GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / misc / lkdtm / heap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/kfence.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/sched.h>
11
12 static struct kmem_cache *double_free_cache;
13 static struct kmem_cache *a_cache;
14 static struct kmem_cache *b_cache;
15
16 /*
17  * Using volatile here means the compiler cannot ever make assumptions
18  * about this value. This means compile-time length checks involving
19  * this variable cannot be performed; only run-time checks.
20  */
21 static volatile int __offset = 1;
22
23 /*
24  * If there aren't guard pages, it's likely that a consecutive allocation will
25  * let us overflow into the second allocation without overwriting something real.
26  *
27  * This should always be caught because there is an unconditional unmapped
28  * page after vmap allocations.
29  */
30 static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
31 {
32         char *one, *two;
33
34         one = vzalloc(PAGE_SIZE);
35         OPTIMIZER_HIDE_VAR(one);
36         two = vzalloc(PAGE_SIZE);
37
38         pr_info("Attempting vmalloc linear overflow ...\n");
39         memset(one, 0xAA, PAGE_SIZE + __offset);
40
41         vfree(two);
42         vfree(one);
43 }
44
45 /*
46  * This tries to stay within the next largest power-of-2 kmalloc cache
47  * to avoid actually overwriting anything important if it's not detected
48  * correctly.
49  *
50  * This should get caught by either memory tagging, KASan, or by using
51  * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
52  */
53 static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
54 {
55         size_t len = 1020;
56         u32 *data = kmalloc(len, GFP_KERNEL);
57         if (!data)
58                 return;
59
60         pr_info("Attempting slab linear overflow ...\n");
61         OPTIMIZER_HIDE_VAR(data);
62         data[1024 / sizeof(u32)] = 0x12345678;
63         kfree(data);
64 }
65
66 static void lkdtm_WRITE_AFTER_FREE(void)
67 {
68         int *base, *again;
69         size_t len = 1024;
70         /*
71          * The slub allocator uses the first word to store the free
72          * pointer in some configurations. Use the middle of the
73          * allocation to avoid running into the freelist
74          */
75         size_t offset = (len / sizeof(*base)) / 2;
76
77         base = kmalloc(len, GFP_KERNEL);
78         if (!base)
79                 return;
80         pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
81         pr_info("Attempting bad write to freed memory at %p\n",
82                 &base[offset]);
83         kfree(base);
84         base[offset] = 0x0abcdef0;
85         /* Attempt to notice the overwrite. */
86         again = kmalloc(len, GFP_KERNEL);
87         kfree(again);
88         if (again != base)
89                 pr_info("Hmm, didn't get the same memory range.\n");
90 }
91
92 static void lkdtm_READ_AFTER_FREE(void)
93 {
94         int *base, *val, saw;
95         size_t len = 1024;
96         /*
97          * The slub allocator will use the either the first word or
98          * the middle of the allocation to store the free pointer,
99          * depending on configurations. Store in the second word to
100          * avoid running into the freelist.
101          */
102         size_t offset = sizeof(*base);
103
104         base = kmalloc(len, GFP_KERNEL);
105         if (!base) {
106                 pr_info("Unable to allocate base memory.\n");
107                 return;
108         }
109
110         val = kmalloc(len, GFP_KERNEL);
111         if (!val) {
112                 pr_info("Unable to allocate val memory.\n");
113                 kfree(base);
114                 return;
115         }
116
117         *val = 0x12345678;
118         base[offset] = *val;
119         pr_info("Value in memory before free: %x\n", base[offset]);
120
121         kfree(base);
122
123         pr_info("Attempting bad read from freed memory\n");
124         saw = base[offset];
125         if (saw != *val) {
126                 /* Good! Poisoning happened, so declare a win. */
127                 pr_info("Memory correctly poisoned (%x)\n", saw);
128         } else {
129                 pr_err("FAIL: Memory was not poisoned!\n");
130                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
131         }
132
133         kfree(val);
134 }
135
136 static void lkdtm_KFENCE_READ_AFTER_FREE(void)
137 {
138         int *base, val, saw;
139         unsigned long timeout, resched_after;
140         size_t len = 1024;
141         /*
142          * The slub allocator will use the either the first word or
143          * the middle of the allocation to store the free pointer,
144          * depending on configurations. Store in the second word to
145          * avoid running into the freelist.
146          */
147         size_t offset = sizeof(*base);
148
149         /*
150          * 100x the sample interval should be more than enough to ensure we get
151          * a KFENCE allocation eventually.
152          */
153         timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval);
154         /*
155          * Especially for non-preemption kernels, ensure the allocation-gate
156          * timer can catch up: after @resched_after, every failed allocation
157          * attempt yields, to ensure the allocation-gate timer is scheduled.
158          */
159         resched_after = jiffies + msecs_to_jiffies(kfence_sample_interval);
160         do {
161                 base = kmalloc(len, GFP_KERNEL);
162                 if (!base) {
163                         pr_err("FAIL: Unable to allocate kfence memory!\n");
164                         return;
165                 }
166
167                 if (is_kfence_address(base)) {
168                         val = 0x12345678;
169                         base[offset] = val;
170                         pr_info("Value in memory before free: %x\n", base[offset]);
171
172                         kfree(base);
173
174                         pr_info("Attempting bad read from freed memory\n");
175                         saw = base[offset];
176                         if (saw != val) {
177                                 /* Good! Poisoning happened, so declare a win. */
178                                 pr_info("Memory correctly poisoned (%x)\n", saw);
179                         } else {
180                                 pr_err("FAIL: Memory was not poisoned!\n");
181                                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
182                         }
183                         return;
184                 }
185
186                 kfree(base);
187                 if (time_after(jiffies, resched_after))
188                         cond_resched();
189         } while (time_before(jiffies, timeout));
190
191         pr_err("FAIL: kfence memory never allocated!\n");
192 }
193
194 static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
195 {
196         unsigned long p = __get_free_page(GFP_KERNEL);
197         if (!p) {
198                 pr_info("Unable to allocate free page\n");
199                 return;
200         }
201
202         pr_info("Writing to the buddy page before free\n");
203         memset((void *)p, 0x3, PAGE_SIZE);
204         free_page(p);
205         schedule();
206         pr_info("Attempting bad write to the buddy page after free\n");
207         memset((void *)p, 0x78, PAGE_SIZE);
208         /* Attempt to notice the overwrite. */
209         p = __get_free_page(GFP_KERNEL);
210         free_page(p);
211         schedule();
212 }
213
214 static void lkdtm_READ_BUDDY_AFTER_FREE(void)
215 {
216         unsigned long p = __get_free_page(GFP_KERNEL);
217         int saw, *val;
218         int *base;
219
220         if (!p) {
221                 pr_info("Unable to allocate free page\n");
222                 return;
223         }
224
225         val = kmalloc(1024, GFP_KERNEL);
226         if (!val) {
227                 pr_info("Unable to allocate val memory.\n");
228                 free_page(p);
229                 return;
230         }
231
232         base = (int *)p;
233
234         *val = 0x12345678;
235         base[0] = *val;
236         pr_info("Value in memory before free: %x\n", base[0]);
237         free_page(p);
238         pr_info("Attempting to read from freed memory\n");
239         saw = base[0];
240         if (saw != *val) {
241                 /* Good! Poisoning happened, so declare a win. */
242                 pr_info("Memory correctly poisoned (%x)\n", saw);
243         } else {
244                 pr_err("FAIL: Buddy page was not poisoned!\n");
245                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
246         }
247
248         kfree(val);
249 }
250
251 static void lkdtm_SLAB_INIT_ON_ALLOC(void)
252 {
253         u8 *first;
254         u8 *val;
255
256         first = kmalloc(512, GFP_KERNEL);
257         if (!first) {
258                 pr_info("Unable to allocate 512 bytes the first time.\n");
259                 return;
260         }
261
262         memset(first, 0xAB, 512);
263         kfree(first);
264
265         val = kmalloc(512, GFP_KERNEL);
266         if (!val) {
267                 pr_info("Unable to allocate 512 bytes the second time.\n");
268                 return;
269         }
270         if (val != first) {
271                 pr_warn("Reallocation missed clobbered memory.\n");
272         }
273
274         if (memchr(val, 0xAB, 512) == NULL) {
275                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
276         } else {
277                 pr_err("FAIL: Slab was not initialized\n");
278                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
279         }
280         kfree(val);
281 }
282
283 static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
284 {
285         u8 *first;
286         u8 *val;
287
288         first = (u8 *)__get_free_page(GFP_KERNEL);
289         if (!first) {
290                 pr_info("Unable to allocate first free page\n");
291                 return;
292         }
293
294         memset(first, 0xAB, PAGE_SIZE);
295         free_page((unsigned long)first);
296
297         val = (u8 *)__get_free_page(GFP_KERNEL);
298         if (!val) {
299                 pr_info("Unable to allocate second free page\n");
300                 return;
301         }
302
303         if (val != first) {
304                 pr_warn("Reallocation missed clobbered memory.\n");
305         }
306
307         if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
308                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
309         } else {
310                 pr_err("FAIL: Slab was not initialized\n");
311                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
312         }
313         free_page((unsigned long)val);
314 }
315
316 static void lkdtm_SLAB_FREE_DOUBLE(void)
317 {
318         int *val;
319
320         val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
321         if (!val) {
322                 pr_info("Unable to allocate double_free_cache memory.\n");
323                 return;
324         }
325
326         /* Just make sure we got real memory. */
327         *val = 0x12345678;
328         pr_info("Attempting double slab free ...\n");
329         kmem_cache_free(double_free_cache, val);
330         kmem_cache_free(double_free_cache, val);
331 }
332
333 static void lkdtm_SLAB_FREE_CROSS(void)
334 {
335         int *val;
336
337         val = kmem_cache_alloc(a_cache, GFP_KERNEL);
338         if (!val) {
339                 pr_info("Unable to allocate a_cache memory.\n");
340                 return;
341         }
342
343         /* Just make sure we got real memory. */
344         *val = 0x12345679;
345         pr_info("Attempting cross-cache slab free ...\n");
346         kmem_cache_free(b_cache, val);
347 }
348
349 static void lkdtm_SLAB_FREE_PAGE(void)
350 {
351         unsigned long p = __get_free_page(GFP_KERNEL);
352
353         pr_info("Attempting non-Slab slab free ...\n");
354         kmem_cache_free(NULL, (void *)p);
355         free_page(p);
356 }
357
358 /*
359  * We have constructors to keep the caches distinctly separated without
360  * needing to boot with "slab_nomerge".
361  */
362 static void ctor_double_free(void *region)
363 { }
364 static void ctor_a(void *region)
365 { }
366 static void ctor_b(void *region)
367 { }
368
369 void __init lkdtm_heap_init(void)
370 {
371         double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
372                                               64, 0, 0, ctor_double_free);
373         a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
374         b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
375 }
376
377 void __exit lkdtm_heap_exit(void)
378 {
379         kmem_cache_destroy(double_free_cache);
380         kmem_cache_destroy(a_cache);
381         kmem_cache_destroy(b_cache);
382 }
383
384 static struct crashtype crashtypes[] = {
385         CRASHTYPE(SLAB_LINEAR_OVERFLOW),
386         CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
387         CRASHTYPE(WRITE_AFTER_FREE),
388         CRASHTYPE(READ_AFTER_FREE),
389         CRASHTYPE(KFENCE_READ_AFTER_FREE),
390         CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
391         CRASHTYPE(READ_BUDDY_AFTER_FREE),
392         CRASHTYPE(SLAB_INIT_ON_ALLOC),
393         CRASHTYPE(BUDDY_INIT_ON_ALLOC),
394         CRASHTYPE(SLAB_FREE_DOUBLE),
395         CRASHTYPE(SLAB_FREE_CROSS),
396         CRASHTYPE(SLAB_FREE_PAGE),
397 };
398
399 struct crashtype_category heap_crashtypes = {
400         .crashtypes = crashtypes,
401         .len        = ARRAY_SIZE(crashtypes),
402 };