GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / misc / habanalabs / common / debugfs.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9 #include "../include/hw_ip/mmu/mmu_general.h"
10
11 #include <linux/pci.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14
15 #define MMU_ADDR_BUF_SIZE       40
16 #define MMU_ASID_BUF_SIZE       10
17 #define MMU_KBUF_SIZE           (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE)
18
19 static struct dentry *hl_debug_root;
20
21 static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
22                                 u8 i2c_reg, long *val)
23 {
24         struct cpucp_packet pkt;
25         int rc;
26
27         if (hl_device_disabled_or_in_reset(hdev))
28                 return -EBUSY;
29
30         memset(&pkt, 0, sizeof(pkt));
31
32         pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD <<
33                                 CPUCP_PKT_CTL_OPCODE_SHIFT);
34         pkt.i2c_bus = i2c_bus;
35         pkt.i2c_addr = i2c_addr;
36         pkt.i2c_reg = i2c_reg;
37
38         rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
39                                                 0, val);
40
41         if (rc)
42                 dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc);
43
44         return rc;
45 }
46
47 static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
48                                 u8 i2c_reg, u32 val)
49 {
50         struct cpucp_packet pkt;
51         int rc;
52
53         if (hl_device_disabled_or_in_reset(hdev))
54                 return -EBUSY;
55
56         memset(&pkt, 0, sizeof(pkt));
57
58         pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR <<
59                                 CPUCP_PKT_CTL_OPCODE_SHIFT);
60         pkt.i2c_bus = i2c_bus;
61         pkt.i2c_addr = i2c_addr;
62         pkt.i2c_reg = i2c_reg;
63         pkt.value = cpu_to_le64(val);
64
65         rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
66                                                 0, NULL);
67
68         if (rc)
69                 dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc);
70
71         return rc;
72 }
73
74 static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state)
75 {
76         struct cpucp_packet pkt;
77         int rc;
78
79         if (hl_device_disabled_or_in_reset(hdev))
80                 return;
81
82         memset(&pkt, 0, sizeof(pkt));
83
84         pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET <<
85                                 CPUCP_PKT_CTL_OPCODE_SHIFT);
86         pkt.led_index = cpu_to_le32(led);
87         pkt.value = cpu_to_le64(state);
88
89         rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
90                                                 0, NULL);
91
92         if (rc)
93                 dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc);
94 }
95
96 static int command_buffers_show(struct seq_file *s, void *data)
97 {
98         struct hl_debugfs_entry *entry = s->private;
99         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
100         struct hl_cb *cb;
101         bool first = true;
102
103         spin_lock(&dev_entry->cb_spinlock);
104
105         list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) {
106                 if (first) {
107                         first = false;
108                         seq_puts(s, "\n");
109                         seq_puts(s, " CB ID   CTX ID   CB size    CB RefCnt    mmap?   CS counter\n");
110                         seq_puts(s, "---------------------------------------------------------------\n");
111                 }
112                 seq_printf(s,
113                         "   %03llu        %d    0x%08x      %d          %d          %d\n",
114                         cb->id, cb->ctx->asid, cb->size,
115                         kref_read(&cb->refcount),
116                         cb->mmap, cb->cs_cnt);
117         }
118
119         spin_unlock(&dev_entry->cb_spinlock);
120
121         if (!first)
122                 seq_puts(s, "\n");
123
124         return 0;
125 }
126
127 static int command_submission_show(struct seq_file *s, void *data)
128 {
129         struct hl_debugfs_entry *entry = s->private;
130         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
131         struct hl_cs *cs;
132         bool first = true;
133
134         spin_lock(&dev_entry->cs_spinlock);
135
136         list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) {
137                 if (first) {
138                         first = false;
139                         seq_puts(s, "\n");
140                         seq_puts(s, " CS ID   CTX ASID   CS RefCnt   Submitted    Completed\n");
141                         seq_puts(s, "------------------------------------------------------\n");
142                 }
143                 seq_printf(s,
144                         "   %llu       %d          %d           %d            %d\n",
145                         cs->sequence, cs->ctx->asid,
146                         kref_read(&cs->refcount),
147                         cs->submitted, cs->completed);
148         }
149
150         spin_unlock(&dev_entry->cs_spinlock);
151
152         if (!first)
153                 seq_puts(s, "\n");
154
155         return 0;
156 }
157
158 static int command_submission_jobs_show(struct seq_file *s, void *data)
159 {
160         struct hl_debugfs_entry *entry = s->private;
161         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
162         struct hl_cs_job *job;
163         bool first = true;
164
165         spin_lock(&dev_entry->cs_job_spinlock);
166
167         list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) {
168                 if (first) {
169                         first = false;
170                         seq_puts(s, "\n");
171                         seq_puts(s, " JOB ID   CS ID    CTX ASID   H/W Queue\n");
172                         seq_puts(s, "---------------------------------------\n");
173                 }
174                 if (job->cs)
175                         seq_printf(s,
176                                 "    %02d       %llu         %d         %d\n",
177                                 job->id, job->cs->sequence, job->cs->ctx->asid,
178                                 job->hw_queue_id);
179                 else
180                         seq_printf(s,
181                                 "    %02d       0         %d         %d\n",
182                                 job->id, HL_KERNEL_ASID_ID, job->hw_queue_id);
183         }
184
185         spin_unlock(&dev_entry->cs_job_spinlock);
186
187         if (!first)
188                 seq_puts(s, "\n");
189
190         return 0;
191 }
192
193 static int userptr_show(struct seq_file *s, void *data)
194 {
195         struct hl_debugfs_entry *entry = s->private;
196         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
197         struct hl_userptr *userptr;
198         char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE",
199                                 "DMA_FROM_DEVICE", "DMA_NONE"};
200         bool first = true;
201
202         spin_lock(&dev_entry->userptr_spinlock);
203
204         list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
205                 if (first) {
206                         first = false;
207                         seq_puts(s, "\n");
208                         seq_puts(s, " user virtual address     size             dma dir\n");
209                         seq_puts(s, "----------------------------------------------------------\n");
210                 }
211                 seq_printf(s,
212                         "    0x%-14llx      %-10u    %-30s\n",
213                         userptr->addr, userptr->size, dma_dir[userptr->dir]);
214         }
215
216         spin_unlock(&dev_entry->userptr_spinlock);
217
218         if (!first)
219                 seq_puts(s, "\n");
220
221         return 0;
222 }
223
224 static int vm_show(struct seq_file *s, void *data)
225 {
226         struct hl_debugfs_entry *entry = s->private;
227         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
228         struct hl_ctx *ctx;
229         struct hl_vm *vm;
230         struct hl_vm_hash_node *hnode;
231         struct hl_userptr *userptr;
232         struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
233         enum vm_type_t *vm_type;
234         bool once = true;
235         u64 j;
236         int i;
237
238         if (!dev_entry->hdev->mmu_enable)
239                 return 0;
240
241         spin_lock(&dev_entry->ctx_mem_hash_spinlock);
242
243         list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) {
244                 once = false;
245                 seq_puts(s, "\n\n----------------------------------------------------");
246                 seq_puts(s, "\n----------------------------------------------------\n\n");
247                 seq_printf(s, "ctx asid: %u\n", ctx->asid);
248
249                 seq_puts(s, "\nmappings:\n\n");
250                 seq_puts(s, "    virtual address        size          handle\n");
251                 seq_puts(s, "----------------------------------------------------\n");
252                 mutex_lock(&ctx->mem_hash_lock);
253                 hash_for_each(ctx->mem_hash, i, hnode, node) {
254                         vm_type = hnode->ptr;
255
256                         if (*vm_type == VM_TYPE_USERPTR) {
257                                 userptr = hnode->ptr;
258                                 seq_printf(s,
259                                         "    0x%-14llx      %-10u\n",
260                                         hnode->vaddr, userptr->size);
261                         } else {
262                                 phys_pg_pack = hnode->ptr;
263                                 seq_printf(s,
264                                         "    0x%-14llx      %-10llu       %-4u\n",
265                                         hnode->vaddr, phys_pg_pack->total_size,
266                                         phys_pg_pack->handle);
267                         }
268                 }
269                 mutex_unlock(&ctx->mem_hash_lock);
270
271                 vm = &ctx->hdev->vm;
272                 spin_lock(&vm->idr_lock);
273
274                 if (!idr_is_empty(&vm->phys_pg_pack_handles))
275                         seq_puts(s, "\n\nallocations:\n");
276
277                 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) {
278                         if (phys_pg_pack->asid != ctx->asid)
279                                 continue;
280
281                         seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle);
282                         seq_printf(s, "page size: %u\n\n",
283                                                 phys_pg_pack->page_size);
284                         seq_puts(s, "   physical address\n");
285                         seq_puts(s, "---------------------\n");
286                         for (j = 0 ; j < phys_pg_pack->npages ; j++) {
287                                 seq_printf(s, "    0x%-14llx\n",
288                                                 phys_pg_pack->pages[j]);
289                         }
290                 }
291                 spin_unlock(&vm->idr_lock);
292
293         }
294
295         spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
296
297         if (!once)
298                 seq_puts(s, "\n");
299
300         return 0;
301 }
302
303 /* these inline functions are copied from mmu.c */
304 static inline u64 get_hop0_addr(struct hl_ctx *ctx)
305 {
306         return ctx->hdev->asic_prop.mmu_pgt_addr +
307                         (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
308 }
309
310 static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
311                                         u64 virt_addr, u64 mask, u64 shift)
312 {
313         return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
314                         ((virt_addr & mask) >> shift);
315 }
316
317 static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx,
318                                         struct hl_mmu_properties *mmu_specs,
319                                         u64 hop_addr, u64 vaddr)
320 {
321         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop0_mask,
322                                         mmu_specs->hop0_shift);
323 }
324
325 static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx,
326                                         struct hl_mmu_properties *mmu_specs,
327                                         u64 hop_addr, u64 vaddr)
328 {
329         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop1_mask,
330                                         mmu_specs->hop1_shift);
331 }
332
333 static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx,
334                                         struct hl_mmu_properties *mmu_specs,
335                                         u64 hop_addr, u64 vaddr)
336 {
337         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop2_mask,
338                                         mmu_specs->hop2_shift);
339 }
340
341 static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx,
342                                         struct hl_mmu_properties *mmu_specs,
343                                         u64 hop_addr, u64 vaddr)
344 {
345         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop3_mask,
346                                         mmu_specs->hop3_shift);
347 }
348
349 static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx,
350                                         struct hl_mmu_properties *mmu_specs,
351                                         u64 hop_addr, u64 vaddr)
352 {
353         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop4_mask,
354                                         mmu_specs->hop4_shift);
355 }
356
357 static inline u64 get_hop5_pte_addr(struct hl_ctx *ctx,
358                                         struct hl_mmu_properties *mmu_specs,
359                                         u64 hop_addr, u64 vaddr)
360 {
361         return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_specs->hop5_mask,
362                                         mmu_specs->hop5_shift);
363 }
364
365 static inline u64 get_next_hop_addr(u64 curr_pte)
366 {
367         if (curr_pte & PAGE_PRESENT_MASK)
368                 return curr_pte & HOP_PHYS_ADDR_MASK;
369         else
370                 return ULLONG_MAX;
371 }
372
373 static int mmu_show(struct seq_file *s, void *data)
374 {
375         struct hl_debugfs_entry *entry = s->private;
376         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
377         struct hl_device *hdev = dev_entry->hdev;
378         struct asic_fixed_properties *prop = &hdev->asic_prop;
379         struct hl_mmu_properties *mmu_prop;
380         struct hl_ctx *ctx;
381         bool is_dram_addr;
382
383         u64 hop0_addr = 0, hop0_pte_addr = 0, hop0_pte = 0,
384                 hop1_addr = 0, hop1_pte_addr = 0, hop1_pte = 0,
385                 hop2_addr = 0, hop2_pte_addr = 0, hop2_pte = 0,
386                 hop3_addr = 0, hop3_pte_addr = 0, hop3_pte = 0,
387                 hop4_addr = 0, hop4_pte_addr = 0, hop4_pte = 0,
388                 hop5_addr = 0, hop5_pte_addr = 0, hop5_pte = 0,
389                 virt_addr = dev_entry->mmu_addr;
390
391         if (!hdev->mmu_enable)
392                 return 0;
393
394         if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID)
395                 ctx = hdev->kernel_ctx;
396         else
397                 ctx = hdev->compute_ctx;
398
399         if (!ctx) {
400                 dev_err(hdev->dev, "no ctx available\n");
401                 return 0;
402         }
403
404         is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
405                                                 prop->dmmu.start_addr,
406                                                 prop->dmmu.end_addr);
407
408         /* shifts and masks are the same in PMMU and HPMMU, use one of them */
409         mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
410
411         mutex_lock(&ctx->mmu_lock);
412
413         /* the following lookup is copied from unmap() in mmu.c */
414
415         hop0_addr = get_hop0_addr(ctx);
416         hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
417         hop0_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr);
418         hop1_addr = get_next_hop_addr(hop0_pte);
419
420         if (hop1_addr == ULLONG_MAX)
421                 goto not_mapped;
422
423         hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
424         hop1_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr);
425         hop2_addr = get_next_hop_addr(hop1_pte);
426
427         if (hop2_addr == ULLONG_MAX)
428                 goto not_mapped;
429
430         hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
431         hop2_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr);
432         hop3_addr = get_next_hop_addr(hop2_pte);
433
434         if (hop3_addr == ULLONG_MAX)
435                 goto not_mapped;
436
437         hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
438         hop3_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr);
439
440         if (mmu_prop->num_hops == MMU_ARCH_5_HOPS) {
441                 if (!(hop3_pte & LAST_MASK)) {
442                         hop4_addr = get_next_hop_addr(hop3_pte);
443
444                         if (hop4_addr == ULLONG_MAX)
445                                 goto not_mapped;
446
447                         hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop,
448                                                         hop4_addr, virt_addr);
449                         hop4_pte = hdev->asic_funcs->read_pte(hdev,
450                                                                 hop4_pte_addr);
451                         if (!(hop4_pte & PAGE_PRESENT_MASK))
452                                 goto not_mapped;
453                 } else {
454                         if (!(hop3_pte & PAGE_PRESENT_MASK))
455                                 goto not_mapped;
456                 }
457         } else {
458                 hop4_addr = get_next_hop_addr(hop3_pte);
459
460                 if (hop4_addr == ULLONG_MAX)
461                         goto not_mapped;
462
463                 hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop,
464                                                 hop4_addr, virt_addr);
465                 hop4_pte = hdev->asic_funcs->read_pte(hdev,
466                                                         hop4_pte_addr);
467                 if (!(hop4_pte & LAST_MASK)) {
468                         hop5_addr = get_next_hop_addr(hop4_pte);
469
470                         if (hop5_addr == ULLONG_MAX)
471                                 goto not_mapped;
472
473                         hop5_pte_addr = get_hop5_pte_addr(ctx, mmu_prop,
474                                                         hop5_addr, virt_addr);
475                         hop5_pte = hdev->asic_funcs->read_pte(hdev,
476                                                                 hop5_pte_addr);
477                         if (!(hop5_pte & PAGE_PRESENT_MASK))
478                                 goto not_mapped;
479                 } else {
480                         if (!(hop4_pte & PAGE_PRESENT_MASK))
481                                 goto not_mapped;
482                 }
483         }
484
485         seq_printf(s, "asid: %u, virt_addr: 0x%llx\n",
486                         dev_entry->mmu_asid, dev_entry->mmu_addr);
487
488         seq_printf(s, "hop0_addr: 0x%llx\n", hop0_addr);
489         seq_printf(s, "hop0_pte_addr: 0x%llx\n", hop0_pte_addr);
490         seq_printf(s, "hop0_pte: 0x%llx\n", hop0_pte);
491
492         seq_printf(s, "hop1_addr: 0x%llx\n", hop1_addr);
493         seq_printf(s, "hop1_pte_addr: 0x%llx\n", hop1_pte_addr);
494         seq_printf(s, "hop1_pte: 0x%llx\n", hop1_pte);
495
496         seq_printf(s, "hop2_addr: 0x%llx\n", hop2_addr);
497         seq_printf(s, "hop2_pte_addr: 0x%llx\n", hop2_pte_addr);
498         seq_printf(s, "hop2_pte: 0x%llx\n", hop2_pte);
499
500         seq_printf(s, "hop3_addr: 0x%llx\n", hop3_addr);
501         seq_printf(s, "hop3_pte_addr: 0x%llx\n", hop3_pte_addr);
502         seq_printf(s, "hop3_pte: 0x%llx\n", hop3_pte);
503
504         if (mmu_prop->num_hops == MMU_ARCH_5_HOPS) {
505                 if (!(hop3_pte & LAST_MASK)) {
506                         seq_printf(s, "hop4_addr: 0x%llx\n", hop4_addr);
507                         seq_printf(s, "hop4_pte_addr: 0x%llx\n", hop4_pte_addr);
508                         seq_printf(s, "hop4_pte: 0x%llx\n", hop4_pte);
509                 }
510         } else {
511                 seq_printf(s, "hop4_addr: 0x%llx\n", hop4_addr);
512                 seq_printf(s, "hop4_pte_addr: 0x%llx\n", hop4_pte_addr);
513                 seq_printf(s, "hop4_pte: 0x%llx\n", hop4_pte);
514
515                 if (!(hop4_pte & LAST_MASK)) {
516                         seq_printf(s, "hop5_addr: 0x%llx\n", hop5_addr);
517                         seq_printf(s, "hop5_pte_addr: 0x%llx\n", hop5_pte_addr);
518                         seq_printf(s, "hop5_pte: 0x%llx\n", hop5_pte);
519                 }
520         }
521
522         goto out;
523
524 not_mapped:
525         dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
526                         virt_addr);
527 out:
528         mutex_unlock(&ctx->mmu_lock);
529
530         return 0;
531 }
532
533 static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf,
534                 size_t count, loff_t *f_pos)
535 {
536         struct seq_file *s = file->private_data;
537         struct hl_debugfs_entry *entry = s->private;
538         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
539         struct hl_device *hdev = dev_entry->hdev;
540         char kbuf[MMU_KBUF_SIZE];
541         char *c;
542         ssize_t rc;
543
544         if (!hdev->mmu_enable)
545                 return count;
546
547         if (count > sizeof(kbuf) - 1)
548                 goto err;
549         if (copy_from_user(kbuf, buf, count))
550                 goto err;
551         kbuf[count] = 0;
552
553         c = strchr(kbuf, ' ');
554         if (!c)
555                 goto err;
556         *c = '\0';
557
558         rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid);
559         if (rc)
560                 goto err;
561
562         if (strncmp(c+1, "0x", 2))
563                 goto err;
564         rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr);
565         if (rc)
566                 goto err;
567
568         return count;
569
570 err:
571         dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n");
572
573         return -EINVAL;
574 }
575
576 static int engines_show(struct seq_file *s, void *data)
577 {
578         struct hl_debugfs_entry *entry = s->private;
579         struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
580         struct hl_device *hdev = dev_entry->hdev;
581
582         if (atomic_read(&hdev->in_reset)) {
583                 dev_warn_ratelimited(hdev->dev,
584                                 "Can't check device idle during reset\n");
585                 return 0;
586         }
587
588         hdev->asic_funcs->is_device_idle(hdev, NULL, s);
589
590         return 0;
591 }
592
593 static bool hl_is_device_va(struct hl_device *hdev, u64 addr)
594 {
595         struct asic_fixed_properties *prop = &hdev->asic_prop;
596
597         if (!hdev->mmu_enable)
598                 goto out;
599
600         if (hdev->dram_supports_virtual_memory &&
601                 (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr))
602                 return true;
603
604         if (addr >= prop->pmmu.start_addr &&
605                 addr < prop->pmmu.end_addr)
606                 return true;
607
608         if (addr >= prop->pmmu_huge.start_addr &&
609                 addr < prop->pmmu_huge.end_addr)
610                 return true;
611 out:
612         return false;
613 }
614
615 static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr,
616                                 u64 *phys_addr)
617 {
618         struct hl_ctx *ctx = hdev->compute_ctx;
619         struct asic_fixed_properties *prop = &hdev->asic_prop;
620         struct hl_mmu_properties *mmu_prop;
621         u64 hop_addr, hop_pte_addr, hop_pte;
622         u64 offset_mask = HOP4_MASK | FLAGS_MASK;
623         int rc = 0;
624         bool is_dram_addr;
625
626         if (!ctx) {
627                 dev_err(hdev->dev, "no ctx available\n");
628                 return -EINVAL;
629         }
630
631         is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
632                                                 prop->dmmu.start_addr,
633                                                 prop->dmmu.end_addr);
634
635         /* shifts and masks are the same in PMMU and HPMMU, use one of them */
636         mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
637
638         mutex_lock(&ctx->mmu_lock);
639
640         /* hop 0 */
641         hop_addr = get_hop0_addr(ctx);
642         hop_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
643         hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
644
645         /* hop 1 */
646         hop_addr = get_next_hop_addr(hop_pte);
647         if (hop_addr == ULLONG_MAX)
648                 goto not_mapped;
649         hop_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
650         hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
651
652         /* hop 2 */
653         hop_addr = get_next_hop_addr(hop_pte);
654         if (hop_addr == ULLONG_MAX)
655                 goto not_mapped;
656         hop_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
657         hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
658
659         /* hop 3 */
660         hop_addr = get_next_hop_addr(hop_pte);
661         if (hop_addr == ULLONG_MAX)
662                 goto not_mapped;
663         hop_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
664         hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
665
666         if (!(hop_pte & LAST_MASK)) {
667                 /* hop 4 */
668                 hop_addr = get_next_hop_addr(hop_pte);
669                 if (hop_addr == ULLONG_MAX)
670                         goto not_mapped;
671                 hop_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop_addr,
672                                                         virt_addr);
673                 hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
674
675                 offset_mask = FLAGS_MASK;
676         }
677
678         if (!(hop_pte & PAGE_PRESENT_MASK))
679                 goto not_mapped;
680
681         *phys_addr = (hop_pte & ~offset_mask) | (virt_addr & offset_mask);
682
683         goto out;
684
685 not_mapped:
686         dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
687                         virt_addr);
688         rc = -EINVAL;
689 out:
690         mutex_unlock(&ctx->mmu_lock);
691         return rc;
692 }
693
694 static ssize_t hl_data_read32(struct file *f, char __user *buf,
695                                         size_t count, loff_t *ppos)
696 {
697         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
698         struct hl_device *hdev = entry->hdev;
699         char tmp_buf[32];
700         u64 addr = entry->addr;
701         u32 val;
702         ssize_t rc;
703
704         if (atomic_read(&hdev->in_reset)) {
705                 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
706                 return 0;
707         }
708
709         if (*ppos)
710                 return 0;
711
712         if (hl_is_device_va(hdev, addr)) {
713                 rc = device_va_to_pa(hdev, addr, &addr);
714                 if (rc)
715                         return rc;
716         }
717
718         rc = hdev->asic_funcs->debugfs_read32(hdev, addr, &val);
719         if (rc) {
720                 dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr);
721                 return rc;
722         }
723
724         sprintf(tmp_buf, "0x%08x\n", val);
725         return simple_read_from_buffer(buf, count, ppos, tmp_buf,
726                         strlen(tmp_buf));
727 }
728
729 static ssize_t hl_data_write32(struct file *f, const char __user *buf,
730                                         size_t count, loff_t *ppos)
731 {
732         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
733         struct hl_device *hdev = entry->hdev;
734         u64 addr = entry->addr;
735         u32 value;
736         ssize_t rc;
737
738         if (atomic_read(&hdev->in_reset)) {
739                 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
740                 return 0;
741         }
742
743         rc = kstrtouint_from_user(buf, count, 16, &value);
744         if (rc)
745                 return rc;
746
747         if (hl_is_device_va(hdev, addr)) {
748                 rc = device_va_to_pa(hdev, addr, &addr);
749                 if (rc)
750                         return rc;
751         }
752
753         rc = hdev->asic_funcs->debugfs_write32(hdev, addr, value);
754         if (rc) {
755                 dev_err(hdev->dev, "Failed to write 0x%08x to 0x%010llx\n",
756                         value, addr);
757                 return rc;
758         }
759
760         return count;
761 }
762
763 static ssize_t hl_data_read64(struct file *f, char __user *buf,
764                                         size_t count, loff_t *ppos)
765 {
766         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
767         struct hl_device *hdev = entry->hdev;
768         char tmp_buf[32];
769         u64 addr = entry->addr;
770         u64 val;
771         ssize_t rc;
772
773         if (*ppos)
774                 return 0;
775
776         if (hl_is_device_va(hdev, addr)) {
777                 rc = device_va_to_pa(hdev, addr, &addr);
778                 if (rc)
779                         return rc;
780         }
781
782         rc = hdev->asic_funcs->debugfs_read64(hdev, addr, &val);
783         if (rc) {
784                 dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr);
785                 return rc;
786         }
787
788         sprintf(tmp_buf, "0x%016llx\n", val);
789         return simple_read_from_buffer(buf, count, ppos, tmp_buf,
790                         strlen(tmp_buf));
791 }
792
793 static ssize_t hl_data_write64(struct file *f, const char __user *buf,
794                                         size_t count, loff_t *ppos)
795 {
796         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
797         struct hl_device *hdev = entry->hdev;
798         u64 addr = entry->addr;
799         u64 value;
800         ssize_t rc;
801
802         rc = kstrtoull_from_user(buf, count, 16, &value);
803         if (rc)
804                 return rc;
805
806         if (hl_is_device_va(hdev, addr)) {
807                 rc = device_va_to_pa(hdev, addr, &addr);
808                 if (rc)
809                         return rc;
810         }
811
812         rc = hdev->asic_funcs->debugfs_write64(hdev, addr, value);
813         if (rc) {
814                 dev_err(hdev->dev, "Failed to write 0x%016llx to 0x%010llx\n",
815                         value, addr);
816                 return rc;
817         }
818
819         return count;
820 }
821
822 static ssize_t hl_get_power_state(struct file *f, char __user *buf,
823                 size_t count, loff_t *ppos)
824 {
825         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
826         struct hl_device *hdev = entry->hdev;
827         char tmp_buf[200];
828         int i;
829
830         if (*ppos)
831                 return 0;
832
833         if (hdev->pdev->current_state == PCI_D0)
834                 i = 1;
835         else if (hdev->pdev->current_state == PCI_D3hot)
836                 i = 2;
837         else
838                 i = 3;
839
840         sprintf(tmp_buf,
841                 "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i);
842         return simple_read_from_buffer(buf, count, ppos, tmp_buf,
843                         strlen(tmp_buf));
844 }
845
846 static ssize_t hl_set_power_state(struct file *f, const char __user *buf,
847                                         size_t count, loff_t *ppos)
848 {
849         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
850         struct hl_device *hdev = entry->hdev;
851         u32 value;
852         ssize_t rc;
853
854         rc = kstrtouint_from_user(buf, count, 10, &value);
855         if (rc)
856                 return rc;
857
858         if (value == 1) {
859                 pci_set_power_state(hdev->pdev, PCI_D0);
860                 pci_restore_state(hdev->pdev);
861                 rc = pci_enable_device(hdev->pdev);
862                 if (rc < 0)
863                         return rc;
864         } else if (value == 2) {
865                 pci_save_state(hdev->pdev);
866                 pci_disable_device(hdev->pdev);
867                 pci_set_power_state(hdev->pdev, PCI_D3hot);
868         } else {
869                 dev_dbg(hdev->dev, "invalid power state value %u\n", value);
870                 return -EINVAL;
871         }
872
873         return count;
874 }
875
876 static ssize_t hl_i2c_data_read(struct file *f, char __user *buf,
877                                         size_t count, loff_t *ppos)
878 {
879         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
880         struct hl_device *hdev = entry->hdev;
881         char tmp_buf[32];
882         long val;
883         ssize_t rc;
884
885         if (*ppos)
886                 return 0;
887
888         rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr,
889                         entry->i2c_reg, &val);
890         if (rc) {
891                 dev_err(hdev->dev,
892                         "Failed to read from I2C bus %d, addr %d, reg %d\n",
893                         entry->i2c_bus, entry->i2c_addr, entry->i2c_reg);
894                 return rc;
895         }
896
897         sprintf(tmp_buf, "0x%02lx\n", val);
898         rc = simple_read_from_buffer(buf, count, ppos, tmp_buf,
899                         strlen(tmp_buf));
900
901         return rc;
902 }
903
904 static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf,
905                                         size_t count, loff_t *ppos)
906 {
907         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
908         struct hl_device *hdev = entry->hdev;
909         u32 value;
910         ssize_t rc;
911
912         rc = kstrtouint_from_user(buf, count, 16, &value);
913         if (rc)
914                 return rc;
915
916         rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr,
917                         entry->i2c_reg, value);
918         if (rc) {
919                 dev_err(hdev->dev,
920                         "Failed to write 0x%02x to I2C bus %d, addr %d, reg %d\n",
921                         value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg);
922                 return rc;
923         }
924
925         return count;
926 }
927
928 static ssize_t hl_led0_write(struct file *f, const char __user *buf,
929                                         size_t count, loff_t *ppos)
930 {
931         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
932         struct hl_device *hdev = entry->hdev;
933         u32 value;
934         ssize_t rc;
935
936         rc = kstrtouint_from_user(buf, count, 10, &value);
937         if (rc)
938                 return rc;
939
940         value = value ? 1 : 0;
941
942         hl_debugfs_led_set(hdev, 0, value);
943
944         return count;
945 }
946
947 static ssize_t hl_led1_write(struct file *f, const char __user *buf,
948                                         size_t count, loff_t *ppos)
949 {
950         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
951         struct hl_device *hdev = entry->hdev;
952         u32 value;
953         ssize_t rc;
954
955         rc = kstrtouint_from_user(buf, count, 10, &value);
956         if (rc)
957                 return rc;
958
959         value = value ? 1 : 0;
960
961         hl_debugfs_led_set(hdev, 1, value);
962
963         return count;
964 }
965
966 static ssize_t hl_led2_write(struct file *f, const char __user *buf,
967                                         size_t count, loff_t *ppos)
968 {
969         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
970         struct hl_device *hdev = entry->hdev;
971         u32 value;
972         ssize_t rc;
973
974         rc = kstrtouint_from_user(buf, count, 10, &value);
975         if (rc)
976                 return rc;
977
978         value = value ? 1 : 0;
979
980         hl_debugfs_led_set(hdev, 2, value);
981
982         return count;
983 }
984
985 static ssize_t hl_device_read(struct file *f, char __user *buf,
986                                         size_t count, loff_t *ppos)
987 {
988         static const char *help =
989                 "Valid values: disable, enable, suspend, resume, cpu_timeout\n";
990         return simple_read_from_buffer(buf, count, ppos, help, strlen(help));
991 }
992
993 static ssize_t hl_device_write(struct file *f, const char __user *buf,
994                                      size_t count, loff_t *ppos)
995 {
996         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
997         struct hl_device *hdev = entry->hdev;
998         char data[30] = {0};
999
1000         /* don't allow partial writes */
1001         if (*ppos != 0)
1002                 return 0;
1003
1004         simple_write_to_buffer(data, 29, ppos, buf, count);
1005
1006         if (strncmp("disable", data, strlen("disable")) == 0) {
1007                 hdev->disabled = true;
1008         } else if (strncmp("enable", data, strlen("enable")) == 0) {
1009                 hdev->disabled = false;
1010         } else if (strncmp("suspend", data, strlen("suspend")) == 0) {
1011                 hdev->asic_funcs->suspend(hdev);
1012         } else if (strncmp("resume", data, strlen("resume")) == 0) {
1013                 hdev->asic_funcs->resume(hdev);
1014         } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) {
1015                 hdev->device_cpu_disabled = true;
1016         } else {
1017                 dev_err(hdev->dev,
1018                         "Valid values: disable, enable, suspend, resume, cpu_timeout\n");
1019                 count = -EINVAL;
1020         }
1021
1022         return count;
1023 }
1024
1025 static ssize_t hl_clk_gate_read(struct file *f, char __user *buf,
1026                                         size_t count, loff_t *ppos)
1027 {
1028         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1029         struct hl_device *hdev = entry->hdev;
1030         char tmp_buf[200];
1031         ssize_t rc;
1032
1033         if (*ppos)
1034                 return 0;
1035
1036         sprintf(tmp_buf, "0x%llx\n", hdev->clock_gating_mask);
1037         rc = simple_read_from_buffer(buf, count, ppos, tmp_buf,
1038                         strlen(tmp_buf) + 1);
1039
1040         return rc;
1041 }
1042
1043 static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf,
1044                                      size_t count, loff_t *ppos)
1045 {
1046         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1047         struct hl_device *hdev = entry->hdev;
1048         u64 value;
1049         ssize_t rc;
1050
1051         if (atomic_read(&hdev->in_reset)) {
1052                 dev_warn_ratelimited(hdev->dev,
1053                                 "Can't change clock gating during reset\n");
1054                 return 0;
1055         }
1056
1057         rc = kstrtoull_from_user(buf, count, 16, &value);
1058         if (rc)
1059                 return rc;
1060
1061         hdev->clock_gating_mask = value;
1062         hdev->asic_funcs->set_clock_gating(hdev);
1063
1064         return count;
1065 }
1066
1067 static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf,
1068                                         size_t count, loff_t *ppos)
1069 {
1070         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1071         struct hl_device *hdev = entry->hdev;
1072         char tmp_buf[200];
1073         ssize_t rc;
1074
1075         if (*ppos)
1076                 return 0;
1077
1078         sprintf(tmp_buf, "%d\n", hdev->stop_on_err);
1079         rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
1080                         strlen(tmp_buf) + 1);
1081
1082         return rc;
1083 }
1084
1085 static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf,
1086                                      size_t count, loff_t *ppos)
1087 {
1088         struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1089         struct hl_device *hdev = entry->hdev;
1090         u32 value;
1091         ssize_t rc;
1092
1093         if (atomic_read(&hdev->in_reset)) {
1094                 dev_warn_ratelimited(hdev->dev,
1095                                 "Can't change stop on error during reset\n");
1096                 return 0;
1097         }
1098
1099         rc = kstrtouint_from_user(buf, count, 10, &value);
1100         if (rc)
1101                 return rc;
1102
1103         hdev->stop_on_err = value ? 1 : 0;
1104
1105         hl_device_reset(hdev, false, false);
1106
1107         return count;
1108 }
1109
1110 static const struct file_operations hl_data32b_fops = {
1111         .owner = THIS_MODULE,
1112         .read = hl_data_read32,
1113         .write = hl_data_write32
1114 };
1115
1116 static const struct file_operations hl_data64b_fops = {
1117         .owner = THIS_MODULE,
1118         .read = hl_data_read64,
1119         .write = hl_data_write64
1120 };
1121
1122 static const struct file_operations hl_i2c_data_fops = {
1123         .owner = THIS_MODULE,
1124         .read = hl_i2c_data_read,
1125         .write = hl_i2c_data_write
1126 };
1127
1128 static const struct file_operations hl_power_fops = {
1129         .owner = THIS_MODULE,
1130         .read = hl_get_power_state,
1131         .write = hl_set_power_state
1132 };
1133
1134 static const struct file_operations hl_led0_fops = {
1135         .owner = THIS_MODULE,
1136         .write = hl_led0_write
1137 };
1138
1139 static const struct file_operations hl_led1_fops = {
1140         .owner = THIS_MODULE,
1141         .write = hl_led1_write
1142 };
1143
1144 static const struct file_operations hl_led2_fops = {
1145         .owner = THIS_MODULE,
1146         .write = hl_led2_write
1147 };
1148
1149 static const struct file_operations hl_device_fops = {
1150         .owner = THIS_MODULE,
1151         .read = hl_device_read,
1152         .write = hl_device_write
1153 };
1154
1155 static const struct file_operations hl_clk_gate_fops = {
1156         .owner = THIS_MODULE,
1157         .read = hl_clk_gate_read,
1158         .write = hl_clk_gate_write
1159 };
1160
1161 static const struct file_operations hl_stop_on_err_fops = {
1162         .owner = THIS_MODULE,
1163         .read = hl_stop_on_err_read,
1164         .write = hl_stop_on_err_write
1165 };
1166
1167 static const struct hl_info_list hl_debugfs_list[] = {
1168         {"command_buffers", command_buffers_show, NULL},
1169         {"command_submission", command_submission_show, NULL},
1170         {"command_submission_jobs", command_submission_jobs_show, NULL},
1171         {"userptr", userptr_show, NULL},
1172         {"vm", vm_show, NULL},
1173         {"mmu", mmu_show, mmu_asid_va_write},
1174         {"engines", engines_show, NULL}
1175 };
1176
1177 static int hl_debugfs_open(struct inode *inode, struct file *file)
1178 {
1179         struct hl_debugfs_entry *node = inode->i_private;
1180
1181         return single_open(file, node->info_ent->show, node);
1182 }
1183
1184 static ssize_t hl_debugfs_write(struct file *file, const char __user *buf,
1185                 size_t count, loff_t *f_pos)
1186 {
1187         struct hl_debugfs_entry *node = file->f_inode->i_private;
1188
1189         if (node->info_ent->write)
1190                 return node->info_ent->write(file, buf, count, f_pos);
1191         else
1192                 return -EINVAL;
1193
1194 }
1195
1196 static const struct file_operations hl_debugfs_fops = {
1197         .owner = THIS_MODULE,
1198         .open = hl_debugfs_open,
1199         .read = seq_read,
1200         .write = hl_debugfs_write,
1201         .llseek = seq_lseek,
1202         .release = single_release,
1203 };
1204
1205 void hl_debugfs_add_device(struct hl_device *hdev)
1206 {
1207         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1208         int count = ARRAY_SIZE(hl_debugfs_list);
1209         struct hl_debugfs_entry *entry;
1210         struct dentry *ent;
1211         int i;
1212
1213         dev_entry->hdev = hdev;
1214         dev_entry->entry_arr = kmalloc_array(count,
1215                                         sizeof(struct hl_debugfs_entry),
1216                                         GFP_KERNEL);
1217         if (!dev_entry->entry_arr)
1218                 return;
1219
1220         INIT_LIST_HEAD(&dev_entry->file_list);
1221         INIT_LIST_HEAD(&dev_entry->cb_list);
1222         INIT_LIST_HEAD(&dev_entry->cs_list);
1223         INIT_LIST_HEAD(&dev_entry->cs_job_list);
1224         INIT_LIST_HEAD(&dev_entry->userptr_list);
1225         INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list);
1226         mutex_init(&dev_entry->file_mutex);
1227         spin_lock_init(&dev_entry->cb_spinlock);
1228         spin_lock_init(&dev_entry->cs_spinlock);
1229         spin_lock_init(&dev_entry->cs_job_spinlock);
1230         spin_lock_init(&dev_entry->userptr_spinlock);
1231         spin_lock_init(&dev_entry->ctx_mem_hash_spinlock);
1232
1233         dev_entry->root = debugfs_create_dir(dev_name(hdev->dev),
1234                                                 hl_debug_root);
1235
1236         debugfs_create_x64("addr",
1237                                 0644,
1238                                 dev_entry->root,
1239                                 &dev_entry->addr);
1240
1241         debugfs_create_file("data32",
1242                                 0644,
1243                                 dev_entry->root,
1244                                 dev_entry,
1245                                 &hl_data32b_fops);
1246
1247         debugfs_create_file("data64",
1248                                 0644,
1249                                 dev_entry->root,
1250                                 dev_entry,
1251                                 &hl_data64b_fops);
1252
1253         debugfs_create_file("set_power_state",
1254                                 0200,
1255                                 dev_entry->root,
1256                                 dev_entry,
1257                                 &hl_power_fops);
1258
1259         debugfs_create_u8("i2c_bus",
1260                                 0644,
1261                                 dev_entry->root,
1262                                 &dev_entry->i2c_bus);
1263
1264         debugfs_create_u8("i2c_addr",
1265                                 0644,
1266                                 dev_entry->root,
1267                                 &dev_entry->i2c_addr);
1268
1269         debugfs_create_u8("i2c_reg",
1270                                 0644,
1271                                 dev_entry->root,
1272                                 &dev_entry->i2c_reg);
1273
1274         debugfs_create_file("i2c_data",
1275                                 0644,
1276                                 dev_entry->root,
1277                                 dev_entry,
1278                                 &hl_i2c_data_fops);
1279
1280         debugfs_create_file("led0",
1281                                 0200,
1282                                 dev_entry->root,
1283                                 dev_entry,
1284                                 &hl_led0_fops);
1285
1286         debugfs_create_file("led1",
1287                                 0200,
1288                                 dev_entry->root,
1289                                 dev_entry,
1290                                 &hl_led1_fops);
1291
1292         debugfs_create_file("led2",
1293                                 0200,
1294                                 dev_entry->root,
1295                                 dev_entry,
1296                                 &hl_led2_fops);
1297
1298         debugfs_create_file("device",
1299                                 0200,
1300                                 dev_entry->root,
1301                                 dev_entry,
1302                                 &hl_device_fops);
1303
1304         debugfs_create_file("clk_gate",
1305                                 0200,
1306                                 dev_entry->root,
1307                                 dev_entry,
1308                                 &hl_clk_gate_fops);
1309
1310         debugfs_create_file("stop_on_err",
1311                                 0644,
1312                                 dev_entry->root,
1313                                 dev_entry,
1314                                 &hl_stop_on_err_fops);
1315
1316         for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) {
1317
1318                 ent = debugfs_create_file(hl_debugfs_list[i].name,
1319                                         0444,
1320                                         dev_entry->root,
1321                                         entry,
1322                                         &hl_debugfs_fops);
1323                 entry->dent = ent;
1324                 entry->info_ent = &hl_debugfs_list[i];
1325                 entry->dev_entry = dev_entry;
1326         }
1327 }
1328
1329 void hl_debugfs_remove_device(struct hl_device *hdev)
1330 {
1331         struct hl_dbg_device_entry *entry = &hdev->hl_debugfs;
1332
1333         debugfs_remove_recursive(entry->root);
1334
1335         mutex_destroy(&entry->file_mutex);
1336         kfree(entry->entry_arr);
1337 }
1338
1339 void hl_debugfs_add_file(struct hl_fpriv *hpriv)
1340 {
1341         struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1342
1343         mutex_lock(&dev_entry->file_mutex);
1344         list_add(&hpriv->debugfs_list, &dev_entry->file_list);
1345         mutex_unlock(&dev_entry->file_mutex);
1346 }
1347
1348 void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
1349 {
1350         struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1351
1352         mutex_lock(&dev_entry->file_mutex);
1353         list_del(&hpriv->debugfs_list);
1354         mutex_unlock(&dev_entry->file_mutex);
1355 }
1356
1357 void hl_debugfs_add_cb(struct hl_cb *cb)
1358 {
1359         struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1360
1361         spin_lock(&dev_entry->cb_spinlock);
1362         list_add(&cb->debugfs_list, &dev_entry->cb_list);
1363         spin_unlock(&dev_entry->cb_spinlock);
1364 }
1365
1366 void hl_debugfs_remove_cb(struct hl_cb *cb)
1367 {
1368         struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1369
1370         spin_lock(&dev_entry->cb_spinlock);
1371         list_del(&cb->debugfs_list);
1372         spin_unlock(&dev_entry->cb_spinlock);
1373 }
1374
1375 void hl_debugfs_add_cs(struct hl_cs *cs)
1376 {
1377         struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1378
1379         spin_lock(&dev_entry->cs_spinlock);
1380         list_add(&cs->debugfs_list, &dev_entry->cs_list);
1381         spin_unlock(&dev_entry->cs_spinlock);
1382 }
1383
1384 void hl_debugfs_remove_cs(struct hl_cs *cs)
1385 {
1386         struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1387
1388         spin_lock(&dev_entry->cs_spinlock);
1389         list_del(&cs->debugfs_list);
1390         spin_unlock(&dev_entry->cs_spinlock);
1391 }
1392
1393 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job)
1394 {
1395         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1396
1397         spin_lock(&dev_entry->cs_job_spinlock);
1398         list_add(&job->debugfs_list, &dev_entry->cs_job_list);
1399         spin_unlock(&dev_entry->cs_job_spinlock);
1400 }
1401
1402 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job)
1403 {
1404         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1405
1406         spin_lock(&dev_entry->cs_job_spinlock);
1407         list_del(&job->debugfs_list);
1408         spin_unlock(&dev_entry->cs_job_spinlock);
1409 }
1410
1411 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
1412 {
1413         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1414
1415         spin_lock(&dev_entry->userptr_spinlock);
1416         list_add(&userptr->debugfs_list, &dev_entry->userptr_list);
1417         spin_unlock(&dev_entry->userptr_spinlock);
1418 }
1419
1420 void hl_debugfs_remove_userptr(struct hl_device *hdev,
1421                                 struct hl_userptr *userptr)
1422 {
1423         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1424
1425         spin_lock(&dev_entry->userptr_spinlock);
1426         list_del(&userptr->debugfs_list);
1427         spin_unlock(&dev_entry->userptr_spinlock);
1428 }
1429
1430 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1431 {
1432         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1433
1434         spin_lock(&dev_entry->ctx_mem_hash_spinlock);
1435         list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list);
1436         spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
1437 }
1438
1439 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1440 {
1441         struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1442
1443         spin_lock(&dev_entry->ctx_mem_hash_spinlock);
1444         list_del(&ctx->debugfs_list);
1445         spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
1446 }
1447
1448 void __init hl_debugfs_init(void)
1449 {
1450         hl_debug_root = debugfs_create_dir("habanalabs", NULL);
1451 }
1452
1453 void hl_debugfs_fini(void)
1454 {
1455         debugfs_remove_recursive(hl_debug_root);
1456 }