GNU Linux-libre 5.13.14-gnu1
[releases.git] / drivers / memory / tegra / mc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18
19 #include <soc/tegra/fuse.h>
20
21 #include "mc.h"
22
23 static const struct of_device_id tegra_mc_of_match[] = {
24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
25         { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
26 #endif
27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
28         { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
29 #endif
30 #ifdef CONFIG_ARCH_TEGRA_114_SOC
31         { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
32 #endif
33 #ifdef CONFIG_ARCH_TEGRA_124_SOC
34         { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
35 #endif
36 #ifdef CONFIG_ARCH_TEGRA_132_SOC
37         { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
38 #endif
39 #ifdef CONFIG_ARCH_TEGRA_210_SOC
40         { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
41 #endif
42         { }
43 };
44 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
45
46 static void tegra_mc_devm_action_put_device(void *data)
47 {
48         struct tegra_mc *mc = data;
49
50         put_device(mc->dev);
51 }
52
53 /**
54  * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
55  * @dev: device pointer for the consumer device
56  *
57  * This function will search for the Memory Controller node in a device-tree
58  * and retrieve the Memory Controller handle.
59  *
60  * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
61  */
62 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
63 {
64         struct platform_device *pdev;
65         struct device_node *np;
66         struct tegra_mc *mc;
67         int err;
68
69         np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
70         if (!np)
71                 return ERR_PTR(-ENOENT);
72
73         pdev = of_find_device_by_node(np);
74         of_node_put(np);
75         if (!pdev)
76                 return ERR_PTR(-ENODEV);
77
78         mc = platform_get_drvdata(pdev);
79         if (!mc) {
80                 put_device(&pdev->dev);
81                 return ERR_PTR(-EPROBE_DEFER);
82         }
83
84         err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc);
85         if (err) {
86                 put_device(mc->dev);
87                 return ERR_PTR(err);
88         }
89
90         return mc;
91 }
92 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
93
94 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
95                                      const struct tegra_mc_reset *rst)
96 {
97         unsigned long flags;
98         u32 value;
99
100         spin_lock_irqsave(&mc->lock, flags);
101
102         value = mc_readl(mc, rst->control) | BIT(rst->bit);
103         mc_writel(mc, value, rst->control);
104
105         spin_unlock_irqrestore(&mc->lock, flags);
106
107         return 0;
108 }
109
110 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
111                                        const struct tegra_mc_reset *rst)
112 {
113         return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
114 }
115
116 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
117                                        const struct tegra_mc_reset *rst)
118 {
119         unsigned long flags;
120         u32 value;
121
122         spin_lock_irqsave(&mc->lock, flags);
123
124         value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
125         mc_writel(mc, value, rst->control);
126
127         spin_unlock_irqrestore(&mc->lock, flags);
128
129         return 0;
130 }
131
132 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
133                                         const struct tegra_mc_reset *rst)
134 {
135         return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
136 }
137
138 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
139         .block_dma = tegra_mc_block_dma_common,
140         .dma_idling = tegra_mc_dma_idling_common,
141         .unblock_dma = tegra_mc_unblock_dma_common,
142         .reset_status = tegra_mc_reset_status_common,
143 };
144
145 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
146 {
147         return container_of(rcdev, struct tegra_mc, reset);
148 }
149
150 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
151                                                         unsigned long id)
152 {
153         unsigned int i;
154
155         for (i = 0; i < mc->soc->num_resets; i++)
156                 if (mc->soc->resets[i].id == id)
157                         return &mc->soc->resets[i];
158
159         return NULL;
160 }
161
162 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
163                                     unsigned long id)
164 {
165         struct tegra_mc *mc = reset_to_mc(rcdev);
166         const struct tegra_mc_reset_ops *rst_ops;
167         const struct tegra_mc_reset *rst;
168         int retries = 500;
169         int err;
170
171         rst = tegra_mc_reset_find(mc, id);
172         if (!rst)
173                 return -ENODEV;
174
175         rst_ops = mc->soc->reset_ops;
176         if (!rst_ops)
177                 return -ENODEV;
178
179         /* DMA flushing will fail if reset is already asserted */
180         if (rst_ops->reset_status) {
181                 /* check whether reset is asserted */
182                 if (rst_ops->reset_status(mc, rst))
183                         return 0;
184         }
185
186         if (rst_ops->block_dma) {
187                 /* block clients DMA requests */
188                 err = rst_ops->block_dma(mc, rst);
189                 if (err) {
190                         dev_err(mc->dev, "failed to block %s DMA: %d\n",
191                                 rst->name, err);
192                         return err;
193                 }
194         }
195
196         if (rst_ops->dma_idling) {
197                 /* wait for completion of the outstanding DMA requests */
198                 while (!rst_ops->dma_idling(mc, rst)) {
199                         if (!retries--) {
200                                 dev_err(mc->dev, "failed to flush %s DMA\n",
201                                         rst->name);
202                                 return -EBUSY;
203                         }
204
205                         usleep_range(10, 100);
206                 }
207         }
208
209         if (rst_ops->hotreset_assert) {
210                 /* clear clients DMA requests sitting before arbitration */
211                 err = rst_ops->hotreset_assert(mc, rst);
212                 if (err) {
213                         dev_err(mc->dev, "failed to hot reset %s: %d\n",
214                                 rst->name, err);
215                         return err;
216                 }
217         }
218
219         return 0;
220 }
221
222 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
223                                       unsigned long id)
224 {
225         struct tegra_mc *mc = reset_to_mc(rcdev);
226         const struct tegra_mc_reset_ops *rst_ops;
227         const struct tegra_mc_reset *rst;
228         int err;
229
230         rst = tegra_mc_reset_find(mc, id);
231         if (!rst)
232                 return -ENODEV;
233
234         rst_ops = mc->soc->reset_ops;
235         if (!rst_ops)
236                 return -ENODEV;
237
238         if (rst_ops->hotreset_deassert) {
239                 /* take out client from hot reset */
240                 err = rst_ops->hotreset_deassert(mc, rst);
241                 if (err) {
242                         dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
243                                 rst->name, err);
244                         return err;
245                 }
246         }
247
248         if (rst_ops->unblock_dma) {
249                 /* allow new DMA requests to proceed to arbitration */
250                 err = rst_ops->unblock_dma(mc, rst);
251                 if (err) {
252                         dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
253                                 rst->name, err);
254                         return err;
255                 }
256         }
257
258         return 0;
259 }
260
261 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
262                                     unsigned long id)
263 {
264         struct tegra_mc *mc = reset_to_mc(rcdev);
265         const struct tegra_mc_reset_ops *rst_ops;
266         const struct tegra_mc_reset *rst;
267
268         rst = tegra_mc_reset_find(mc, id);
269         if (!rst)
270                 return -ENODEV;
271
272         rst_ops = mc->soc->reset_ops;
273         if (!rst_ops)
274                 return -ENODEV;
275
276         return rst_ops->reset_status(mc, rst);
277 }
278
279 static const struct reset_control_ops tegra_mc_reset_ops = {
280         .assert = tegra_mc_hotreset_assert,
281         .deassert = tegra_mc_hotreset_deassert,
282         .status = tegra_mc_hotreset_status,
283 };
284
285 static int tegra_mc_reset_setup(struct tegra_mc *mc)
286 {
287         int err;
288
289         mc->reset.ops = &tegra_mc_reset_ops;
290         mc->reset.owner = THIS_MODULE;
291         mc->reset.of_node = mc->dev->of_node;
292         mc->reset.of_reset_n_cells = 1;
293         mc->reset.nr_resets = mc->soc->num_resets;
294
295         err = reset_controller_register(&mc->reset);
296         if (err < 0)
297                 return err;
298
299         return 0;
300 }
301
302 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
303 {
304         unsigned long long tick;
305         unsigned int i;
306         u32 value;
307
308         /* compute the number of MC clock cycles per tick */
309         tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
310         do_div(tick, NSEC_PER_SEC);
311
312         value = mc_readl(mc, MC_EMEM_ARB_CFG);
313         value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
314         value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
315         mc_writel(mc, value, MC_EMEM_ARB_CFG);
316
317         /* write latency allowance defaults */
318         for (i = 0; i < mc->soc->num_clients; i++) {
319                 const struct tegra_mc_la *la = &mc->soc->clients[i].la;
320                 u32 value;
321
322                 value = mc_readl(mc, la->reg);
323                 value &= ~(la->mask << la->shift);
324                 value |= (la->def & la->mask) << la->shift;
325                 mc_writel(mc, value, la->reg);
326         }
327
328         /* latch new values */
329         mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
330
331         return 0;
332 }
333
334 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
335 {
336         unsigned int i;
337         struct tegra_mc_timing *timing = NULL;
338
339         for (i = 0; i < mc->num_timings; i++) {
340                 if (mc->timings[i].rate == rate) {
341                         timing = &mc->timings[i];
342                         break;
343                 }
344         }
345
346         if (!timing) {
347                 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
348                         rate);
349                 return -EINVAL;
350         }
351
352         for (i = 0; i < mc->soc->num_emem_regs; ++i)
353                 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
354
355         return 0;
356 }
357 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
358
359 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
360 {
361         u8 dram_count;
362
363         dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
364         dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
365         dram_count++;
366
367         return dram_count;
368 }
369 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
370
371 static int load_one_timing(struct tegra_mc *mc,
372                            struct tegra_mc_timing *timing,
373                            struct device_node *node)
374 {
375         int err;
376         u32 tmp;
377
378         err = of_property_read_u32(node, "clock-frequency", &tmp);
379         if (err) {
380                 dev_err(mc->dev,
381                         "timing %pOFn: failed to read rate\n", node);
382                 return err;
383         }
384
385         timing->rate = tmp;
386         timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
387                                          sizeof(u32), GFP_KERNEL);
388         if (!timing->emem_data)
389                 return -ENOMEM;
390
391         err = of_property_read_u32_array(node, "nvidia,emem-configuration",
392                                          timing->emem_data,
393                                          mc->soc->num_emem_regs);
394         if (err) {
395                 dev_err(mc->dev,
396                         "timing %pOFn: failed to read EMEM configuration\n",
397                         node);
398                 return err;
399         }
400
401         return 0;
402 }
403
404 static int load_timings(struct tegra_mc *mc, struct device_node *node)
405 {
406         struct device_node *child;
407         struct tegra_mc_timing *timing;
408         int child_count = of_get_child_count(node);
409         int i = 0, err;
410
411         mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
412                                    GFP_KERNEL);
413         if (!mc->timings)
414                 return -ENOMEM;
415
416         mc->num_timings = child_count;
417
418         for_each_child_of_node(node, child) {
419                 timing = &mc->timings[i++];
420
421                 err = load_one_timing(mc, timing, child);
422                 if (err) {
423                         of_node_put(child);
424                         return err;
425                 }
426         }
427
428         return 0;
429 }
430
431 static int tegra_mc_setup_timings(struct tegra_mc *mc)
432 {
433         struct device_node *node;
434         u32 ram_code, node_ram_code;
435         int err;
436
437         ram_code = tegra_read_ram_code();
438
439         mc->num_timings = 0;
440
441         for_each_child_of_node(mc->dev->of_node, node) {
442                 err = of_property_read_u32(node, "nvidia,ram-code",
443                                            &node_ram_code);
444                 if (err || (node_ram_code != ram_code))
445                         continue;
446
447                 err = load_timings(mc, node);
448                 of_node_put(node);
449                 if (err)
450                         return err;
451                 break;
452         }
453
454         if (mc->num_timings == 0)
455                 dev_warn(mc->dev,
456                          "no memory timings for RAM code %u registered\n",
457                          ram_code);
458
459         return 0;
460 }
461
462 static const char *const status_names[32] = {
463         [ 1] = "External interrupt",
464         [ 6] = "EMEM address decode error",
465         [ 7] = "GART page fault",
466         [ 8] = "Security violation",
467         [ 9] = "EMEM arbitration error",
468         [10] = "Page fault",
469         [11] = "Invalid APB ASID update",
470         [12] = "VPR violation",
471         [13] = "Secure carveout violation",
472         [16] = "MTS carveout violation",
473 };
474
475 static const char *const error_names[8] = {
476         [2] = "EMEM decode error",
477         [3] = "TrustZone violation",
478         [4] = "Carveout violation",
479         [6] = "SMMU translation error",
480 };
481
482 static irqreturn_t tegra_mc_irq(int irq, void *data)
483 {
484         struct tegra_mc *mc = data;
485         unsigned long status;
486         unsigned int bit;
487
488         /* mask all interrupts to avoid flooding */
489         status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
490         if (!status)
491                 return IRQ_NONE;
492
493         for_each_set_bit(bit, &status, 32) {
494                 const char *error = status_names[bit] ?: "unknown";
495                 const char *client = "unknown", *desc;
496                 const char *direction, *secure;
497                 phys_addr_t addr = 0;
498                 unsigned int i;
499                 char perm[7];
500                 u8 id, type;
501                 u32 value;
502
503                 value = mc_readl(mc, MC_ERR_STATUS);
504
505 #ifdef CONFIG_PHYS_ADDR_T_64BIT
506                 if (mc->soc->num_address_bits > 32) {
507                         addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
508                                 MC_ERR_STATUS_ADR_HI_MASK);
509                         addr <<= 32;
510                 }
511 #endif
512
513                 if (value & MC_ERR_STATUS_RW)
514                         direction = "write";
515                 else
516                         direction = "read";
517
518                 if (value & MC_ERR_STATUS_SECURITY)
519                         secure = "secure ";
520                 else
521                         secure = "";
522
523                 id = value & mc->soc->client_id_mask;
524
525                 for (i = 0; i < mc->soc->num_clients; i++) {
526                         if (mc->soc->clients[i].id == id) {
527                                 client = mc->soc->clients[i].name;
528                                 break;
529                         }
530                 }
531
532                 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
533                        MC_ERR_STATUS_TYPE_SHIFT;
534                 desc = error_names[type];
535
536                 switch (value & MC_ERR_STATUS_TYPE_MASK) {
537                 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
538                         perm[0] = ' ';
539                         perm[1] = '[';
540
541                         if (value & MC_ERR_STATUS_READABLE)
542                                 perm[2] = 'R';
543                         else
544                                 perm[2] = '-';
545
546                         if (value & MC_ERR_STATUS_WRITABLE)
547                                 perm[3] = 'W';
548                         else
549                                 perm[3] = '-';
550
551                         if (value & MC_ERR_STATUS_NONSECURE)
552                                 perm[4] = '-';
553                         else
554                                 perm[4] = 'S';
555
556                         perm[5] = ']';
557                         perm[6] = '\0';
558                         break;
559
560                 default:
561                         perm[0] = '\0';
562                         break;
563                 }
564
565                 value = mc_readl(mc, MC_ERR_ADR);
566                 addr |= value;
567
568                 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
569                                     client, secure, direction, &addr, error,
570                                     desc, perm);
571         }
572
573         /* clear interrupts */
574         mc_writel(mc, status, MC_INTSTATUS);
575
576         return IRQ_HANDLED;
577 }
578
579 static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data)
580 {
581         struct tegra_mc *mc = data;
582         unsigned long status;
583         unsigned int bit;
584
585         /* mask all interrupts to avoid flooding */
586         status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
587         if (!status)
588                 return IRQ_NONE;
589
590         for_each_set_bit(bit, &status, 32) {
591                 const char *direction = "read", *secure = "";
592                 const char *error = status_names[bit];
593                 const char *client, *desc;
594                 phys_addr_t addr;
595                 u32 value, reg;
596                 u8 id, type;
597
598                 switch (BIT(bit)) {
599                 case MC_INT_DECERR_EMEM:
600                         reg = MC_DECERR_EMEM_OTHERS_STATUS;
601                         value = mc_readl(mc, reg);
602
603                         id = value & mc->soc->client_id_mask;
604                         desc = error_names[2];
605
606                         if (value & BIT(31))
607                                 direction = "write";
608                         break;
609
610                 case MC_INT_INVALID_GART_PAGE:
611                         reg = MC_GART_ERROR_REQ;
612                         value = mc_readl(mc, reg);
613
614                         id = (value >> 1) & mc->soc->client_id_mask;
615                         desc = error_names[2];
616
617                         if (value & BIT(0))
618                                 direction = "write";
619                         break;
620
621                 case MC_INT_SECURITY_VIOLATION:
622                         reg = MC_SECURITY_VIOLATION_STATUS;
623                         value = mc_readl(mc, reg);
624
625                         id = value & mc->soc->client_id_mask;
626                         type = (value & BIT(30)) ? 4 : 3;
627                         desc = error_names[type];
628                         secure = "secure ";
629
630                         if (value & BIT(31))
631                                 direction = "write";
632                         break;
633
634                 default:
635                         continue;
636                 }
637
638                 client = mc->soc->clients[id].name;
639                 addr = mc_readl(mc, reg + sizeof(u32));
640
641                 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n",
642                                     client, secure, direction, &addr, error,
643                                     desc);
644         }
645
646         /* clear interrupts */
647         mc_writel(mc, status, MC_INTSTATUS);
648
649         return IRQ_HANDLED;
650 }
651
652 /*
653  * Memory Controller (MC) has few Memory Clients that are issuing memory
654  * bandwidth allocation requests to the MC interconnect provider. The MC
655  * provider aggregates the requests and then sends the aggregated request
656  * up to the External Memory Controller (EMC) interconnect provider which
657  * re-configures hardware interface to External Memory (EMEM) in accordance
658  * to the required bandwidth. Each MC interconnect node represents an
659  * individual Memory Client.
660  *
661  * Memory interconnect topology:
662  *
663  *               +----+
664  * +--------+    |    |
665  * | TEXSRD +--->+    |
666  * +--------+    |    |
667  *               |    |    +-----+    +------+
668  *    ...        | MC +--->+ EMC +--->+ EMEM |
669  *               |    |    +-----+    +------+
670  * +--------+    |    |
671  * | DISP.. +--->+    |
672  * +--------+    |    |
673  *               +----+
674  */
675 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
676 {
677         struct icc_node *node;
678         unsigned int i;
679         int err;
680
681         /* older device-trees don't have interconnect properties */
682         if (!device_property_present(mc->dev, "#interconnect-cells") ||
683             !mc->soc->icc_ops)
684                 return 0;
685
686         mc->provider.dev = mc->dev;
687         mc->provider.data = &mc->provider;
688         mc->provider.set = mc->soc->icc_ops->set;
689         mc->provider.aggregate = mc->soc->icc_ops->aggregate;
690         mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
691
692         err = icc_provider_add(&mc->provider);
693         if (err)
694                 return err;
695
696         /* create Memory Controller node */
697         node = icc_node_create(TEGRA_ICC_MC);
698         if (IS_ERR(node)) {
699                 err = PTR_ERR(node);
700                 goto del_provider;
701         }
702
703         node->name = "Memory Controller";
704         icc_node_add(node, &mc->provider);
705
706         /* link Memory Controller to External Memory Controller */
707         err = icc_link_create(node, TEGRA_ICC_EMC);
708         if (err)
709                 goto remove_nodes;
710
711         for (i = 0; i < mc->soc->num_clients; i++) {
712                 /* create MC client node */
713                 node = icc_node_create(mc->soc->clients[i].id);
714                 if (IS_ERR(node)) {
715                         err = PTR_ERR(node);
716                         goto remove_nodes;
717                 }
718
719                 node->name = mc->soc->clients[i].name;
720                 icc_node_add(node, &mc->provider);
721
722                 /* link Memory Client to Memory Controller */
723                 err = icc_link_create(node, TEGRA_ICC_MC);
724                 if (err)
725                         goto remove_nodes;
726         }
727
728         /*
729          * MC driver is registered too early, so early that generic driver
730          * syncing doesn't work for the MC. But it doesn't really matter
731          * since syncing works for the EMC drivers, hence we can sync the
732          * MC driver by ourselves and then EMC will complete syncing of
733          * the whole ICC state.
734          */
735         icc_sync_state(mc->dev);
736
737         return 0;
738
739 remove_nodes:
740         icc_nodes_remove(&mc->provider);
741 del_provider:
742         icc_provider_del(&mc->provider);
743
744         return err;
745 }
746
747 static int tegra_mc_probe(struct platform_device *pdev)
748 {
749         struct resource *res;
750         struct tegra_mc *mc;
751         void *isr;
752         u64 mask;
753         int err;
754
755         mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
756         if (!mc)
757                 return -ENOMEM;
758
759         platform_set_drvdata(pdev, mc);
760         spin_lock_init(&mc->lock);
761         mc->soc = of_device_get_match_data(&pdev->dev);
762         mc->dev = &pdev->dev;
763
764         mask = DMA_BIT_MASK(mc->soc->num_address_bits);
765
766         err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
767         if (err < 0) {
768                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
769                 return err;
770         }
771
772         /* length of MC tick in nanoseconds */
773         mc->tick = 30;
774
775         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
776         mc->regs = devm_ioremap_resource(&pdev->dev, res);
777         if (IS_ERR(mc->regs))
778                 return PTR_ERR(mc->regs);
779
780         mc->clk = devm_clk_get(&pdev->dev, "mc");
781         if (IS_ERR(mc->clk)) {
782                 dev_err(&pdev->dev, "failed to get MC clock: %ld\n",
783                         PTR_ERR(mc->clk));
784                 return PTR_ERR(mc->clk);
785         }
786
787 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
788         if (mc->soc == &tegra20_mc_soc) {
789                 isr = tegra20_mc_irq;
790         } else
791 #endif
792         {
793                 /* ensure that debug features are disabled */
794                 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
795
796                 err = tegra_mc_setup_latency_allowance(mc);
797                 if (err < 0) {
798                         dev_err(&pdev->dev,
799                                 "failed to setup latency allowance: %d\n",
800                                 err);
801                         return err;
802                 }
803
804                 isr = tegra_mc_irq;
805
806                 err = tegra_mc_setup_timings(mc);
807                 if (err < 0) {
808                         dev_err(&pdev->dev, "failed to setup timings: %d\n",
809                                 err);
810                         return err;
811                 }
812         }
813
814         mc->irq = platform_get_irq(pdev, 0);
815         if (mc->irq < 0)
816                 return mc->irq;
817
818         WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
819
820         mc_writel(mc, mc->soc->intmask, MC_INTMASK);
821
822         err = devm_request_irq(&pdev->dev, mc->irq, isr, 0,
823                                dev_name(&pdev->dev), mc);
824         if (err < 0) {
825                 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
826                         err);
827                 return err;
828         }
829
830         mc->debugfs.root = debugfs_create_dir("mc", NULL);
831
832         if (mc->soc->init) {
833                 err = mc->soc->init(mc);
834                 if (err < 0)
835                         dev_err(&pdev->dev, "failed to initialize SoC driver: %d\n",
836                                 err);
837         }
838
839         err = tegra_mc_reset_setup(mc);
840         if (err < 0)
841                 dev_err(&pdev->dev, "failed to register reset controller: %d\n",
842                         err);
843
844         err = tegra_mc_interconnect_setup(mc);
845         if (err < 0)
846                 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
847                         err);
848
849         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
850                 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
851                 if (IS_ERR(mc->smmu)) {
852                         dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
853                                 PTR_ERR(mc->smmu));
854                         mc->smmu = NULL;
855                 }
856         }
857
858         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
859                 mc->gart = tegra_gart_probe(&pdev->dev, mc);
860                 if (IS_ERR(mc->gart)) {
861                         dev_err(&pdev->dev, "failed to probe GART: %ld\n",
862                                 PTR_ERR(mc->gart));
863                         mc->gart = NULL;
864                 }
865         }
866
867         return 0;
868 }
869
870 static int tegra_mc_suspend(struct device *dev)
871 {
872         struct tegra_mc *mc = dev_get_drvdata(dev);
873         int err;
874
875         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
876                 err = tegra_gart_suspend(mc->gart);
877                 if (err)
878                         return err;
879         }
880
881         return 0;
882 }
883
884 static int tegra_mc_resume(struct device *dev)
885 {
886         struct tegra_mc *mc = dev_get_drvdata(dev);
887         int err;
888
889         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
890                 err = tegra_gart_resume(mc->gart);
891                 if (err)
892                         return err;
893         }
894
895         return 0;
896 }
897
898 static const struct dev_pm_ops tegra_mc_pm_ops = {
899         .suspend = tegra_mc_suspend,
900         .resume = tegra_mc_resume,
901 };
902
903 static struct platform_driver tegra_mc_driver = {
904         .driver = {
905                 .name = "tegra-mc",
906                 .of_match_table = tegra_mc_of_match,
907                 .pm = &tegra_mc_pm_ops,
908                 .suppress_bind_attrs = true,
909         },
910         .prevent_deferred_probe = true,
911         .probe = tegra_mc_probe,
912 };
913
914 static int tegra_mc_init(void)
915 {
916         return platform_driver_register(&tegra_mc_driver);
917 }
918 arch_initcall(tegra_mc_init);
919
920 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
921 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
922 MODULE_LICENSE("GPL v2");