GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / media / tuners / msi001.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Mirics MSi001 silicon tuner driver
4  *
5  * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
6  * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
7  */
8
9 #include <linux/module.h>
10 #include <linux/gcd.h>
11 #include <media/v4l2-device.h>
12 #include <media/v4l2-ctrls.h>
13
14 static const struct v4l2_frequency_band bands[] = {
15         {
16                 .type = V4L2_TUNER_RF,
17                 .index = 0,
18                 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
19                 .rangelow   =   49000000,
20                 .rangehigh  =  263000000,
21         }, {
22                 .type = V4L2_TUNER_RF,
23                 .index = 1,
24                 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
25                 .rangelow   =  390000000,
26                 .rangehigh  =  960000000,
27         },
28 };
29
30 struct msi001_dev {
31         struct spi_device *spi;
32         struct v4l2_subdev sd;
33
34         /* Controls */
35         struct v4l2_ctrl_handler hdl;
36         struct v4l2_ctrl *bandwidth_auto;
37         struct v4l2_ctrl *bandwidth;
38         struct v4l2_ctrl *lna_gain;
39         struct v4l2_ctrl *mixer_gain;
40         struct v4l2_ctrl *if_gain;
41
42         unsigned int f_tuner;
43 };
44
45 static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
46 {
47         return container_of(sd, struct msi001_dev, sd);
48 }
49
50 static int msi001_wreg(struct msi001_dev *dev, u32 data)
51 {
52         /* Register format: 4 bits addr + 20 bits value */
53         return spi_write(dev->spi, &data, 3);
54 };
55
56 static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
57                            int if_gain)
58 {
59         struct spi_device *spi = dev->spi;
60         int ret;
61         u32 reg;
62
63         dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
64                 lna_gain, mixer_gain, if_gain);
65
66         reg = 1 << 0;
67         reg |= (59 - if_gain) << 4;
68         reg |= 0 << 10;
69         reg |= (1 - mixer_gain) << 12;
70         reg |= (1 - lna_gain) << 13;
71         reg |= 4 << 14;
72         reg |= 0 << 17;
73         ret = msi001_wreg(dev, reg);
74         if (ret)
75                 goto err;
76
77         return 0;
78 err:
79         dev_dbg(&spi->dev, "failed %d\n", ret);
80         return ret;
81 };
82
83 static int msi001_set_tuner(struct msi001_dev *dev)
84 {
85         struct spi_device *spi = dev->spi;
86         int ret, i;
87         unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
88         u32 reg;
89         u64 f_vco;
90         u8 mode, filter_mode;
91
92         static const struct {
93                 u32 rf;
94                 u8 mode;
95                 u8 div_lo;
96         } band_lut[] = {
97                 { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
98                 {108000000, 0x42, 32}, /* VHF_MODE */
99                 {330000000, 0x44, 16}, /* B3_MODE */
100                 {960000000, 0x48,  4}, /* B45_MODE */
101                 {      ~0U, 0x50,  2}, /* BL_MODE */
102         };
103         static const struct {
104                 u32 freq;
105                 u8 filter_mode;
106         } if_freq_lut[] = {
107                 {      0, 0x03}, /* Zero IF */
108                 { 450000, 0x02}, /* 450 kHz IF */
109                 {1620000, 0x01}, /* 1.62 MHz IF */
110                 {2048000, 0x00}, /* 2.048 MHz IF */
111         };
112         static const struct {
113                 u32 freq;
114                 u8 val;
115         } bandwidth_lut[] = {
116                 { 200000, 0x00}, /* 200 kHz */
117                 { 300000, 0x01}, /* 300 kHz */
118                 { 600000, 0x02}, /* 600 kHz */
119                 {1536000, 0x03}, /* 1.536 MHz */
120                 {5000000, 0x04}, /* 5 MHz */
121                 {6000000, 0x05}, /* 6 MHz */
122                 {7000000, 0x06}, /* 7 MHz */
123                 {8000000, 0x07}, /* 8 MHz */
124         };
125
126         unsigned int f_rf = dev->f_tuner;
127
128         /*
129          * bandwidth (Hz)
130          * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
131          */
132         unsigned int bandwidth;
133
134         /*
135          * intermediate frequency (Hz)
136          * 0, 450000, 1620000, 2048000
137          */
138         unsigned int f_if = 0;
139         #define F_REF 24000000
140         #define DIV_PRE_N 4
141         #define F_VCO_STEP div_lo
142
143         dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
144
145         for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
146                 if (f_rf <= band_lut[i].rf) {
147                         mode = band_lut[i].mode;
148                         div_lo = band_lut[i].div_lo;
149                         break;
150                 }
151         }
152         if (i == ARRAY_SIZE(band_lut)) {
153                 ret = -EINVAL;
154                 goto err;
155         }
156
157         /* AM_MODE is upconverted */
158         if ((mode >> 0) & 0x1)
159                 f_if1 =  5 * F_REF;
160         else
161                 f_if1 =  0;
162
163         for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
164                 if (f_if == if_freq_lut[i].freq) {
165                         filter_mode = if_freq_lut[i].filter_mode;
166                         break;
167                 }
168         }
169         if (i == ARRAY_SIZE(if_freq_lut)) {
170                 ret = -EINVAL;
171                 goto err;
172         }
173
174         /* filters */
175         bandwidth = dev->bandwidth->val;
176         bandwidth = clamp(bandwidth, 200000U, 8000000U);
177
178         for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
179                 if (bandwidth <= bandwidth_lut[i].freq) {
180                         bandwidth = bandwidth_lut[i].val;
181                         break;
182                 }
183         }
184         if (i == ARRAY_SIZE(bandwidth_lut)) {
185                 ret = -EINVAL;
186                 goto err;
187         }
188
189         dev->bandwidth->val = bandwidth_lut[i].freq;
190
191         dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
192
193         /*
194          * Fractional-N synthesizer
195          *
196          *           +---------------------------------------+
197          *           v                                       |
198          *  Fref   +----+     +-------+         +----+     +------+     +---+
199          * ------> | PD | --> |  VCO  | ------> | /4 | --> | /N.F | <-- | K |
200          *         +----+     +-------+         +----+     +------+     +---+
201          *                      |
202          *                      |
203          *                      v
204          *                    +-------+  Fout
205          *                    | /Rout | ------>
206          *                    +-------+
207          */
208
209         /* Calculate PLL integer and fractional control word. */
210         f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
211         div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
212         k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
213         k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
214
215         /* Find out greatest common divisor and divide to smaller. */
216         uitmp = gcd(k_thresh, k_frac);
217         k_thresh /= uitmp;
218         k_frac /= uitmp;
219
220         /* Force divide to reg max. Resolution will be reduced. */
221         uitmp = DIV_ROUND_UP(k_thresh, 4095);
222         k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
223         k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
224
225         /* Calculate real RF set. */
226         uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
227         uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
228         uitmp /= div_lo;
229
230         dev_dbg(&spi->dev,
231                 "f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
232                 f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
233
234         ret = msi001_wreg(dev, 0x00000e);
235         if (ret)
236                 goto err;
237
238         ret = msi001_wreg(dev, 0x000003);
239         if (ret)
240                 goto err;
241
242         reg = 0 << 0;
243         reg |= mode << 4;
244         reg |= filter_mode << 12;
245         reg |= bandwidth << 14;
246         reg |= 0x02 << 17;
247         reg |= 0x00 << 20;
248         ret = msi001_wreg(dev, reg);
249         if (ret)
250                 goto err;
251
252         reg = 5 << 0;
253         reg |= k_thresh << 4;
254         reg |= 1 << 19;
255         reg |= 1 << 21;
256         ret = msi001_wreg(dev, reg);
257         if (ret)
258                 goto err;
259
260         reg = 2 << 0;
261         reg |= k_frac << 4;
262         reg |= div_n << 16;
263         ret = msi001_wreg(dev, reg);
264         if (ret)
265                 goto err;
266
267         ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
268                               dev->mixer_gain->cur.val, dev->if_gain->cur.val);
269         if (ret)
270                 goto err;
271
272         reg = 6 << 0;
273         reg |= 63 << 4;
274         reg |= 4095 << 10;
275         ret = msi001_wreg(dev, reg);
276         if (ret)
277                 goto err;
278
279         return 0;
280 err:
281         dev_dbg(&spi->dev, "failed %d\n", ret);
282         return ret;
283 }
284
285 static int msi001_standby(struct v4l2_subdev *sd)
286 {
287         struct msi001_dev *dev = sd_to_msi001_dev(sd);
288
289         return msi001_wreg(dev, 0x000000);
290 }
291
292 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
293 {
294         struct msi001_dev *dev = sd_to_msi001_dev(sd);
295         struct spi_device *spi = dev->spi;
296
297         dev_dbg(&spi->dev, "index=%d\n", v->index);
298
299         strscpy(v->name, "Mirics MSi001", sizeof(v->name));
300         v->type = V4L2_TUNER_RF;
301         v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
302         v->rangelow =    49000000;
303         v->rangehigh =  960000000;
304
305         return 0;
306 }
307
308 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
309 {
310         struct msi001_dev *dev = sd_to_msi001_dev(sd);
311         struct spi_device *spi = dev->spi;
312
313         dev_dbg(&spi->dev, "index=%d\n", v->index);
314         return 0;
315 }
316
317 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
318 {
319         struct msi001_dev *dev = sd_to_msi001_dev(sd);
320         struct spi_device *spi = dev->spi;
321
322         dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
323         f->frequency = dev->f_tuner;
324         return 0;
325 }
326
327 static int msi001_s_frequency(struct v4l2_subdev *sd,
328                               const struct v4l2_frequency *f)
329 {
330         struct msi001_dev *dev = sd_to_msi001_dev(sd);
331         struct spi_device *spi = dev->spi;
332         unsigned int band;
333
334         dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
335                 f->tuner, f->type, f->frequency);
336
337         if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
338                 band = 0;
339         else
340                 band = 1;
341         dev->f_tuner = clamp_t(unsigned int, f->frequency,
342                                bands[band].rangelow, bands[band].rangehigh);
343
344         return msi001_set_tuner(dev);
345 }
346
347 static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
348                                   struct v4l2_frequency_band *band)
349 {
350         struct msi001_dev *dev = sd_to_msi001_dev(sd);
351         struct spi_device *spi = dev->spi;
352
353         dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
354                 band->tuner, band->type, band->index);
355
356         if (band->index >= ARRAY_SIZE(bands))
357                 return -EINVAL;
358
359         band->capability = bands[band->index].capability;
360         band->rangelow = bands[band->index].rangelow;
361         band->rangehigh = bands[band->index].rangehigh;
362
363         return 0;
364 }
365
366 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
367         .standby                  = msi001_standby,
368         .g_tuner                  = msi001_g_tuner,
369         .s_tuner                  = msi001_s_tuner,
370         .g_frequency              = msi001_g_frequency,
371         .s_frequency              = msi001_s_frequency,
372         .enum_freq_bands          = msi001_enum_freq_bands,
373 };
374
375 static const struct v4l2_subdev_ops msi001_ops = {
376         .tuner                    = &msi001_tuner_ops,
377 };
378
379 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
380 {
381         struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
382         struct spi_device *spi = dev->spi;
383
384         int ret;
385
386         dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
387                 ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
388                 ctrl->step);
389
390         switch (ctrl->id) {
391         case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
392         case V4L2_CID_RF_TUNER_BANDWIDTH:
393                 ret = msi001_set_tuner(dev);
394                 break;
395         case  V4L2_CID_RF_TUNER_LNA_GAIN:
396                 ret = msi001_set_gain(dev, dev->lna_gain->val,
397                                       dev->mixer_gain->cur.val,
398                                       dev->if_gain->cur.val);
399                 break;
400         case  V4L2_CID_RF_TUNER_MIXER_GAIN:
401                 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
402                                       dev->mixer_gain->val,
403                                       dev->if_gain->cur.val);
404                 break;
405         case  V4L2_CID_RF_TUNER_IF_GAIN:
406                 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
407                                       dev->mixer_gain->cur.val,
408                                       dev->if_gain->val);
409                 break;
410         default:
411                 dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
412                 ret = -EINVAL;
413         }
414
415         return ret;
416 }
417
418 static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
419         .s_ctrl                   = msi001_s_ctrl,
420 };
421
422 static int msi001_probe(struct spi_device *spi)
423 {
424         struct msi001_dev *dev;
425         int ret;
426
427         dev_dbg(&spi->dev, "\n");
428
429         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
430         if (!dev) {
431                 ret = -ENOMEM;
432                 goto err;
433         }
434
435         dev->spi = spi;
436         dev->f_tuner = bands[0].rangelow;
437         v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
438
439         /* Register controls */
440         v4l2_ctrl_handler_init(&dev->hdl, 5);
441         dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
442                         V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
443         dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
444                         V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
445         if (dev->hdl.error) {
446                 ret = dev->hdl.error;
447                 dev_err(&spi->dev, "Could not initialize controls\n");
448                 /* control init failed, free handler */
449                 goto err_ctrl_handler_free;
450         }
451
452         v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
453         dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
454                         V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
455         dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
456                         V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
457         dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
458                         V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
459         if (dev->hdl.error) {
460                 ret = dev->hdl.error;
461                 dev_err(&spi->dev, "Could not initialize controls\n");
462                 /* control init failed, free handler */
463                 goto err_ctrl_handler_free;
464         }
465
466         dev->sd.ctrl_handler = &dev->hdl;
467         return 0;
468 err_ctrl_handler_free:
469         v4l2_ctrl_handler_free(&dev->hdl);
470         kfree(dev);
471 err:
472         return ret;
473 }
474
475 static int msi001_remove(struct spi_device *spi)
476 {
477         struct v4l2_subdev *sd = spi_get_drvdata(spi);
478         struct msi001_dev *dev = sd_to_msi001_dev(sd);
479
480         dev_dbg(&spi->dev, "\n");
481
482         /*
483          * Registered by v4l2_spi_new_subdev() from master driver, but we must
484          * unregister it from here. Weird.
485          */
486         v4l2_device_unregister_subdev(&dev->sd);
487         v4l2_ctrl_handler_free(&dev->hdl);
488         kfree(dev);
489         return 0;
490 }
491
492 static const struct spi_device_id msi001_id_table[] = {
493         {"msi001", 0},
494         {}
495 };
496 MODULE_DEVICE_TABLE(spi, msi001_id_table);
497
498 static struct spi_driver msi001_driver = {
499         .driver = {
500                 .name   = "msi001",
501                 .suppress_bind_attrs = true,
502         },
503         .probe          = msi001_probe,
504         .remove         = msi001_remove,
505         .id_table       = msi001_id_table,
506 };
507 module_spi_driver(msi001_driver);
508
509 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
510 MODULE_DESCRIPTION("Mirics MSi001");
511 MODULE_LICENSE("GPL");