GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25         V4L2_DV_BT_CEA_640X480P59_94,
26         V4L2_DV_BT_CEA_720X480I59_94,
27         V4L2_DV_BT_CEA_720X480P59_94,
28         V4L2_DV_BT_CEA_720X576I50,
29         V4L2_DV_BT_CEA_720X576P50,
30         V4L2_DV_BT_CEA_1280X720P24,
31         V4L2_DV_BT_CEA_1280X720P25,
32         V4L2_DV_BT_CEA_1280X720P30,
33         V4L2_DV_BT_CEA_1280X720P50,
34         V4L2_DV_BT_CEA_1280X720P60,
35         V4L2_DV_BT_CEA_1920X1080P24,
36         V4L2_DV_BT_CEA_1920X1080P25,
37         V4L2_DV_BT_CEA_1920X1080P30,
38         V4L2_DV_BT_CEA_1920X1080I50,
39         V4L2_DV_BT_CEA_1920X1080P50,
40         V4L2_DV_BT_CEA_1920X1080I60,
41         V4L2_DV_BT_CEA_1920X1080P60,
42         V4L2_DV_BT_DMT_640X350P85,
43         V4L2_DV_BT_DMT_640X400P85,
44         V4L2_DV_BT_DMT_720X400P85,
45         V4L2_DV_BT_DMT_640X480P72,
46         V4L2_DV_BT_DMT_640X480P75,
47         V4L2_DV_BT_DMT_640X480P85,
48         V4L2_DV_BT_DMT_800X600P56,
49         V4L2_DV_BT_DMT_800X600P60,
50         V4L2_DV_BT_DMT_800X600P72,
51         V4L2_DV_BT_DMT_800X600P75,
52         V4L2_DV_BT_DMT_800X600P85,
53         V4L2_DV_BT_DMT_800X600P120_RB,
54         V4L2_DV_BT_DMT_848X480P60,
55         V4L2_DV_BT_DMT_1024X768I43,
56         V4L2_DV_BT_DMT_1024X768P60,
57         V4L2_DV_BT_DMT_1024X768P70,
58         V4L2_DV_BT_DMT_1024X768P75,
59         V4L2_DV_BT_DMT_1024X768P85,
60         V4L2_DV_BT_DMT_1024X768P120_RB,
61         V4L2_DV_BT_DMT_1152X864P75,
62         V4L2_DV_BT_DMT_1280X768P60_RB,
63         V4L2_DV_BT_DMT_1280X768P60,
64         V4L2_DV_BT_DMT_1280X768P75,
65         V4L2_DV_BT_DMT_1280X768P85,
66         V4L2_DV_BT_DMT_1280X768P120_RB,
67         V4L2_DV_BT_DMT_1280X800P60_RB,
68         V4L2_DV_BT_DMT_1280X800P60,
69         V4L2_DV_BT_DMT_1280X800P75,
70         V4L2_DV_BT_DMT_1280X800P85,
71         V4L2_DV_BT_DMT_1280X800P120_RB,
72         V4L2_DV_BT_DMT_1280X960P60,
73         V4L2_DV_BT_DMT_1280X960P85,
74         V4L2_DV_BT_DMT_1280X960P120_RB,
75         V4L2_DV_BT_DMT_1280X1024P60,
76         V4L2_DV_BT_DMT_1280X1024P75,
77         V4L2_DV_BT_DMT_1280X1024P85,
78         V4L2_DV_BT_DMT_1280X1024P120_RB,
79         V4L2_DV_BT_DMT_1360X768P60,
80         V4L2_DV_BT_DMT_1360X768P120_RB,
81         V4L2_DV_BT_DMT_1366X768P60,
82         V4L2_DV_BT_DMT_1366X768P60_RB,
83         V4L2_DV_BT_DMT_1400X1050P60_RB,
84         V4L2_DV_BT_DMT_1400X1050P60,
85         V4L2_DV_BT_DMT_1400X1050P75,
86         V4L2_DV_BT_DMT_1400X1050P85,
87         V4L2_DV_BT_DMT_1400X1050P120_RB,
88         V4L2_DV_BT_DMT_1440X900P60_RB,
89         V4L2_DV_BT_DMT_1440X900P60,
90         V4L2_DV_BT_DMT_1440X900P75,
91         V4L2_DV_BT_DMT_1440X900P85,
92         V4L2_DV_BT_DMT_1440X900P120_RB,
93         V4L2_DV_BT_DMT_1600X900P60_RB,
94         V4L2_DV_BT_DMT_1600X1200P60,
95         V4L2_DV_BT_DMT_1600X1200P65,
96         V4L2_DV_BT_DMT_1600X1200P70,
97         V4L2_DV_BT_DMT_1600X1200P75,
98         V4L2_DV_BT_DMT_1600X1200P85,
99         V4L2_DV_BT_DMT_1600X1200P120_RB,
100         V4L2_DV_BT_DMT_1680X1050P60_RB,
101         V4L2_DV_BT_DMT_1680X1050P60,
102         V4L2_DV_BT_DMT_1680X1050P75,
103         V4L2_DV_BT_DMT_1680X1050P85,
104         V4L2_DV_BT_DMT_1680X1050P120_RB,
105         V4L2_DV_BT_DMT_1792X1344P60,
106         V4L2_DV_BT_DMT_1792X1344P75,
107         V4L2_DV_BT_DMT_1792X1344P120_RB,
108         V4L2_DV_BT_DMT_1856X1392P60,
109         V4L2_DV_BT_DMT_1856X1392P75,
110         V4L2_DV_BT_DMT_1856X1392P120_RB,
111         V4L2_DV_BT_DMT_1920X1200P60_RB,
112         V4L2_DV_BT_DMT_1920X1200P60,
113         V4L2_DV_BT_DMT_1920X1200P75,
114         V4L2_DV_BT_DMT_1920X1200P85,
115         V4L2_DV_BT_DMT_1920X1200P120_RB,
116         V4L2_DV_BT_DMT_1920X1440P60,
117         V4L2_DV_BT_DMT_1920X1440P75,
118         V4L2_DV_BT_DMT_1920X1440P120_RB,
119         V4L2_DV_BT_DMT_2048X1152P60_RB,
120         V4L2_DV_BT_DMT_2560X1600P60_RB,
121         V4L2_DV_BT_DMT_2560X1600P60,
122         V4L2_DV_BT_DMT_2560X1600P75,
123         V4L2_DV_BT_DMT_2560X1600P85,
124         V4L2_DV_BT_DMT_2560X1600P120_RB,
125         V4L2_DV_BT_CEA_3840X2160P24,
126         V4L2_DV_BT_CEA_3840X2160P25,
127         V4L2_DV_BT_CEA_3840X2160P30,
128         V4L2_DV_BT_CEA_3840X2160P50,
129         V4L2_DV_BT_CEA_3840X2160P60,
130         V4L2_DV_BT_CEA_4096X2160P24,
131         V4L2_DV_BT_CEA_4096X2160P25,
132         V4L2_DV_BT_CEA_4096X2160P30,
133         V4L2_DV_BT_CEA_4096X2160P50,
134         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135         V4L2_DV_BT_CEA_4096X2160P60,
136         { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141                            const struct v4l2_dv_timings_cap *dvcap,
142                            v4l2_check_dv_timings_fnc fnc,
143                            void *fnc_handle)
144 {
145         const struct v4l2_bt_timings *bt = &t->bt;
146         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147         u32 caps = cap->capabilities;
148
149         if (t->type != V4L2_DV_BT_656_1120)
150                 return false;
151         if (t->type != dvcap->type ||
152             bt->height < cap->min_height ||
153             bt->height > cap->max_height ||
154             bt->width < cap->min_width ||
155             bt->width > cap->max_width ||
156             bt->pixelclock < cap->min_pixelclock ||
157             bt->pixelclock > cap->max_pixelclock ||
158             (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
159              cap->standards && bt->standards &&
160              !(bt->standards & cap->standards)) ||
161             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
162             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
163                 return false;
164
165         /* sanity checks for the blanking timings */
166         if (!bt->interlaced &&
167             (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
168                 return false;
169         if (bt->hfrontporch > 2 * bt->width ||
170             bt->hsync > 1024 || bt->hbackporch > 1024)
171                 return false;
172         if (bt->vfrontporch > 4096 ||
173             bt->vsync > 128 || bt->vbackporch > 4096)
174                 return false;
175         if (bt->interlaced && (bt->il_vfrontporch > 4096 ||
176             bt->il_vsync > 128 || bt->il_vbackporch > 4096))
177                 return false;
178         return fnc == NULL || fnc(t, fnc_handle);
179 }
180 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
181
182 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
183                              const struct v4l2_dv_timings_cap *cap,
184                              v4l2_check_dv_timings_fnc fnc,
185                              void *fnc_handle)
186 {
187         u32 i, idx;
188
189         memset(t->reserved, 0, sizeof(t->reserved));
190         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
191                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
192                                           fnc, fnc_handle) &&
193                     idx++ == t->index) {
194                         t->timings = v4l2_dv_timings_presets[i];
195                         return 0;
196                 }
197         }
198         return -EINVAL;
199 }
200 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
201
202 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
203                               const struct v4l2_dv_timings_cap *cap,
204                               unsigned pclock_delta,
205                               v4l2_check_dv_timings_fnc fnc,
206                               void *fnc_handle)
207 {
208         int i;
209
210         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
211                 return false;
212
213         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
214                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
215                                           fnc, fnc_handle) &&
216                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
217                                           pclock_delta, false)) {
218                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
219
220                         *t = v4l2_dv_timings_presets[i];
221                         if (can_reduce_fps(&t->bt))
222                                 t->bt.flags |= flags;
223
224                         return true;
225                 }
226         }
227         return false;
228 }
229 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
230
231 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
232 {
233         unsigned int i;
234
235         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
236                 const struct v4l2_bt_timings *bt =
237                         &v4l2_dv_timings_presets[i].bt;
238
239                 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
240                     bt->cea861_vic == vic) {
241                         *t = v4l2_dv_timings_presets[i];
242                         return true;
243                 }
244         }
245         return false;
246 }
247 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
248
249 /**
250  * v4l2_match_dv_timings - check if two timings match
251  * @t1: compare this v4l2_dv_timings struct...
252  * @t2: with this struct.
253  * @pclock_delta: the allowed pixelclock deviation.
254  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
255  *      match.
256  *
257  * Compare t1 with t2 with a given margin of error for the pixelclock.
258  */
259 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
260                            const struct v4l2_dv_timings *t2,
261                            unsigned pclock_delta, bool match_reduced_fps)
262 {
263         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
264                 return false;
265         if (t1->bt.width == t2->bt.width &&
266             t1->bt.height == t2->bt.height &&
267             t1->bt.interlaced == t2->bt.interlaced &&
268             t1->bt.polarities == t2->bt.polarities &&
269             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
270             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
271             t1->bt.hfrontporch == t2->bt.hfrontporch &&
272             t1->bt.hsync == t2->bt.hsync &&
273             t1->bt.hbackporch == t2->bt.hbackporch &&
274             t1->bt.vfrontporch == t2->bt.vfrontporch &&
275             t1->bt.vsync == t2->bt.vsync &&
276             t1->bt.vbackporch == t2->bt.vbackporch &&
277             (!match_reduced_fps ||
278              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
279                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
280             (!t1->bt.interlaced ||
281                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
282                  t1->bt.il_vsync == t2->bt.il_vsync &&
283                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
284                 return true;
285         return false;
286 }
287 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
288
289 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
290                            const struct v4l2_dv_timings *t, bool detailed)
291 {
292         const struct v4l2_bt_timings *bt = &t->bt;
293         u32 htot, vtot;
294         u32 fps;
295
296         if (t->type != V4L2_DV_BT_656_1120)
297                 return;
298
299         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
300         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
301         if (bt->interlaced)
302                 vtot /= 2;
303
304         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
305                                   (htot * vtot)) : 0;
306
307         if (prefix == NULL)
308                 prefix = "";
309
310         pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
311                 bt->width, bt->height, bt->interlaced ? "i" : "p",
312                 fps / 100, fps % 100, htot, vtot);
313
314         if (!detailed)
315                 return;
316
317         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
318                         dev_prefix, bt->hfrontporch,
319                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
320                         bt->hsync, bt->hbackporch);
321         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
322                         dev_prefix, bt->vfrontporch,
323                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
324                         bt->vsync, bt->vbackporch);
325         if (bt->interlaced)
326                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
327                         dev_prefix, bt->il_vfrontporch,
328                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
329                         bt->il_vsync, bt->il_vbackporch);
330         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
331         pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
332                         dev_prefix, bt->flags,
333                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
334                         " REDUCED_BLANKING" : "",
335                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
336                          bt->vsync == 8) ? " (V2)" : "",
337                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
338                         " CAN_REDUCE_FPS" : "",
339                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
340                         " REDUCED_FPS" : "",
341                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
342                         " HALF_LINE" : "",
343                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
344                         " CE_VIDEO" : "",
345                         (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
346                         " FIRST_FIELD_EXTRA_LINE" : "",
347                         (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
348                         " HAS_PICTURE_ASPECT" : "",
349                         (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
350                         " HAS_CEA861_VIC" : "",
351                         (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
352                         " HAS_HDMI_VIC" : "");
353         pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
354                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
355                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
356                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
357                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
358                         (bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
359         if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
360                 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
361                         bt->picture_aspect.numerator,
362                         bt->picture_aspect.denominator);
363         if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
364                 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
365         if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
366                 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
367 }
368 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
369
370 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
371 {
372         struct v4l2_fract ratio = { 1, 1 };
373         unsigned long n, d;
374
375         if (t->type != V4L2_DV_BT_656_1120)
376                 return ratio;
377         if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
378                 return ratio;
379
380         ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
381         ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
382
383         rational_best_approximation(ratio.numerator, ratio.denominator,
384                                     ratio.numerator, ratio.denominator, &n, &d);
385         ratio.numerator = n;
386         ratio.denominator = d;
387         return ratio;
388 }
389 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
390
391 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
392  *      v4l2_dv_timings fields.
393  * @t - Timings for the video mode.
394  *
395  * Calculates the expected timeperframe using the pixel clock value and
396  * horizontal/vertical measures. This means that v4l2_dv_timings structure
397  * must be correctly and fully filled.
398  */
399 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
400 {
401         const struct v4l2_bt_timings *bt = &t->bt;
402         struct v4l2_fract fps_fract = { 1, 1 };
403         unsigned long n, d;
404         u32 htot, vtot, fps;
405         u64 pclk;
406
407         if (t->type != V4L2_DV_BT_656_1120)
408                 return fps_fract;
409
410         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
411         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
412         pclk = bt->pixelclock;
413
414         if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
415             (bt->flags & V4L2_DV_FL_REDUCED_FPS))
416                 pclk = div_u64(pclk * 1000ULL, 1001);
417
418         fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
419         if (!fps)
420                 return fps_fract;
421
422         rational_best_approximation(fps, 100, fps, 100, &n, &d);
423
424         fps_fract.numerator = d;
425         fps_fract.denominator = n;
426         return fps_fract;
427 }
428 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
429
430 /*
431  * CVT defines
432  * Based on Coordinated Video Timings Standard
433  * version 1.1 September 10, 2003
434  */
435
436 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
437 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
438
439 /* Normal blanking */
440 #define CVT_MIN_V_BPORCH        7       /* lines */
441 #define CVT_MIN_V_PORCH_RND     3       /* lines */
442 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
443 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
444
445 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
446 #define CVT_CELL_GRAN           8       /* character cell granularity */
447 #define CVT_M                   600     /* blanking formula gradient */
448 #define CVT_C                   40      /* blanking formula offset */
449 #define CVT_K                   128     /* blanking formula scaling factor */
450 #define CVT_J                   20      /* blanking formula scaling factor */
451 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
452 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
453
454 /* Reduced Blanking */
455 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
456 #define CVT_RB_V_FPORCH        3       /* lines  */
457 #define CVT_RB_MIN_V_BLANK   460       /* us     */
458 #define CVT_RB_H_SYNC         32       /* pixels */
459 #define CVT_RB_H_BLANK       160       /* pixels */
460 /* Reduce blanking Version 2 */
461 #define CVT_RB_V2_H_BLANK     80       /* pixels */
462 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
463 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
464 #define CVT_RB_V_BPORCH        6       /* lines  */
465
466 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
467  * @frame_height - the total height of the frame (including blanking) in lines.
468  * @hfreq - the horizontal frequency in Hz.
469  * @vsync - the height of the vertical sync in lines.
470  * @active_width - active width of image (does not include blanking). This
471  * information is needed only in case of version 2 of reduced blanking.
472  * In other cases, this parameter does not have any effect on timings.
473  * @polarities - the horizontal and vertical polarities (same as struct
474  *              v4l2_bt_timings polarities).
475  * @interlaced - if this flag is true, it indicates interlaced format
476  * @fmt - the resulting timings.
477  *
478  * This function will attempt to detect if the given values correspond to a
479  * valid CVT format. If so, then it will return true, and fmt will be filled
480  * in with the found CVT timings.
481  */
482 bool v4l2_detect_cvt(unsigned frame_height,
483                      unsigned hfreq,
484                      unsigned vsync,
485                      unsigned active_width,
486                      u32 polarities,
487                      bool interlaced,
488                      struct v4l2_dv_timings *fmt)
489 {
490         int  v_fp, v_bp, h_fp, h_bp, hsync;
491         int  frame_width, image_height, image_width;
492         bool reduced_blanking;
493         bool rb_v2 = false;
494         unsigned pix_clk;
495
496         if (vsync < 4 || vsync > 8)
497                 return false;
498
499         if (polarities == V4L2_DV_VSYNC_POS_POL)
500                 reduced_blanking = false;
501         else if (polarities == V4L2_DV_HSYNC_POS_POL)
502                 reduced_blanking = true;
503         else
504                 return false;
505
506         if (reduced_blanking && vsync == 8)
507                 rb_v2 = true;
508
509         if (rb_v2 && active_width == 0)
510                 return false;
511
512         if (!rb_v2 && vsync > 7)
513                 return false;
514
515         if (hfreq == 0)
516                 return false;
517
518         /* Vertical */
519         if (reduced_blanking) {
520                 if (rb_v2) {
521                         v_bp = CVT_RB_V_BPORCH;
522                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
523                         v_fp -= vsync + v_bp;
524
525                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
526                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
527                 } else {
528                         v_fp = CVT_RB_V_FPORCH;
529                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
530                         v_bp -= vsync + v_fp;
531
532                         if (v_bp < CVT_RB_MIN_V_BPORCH)
533                                 v_bp = CVT_RB_MIN_V_BPORCH;
534                 }
535         } else {
536                 v_fp = CVT_MIN_V_PORCH_RND;
537                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
538
539                 if (v_bp < CVT_MIN_V_BPORCH)
540                         v_bp = CVT_MIN_V_BPORCH;
541         }
542
543         if (interlaced)
544                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
545         else
546                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
547
548         if (image_height < 0)
549                 return false;
550
551         /* Aspect ratio based on vsync */
552         switch (vsync) {
553         case 4:
554                 image_width = (image_height * 4) / 3;
555                 break;
556         case 5:
557                 image_width = (image_height * 16) / 9;
558                 break;
559         case 6:
560                 image_width = (image_height * 16) / 10;
561                 break;
562         case 7:
563                 /* special case */
564                 if (image_height == 1024)
565                         image_width = (image_height * 5) / 4;
566                 else if (image_height == 768)
567                         image_width = (image_height * 15) / 9;
568                 else
569                         return false;
570                 break;
571         case 8:
572                 image_width = active_width;
573                 break;
574         default:
575                 return false;
576         }
577
578         if (!rb_v2)
579                 image_width = image_width & ~7;
580
581         /* Horizontal */
582         if (reduced_blanking) {
583                 int h_blank;
584                 int clk_gran;
585
586                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
587                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
588
589                 pix_clk = (image_width + h_blank) * hfreq;
590                 pix_clk = (pix_clk / clk_gran) * clk_gran;
591
592                 h_bp  = h_blank / 2;
593                 hsync = CVT_RB_H_SYNC;
594                 h_fp  = h_blank - h_bp - hsync;
595
596                 frame_width = image_width + h_blank;
597         } else {
598                 unsigned ideal_duty_cycle_per_myriad =
599                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
600                 int h_blank;
601
602                 if (ideal_duty_cycle_per_myriad < 2000)
603                         ideal_duty_cycle_per_myriad = 2000;
604
605                 h_blank = image_width * ideal_duty_cycle_per_myriad /
606                                         (10000 - ideal_duty_cycle_per_myriad);
607                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
608
609                 pix_clk = (image_width + h_blank) * hfreq;
610                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
611
612                 h_bp = h_blank / 2;
613                 frame_width = image_width + h_blank;
614
615                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
616                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
617                 h_fp = h_blank - hsync - h_bp;
618         }
619
620         fmt->type = V4L2_DV_BT_656_1120;
621         fmt->bt.polarities = polarities;
622         fmt->bt.width = image_width;
623         fmt->bt.height = image_height;
624         fmt->bt.hfrontporch = h_fp;
625         fmt->bt.vfrontporch = v_fp;
626         fmt->bt.hsync = hsync;
627         fmt->bt.vsync = vsync;
628         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
629
630         if (!interlaced) {
631                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
632                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
633         } else {
634                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
635                                       2 * vsync) / 2;
636                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
637                                         2 * vsync - fmt->bt.vbackporch;
638                 fmt->bt.il_vfrontporch = v_fp;
639                 fmt->bt.il_vsync = vsync;
640                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
641                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
642         }
643
644         fmt->bt.pixelclock = pix_clk;
645         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
646
647         if (reduced_blanking)
648                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
649
650         return true;
651 }
652 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
653
654 /*
655  * GTF defines
656  * Based on Generalized Timing Formula Standard
657  * Version 1.1 September 2, 1999
658  */
659
660 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
661
662 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
663 #define GTF_V_FP                1       /* vertical front porch (lines) */
664 #define GTF_CELL_GRAN           8       /* character cell granularity */
665
666 /* Default */
667 #define GTF_D_M                 600     /* blanking formula gradient */
668 #define GTF_D_C                 40      /* blanking formula offset */
669 #define GTF_D_K                 128     /* blanking formula scaling factor */
670 #define GTF_D_J                 20      /* blanking formula scaling factor */
671 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
672 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
673
674 /* Secondary */
675 #define GTF_S_M                 3600    /* blanking formula gradient */
676 #define GTF_S_C                 40      /* blanking formula offset */
677 #define GTF_S_K                 128     /* blanking formula scaling factor */
678 #define GTF_S_J                 35      /* blanking formula scaling factor */
679 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
680 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
681
682 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
683  * @frame_height - the total height of the frame (including blanking) in lines.
684  * @hfreq - the horizontal frequency in Hz.
685  * @vsync - the height of the vertical sync in lines.
686  * @polarities - the horizontal and vertical polarities (same as struct
687  *              v4l2_bt_timings polarities).
688  * @interlaced - if this flag is true, it indicates interlaced format
689  * @aspect - preferred aspect ratio. GTF has no method of determining the
690  *              aspect ratio in order to derive the image width from the
691  *              image height, so it has to be passed explicitly. Usually
692  *              the native screen aspect ratio is used for this. If it
693  *              is not filled in correctly, then 16:9 will be assumed.
694  * @fmt - the resulting timings.
695  *
696  * This function will attempt to detect if the given values correspond to a
697  * valid GTF format. If so, then it will return true, and fmt will be filled
698  * in with the found GTF timings.
699  */
700 bool v4l2_detect_gtf(unsigned frame_height,
701                 unsigned hfreq,
702                 unsigned vsync,
703                 u32 polarities,
704                 bool interlaced,
705                 struct v4l2_fract aspect,
706                 struct v4l2_dv_timings *fmt)
707 {
708         int pix_clk;
709         int  v_fp, v_bp, h_fp, hsync;
710         int frame_width, image_height, image_width;
711         bool default_gtf;
712         int h_blank;
713
714         if (vsync != 3)
715                 return false;
716
717         if (polarities == V4L2_DV_VSYNC_POS_POL)
718                 default_gtf = true;
719         else if (polarities == V4L2_DV_HSYNC_POS_POL)
720                 default_gtf = false;
721         else
722                 return false;
723
724         if (hfreq == 0)
725                 return false;
726
727         /* Vertical */
728         v_fp = GTF_V_FP;
729         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
730         if (interlaced)
731                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
732         else
733                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
734
735         if (image_height < 0)
736                 return false;
737
738         if (aspect.numerator == 0 || aspect.denominator == 0) {
739                 aspect.numerator = 16;
740                 aspect.denominator = 9;
741         }
742         image_width = ((image_height * aspect.numerator) / aspect.denominator);
743         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
744
745         /* Horizontal */
746         if (default_gtf) {
747                 u64 num;
748                 u32 den;
749
750                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
751                       ((u64)image_width * GTF_D_M_PRIME * 1000));
752                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
753                       (2 * GTF_CELL_GRAN);
754                 h_blank = div_u64((num + (den >> 1)), den);
755                 h_blank *= (2 * GTF_CELL_GRAN);
756         } else {
757                 u64 num;
758                 u32 den;
759
760                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
761                       ((u64)image_width * GTF_S_M_PRIME * 1000));
762                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
763                       (2 * GTF_CELL_GRAN);
764                 h_blank = div_u64((num + (den >> 1)), den);
765                 h_blank *= (2 * GTF_CELL_GRAN);
766         }
767
768         frame_width = image_width + h_blank;
769
770         pix_clk = (image_width + h_blank) * hfreq;
771         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
772
773         hsync = (frame_width * 8 + 50) / 100;
774         hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
775
776         h_fp = h_blank / 2 - hsync;
777
778         fmt->type = V4L2_DV_BT_656_1120;
779         fmt->bt.polarities = polarities;
780         fmt->bt.width = image_width;
781         fmt->bt.height = image_height;
782         fmt->bt.hfrontporch = h_fp;
783         fmt->bt.vfrontporch = v_fp;
784         fmt->bt.hsync = hsync;
785         fmt->bt.vsync = vsync;
786         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
787
788         if (!interlaced) {
789                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
790                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
791         } else {
792                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
793                                       2 * vsync) / 2;
794                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
795                                         2 * vsync - fmt->bt.vbackporch;
796                 fmt->bt.il_vfrontporch = v_fp;
797                 fmt->bt.il_vsync = vsync;
798                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
799                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
800         }
801
802         fmt->bt.pixelclock = pix_clk;
803         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
804
805         if (!default_gtf)
806                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
807
808         return true;
809 }
810 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
811
812 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
813  *      0x15 and 0x16 from the EDID.
814  * @hor_landscape - byte 0x15 from the EDID.
815  * @vert_portrait - byte 0x16 from the EDID.
816  *
817  * Determines the aspect ratio from the EDID.
818  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
819  * "Horizontal and Vertical Screen Size or Aspect Ratio"
820  */
821 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
822 {
823         struct v4l2_fract aspect = { 16, 9 };
824         u8 ratio;
825
826         /* Nothing filled in, fallback to 16:9 */
827         if (!hor_landscape && !vert_portrait)
828                 return aspect;
829         /* Both filled in, so they are interpreted as the screen size in cm */
830         if (hor_landscape && vert_portrait) {
831                 aspect.numerator = hor_landscape;
832                 aspect.denominator = vert_portrait;
833                 return aspect;
834         }
835         /* Only one is filled in, so interpret them as a ratio:
836            (val + 99) / 100 */
837         ratio = hor_landscape | vert_portrait;
838         /* Change some rounded values into the exact aspect ratio */
839         if (ratio == 79) {
840                 aspect.numerator = 16;
841                 aspect.denominator = 9;
842         } else if (ratio == 34) {
843                 aspect.numerator = 4;
844                 aspect.denominator = 3;
845         } else if (ratio == 68) {
846                 aspect.numerator = 15;
847                 aspect.denominator = 9;
848         } else {
849                 aspect.numerator = hor_landscape + 99;
850                 aspect.denominator = 100;
851         }
852         if (hor_landscape)
853                 return aspect;
854         /* The aspect ratio is for portrait, so swap numerator and denominator */
855         swap(aspect.denominator, aspect.numerator);
856         return aspect;
857 }
858 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
859
860 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
861  *      based on various InfoFrames.
862  * @avi: the AVI InfoFrame
863  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
864  * @height: the frame height
865  *
866  * Determines the HDMI colorimetry information, i.e. how the HDMI
867  * pixel color data should be interpreted.
868  *
869  * Note that some of the newer features (DCI-P3, HDR) are not yet
870  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
871  * and CTA-861-G standards.
872  */
873 struct v4l2_hdmi_colorimetry
874 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
875                          const struct hdmi_vendor_infoframe *hdmi,
876                          unsigned int height)
877 {
878         struct v4l2_hdmi_colorimetry c = {
879                 V4L2_COLORSPACE_SRGB,
880                 V4L2_YCBCR_ENC_DEFAULT,
881                 V4L2_QUANTIZATION_FULL_RANGE,
882                 V4L2_XFER_FUNC_SRGB
883         };
884         bool is_ce = avi->video_code || (hdmi && hdmi->vic);
885         bool is_sdtv = height <= 576;
886         bool default_is_lim_range_rgb = avi->video_code > 1;
887
888         switch (avi->colorspace) {
889         case HDMI_COLORSPACE_RGB:
890                 /* RGB pixel encoding */
891                 switch (avi->colorimetry) {
892                 case HDMI_COLORIMETRY_EXTENDED:
893                         switch (avi->extended_colorimetry) {
894                         case HDMI_EXTENDED_COLORIMETRY_OPRGB:
895                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
896                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
897                                 break;
898                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
899                                 c.colorspace = V4L2_COLORSPACE_BT2020;
900                                 c.xfer_func = V4L2_XFER_FUNC_709;
901                                 break;
902                         default:
903                                 break;
904                         }
905                         break;
906                 default:
907                         break;
908                 }
909                 switch (avi->quantization_range) {
910                 case HDMI_QUANTIZATION_RANGE_LIMITED:
911                         c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
912                         break;
913                 case HDMI_QUANTIZATION_RANGE_FULL:
914                         break;
915                 default:
916                         if (default_is_lim_range_rgb)
917                                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
918                         break;
919                 }
920                 break;
921
922         default:
923                 /* YCbCr pixel encoding */
924                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
925                 switch (avi->colorimetry) {
926                 case HDMI_COLORIMETRY_NONE:
927                         if (!is_ce)
928                                 break;
929                         if (is_sdtv) {
930                                 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
931                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
932                         } else {
933                                 c.colorspace = V4L2_COLORSPACE_REC709;
934                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
935                         }
936                         c.xfer_func = V4L2_XFER_FUNC_709;
937                         break;
938                 case HDMI_COLORIMETRY_ITU_601:
939                         c.colorspace = V4L2_COLORSPACE_SMPTE170M;
940                         c.ycbcr_enc = V4L2_YCBCR_ENC_601;
941                         c.xfer_func = V4L2_XFER_FUNC_709;
942                         break;
943                 case HDMI_COLORIMETRY_ITU_709:
944                         c.colorspace = V4L2_COLORSPACE_REC709;
945                         c.ycbcr_enc = V4L2_YCBCR_ENC_709;
946                         c.xfer_func = V4L2_XFER_FUNC_709;
947                         break;
948                 case HDMI_COLORIMETRY_EXTENDED:
949                         switch (avi->extended_colorimetry) {
950                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
951                                 c.colorspace = V4L2_COLORSPACE_REC709;
952                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
953                                 c.xfer_func = V4L2_XFER_FUNC_709;
954                                 break;
955                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
956                                 c.colorspace = V4L2_COLORSPACE_REC709;
957                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
958                                 c.xfer_func = V4L2_XFER_FUNC_709;
959                                 break;
960                         case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
961                                 c.colorspace = V4L2_COLORSPACE_SRGB;
962                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
963                                 c.xfer_func = V4L2_XFER_FUNC_SRGB;
964                                 break;
965                         case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
966                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
967                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
968                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
969                                 break;
970                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
971                                 c.colorspace = V4L2_COLORSPACE_BT2020;
972                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
973                                 c.xfer_func = V4L2_XFER_FUNC_709;
974                                 break;
975                         case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
976                                 c.colorspace = V4L2_COLORSPACE_BT2020;
977                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
978                                 c.xfer_func = V4L2_XFER_FUNC_709;
979                                 break;
980                         default: /* fall back to ITU_709 */
981                                 c.colorspace = V4L2_COLORSPACE_REC709;
982                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
983                                 c.xfer_func = V4L2_XFER_FUNC_709;
984                                 break;
985                         }
986                         break;
987                 default:
988                         break;
989                 }
990                 /*
991                  * YCC Quantization Range signaling is more-or-less broken,
992                  * let's just ignore this.
993                  */
994                 break;
995         }
996         return c;
997 }
998 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
999
1000 /**
1001  * v4l2_get_edid_phys_addr() - find and return the physical address
1002  *
1003  * @edid:       pointer to the EDID data
1004  * @size:       size in bytes of the EDID data
1005  * @offset:     If not %NULL then the location of the physical address
1006  *              bytes in the EDID will be returned here. This is set to 0
1007  *              if there is no physical address found.
1008  *
1009  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1010  */
1011 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1012                             unsigned int *offset)
1013 {
1014         unsigned int loc = cec_get_edid_spa_location(edid, size);
1015
1016         if (offset)
1017                 *offset = loc;
1018         if (loc == 0)
1019                 return CEC_PHYS_ADDR_INVALID;
1020         return (edid[loc] << 8) | edid[loc + 1];
1021 }
1022 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1023
1024 /**
1025  * v4l2_set_edid_phys_addr() - find and set the physical address
1026  *
1027  * @edid:       pointer to the EDID data
1028  * @size:       size in bytes of the EDID data
1029  * @phys_addr:  the new physical address
1030  *
1031  * This function finds the location of the physical address in the EDID
1032  * and fills in the given physical address and updates the checksum
1033  * at the end of the EDID block. It does nothing if the EDID doesn't
1034  * contain a physical address.
1035  */
1036 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1037 {
1038         unsigned int loc = cec_get_edid_spa_location(edid, size);
1039         u8 sum = 0;
1040         unsigned int i;
1041
1042         if (loc == 0)
1043                 return;
1044         edid[loc] = phys_addr >> 8;
1045         edid[loc + 1] = phys_addr & 0xff;
1046         loc &= ~0x7f;
1047
1048         /* update the checksum */
1049         for (i = loc; i < loc + 127; i++)
1050                 sum += edid[i];
1051         edid[i] = 256 - sum;
1052 }
1053 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1054
1055 /**
1056  * v4l2_phys_addr_for_input() - calculate the PA for an input
1057  *
1058  * @phys_addr:  the physical address of the parent
1059  * @input:      the number of the input port, must be between 1 and 15
1060  *
1061  * This function calculates a new physical address based on the input
1062  * port number. For example:
1063  *
1064  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1065  *
1066  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1067  *
1068  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1069  *
1070  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1071  *
1072  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1073  */
1074 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1075 {
1076         /* Check if input is sane */
1077         if (WARN_ON(input == 0 || input > 0xf))
1078                 return CEC_PHYS_ADDR_INVALID;
1079
1080         if (phys_addr == 0)
1081                 return input << 12;
1082
1083         if ((phys_addr & 0x0fff) == 0)
1084                 return phys_addr | (input << 8);
1085
1086         if ((phys_addr & 0x00ff) == 0)
1087                 return phys_addr | (input << 4);
1088
1089         if ((phys_addr & 0x000f) == 0)
1090                 return phys_addr | input;
1091
1092         /*
1093          * All nibbles are used so no valid physical addresses can be assigned
1094          * to the input.
1095          */
1096         return CEC_PHYS_ADDR_INVALID;
1097 }
1098 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1099
1100 /**
1101  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1102  *
1103  * @phys_addr:  the physical address to validate
1104  * @parent:     if not %NULL, then this is filled with the parents PA.
1105  * @port:       if not %NULL, then this is filled with the input port.
1106  *
1107  * This validates a physical address as read from an EDID. If the
1108  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1109  * then it will return -EINVAL.
1110  *
1111  * The parent PA is passed into %parent and the input port is passed into
1112  * %port. For example:
1113  *
1114  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1115  *
1116  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1117  *
1118  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1119  *
1120  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1121  *
1122  * Return: 0 if the PA is valid, -EINVAL if not.
1123  */
1124 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1125 {
1126         int i;
1127
1128         if (parent)
1129                 *parent = phys_addr;
1130         if (port)
1131                 *port = 0;
1132         if (phys_addr == CEC_PHYS_ADDR_INVALID)
1133                 return 0;
1134         for (i = 0; i < 16; i += 4)
1135                 if (phys_addr & (0xf << i))
1136                         break;
1137         if (i == 16)
1138                 return 0;
1139         if (parent)
1140                 *parent = phys_addr & (0xfff0 << i);
1141         if (port)
1142                 *port = (phys_addr >> i) & 0xf;
1143         for (i += 4; i < 16; i += 4)
1144                 if ((phys_addr & (0xf << i)) == 0)
1145                         return -EINVAL;
1146         return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);