1 // SPDX-License-Identifier: GPL-2.0-only
3 * Touchscreen driver for UCB1x00-based touchscreens
5 * Copyright (C) 2001 Russell King, All Rights Reserved.
6 * Copyright (C) 2005 Pavel Machek
8 * 21-Jan-2002 <jco@ict.es> :
10 * Added support for synchronous A/D mode. This mode is useful to
11 * avoid noise induced in the touchpanel by the LCD, provided that
12 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
13 * It is important to note that the signal connected to the ADCSYNC
14 * pin should provide pulses even when the LCD is blanked, otherwise
15 * a pen touch needed to unblank the LCD will never be read.
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spinlock.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/string.h>
26 #include <linux/input.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/kthread.h>
31 #include <linux/mfd/ucb1x00.h>
33 #include <mach/collie.h>
34 #include <asm/mach-types.h>
39 struct input_dev *idev;
43 unsigned irq_disabled;
44 wait_queue_head_t irq_wait;
45 struct task_struct *rtask;
49 unsigned int adcsync:1;
54 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
56 struct input_dev *idev = ts->idev;
58 input_report_abs(idev, ABS_X, x);
59 input_report_abs(idev, ABS_Y, y);
60 input_report_abs(idev, ABS_PRESSURE, pressure);
61 input_report_key(idev, BTN_TOUCH, 1);
65 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
67 struct input_dev *idev = ts->idev;
69 input_report_abs(idev, ABS_PRESSURE, 0);
70 input_report_key(idev, BTN_TOUCH, 0);
75 * Switch to interrupt mode.
77 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
79 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
80 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
81 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
86 * Switch to pressure mode, and read pressure. We don't need to wait
87 * here, since both plates are being driven.
89 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
91 if (machine_is_collie()) {
92 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
93 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
94 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
95 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
99 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
101 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
102 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
103 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
104 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
106 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
111 * Switch to X position mode and measure Y plate. We switch the plate
112 * configuration in pressure mode, then switch to position mode. This
113 * gives a faster response time. Even so, we need to wait about 55us
114 * for things to stabilise.
116 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
118 if (machine_is_collie())
119 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
121 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
122 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
123 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
124 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
125 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
126 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
129 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
130 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
134 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
138 * Switch to Y position mode and measure X plate. We switch the plate
139 * configuration in pressure mode, then switch to position mode. This
140 * gives a faster response time. Even so, we need to wait about 55us
141 * for things to stabilise.
143 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
145 if (machine_is_collie())
146 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
148 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
149 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
150 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
151 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
152 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
153 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
156 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
157 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
158 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
162 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
166 * Switch to X plate resistance mode. Set MX to ground, PX to
167 * supply. Measure current.
169 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
171 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
172 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
173 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
174 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
178 * Switch to Y plate resistance mode. Set MY to ground, PY to
179 * supply. Measure current.
181 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
183 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
184 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
185 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
186 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
189 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
191 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
193 if (machine_is_collie())
194 return (!(val & (UCB_TS_CR_TSPX_LOW)));
196 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
200 * This is a RT kernel thread that handles the ADC accesses
201 * (mainly so we can use semaphores in the UCB1200 core code
202 * to serialise accesses to the ADC).
204 static int ucb1x00_thread(void *_ts)
206 struct ucb1x00_ts *ts = _ts;
207 DECLARE_WAITQUEUE(wait, current);
208 bool frozen, ignore = false;
212 add_wait_queue(&ts->irq_wait, &wait);
213 while (!kthread_freezable_should_stop(&frozen)) {
214 unsigned int x, y, p;
220 ucb1x00_adc_enable(ts->ucb);
222 x = ucb1x00_ts_read_xpos(ts);
223 y = ucb1x00_ts_read_ypos(ts);
224 p = ucb1x00_ts_read_pressure(ts);
227 * Switch back to interrupt mode.
229 ucb1x00_ts_mode_int(ts);
230 ucb1x00_adc_disable(ts->ucb);
234 ucb1x00_enable(ts->ucb);
237 if (ucb1x00_ts_pen_down(ts)) {
238 set_current_state(TASK_INTERRUPTIBLE);
240 spin_lock_irq(&ts->irq_lock);
241 if (ts->irq_disabled) {
242 ts->irq_disabled = 0;
243 enable_irq(ts->ucb->irq_base + UCB_IRQ_TSPX);
245 spin_unlock_irq(&ts->irq_lock);
246 ucb1x00_disable(ts->ucb);
249 * If we spat out a valid sample set last time,
250 * spit out a "pen off" sample here.
253 ucb1x00_ts_event_release(ts);
257 timeout = MAX_SCHEDULE_TIMEOUT;
259 ucb1x00_disable(ts->ucb);
262 * Filtering is policy. Policy belongs in user
263 * space. We therefore leave it to user space
264 * to do any filtering they please.
267 ucb1x00_ts_evt_add(ts, p, x, y);
271 set_current_state(TASK_INTERRUPTIBLE);
275 schedule_timeout(timeout);
278 remove_wait_queue(&ts->irq_wait, &wait);
285 * We only detect touch screen _touches_ with this interrupt
286 * handler, and even then we just schedule our task.
288 static irqreturn_t ucb1x00_ts_irq(int irq, void *id)
290 struct ucb1x00_ts *ts = id;
292 spin_lock(&ts->irq_lock);
293 ts->irq_disabled = 1;
294 disable_irq_nosync(ts->ucb->irq_base + UCB_IRQ_TSPX);
295 spin_unlock(&ts->irq_lock);
296 wake_up(&ts->irq_wait);
301 static int ucb1x00_ts_open(struct input_dev *idev)
303 struct ucb1x00_ts *ts = input_get_drvdata(idev);
304 unsigned long flags = 0;
309 if (machine_is_collie())
310 flags = IRQF_TRIGGER_RISING;
312 flags = IRQF_TRIGGER_FALLING;
314 ts->irq_disabled = 0;
316 init_waitqueue_head(&ts->irq_wait);
317 ret = request_irq(ts->ucb->irq_base + UCB_IRQ_TSPX, ucb1x00_ts_irq,
318 flags, "ucb1x00-ts", ts);
323 * If we do this at all, we should allow the user to
324 * measure and read the X and Y resistance at any time.
326 ucb1x00_adc_enable(ts->ucb);
327 ts->x_res = ucb1x00_ts_read_xres(ts);
328 ts->y_res = ucb1x00_ts_read_yres(ts);
329 ucb1x00_adc_disable(ts->ucb);
331 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
332 if (!IS_ERR(ts->rtask)) {
335 free_irq(ts->ucb->irq_base + UCB_IRQ_TSPX, ts);
345 * Release touchscreen resources. Disable IRQs.
347 static void ucb1x00_ts_close(struct input_dev *idev)
349 struct ucb1x00_ts *ts = input_get_drvdata(idev);
352 kthread_stop(ts->rtask);
354 ucb1x00_enable(ts->ucb);
355 free_irq(ts->ucb->irq_base + UCB_IRQ_TSPX, ts);
356 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
357 ucb1x00_disable(ts->ucb);
364 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
366 struct ucb1x00_ts *ts;
367 struct input_dev *idev;
370 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
371 idev = input_allocate_device();
379 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
380 spin_lock_init(&ts->irq_lock);
382 idev->name = "Touchscreen panel";
383 idev->id.product = ts->ucb->id;
384 idev->open = ucb1x00_ts_open;
385 idev->close = ucb1x00_ts_close;
386 idev->dev.parent = &ts->ucb->dev;
388 idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
389 idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
391 input_set_drvdata(idev, ts);
393 ucb1x00_adc_enable(ts->ucb);
394 ts->x_res = ucb1x00_ts_read_xres(ts);
395 ts->y_res = ucb1x00_ts_read_yres(ts);
396 ucb1x00_adc_disable(ts->ucb);
398 input_set_abs_params(idev, ABS_X, 0, ts->x_res, 0, 0);
399 input_set_abs_params(idev, ABS_Y, 0, ts->y_res, 0, 0);
400 input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
402 err = input_register_device(idev);
411 input_free_device(idev);
416 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
418 struct ucb1x00_ts *ts = dev->priv;
420 input_unregister_device(ts->idev);
424 static struct ucb1x00_driver ucb1x00_ts_driver = {
425 .add = ucb1x00_ts_add,
426 .remove = ucb1x00_ts_remove,
429 static int __init ucb1x00_ts_init(void)
431 return ucb1x00_register_driver(&ucb1x00_ts_driver);
434 static void __exit ucb1x00_ts_exit(void)
436 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
439 module_param(adcsync, int, 0444);
440 module_init(ucb1x00_ts_init);
441 module_exit(ucb1x00_ts_exit);
443 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
444 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
445 MODULE_LICENSE("GPL");