GNU Linux-libre 4.19.268-gnu1
[releases.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25         V4L2_DV_BT_CEA_640X480P59_94,
26         V4L2_DV_BT_CEA_720X480I59_94,
27         V4L2_DV_BT_CEA_720X480P59_94,
28         V4L2_DV_BT_CEA_720X576I50,
29         V4L2_DV_BT_CEA_720X576P50,
30         V4L2_DV_BT_CEA_1280X720P24,
31         V4L2_DV_BT_CEA_1280X720P25,
32         V4L2_DV_BT_CEA_1280X720P30,
33         V4L2_DV_BT_CEA_1280X720P50,
34         V4L2_DV_BT_CEA_1280X720P60,
35         V4L2_DV_BT_CEA_1920X1080P24,
36         V4L2_DV_BT_CEA_1920X1080P25,
37         V4L2_DV_BT_CEA_1920X1080P30,
38         V4L2_DV_BT_CEA_1920X1080I50,
39         V4L2_DV_BT_CEA_1920X1080P50,
40         V4L2_DV_BT_CEA_1920X1080I60,
41         V4L2_DV_BT_CEA_1920X1080P60,
42         V4L2_DV_BT_DMT_640X350P85,
43         V4L2_DV_BT_DMT_640X400P85,
44         V4L2_DV_BT_DMT_720X400P85,
45         V4L2_DV_BT_DMT_640X480P72,
46         V4L2_DV_BT_DMT_640X480P75,
47         V4L2_DV_BT_DMT_640X480P85,
48         V4L2_DV_BT_DMT_800X600P56,
49         V4L2_DV_BT_DMT_800X600P60,
50         V4L2_DV_BT_DMT_800X600P72,
51         V4L2_DV_BT_DMT_800X600P75,
52         V4L2_DV_BT_DMT_800X600P85,
53         V4L2_DV_BT_DMT_800X600P120_RB,
54         V4L2_DV_BT_DMT_848X480P60,
55         V4L2_DV_BT_DMT_1024X768I43,
56         V4L2_DV_BT_DMT_1024X768P60,
57         V4L2_DV_BT_DMT_1024X768P70,
58         V4L2_DV_BT_DMT_1024X768P75,
59         V4L2_DV_BT_DMT_1024X768P85,
60         V4L2_DV_BT_DMT_1024X768P120_RB,
61         V4L2_DV_BT_DMT_1152X864P75,
62         V4L2_DV_BT_DMT_1280X768P60_RB,
63         V4L2_DV_BT_DMT_1280X768P60,
64         V4L2_DV_BT_DMT_1280X768P75,
65         V4L2_DV_BT_DMT_1280X768P85,
66         V4L2_DV_BT_DMT_1280X768P120_RB,
67         V4L2_DV_BT_DMT_1280X800P60_RB,
68         V4L2_DV_BT_DMT_1280X800P60,
69         V4L2_DV_BT_DMT_1280X800P75,
70         V4L2_DV_BT_DMT_1280X800P85,
71         V4L2_DV_BT_DMT_1280X800P120_RB,
72         V4L2_DV_BT_DMT_1280X960P60,
73         V4L2_DV_BT_DMT_1280X960P85,
74         V4L2_DV_BT_DMT_1280X960P120_RB,
75         V4L2_DV_BT_DMT_1280X1024P60,
76         V4L2_DV_BT_DMT_1280X1024P75,
77         V4L2_DV_BT_DMT_1280X1024P85,
78         V4L2_DV_BT_DMT_1280X1024P120_RB,
79         V4L2_DV_BT_DMT_1360X768P60,
80         V4L2_DV_BT_DMT_1360X768P120_RB,
81         V4L2_DV_BT_DMT_1366X768P60,
82         V4L2_DV_BT_DMT_1366X768P60_RB,
83         V4L2_DV_BT_DMT_1400X1050P60_RB,
84         V4L2_DV_BT_DMT_1400X1050P60,
85         V4L2_DV_BT_DMT_1400X1050P75,
86         V4L2_DV_BT_DMT_1400X1050P85,
87         V4L2_DV_BT_DMT_1400X1050P120_RB,
88         V4L2_DV_BT_DMT_1440X900P60_RB,
89         V4L2_DV_BT_DMT_1440X900P60,
90         V4L2_DV_BT_DMT_1440X900P75,
91         V4L2_DV_BT_DMT_1440X900P85,
92         V4L2_DV_BT_DMT_1440X900P120_RB,
93         V4L2_DV_BT_DMT_1600X900P60_RB,
94         V4L2_DV_BT_DMT_1600X1200P60,
95         V4L2_DV_BT_DMT_1600X1200P65,
96         V4L2_DV_BT_DMT_1600X1200P70,
97         V4L2_DV_BT_DMT_1600X1200P75,
98         V4L2_DV_BT_DMT_1600X1200P85,
99         V4L2_DV_BT_DMT_1600X1200P120_RB,
100         V4L2_DV_BT_DMT_1680X1050P60_RB,
101         V4L2_DV_BT_DMT_1680X1050P60,
102         V4L2_DV_BT_DMT_1680X1050P75,
103         V4L2_DV_BT_DMT_1680X1050P85,
104         V4L2_DV_BT_DMT_1680X1050P120_RB,
105         V4L2_DV_BT_DMT_1792X1344P60,
106         V4L2_DV_BT_DMT_1792X1344P75,
107         V4L2_DV_BT_DMT_1792X1344P120_RB,
108         V4L2_DV_BT_DMT_1856X1392P60,
109         V4L2_DV_BT_DMT_1856X1392P75,
110         V4L2_DV_BT_DMT_1856X1392P120_RB,
111         V4L2_DV_BT_DMT_1920X1200P60_RB,
112         V4L2_DV_BT_DMT_1920X1200P60,
113         V4L2_DV_BT_DMT_1920X1200P75,
114         V4L2_DV_BT_DMT_1920X1200P85,
115         V4L2_DV_BT_DMT_1920X1200P120_RB,
116         V4L2_DV_BT_DMT_1920X1440P60,
117         V4L2_DV_BT_DMT_1920X1440P75,
118         V4L2_DV_BT_DMT_1920X1440P120_RB,
119         V4L2_DV_BT_DMT_2048X1152P60_RB,
120         V4L2_DV_BT_DMT_2560X1600P60_RB,
121         V4L2_DV_BT_DMT_2560X1600P60,
122         V4L2_DV_BT_DMT_2560X1600P75,
123         V4L2_DV_BT_DMT_2560X1600P85,
124         V4L2_DV_BT_DMT_2560X1600P120_RB,
125         V4L2_DV_BT_CEA_3840X2160P24,
126         V4L2_DV_BT_CEA_3840X2160P25,
127         V4L2_DV_BT_CEA_3840X2160P30,
128         V4L2_DV_BT_CEA_3840X2160P50,
129         V4L2_DV_BT_CEA_3840X2160P60,
130         V4L2_DV_BT_CEA_4096X2160P24,
131         V4L2_DV_BT_CEA_4096X2160P25,
132         V4L2_DV_BT_CEA_4096X2160P30,
133         V4L2_DV_BT_CEA_4096X2160P50,
134         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135         V4L2_DV_BT_CEA_4096X2160P60,
136         { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141                            const struct v4l2_dv_timings_cap *dvcap,
142                            v4l2_check_dv_timings_fnc fnc,
143                            void *fnc_handle)
144 {
145         const struct v4l2_bt_timings *bt = &t->bt;
146         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147         u32 caps = cap->capabilities;
148
149         if (t->type != V4L2_DV_BT_656_1120)
150                 return false;
151         if (t->type != dvcap->type ||
152             bt->height < cap->min_height ||
153             bt->height > cap->max_height ||
154             bt->width < cap->min_width ||
155             bt->width > cap->max_width ||
156             bt->pixelclock < cap->min_pixelclock ||
157             bt->pixelclock > cap->max_pixelclock ||
158             (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
159              cap->standards && bt->standards &&
160              !(bt->standards & cap->standards)) ||
161             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
162             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
163                 return false;
164
165         /* sanity checks for the blanking timings */
166         if (!bt->interlaced &&
167             (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
168                 return false;
169         if (bt->hfrontporch > 2 * bt->width ||
170             bt->hsync > 1024 || bt->hbackporch > 1024)
171                 return false;
172         if (bt->vfrontporch > 4096 ||
173             bt->vsync > 128 || bt->vbackporch > 4096)
174                 return false;
175         if (bt->interlaced && (bt->il_vfrontporch > 4096 ||
176             bt->il_vsync > 128 || bt->il_vbackporch > 4096))
177                 return false;
178         return fnc == NULL || fnc(t, fnc_handle);
179 }
180 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
181
182 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
183                              const struct v4l2_dv_timings_cap *cap,
184                              v4l2_check_dv_timings_fnc fnc,
185                              void *fnc_handle)
186 {
187         u32 i, idx;
188
189         memset(t->reserved, 0, sizeof(t->reserved));
190         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
191                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
192                                           fnc, fnc_handle) &&
193                     idx++ == t->index) {
194                         t->timings = v4l2_dv_timings_presets[i];
195                         return 0;
196                 }
197         }
198         return -EINVAL;
199 }
200 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
201
202 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
203                               const struct v4l2_dv_timings_cap *cap,
204                               unsigned pclock_delta,
205                               v4l2_check_dv_timings_fnc fnc,
206                               void *fnc_handle)
207 {
208         int i;
209
210         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
211                 return false;
212
213         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
214                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
215                                           fnc, fnc_handle) &&
216                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
217                                           pclock_delta, false)) {
218                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
219
220                         *t = v4l2_dv_timings_presets[i];
221                         if (can_reduce_fps(&t->bt))
222                                 t->bt.flags |= flags;
223
224                         return true;
225                 }
226         }
227         return false;
228 }
229 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
230
231 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
232 {
233         unsigned int i;
234
235         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
236                 const struct v4l2_bt_timings *bt =
237                         &v4l2_dv_timings_presets[i].bt;
238
239                 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
240                     bt->cea861_vic == vic) {
241                         *t = v4l2_dv_timings_presets[i];
242                         return true;
243                 }
244         }
245         return false;
246 }
247 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
248
249 /**
250  * v4l2_match_dv_timings - check if two timings match
251  * @t1: compare this v4l2_dv_timings struct...
252  * @t2: with this struct.
253  * @pclock_delta: the allowed pixelclock deviation.
254  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
255  *      match.
256  *
257  * Compare t1 with t2 with a given margin of error for the pixelclock.
258  */
259 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
260                            const struct v4l2_dv_timings *t2,
261                            unsigned pclock_delta, bool match_reduced_fps)
262 {
263         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
264                 return false;
265         if (t1->bt.width == t2->bt.width &&
266             t1->bt.height == t2->bt.height &&
267             t1->bt.interlaced == t2->bt.interlaced &&
268             t1->bt.polarities == t2->bt.polarities &&
269             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
270             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
271             t1->bt.hfrontporch == t2->bt.hfrontporch &&
272             t1->bt.hsync == t2->bt.hsync &&
273             t1->bt.hbackporch == t2->bt.hbackporch &&
274             t1->bt.vfrontporch == t2->bt.vfrontporch &&
275             t1->bt.vsync == t2->bt.vsync &&
276             t1->bt.vbackporch == t2->bt.vbackporch &&
277             (!match_reduced_fps ||
278              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
279                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
280             (!t1->bt.interlaced ||
281                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
282                  t1->bt.il_vsync == t2->bt.il_vsync &&
283                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
284                 return true;
285         return false;
286 }
287 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
288
289 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
290                            const struct v4l2_dv_timings *t, bool detailed)
291 {
292         const struct v4l2_bt_timings *bt = &t->bt;
293         u32 htot, vtot;
294         u32 fps;
295
296         if (t->type != V4L2_DV_BT_656_1120)
297                 return;
298
299         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
300         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
301         if (bt->interlaced)
302                 vtot /= 2;
303
304         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
305                                   (htot * vtot)) : 0;
306
307         if (prefix == NULL)
308                 prefix = "";
309
310         pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
311                 bt->width, bt->height, bt->interlaced ? "i" : "p",
312                 fps / 100, fps % 100, htot, vtot);
313
314         if (!detailed)
315                 return;
316
317         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
318                         dev_prefix, bt->hfrontporch,
319                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
320                         bt->hsync, bt->hbackporch);
321         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
322                         dev_prefix, bt->vfrontporch,
323                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
324                         bt->vsync, bt->vbackporch);
325         if (bt->interlaced)
326                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
327                         dev_prefix, bt->il_vfrontporch,
328                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
329                         bt->il_vsync, bt->il_vbackporch);
330         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
331         pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
332                         dev_prefix, bt->flags,
333                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
334                         " REDUCED_BLANKING" : "",
335                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
336                          bt->vsync == 8) ? " (V2)" : "",
337                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
338                         " CAN_REDUCE_FPS" : "",
339                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
340                         " REDUCED_FPS" : "",
341                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
342                         " HALF_LINE" : "",
343                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
344                         " CE_VIDEO" : "",
345                         (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
346                         " FIRST_FIELD_EXTRA_LINE" : "",
347                         (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
348                         " HAS_PICTURE_ASPECT" : "",
349                         (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
350                         " HAS_CEA861_VIC" : "",
351                         (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
352                         " HAS_HDMI_VIC" : "");
353         pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
354                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
355                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
356                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
357                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
358                         (bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
359         if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
360                 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
361                         bt->picture_aspect.numerator,
362                         bt->picture_aspect.denominator);
363         if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
364                 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
365         if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
366                 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
367 }
368 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
369
370 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
371 {
372         struct v4l2_fract ratio = { 1, 1 };
373         unsigned long n, d;
374
375         if (t->type != V4L2_DV_BT_656_1120)
376                 return ratio;
377         if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
378                 return ratio;
379
380         ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
381         ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
382
383         rational_best_approximation(ratio.numerator, ratio.denominator,
384                                     ratio.numerator, ratio.denominator, &n, &d);
385         ratio.numerator = n;
386         ratio.denominator = d;
387         return ratio;
388 }
389 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
390
391 /*
392  * CVT defines
393  * Based on Coordinated Video Timings Standard
394  * version 1.1 September 10, 2003
395  */
396
397 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
398 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
399
400 /* Normal blanking */
401 #define CVT_MIN_V_BPORCH        7       /* lines */
402 #define CVT_MIN_V_PORCH_RND     3       /* lines */
403 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
404 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
405
406 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
407 #define CVT_CELL_GRAN           8       /* character cell granularity */
408 #define CVT_M                   600     /* blanking formula gradient */
409 #define CVT_C                   40      /* blanking formula offset */
410 #define CVT_K                   128     /* blanking formula scaling factor */
411 #define CVT_J                   20      /* blanking formula scaling factor */
412 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
413 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
414
415 /* Reduced Blanking */
416 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
417 #define CVT_RB_V_FPORCH        3       /* lines  */
418 #define CVT_RB_MIN_V_BLANK   460       /* us     */
419 #define CVT_RB_H_SYNC         32       /* pixels */
420 #define CVT_RB_H_BLANK       160       /* pixels */
421 /* Reduce blanking Version 2 */
422 #define CVT_RB_V2_H_BLANK     80       /* pixels */
423 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
424 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
425 #define CVT_RB_V_BPORCH        6       /* lines  */
426
427 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
428  * @frame_height - the total height of the frame (including blanking) in lines.
429  * @hfreq - the horizontal frequency in Hz.
430  * @vsync - the height of the vertical sync in lines.
431  * @active_width - active width of image (does not include blanking). This
432  * information is needed only in case of version 2 of reduced blanking.
433  * In other cases, this parameter does not have any effect on timings.
434  * @polarities - the horizontal and vertical polarities (same as struct
435  *              v4l2_bt_timings polarities).
436  * @interlaced - if this flag is true, it indicates interlaced format
437  * @fmt - the resulting timings.
438  *
439  * This function will attempt to detect if the given values correspond to a
440  * valid CVT format. If so, then it will return true, and fmt will be filled
441  * in with the found CVT timings.
442  */
443 bool v4l2_detect_cvt(unsigned frame_height,
444                      unsigned hfreq,
445                      unsigned vsync,
446                      unsigned active_width,
447                      u32 polarities,
448                      bool interlaced,
449                      struct v4l2_dv_timings *fmt)
450 {
451         int  v_fp, v_bp, h_fp, h_bp, hsync;
452         int  frame_width, image_height, image_width;
453         bool reduced_blanking;
454         bool rb_v2 = false;
455         unsigned pix_clk;
456
457         if (vsync < 4 || vsync > 8)
458                 return false;
459
460         if (polarities == V4L2_DV_VSYNC_POS_POL)
461                 reduced_blanking = false;
462         else if (polarities == V4L2_DV_HSYNC_POS_POL)
463                 reduced_blanking = true;
464         else
465                 return false;
466
467         if (reduced_blanking && vsync == 8)
468                 rb_v2 = true;
469
470         if (rb_v2 && active_width == 0)
471                 return false;
472
473         if (!rb_v2 && vsync > 7)
474                 return false;
475
476         if (hfreq == 0)
477                 return false;
478
479         /* Vertical */
480         if (reduced_blanking) {
481                 if (rb_v2) {
482                         v_bp = CVT_RB_V_BPORCH;
483                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
484                         v_fp -= vsync + v_bp;
485
486                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
487                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
488                 } else {
489                         v_fp = CVT_RB_V_FPORCH;
490                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
491                         v_bp -= vsync + v_fp;
492
493                         if (v_bp < CVT_RB_MIN_V_BPORCH)
494                                 v_bp = CVT_RB_MIN_V_BPORCH;
495                 }
496         } else {
497                 v_fp = CVT_MIN_V_PORCH_RND;
498                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
499
500                 if (v_bp < CVT_MIN_V_BPORCH)
501                         v_bp = CVT_MIN_V_BPORCH;
502         }
503
504         if (interlaced)
505                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
506         else
507                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
508
509         if (image_height < 0)
510                 return false;
511
512         /* Aspect ratio based on vsync */
513         switch (vsync) {
514         case 4:
515                 image_width = (image_height * 4) / 3;
516                 break;
517         case 5:
518                 image_width = (image_height * 16) / 9;
519                 break;
520         case 6:
521                 image_width = (image_height * 16) / 10;
522                 break;
523         case 7:
524                 /* special case */
525                 if (image_height == 1024)
526                         image_width = (image_height * 5) / 4;
527                 else if (image_height == 768)
528                         image_width = (image_height * 15) / 9;
529                 else
530                         return false;
531                 break;
532         case 8:
533                 image_width = active_width;
534                 break;
535         default:
536                 return false;
537         }
538
539         if (!rb_v2)
540                 image_width = image_width & ~7;
541
542         /* Horizontal */
543         if (reduced_blanking) {
544                 int h_blank;
545                 int clk_gran;
546
547                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
548                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
549
550                 pix_clk = (image_width + h_blank) * hfreq;
551                 pix_clk = (pix_clk / clk_gran) * clk_gran;
552
553                 h_bp  = h_blank / 2;
554                 hsync = CVT_RB_H_SYNC;
555                 h_fp  = h_blank - h_bp - hsync;
556
557                 frame_width = image_width + h_blank;
558         } else {
559                 unsigned ideal_duty_cycle_per_myriad =
560                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
561                 int h_blank;
562
563                 if (ideal_duty_cycle_per_myriad < 2000)
564                         ideal_duty_cycle_per_myriad = 2000;
565
566                 h_blank = image_width * ideal_duty_cycle_per_myriad /
567                                         (10000 - ideal_duty_cycle_per_myriad);
568                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
569
570                 pix_clk = (image_width + h_blank) * hfreq;
571                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
572
573                 h_bp = h_blank / 2;
574                 frame_width = image_width + h_blank;
575
576                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
577                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
578                 h_fp = h_blank - hsync - h_bp;
579         }
580
581         fmt->type = V4L2_DV_BT_656_1120;
582         fmt->bt.polarities = polarities;
583         fmt->bt.width = image_width;
584         fmt->bt.height = image_height;
585         fmt->bt.hfrontporch = h_fp;
586         fmt->bt.vfrontporch = v_fp;
587         fmt->bt.hsync = hsync;
588         fmt->bt.vsync = vsync;
589         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
590
591         if (!interlaced) {
592                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
593                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
594         } else {
595                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
596                                       2 * vsync) / 2;
597                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
598                                         2 * vsync - fmt->bt.vbackporch;
599                 fmt->bt.il_vfrontporch = v_fp;
600                 fmt->bt.il_vsync = vsync;
601                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
602                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
603         }
604
605         fmt->bt.pixelclock = pix_clk;
606         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
607
608         if (reduced_blanking)
609                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
610
611         return true;
612 }
613 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
614
615 /*
616  * GTF defines
617  * Based on Generalized Timing Formula Standard
618  * Version 1.1 September 2, 1999
619  */
620
621 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
622
623 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
624 #define GTF_V_FP                1       /* vertical front porch (lines) */
625 #define GTF_CELL_GRAN           8       /* character cell granularity */
626
627 /* Default */
628 #define GTF_D_M                 600     /* blanking formula gradient */
629 #define GTF_D_C                 40      /* blanking formula offset */
630 #define GTF_D_K                 128     /* blanking formula scaling factor */
631 #define GTF_D_J                 20      /* blanking formula scaling factor */
632 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
633 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
634
635 /* Secondary */
636 #define GTF_S_M                 3600    /* blanking formula gradient */
637 #define GTF_S_C                 40      /* blanking formula offset */
638 #define GTF_S_K                 128     /* blanking formula scaling factor */
639 #define GTF_S_J                 35      /* blanking formula scaling factor */
640 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
641 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
642
643 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
644  * @frame_height - the total height of the frame (including blanking) in lines.
645  * @hfreq - the horizontal frequency in Hz.
646  * @vsync - the height of the vertical sync in lines.
647  * @polarities - the horizontal and vertical polarities (same as struct
648  *              v4l2_bt_timings polarities).
649  * @interlaced - if this flag is true, it indicates interlaced format
650  * @aspect - preferred aspect ratio. GTF has no method of determining the
651  *              aspect ratio in order to derive the image width from the
652  *              image height, so it has to be passed explicitly. Usually
653  *              the native screen aspect ratio is used for this. If it
654  *              is not filled in correctly, then 16:9 will be assumed.
655  * @fmt - the resulting timings.
656  *
657  * This function will attempt to detect if the given values correspond to a
658  * valid GTF format. If so, then it will return true, and fmt will be filled
659  * in with the found GTF timings.
660  */
661 bool v4l2_detect_gtf(unsigned frame_height,
662                 unsigned hfreq,
663                 unsigned vsync,
664                 u32 polarities,
665                 bool interlaced,
666                 struct v4l2_fract aspect,
667                 struct v4l2_dv_timings *fmt)
668 {
669         int pix_clk;
670         int  v_fp, v_bp, h_fp, hsync;
671         int frame_width, image_height, image_width;
672         bool default_gtf;
673         int h_blank;
674
675         if (vsync != 3)
676                 return false;
677
678         if (polarities == V4L2_DV_VSYNC_POS_POL)
679                 default_gtf = true;
680         else if (polarities == V4L2_DV_HSYNC_POS_POL)
681                 default_gtf = false;
682         else
683                 return false;
684
685         if (hfreq == 0)
686                 return false;
687
688         /* Vertical */
689         v_fp = GTF_V_FP;
690         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
691         if (interlaced)
692                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
693         else
694                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
695
696         if (image_height < 0)
697                 return false;
698
699         if (aspect.numerator == 0 || aspect.denominator == 0) {
700                 aspect.numerator = 16;
701                 aspect.denominator = 9;
702         }
703         image_width = ((image_height * aspect.numerator) / aspect.denominator);
704         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
705
706         /* Horizontal */
707         if (default_gtf) {
708                 u64 num;
709                 u32 den;
710
711                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
712                       ((u64)image_width * GTF_D_M_PRIME * 1000));
713                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
714                       (2 * GTF_CELL_GRAN);
715                 h_blank = div_u64((num + (den >> 1)), den);
716                 h_blank *= (2 * GTF_CELL_GRAN);
717         } else {
718                 u64 num;
719                 u32 den;
720
721                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
722                       ((u64)image_width * GTF_S_M_PRIME * 1000));
723                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
724                       (2 * GTF_CELL_GRAN);
725                 h_blank = div_u64((num + (den >> 1)), den);
726                 h_blank *= (2 * GTF_CELL_GRAN);
727         }
728
729         frame_width = image_width + h_blank;
730
731         pix_clk = (image_width + h_blank) * hfreq;
732         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
733
734         hsync = (frame_width * 8 + 50) / 100;
735         hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
736
737         h_fp = h_blank / 2 - hsync;
738
739         fmt->type = V4L2_DV_BT_656_1120;
740         fmt->bt.polarities = polarities;
741         fmt->bt.width = image_width;
742         fmt->bt.height = image_height;
743         fmt->bt.hfrontporch = h_fp;
744         fmt->bt.vfrontporch = v_fp;
745         fmt->bt.hsync = hsync;
746         fmt->bt.vsync = vsync;
747         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
748
749         if (!interlaced) {
750                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
751                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
752         } else {
753                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
754                                       2 * vsync) / 2;
755                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
756                                         2 * vsync - fmt->bt.vbackporch;
757                 fmt->bt.il_vfrontporch = v_fp;
758                 fmt->bt.il_vsync = vsync;
759                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
760                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
761         }
762
763         fmt->bt.pixelclock = pix_clk;
764         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
765
766         if (!default_gtf)
767                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
768
769         return true;
770 }
771 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
772
773 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
774  *      0x15 and 0x16 from the EDID.
775  * @hor_landscape - byte 0x15 from the EDID.
776  * @vert_portrait - byte 0x16 from the EDID.
777  *
778  * Determines the aspect ratio from the EDID.
779  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
780  * "Horizontal and Vertical Screen Size or Aspect Ratio"
781  */
782 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
783 {
784         struct v4l2_fract aspect = { 16, 9 };
785         u8 ratio;
786
787         /* Nothing filled in, fallback to 16:9 */
788         if (!hor_landscape && !vert_portrait)
789                 return aspect;
790         /* Both filled in, so they are interpreted as the screen size in cm */
791         if (hor_landscape && vert_portrait) {
792                 aspect.numerator = hor_landscape;
793                 aspect.denominator = vert_portrait;
794                 return aspect;
795         }
796         /* Only one is filled in, so interpret them as a ratio:
797            (val + 99) / 100 */
798         ratio = hor_landscape | vert_portrait;
799         /* Change some rounded values into the exact aspect ratio */
800         if (ratio == 79) {
801                 aspect.numerator = 16;
802                 aspect.denominator = 9;
803         } else if (ratio == 34) {
804                 aspect.numerator = 4;
805                 aspect.denominator = 3;
806         } else if (ratio == 68) {
807                 aspect.numerator = 15;
808                 aspect.denominator = 9;
809         } else {
810                 aspect.numerator = hor_landscape + 99;
811                 aspect.denominator = 100;
812         }
813         if (hor_landscape)
814                 return aspect;
815         /* The aspect ratio is for portrait, so swap numerator and denominator */
816         swap(aspect.denominator, aspect.numerator);
817         return aspect;
818 }
819 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
820
821 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
822  *      based on various InfoFrames.
823  * @avi: the AVI InfoFrame
824  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
825  * @height: the frame height
826  *
827  * Determines the HDMI colorimetry information, i.e. how the HDMI
828  * pixel color data should be interpreted.
829  *
830  * Note that some of the newer features (DCI-P3, HDR) are not yet
831  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
832  * and CTA-861-G standards.
833  */
834 struct v4l2_hdmi_colorimetry
835 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
836                          const struct hdmi_vendor_infoframe *hdmi,
837                          unsigned int height)
838 {
839         struct v4l2_hdmi_colorimetry c = {
840                 V4L2_COLORSPACE_SRGB,
841                 V4L2_YCBCR_ENC_DEFAULT,
842                 V4L2_QUANTIZATION_FULL_RANGE,
843                 V4L2_XFER_FUNC_SRGB
844         };
845         bool is_ce = avi->video_code || (hdmi && hdmi->vic);
846         bool is_sdtv = height <= 576;
847         bool default_is_lim_range_rgb = avi->video_code > 1;
848
849         switch (avi->colorspace) {
850         case HDMI_COLORSPACE_RGB:
851                 /* RGB pixel encoding */
852                 switch (avi->colorimetry) {
853                 case HDMI_COLORIMETRY_EXTENDED:
854                         switch (avi->extended_colorimetry) {
855                         case HDMI_EXTENDED_COLORIMETRY_OPRGB:
856                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
857                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
858                                 break;
859                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
860                                 c.colorspace = V4L2_COLORSPACE_BT2020;
861                                 c.xfer_func = V4L2_XFER_FUNC_709;
862                                 break;
863                         default:
864                                 break;
865                         }
866                         break;
867                 default:
868                         break;
869                 }
870                 switch (avi->quantization_range) {
871                 case HDMI_QUANTIZATION_RANGE_LIMITED:
872                         c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
873                         break;
874                 case HDMI_QUANTIZATION_RANGE_FULL:
875                         break;
876                 default:
877                         if (default_is_lim_range_rgb)
878                                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
879                         break;
880                 }
881                 break;
882
883         default:
884                 /* YCbCr pixel encoding */
885                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
886                 switch (avi->colorimetry) {
887                 case HDMI_COLORIMETRY_NONE:
888                         if (!is_ce)
889                                 break;
890                         if (is_sdtv) {
891                                 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
892                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
893                         } else {
894                                 c.colorspace = V4L2_COLORSPACE_REC709;
895                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
896                         }
897                         c.xfer_func = V4L2_XFER_FUNC_709;
898                         break;
899                 case HDMI_COLORIMETRY_ITU_601:
900                         c.colorspace = V4L2_COLORSPACE_SMPTE170M;
901                         c.ycbcr_enc = V4L2_YCBCR_ENC_601;
902                         c.xfer_func = V4L2_XFER_FUNC_709;
903                         break;
904                 case HDMI_COLORIMETRY_ITU_709:
905                         c.colorspace = V4L2_COLORSPACE_REC709;
906                         c.ycbcr_enc = V4L2_YCBCR_ENC_709;
907                         c.xfer_func = V4L2_XFER_FUNC_709;
908                         break;
909                 case HDMI_COLORIMETRY_EXTENDED:
910                         switch (avi->extended_colorimetry) {
911                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
912                                 c.colorspace = V4L2_COLORSPACE_REC709;
913                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
914                                 c.xfer_func = V4L2_XFER_FUNC_709;
915                                 break;
916                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
917                                 c.colorspace = V4L2_COLORSPACE_REC709;
918                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
919                                 c.xfer_func = V4L2_XFER_FUNC_709;
920                                 break;
921                         case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
922                                 c.colorspace = V4L2_COLORSPACE_SRGB;
923                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
924                                 c.xfer_func = V4L2_XFER_FUNC_SRGB;
925                                 break;
926                         case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
927                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
928                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
929                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
930                                 break;
931                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
932                                 c.colorspace = V4L2_COLORSPACE_BT2020;
933                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
934                                 c.xfer_func = V4L2_XFER_FUNC_709;
935                                 break;
936                         case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
937                                 c.colorspace = V4L2_COLORSPACE_BT2020;
938                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
939                                 c.xfer_func = V4L2_XFER_FUNC_709;
940                                 break;
941                         default: /* fall back to ITU_709 */
942                                 c.colorspace = V4L2_COLORSPACE_REC709;
943                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
944                                 c.xfer_func = V4L2_XFER_FUNC_709;
945                                 break;
946                         }
947                         break;
948                 default:
949                         break;
950                 }
951                 /*
952                  * YCC Quantization Range signaling is more-or-less broken,
953                  * let's just ignore this.
954                  */
955                 break;
956         }
957         return c;
958 }
959 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
960
961 /**
962  * v4l2_get_edid_phys_addr() - find and return the physical address
963  *
964  * @edid:       pointer to the EDID data
965  * @size:       size in bytes of the EDID data
966  * @offset:     If not %NULL then the location of the physical address
967  *              bytes in the EDID will be returned here. This is set to 0
968  *              if there is no physical address found.
969  *
970  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
971  */
972 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
973                             unsigned int *offset)
974 {
975         unsigned int loc = cec_get_edid_spa_location(edid, size);
976
977         if (offset)
978                 *offset = loc;
979         if (loc == 0)
980                 return CEC_PHYS_ADDR_INVALID;
981         return (edid[loc] << 8) | edid[loc + 1];
982 }
983 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
984
985 /**
986  * v4l2_set_edid_phys_addr() - find and set the physical address
987  *
988  * @edid:       pointer to the EDID data
989  * @size:       size in bytes of the EDID data
990  * @phys_addr:  the new physical address
991  *
992  * This function finds the location of the physical address in the EDID
993  * and fills in the given physical address and updates the checksum
994  * at the end of the EDID block. It does nothing if the EDID doesn't
995  * contain a physical address.
996  */
997 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
998 {
999         unsigned int loc = cec_get_edid_spa_location(edid, size);
1000         u8 sum = 0;
1001         unsigned int i;
1002
1003         if (loc == 0)
1004                 return;
1005         edid[loc] = phys_addr >> 8;
1006         edid[loc + 1] = phys_addr & 0xff;
1007         loc &= ~0x7f;
1008
1009         /* update the checksum */
1010         for (i = loc; i < loc + 127; i++)
1011                 sum += edid[i];
1012         edid[i] = 256 - sum;
1013 }
1014 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1015
1016 /**
1017  * v4l2_phys_addr_for_input() - calculate the PA for an input
1018  *
1019  * @phys_addr:  the physical address of the parent
1020  * @input:      the number of the input port, must be between 1 and 15
1021  *
1022  * This function calculates a new physical address based on the input
1023  * port number. For example:
1024  *
1025  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1026  *
1027  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1028  *
1029  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1030  *
1031  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1032  *
1033  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1034  */
1035 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1036 {
1037         /* Check if input is sane */
1038         if (WARN_ON(input == 0 || input > 0xf))
1039                 return CEC_PHYS_ADDR_INVALID;
1040
1041         if (phys_addr == 0)
1042                 return input << 12;
1043
1044         if ((phys_addr & 0x0fff) == 0)
1045                 return phys_addr | (input << 8);
1046
1047         if ((phys_addr & 0x00ff) == 0)
1048                 return phys_addr | (input << 4);
1049
1050         if ((phys_addr & 0x000f) == 0)
1051                 return phys_addr | input;
1052
1053         /*
1054          * All nibbles are used so no valid physical addresses can be assigned
1055          * to the input.
1056          */
1057         return CEC_PHYS_ADDR_INVALID;
1058 }
1059 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1060
1061 /**
1062  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1063  *
1064  * @phys_addr:  the physical address to validate
1065  * @parent:     if not %NULL, then this is filled with the parents PA.
1066  * @port:       if not %NULL, then this is filled with the input port.
1067  *
1068  * This validates a physical address as read from an EDID. If the
1069  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1070  * then it will return -EINVAL.
1071  *
1072  * The parent PA is passed into %parent and the input port is passed into
1073  * %port. For example:
1074  *
1075  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1076  *
1077  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1078  *
1079  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1080  *
1081  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1082  *
1083  * Return: 0 if the PA is valid, -EINVAL if not.
1084  */
1085 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1086 {
1087         int i;
1088
1089         if (parent)
1090                 *parent = phys_addr;
1091         if (port)
1092                 *port = 0;
1093         if (phys_addr == CEC_PHYS_ADDR_INVALID)
1094                 return 0;
1095         for (i = 0; i < 16; i += 4)
1096                 if (phys_addr & (0xf << i))
1097                         break;
1098         if (i == 16)
1099                 return 0;
1100         if (parent)
1101                 *parent = phys_addr & (0xfff0 << i);
1102         if (port)
1103                 *port = (phys_addr >> i) & 0xf;
1104         for (i += 4; i < 16; i += 4)
1105                 if ((phys_addr & (0xf << i)) == 0)
1106                         return -EINVAL;
1107         return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);