q_header_producer_tail(produce_q->q_header);
2669         if (likely(tail + written < produce_q_size)) {
2670                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2671         } else {
2672                 /* Tail pointer wraps around. */
2673
2674                 const size_t tmp = (size_t) (produce_q_size - tail);
2675
2676                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2677                 if (result >= VMCI_SUCCESS)
2678                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2679                                                  written - tmp);
2680         }
2681
2682         if (result < VMCI_SUCCESS)
2683                 return result;
2684
2685         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2686                                         produce_q_size);
2687         return written;
2688 }
2689
2690 /*
2691  * Dequeues data (if available) from the given consume queue. Writes data
2692  * to the user provided buffer using the provided function.
2693  * Assumes the queue->mutex has been acquired.
2694  * Results:
2695  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2696  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2697  * (as defined by the queue size).
2698  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2699  * Otherwise the number of bytes dequeued is returned.
2700  * Side effects:
2701  * Updates the head pointer of the consume queue.
2702  */
2703 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2704                                  struct vmci_queue *consume_q,
2705                                  const u64 consume_q_size,
2706                                  void *buf,
2707                                  size_t buf_size,
2708                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2709                                  bool update_consumer)
2710 {
2711         s64 buf_ready;
2712         u64 head;
2713         size_t read;
2714         ssize_t result;
2715
2716         result = qp_map_queue_headers(produce_q, consume_q);
2717         if (unlikely(result != VMCI_SUCCESS))
2718                 return result;
2719
2720         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2721                                             produce_q->q_header,
2722                                             consume_q_size);
2723         if (buf_ready == 0)
2724                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2725
2726         if (buf_ready < VMCI_SUCCESS)
2727                 return (ssize_t) buf_ready;
2728
2729         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2730         head = vmci_q_header_consumer_head(produce_q->q_header);
2731         if (likely(head + read < consume_q_size)) {
2732                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2733         } else {
2734                 /* Head pointer wraps around. */
2735
2736                 const size_t tmp = (size_t) (consume_q_size - head);
2737
2738                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2739                 if (result >= VMCI_SUCCESS)
2740                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2741                                                    read - tmp);
2742
2743         }
2744
2745         if (result < VMCI_SUCCESS)
2746                 return result;
2747
2748         if (update_consumer)
2749                 vmci_q_header_add_consumer_head(produce_q->q_header,
2750                                                 read, consume_q_size);
2751
2752         return read;
2753 }
2754
2755 /*
2756  * vmci_qpair_alloc() - Allocates a queue pair.
2757  * @qpair:      Pointer for the new vmci_qp struct.
2758  * @handle:     Handle to track the resource.
2759  * @produce_qsize:      Desired size of the producer queue.
2760  * @consume_qsize:      Desired size of the consumer queue.
2761  * @peer:       ContextID of the peer.
2762  * @flags:      VMCI flags.
2763  * @priv_flags: VMCI priviledge flags.
2764  *
2765  * This is the client interface for allocating the memory for a
2766  * vmci_qp structure and then attaching to the underlying
2767  * queue.  If an error occurs allocating the memory for the
2768  * vmci_qp structure no attempt is made to attach.  If an
2769  * error occurs attaching, then the structure is freed.
2770  */
2771 int vmci_qpair_alloc(struct vmci_qp **qpair,
2772                      struct vmci_handle *handle,
2773                      u64 produce_qsize,
2774                      u64 consume_qsize,
2775                      u32 peer,
2776                      u32 flags,
2777                      u32 priv_flags)
2778 {
2779         struct vmci_qp *my_qpair;
2780         int retval;
2781         struct vmci_handle src = VMCI_INVALID_HANDLE;
2782         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2783         enum vmci_route route;
2784         vmci_event_release_cb wakeup_cb;
2785         void *client_data;
2786
2787         /*
2788          * Restrict the size of a queuepair.  The device already
2789          * enforces a limit on the total amount of memory that can be
2790          * allocated to queuepairs for a guest.  However, we try to
2791          * allocate this memory before we make the queuepair
2792          * allocation hypercall.  On Linux, we allocate each page
2793          * separately, which means rather than fail, the guest will
2794          * thrash while it tries to allocate, and will become
2795          * increasingly unresponsive to the point where it appears to
2796          * be hung.  So we place a limit on the size of an individual
2797          * queuepair here, and leave the device to enforce the
2798          * restriction on total queuepair memory.  (Note that this
2799          * doesn't prevent all cases; a user with only this much
2800          * physical memory could still get into trouble.)  The error
2801          * used by the device is NO_RESOURCES, so use that here too.
2802          */
2803
2804         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2805             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2806                 return VMCI_ERROR_NO_RESOURCES;
2807
2808         retval = vmci_route(&src, &dst, false, &route);
2809         if (retval < VMCI_SUCCESS)
2810                 route = vmci_guest_code_active() ?
2811                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2812
2813         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2814                 pr_devel("NONBLOCK OR PINNED set");
2815                 return VMCI_ERROR_INVALID_ARGS;
2816         }
2817
2818         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2819         if (!my_qpair)
2820                 return VMCI_ERROR_NO_MEM;
2821
2822         my_qpair->produce_q_size = produce_qsize;
2823         my_qpair->consume_q_size = consume_qsize;
2824         my_qpair->peer = peer;
2825         my_qpair->flags = flags;
2826         my_qpair->priv_flags = priv_flags;
2827
2828         wakeup_cb = NULL;
2829         client_data = NULL;
2830
2831         if (VMCI_ROUTE_AS_HOST == route) {
2832                 my_qpair->guest_endpoint = false;
2833                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2834                         my_qpair->blocked = 0;
2835                         my_qpair->generation = 0;
2836                         init_waitqueue_head(&my_qpair->event);
2837                         wakeup_cb = qp_wakeup_cb;
2838                         client_data = (void *)my_qpair;
2839                 }
2840         } else {
2841                 my_qpair->guest_endpoint = true;
2842         }
2843
2844         retval = vmci_qp_alloc(handle,
2845                                &my_qpair->produce_q,
2846                                my_qpair->produce_q_size,
2847                                &my_qpair->consume_q,
2848                                my_qpair->consume_q_size,
2849                                my_qpair->peer,
2850                                my_qpair->flags,
2851                                my_qpair->priv_flags,
2852                                my_qpair->guest_endpoint,
2853                                wakeup_cb, client_data);
2854
2855         if (retval < VMCI_SUCCESS) {
2856                 kfree(my_qpair);
2857                 return retval;
2858         }
2859
2860         *qpair = my_qpair;
2861         my_qpair->handle = *handle;
2862
2863         return retval;
2864 }
2865 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2866
2867 /*
2868  * vmci_qpair_detach() - Detatches the client from a queue pair.
2869  * @qpair:      Reference of a pointer to the qpair struct.
2870  *
2871  * This is the client interface for detaching from a VMCIQPair.
2872  * Note that this routine will free the memory allocated for the
2873  * vmci_qp structure too.
2874  */
2875 int vmci_qpair_detach(struct vmci_qp **qpair)
2876 {
2877         int result;
2878         struct vmci_qp *old_qpair;
2879
2880         if (!qpair || !(*qpair))
2881                 return VMCI_ERROR_INVALID_ARGS;
2882
2883         old_qpair = *qpair;
2884         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2885
2886         /*
2887          * The guest can fail to detach for a number of reasons, and
2888          * if it does so, it will cleanup the entry (if there is one).
2889          * The host can fail too, but it won't cleanup the entry
2890          * immediately, it will do that later when the context is
2891          * freed.  Either way, we need to release the qpair struct
2892          * here; there isn't much the caller can do, and we don't want
2893          * to leak.
2894          */
2895
2896         memset(old_qpair, 0, sizeof(*old_qpair));
2897         old_qpair->handle = VMCI_INVALID_HANDLE;
2898         old_qpair->peer = VMCI_INVALID_ID;
2899         kfree(old_qpair);
2900         *qpair = NULL;
2901
2902         return result;
2903 }
2904 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2905
2906 /*
2907  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2908  * @qpair:      Pointer to the queue pair struct.
2909  * @producer_tail:      Reference used for storing producer tail index.
2910  * @consumer_head:      Reference used for storing the consumer head index.
2911  *
2912  * This is the client interface for getting the current indexes of the
2913  * QPair from the point of the view of the caller as the producer.
2914  */
2915 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2916                                    u64 *producer_tail,
2917                                    u64 *consumer_head)
2918 {
2919         struct vmci_queue_header *produce_q_header;
2920         struct vmci_queue_header *consume_q_header;
2921         int result;
2922
2923         if (!qpair)
2924                 return VMCI_ERROR_INVALID_ARGS;
2925
2926         qp_lock(qpair);
2927         result =
2928             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2929         if (result == VMCI_SUCCESS)
2930                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2931                                            producer_tail, consumer_head);
2932         qp_unlock(qpair);
2933
2934         if (result == VMCI_SUCCESS &&
2935             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2936              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2937                 return VMCI_ERROR_INVALID_SIZE;
2938
2939         return result;
2940 }
2941 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2942
2943 /*
2944  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2945  * @qpair:      Pointer to the queue pair struct.
2946  * @consumer_tail:      Reference used for storing consumer tail index.
2947  * @producer_head:      Reference used for storing the producer head index.
2948  *
2949  * This is the client interface for getting the current indexes of the
2950  * QPair from the point of the view of the caller as the consumer.
2951  */
2952 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2953                                    u64 *consumer_tail,
2954                                    u64 *producer_head)
2955 {
2956         struct vmci_queue_header *produce_q_header;
2957         struct vmci_queue_header *consume_q_header;
2958         int result;
2959
2960         if (!qpair)
2961                 return VMCI_ERROR_INVALID_ARGS;
2962
2963         qp_lock(qpair);
2964         result =
2965             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966         if (result == VMCI_SUCCESS)
2967                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2968                                            consumer_tail, producer_head);
2969         qp_unlock(qpair);
2970
2971         if (result == VMCI_SUCCESS &&
2972             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2973              (producer_head && *producer_head >= qpair->consume_q_size)))
2974                 return VMCI_ERROR_INVALID_SIZE;
2975
2976         return result;
2977 }
2978 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2979
2980 /*
2981  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2982  * @qpair:      Pointer to the queue pair struct.
2983  *
2984  * This is the client interface for getting the amount of free
2985  * space in the QPair from the point of the view of the caller as
2986  * the producer which is the common case.  Returns < 0 if err, else
2987  * available bytes into which data can be enqueued if > 0.
2988  */
2989 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2990 {
2991         struct vmci_queue_header *produce_q_header;
2992         struct vmci_queue_header *consume_q_header;
2993         s64 result;
2994
2995         if (!qpair)
2996                 return VMCI_ERROR_INVALID_ARGS;
2997
2998         qp_lock(qpair);
2999         result =
3000             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001         if (result == VMCI_SUCCESS)
3002                 result = vmci_q_header_free_space(produce_q_header,
3003                                                   consume_q_header,
3004                                                   qpair->produce_q_size);
3005         else
3006                 result = 0;
3007
3008         qp_unlock(qpair);
3009
3010         return result;
3011 }
3012 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3013
3014 /*
3015  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3016  * @qpair:      Pointer to the queue pair struct.
3017  *
3018  * This is the client interface for getting the amount of free
3019  * space in the QPair from the point of the view of the caller as
3020  * the consumer which is not the common case.  Returns < 0 if err, else
3021  * available bytes into which data can be enqueued if > 0.
3022  */
3023 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3024 {
3025         struct vmci_queue_header *produce_q_header;
3026         struct vmci_queue_header *consume_q_header;
3027         s64 result;
3028
3029         if (!qpair)
3030                 return VMCI_ERROR_INVALID_ARGS;
3031
3032         qp_lock(qpair);
3033         result =
3034             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3035         if (result == VMCI_SUCCESS)
3036                 result = vmci_q_header_free_space(consume_q_header,
3037                                                   produce_q_header,
3038                                                   qpair->consume_q_size);
3039         else
3040                 result = 0;
3041
3042         qp_unlock(qpair);
3043
3044         return result;
3045 }
3046 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3047
3048 /*
3049  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3050  * producer queue.
3051  * @qpair:      Pointer to the queue pair struct.
3052  *
3053  * This is the client interface for getting the amount of
3054  * enqueued data in the QPair from the point of the view of the
3055  * caller as the producer which is not the common case.  Returns < 0 if err,
3056  * else available bytes that may be read.
3057  */
3058 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3059 {
3060         struct vmci_queue_header *produce_q_header;
3061         struct vmci_queue_header *consume_q_header;
3062         s64 result;
3063
3064         if (!qpair)
3065                 return VMCI_ERROR_INVALID_ARGS;
3066
3067         qp_lock(qpair);
3068         result =
3069             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3070         if (result == VMCI_SUCCESS)
3071                 result = vmci_q_header_buf_ready(produce_q_header,
3072                                                  consume_q_header,
3073                                                  qpair->produce_q_size);
3074         else
3075                 result = 0;
3076
3077         qp_unlock(qpair);
3078
3079         return result;
3080 }
3081 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3082
3083 /*
3084  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3085  * consumer queue.
3086  * @qpair:      Pointer to the queue pair struct.
3087  *
3088  * This is the client interface for getting the amount of
3089  * enqueued data in the QPair from the point of the view of the
3090  * caller as the consumer which is the normal case.  Returns < 0 if err,
3091  * else available bytes that may be read.
3092  */
3093 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3094 {
3095         struct vmci_queue_header *produce_q_header;
3096         struct vmci_queue_header *consume_q_header;
3097         s64 result;
3098
3099         if (!qpair)
3100                 return VMCI_ERROR_INVALID_ARGS;
3101
3102         qp_lock(qpair);
3103         result =
3104             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3105         if (result == VMCI_SUCCESS)
3106                 result = vmci_q_header_buf_ready(consume_q_header,
3107                                                  produce_q_header,
3108                                                  qpair->consume_q_size);
3109         else
3110                 result = 0;
3111
3112         qp_unlock(qpair);
3113
3114         return result;
3115 }
3116 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3117
3118 /*
3119  * vmci_qpair_enqueue() - Throw data on the queue.
3120  * @qpair:      Pointer to the queue pair struct.
3121  * @buf:        Pointer to buffer containing data
3122  * @buf_size:   Length of buffer.
3123  * @buf_type:   Buffer type (Unused).
3124  *
3125  * This is the client interface for enqueueing data into the queue.
3126  * Returns number of bytes enqueued or < 0 on error.
3127  */
3128 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3129                            const void *buf,
3130                            size_t buf_size,
3131                            int buf_type)
3132 {
3133         ssize_t result;
3134
3135         if (!qpair || !buf)
3136                 return VMCI_ERROR_INVALID_ARGS;
3137
3138         qp_lock(qpair);
3139
3140         do {
3141                 result = qp_enqueue_locked(qpair->produce_q,
3142                                            qpair->consume_q,
3143                                            qpair->produce_q_size,
3144                                            buf, buf_size,
3145                                            qp_memcpy_to_queue);
3146
3147                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3148                     !qp_wait_for_ready_queue(qpair))
3149                         result = VMCI_ERROR_WOULD_BLOCK;
3150
3151         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3152
3153         qp_unlock(qpair);
3154
3155         return result;
3156 }
3157 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3158
3159 /*
3160  * vmci_qpair_dequeue() - Get data from the queue.
3161  * @qpair:      Pointer to the queue pair struct.
3162  * @buf:        Pointer to buffer for the data
3163  * @buf_size:   Length of buffer.
3164  * @buf_type:   Buffer type (Unused).
3165  *
3166  * This is the client interface for dequeueing data from the queue.
3167  * Returns number of bytes dequeued or < 0 on error.
3168  */
3169 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3170                            void *buf,
3171                            size_t buf_size,
3172                            int buf_type)
3173 {
3174         ssize_t result;
3175
3176         if (!qpair || !buf)
3177                 return VMCI_ERROR_INVALID_ARGS;
3178
3179         qp_lock(qpair);
3180
3181         do {
3182                 result = qp_dequeue_locked(qpair->produce_q,
3183                                            qpair->consume_q,
3184                                            qpair->consume_q_size,
3185                                            buf, buf_size,
3186                                            qp_memcpy_from_queue, true);
3187
3188                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3189                     !qp_wait_for_ready_queue(qpair))
3190                         result = VMCI_ERROR_WOULD_BLOCK;
3191
3192         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3193
3194         qp_unlock(qpair);
3195
3196         return result;
3197 }
3198 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3199
3200 /*
3201  * vmci_qpair_peek() - Peek at the data in the queue.
3202  * @qpair:      Pointer to the queue pair struct.
3203  * @buf:        Pointer to buffer for the data
3204  * @buf_size:   Length of buffer.
3205  * @buf_type:   Buffer type (Unused on Linux).
3206  *
3207  * This is the client interface for peeking into a queue.  (I.e.,
3208  * copy data from the queue without updating the head pointer.)
3209  * Returns number of bytes dequeued or < 0 on error.
3210  */
3211 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3212                         void *buf,
3213                         size_t buf_size,
3214                         int buf_type)
3215 {
3216         ssize_t result;
3217
3218         if (!qpair || !buf)
3219                 return VMCI_ERROR_INVALID_ARGS;
3220
3221         qp_lock(qpair);
3222
3223         do {
3224                 result = qp_dequeue_locked(qpair->produce_q,
3225                                            qpair->consume_q,
3226                                            qpair->consume_q_size,
3227                                            buf, buf_size,
3228                                            qp_memcpy_from_queue, false);
3229
3230                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3231                     !qp_wait_for_ready_queue(qpair))
3232                         result = VMCI_ERROR_WOULD_BLOCK;
3233
3234         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3235
3236         qp_unlock(qpair);
3237
3238         return result;
3239 }
3240 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3241
3242 /*
3243  * vmci_qpair_enquev() - Throw data on the queue using iov.
3244  * @qpair:      Pointer to the queue pair struct.
3245  * @iov:        Pointer to buffer containing data
3246  * @iov_size:   Length of buffer.
3247  * @buf_type:   Buffer type (Unused).
3248  *
3249  * This is the client interface for enqueueing data into the queue.
3250  * This function uses IO vectors to handle the work. Returns number
3251  * of bytes enqueued or < 0 on error.
3252  */
3253 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3254                           struct msghdr *msg,
3255                           size_t iov_size,
3256                           int buf_type)
3257 {
3258         ssize_t result;
3259
3260         if (!qpair)
3261                 return VMCI_ERROR_INVALID_ARGS;
3262
3263         qp_lock(qpair);
3264
3265         do {
3266                 result = qp_enqueue_locked(qpair->produce_q,
3267                                            qpair->consume_q,
3268                                            qpair->produce_q_size,
3269                                            msg, iov_size,
3270                                            qp_memcpy_to_queue_iov);
3271
3272                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3273                     !qp_wait_for_ready_queue(qpair))
3274                         result = VMCI_ERROR_WOULD_BLOCK;
3275
3276         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3277
3278         qp_unlock(qpair);
3279
3280         return result;
3281 }
3282 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3283
3284 /*
3285  * vmci_qpair_dequev() - Get data from the queue using iov.
3286  * @qpair:      Pointer to the queue pair struct.
3287  * @iov:        Pointer to buffer for the data
3288  * @iov_size:   Length of buffer.
3289  * @buf_type:   Buffer type (Unused).
3290  *
3291  * This is the client interface for dequeueing data from the queue.
3292  * This function uses IO vectors to handle the work. Returns number
3293  * of bytes dequeued or < 0 on error.
3294  */
3295 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3296                           struct msghdr *msg,
3297                           size_t iov_size,
3298                           int buf_type)
3299 {
3300         ssize_t result;
3301
3302         if (!qpair)
3303                 return VMCI_ERROR_INVALID_ARGS;
3304
3305         qp_lock(qpair);
3306
3307         do {
3308                 result = qp_dequeue_locked(qpair->produce_q,
3309                                            qpair->consume_q,
3310                                            qpair->consume_q_size,
3311                                            msg, iov_size,
3312                                            qp_memcpy_from_queue_iov,
3313                                            true);
3314
3315                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3316                     !qp_wait_for_ready_queue(qpair))
3317                         result = VMCI_ERROR_WOULD_BLOCK;
3318
3319         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3320
3321         qp_unlock(qpair);
3322
3323         return result;
3324 }
3325 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3326
3327 /*
3328  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3329  * @qpair:      Pointer to the queue pair struct.
3330  * @iov:        Pointer to buffer for the data
3331  * @iov_size:   Length of buffer.
3332  * @buf_type:   Buffer type (Unused on Linux).
3333  *
3334  * This is the client interface for peeking into a queue.  (I.e.,
3335  * copy data from the queue without updating the head pointer.)
3336  * This function uses IO vectors to handle the work. Returns number
3337  * of bytes peeked or < 0 on error.
3338  */
3339 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3340                          struct msghdr *msg,
3341                          size_t iov_size,
3342                          int buf_type)
3343 {
3344         ssize_t result;
3345
3346         if (!qpair)
3347                 return VMCI_ERROR_INVALID_ARGS;
3348
3349         qp_lock(qpair);
3350
3351         do {
3352                 result = qp_dequeue_locked(qpair->produce_q,
3353                                            qpair->consume_q,
3354                                            qpair->consume_q_size,
3355                                            msg, iov_size,
3356                                            qp_memcpy_from_queue_iov,
3357                                            false);
3358
3359                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3360                     !qp_wait_for_ready_queue(qpair))
3361                         result = VMCI_ERROR_WOULD_BLOCK;
3362
3363         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3364
3365         qp_unlock(qpair);
3366         return result;
3367 }
3368 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);