GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / media / radio / wl128x / fmdrv_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  FM Driver for Connectivity chip of Texas Instruments.
4  *
5  *  This sub-module of FM driver is common for FM RX and TX
6  *  functionality. This module is responsible for:
7  *  1) Forming group of Channel-8 commands to perform particular
8  *     functionality (eg., frequency set require more than
9  *     one Channel-8 command to be sent to the chip).
10  *  2) Sending each Channel-8 command to the chip and reading
11  *     response back over Shared Transport.
12  *  3) Managing TX and RX Queues and Tasklets.
13  *  4) Handling FM Interrupt packet and taking appropriate action.
14  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
15  *     firmware files based on mode selection)
16  *
17  *  Copyright (C) 2011 Texas Instruments
18  *  Author: Raja Mani <raja_mani@ti.com>
19  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
20  */
21
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26 #include <linux/jiffies.h>
27
28 #include "fmdrv.h"
29 #include "fmdrv_v4l2.h"
30 #include "fmdrv_common.h"
31 #include <linux/ti_wilink_st.h>
32 #include "fmdrv_rx.h"
33 #include "fmdrv_tx.h"
34
35 /* Region info */
36 static struct region_info region_configs[] = {
37         /* Europe/US */
38         {
39          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40          .bot_freq = 87500,     /* 87.5 MHz */
41          .top_freq = 108000,    /* 108 MHz */
42          .fm_band = 0,
43          },
44         /* Japan */
45         {
46          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47          .bot_freq = 76000,     /* 76 MHz */
48          .top_freq = 90000,     /* 90 MHz */
49          .fm_band = 1,
50          },
51 };
52
53 /* Band selection */
54 static u8 default_radio_region; /* Europe/US */
55 module_param(default_radio_region, byte, 0);
56 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57
58 /* RDS buffer blocks */
59 static u32 default_rds_buf = 300;
60 module_param(default_rds_buf, uint, 0444);
61 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62
63 /* Radio Nr */
64 static u32 radio_nr = -1;
65 module_param(radio_nr, int, 0444);
66 MODULE_PARM_DESC(radio_nr, "Radio Nr");
67
68 /* FM irq handlers forward declaration */
69 static void fm_irq_send_flag_getcmd(struct fmdev *);
70 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71 static void fm_irq_handle_hw_malfunction(struct fmdev *);
72 static void fm_irq_handle_rds_start(struct fmdev *);
73 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75 static void fm_irq_handle_rds_finish(struct fmdev *);
76 static void fm_irq_handle_tune_op_ended(struct fmdev *);
77 static void fm_irq_handle_power_enb(struct fmdev *);
78 static void fm_irq_handle_low_rssi_start(struct fmdev *);
79 static void fm_irq_afjump_set_pi(struct fmdev *);
80 static void fm_irq_handle_set_pi_resp(struct fmdev *);
81 static void fm_irq_afjump_set_pimask(struct fmdev *);
82 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83 static void fm_irq_afjump_setfreq(struct fmdev *);
84 static void fm_irq_handle_setfreq_resp(struct fmdev *);
85 static void fm_irq_afjump_enableint(struct fmdev *);
86 static void fm_irq_afjump_enableint_resp(struct fmdev *);
87 static void fm_irq_start_afjump(struct fmdev *);
88 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89 static void fm_irq_afjump_rd_freq(struct fmdev *);
90 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92 static void fm_irq_send_intmsk_cmd(struct fmdev *);
93 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94
95 /*
96  * When FM common module receives interrupt packet, following handlers
97  * will be executed one after another to service the interrupt(s)
98  */
99 enum fmc_irq_handler_index {
100         FM_SEND_FLAG_GETCMD_IDX,
101         FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102
103         /* HW malfunction irq handler */
104         FM_HW_MAL_FUNC_IDX,
105
106         /* RDS threshold reached irq handler */
107         FM_RDS_START_IDX,
108         FM_RDS_SEND_RDS_GETCMD_IDX,
109         FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110         FM_RDS_FINISH_IDX,
111
112         /* Tune operation ended irq handler */
113         FM_HW_TUNE_OP_ENDED_IDX,
114
115         /* TX power enable irq handler */
116         FM_HW_POWER_ENB_IDX,
117
118         /* Low RSSI irq handler */
119         FM_LOW_RSSI_START_IDX,
120         FM_AF_JUMP_SETPI_IDX,
121         FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122         FM_AF_JUMP_SETPI_MASK_IDX,
123         FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124         FM_AF_JUMP_SET_AF_FREQ_IDX,
125         FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126         FM_AF_JUMP_ENABLE_INT_IDX,
127         FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128         FM_AF_JUMP_START_AFJUMP_IDX,
129         FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130         FM_AF_JUMP_RD_FREQ_IDX,
131         FM_AF_JUMP_RD_FREQ_RESP_IDX,
132         FM_LOW_RSSI_FINISH_IDX,
133
134         /* Interrupt process post action */
135         FM_SEND_INTMSK_CMD_IDX,
136         FM_HANDLE_INTMSK_CMD_RESP_IDX,
137 };
138
139 /* FM interrupt handler table */
140 static int_handler_prototype int_handler_table[] = {
141         fm_irq_send_flag_getcmd,
142         fm_irq_handle_flag_getcmd_resp,
143         fm_irq_handle_hw_malfunction,
144         fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145         fm_irq_send_rdsdata_getcmd,
146         fm_irq_handle_rdsdata_getcmd_resp,
147         fm_irq_handle_rds_finish,
148         fm_irq_handle_tune_op_ended,
149         fm_irq_handle_power_enb, /* TX power enable irq handler */
150         fm_irq_handle_low_rssi_start,
151         fm_irq_afjump_set_pi,
152         fm_irq_handle_set_pi_resp,
153         fm_irq_afjump_set_pimask,
154         fm_irq_handle_set_pimask_resp,
155         fm_irq_afjump_setfreq,
156         fm_irq_handle_setfreq_resp,
157         fm_irq_afjump_enableint,
158         fm_irq_afjump_enableint_resp,
159         fm_irq_start_afjump,
160         fm_irq_handle_start_afjump_resp,
161         fm_irq_afjump_rd_freq,
162         fm_irq_afjump_rd_freq_resp,
163         fm_irq_handle_low_rssi_finish,
164         fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165         fm_irq_handle_intmsk_cmd_resp
166 };
167
168 static long (*g_st_write) (struct sk_buff *skb);
169 static struct completion wait_for_fmdrv_reg_comp;
170
171 static inline void fm_irq_call(struct fmdev *fmdev)
172 {
173         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174 }
175
176 /* Continue next function in interrupt handler table */
177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178 {
179         fmdev->irq_info.stage = stage;
180         fm_irq_call(fmdev);
181 }
182
183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184 {
185         fmdev->irq_info.stage = stage;
186         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187 }
188
189 #ifdef FM_DUMP_TXRX_PKT
190  /* To dump outgoing FM Channel-8 packets */
191 inline void dump_tx_skb_data(struct sk_buff *skb)
192 {
193         int len, len_org;
194         u8 index;
195         struct fm_cmd_msg_hdr *cmd_hdr;
196
197         cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198         printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199                fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200                cmd_hdr->len, cmd_hdr->op,
201                cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202
203         len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204         if (len_org > 0) {
205                 printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
206                 len = min(len_org, 14);
207                 for (index = 0; index < len; index++)
208                         printk(KERN_CONT "%x ",
209                                skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211         }
212         printk(KERN_CONT "\n");
213 }
214
215  /* To dump incoming FM Channel-8 packets */
216 inline void dump_rx_skb_data(struct sk_buff *skb)
217 {
218         int len, len_org;
219         u8 index;
220         struct fm_event_msg_hdr *evt_hdr;
221
222         evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223         printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224                evt_hdr->hdr, evt_hdr->len,
225                evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226                (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227
228         len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229         if (len_org > 0) {
230                 printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
231                 len = min(len_org, 14);
232                 for (index = 0; index < len; index++)
233                         printk(KERN_CONT "%x ",
234                                skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236         }
237         printk(KERN_CONT "\n");
238 }
239 #endif
240
241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242 {
243         fmdev->rx.region = region_configs[region_to_set];
244 }
245
246 /*
247  * FM common sub-module will schedule this tasklet whenever it receives
248  * FM packet from ST driver.
249  */
250 static void recv_tasklet(struct tasklet_struct *t)
251 {
252         struct fmdev *fmdev;
253         struct fm_irq *irq_info;
254         struct fm_event_msg_hdr *evt_hdr;
255         struct sk_buff *skb;
256         u8 num_fm_hci_cmds;
257         unsigned long flags;
258
259         fmdev = from_tasklet(fmdev, t, tx_task);
260         irq_info = &fmdev->irq_info;
261         /* Process all packets in the RX queue */
262         while ((skb = skb_dequeue(&fmdev->rx_q))) {
263                 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264                         fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265                               skb,
266                               skb->len, sizeof(struct fm_event_msg_hdr));
267                         kfree_skb(skb);
268                         continue;
269                 }
270
271                 evt_hdr = (void *)skb->data;
272                 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273
274                 /* FM interrupt packet? */
275                 if (evt_hdr->op == FM_INTERRUPT) {
276                         /* FM interrupt handler started already? */
277                         if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278                                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279                                 if (irq_info->stage != 0) {
280                                         fmerr("Inval stage resetting to zero\n");
281                                         irq_info->stage = 0;
282                                 }
283
284                                 /*
285                                  * Execute first function in interrupt handler
286                                  * table.
287                                  */
288                                 irq_info->handlers[irq_info->stage](fmdev);
289                         } else {
290                                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291                         }
292                         kfree_skb(skb);
293                 }
294                 /* Anyone waiting for this with completion handler? */
295                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296
297                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298                         fmdev->resp_skb = skb;
299                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300                         complete(fmdev->resp_comp);
301
302                         fmdev->resp_comp = NULL;
303                         atomic_set(&fmdev->tx_cnt, 1);
304                 }
305                 /* Is this for interrupt handler? */
306                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307                         if (fmdev->resp_skb != NULL)
308                                 fmerr("Response SKB ptr not NULL\n");
309
310                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311                         fmdev->resp_skb = skb;
312                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313
314                         /* Execute interrupt handler where state index points */
315                         irq_info->handlers[irq_info->stage](fmdev);
316
317                         kfree_skb(skb);
318                         atomic_set(&fmdev->tx_cnt, 1);
319                 } else {
320                         fmerr("Nobody claimed SKB(%p),purging\n", skb);
321                 }
322
323                 /*
324                  * Check flow control field. If Num_FM_HCI_Commands field is
325                  * not zero, schedule FM TX tasklet.
326                  */
327                 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328                         if (!skb_queue_empty(&fmdev->tx_q))
329                                 tasklet_schedule(&fmdev->tx_task);
330         }
331 }
332
333 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
334 static void send_tasklet(struct tasklet_struct *t)
335 {
336         struct fmdev *fmdev;
337         struct sk_buff *skb;
338         int len;
339
340         fmdev = from_tasklet(fmdev, t, tx_task);
341
342         if (!atomic_read(&fmdev->tx_cnt))
343                 return;
344
345         /* Check, is there any timeout happened to last transmitted packet */
346         if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347                 fmerr("TX timeout occurred\n");
348                 atomic_set(&fmdev->tx_cnt, 1);
349         }
350
351         /* Send queued FM TX packets */
352         skb = skb_dequeue(&fmdev->tx_q);
353         if (!skb)
354                 return;
355
356         atomic_dec(&fmdev->tx_cnt);
357         fmdev->pre_op = fm_cb(skb)->fm_op;
358
359         if (fmdev->resp_comp != NULL)
360                 fmerr("Response completion handler is not NULL\n");
361
362         fmdev->resp_comp = fm_cb(skb)->completion;
363
364         /* Write FM packet to ST driver */
365         len = g_st_write(skb);
366         if (len < 0) {
367                 kfree_skb(skb);
368                 fmdev->resp_comp = NULL;
369                 fmerr("TX tasklet failed to send skb(%p)\n", skb);
370                 atomic_set(&fmdev->tx_cnt, 1);
371         } else {
372                 fmdev->last_tx_jiffies = jiffies;
373         }
374 }
375
376 /*
377  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
378  * transmission
379  */
380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
381                 int payload_len, struct completion *wait_completion)
382 {
383         struct sk_buff *skb;
384         struct fm_cmd_msg_hdr *hdr;
385         int size;
386
387         if (fm_op >= FM_INTERRUPT) {
388                 fmerr("Invalid fm opcode - %d\n", fm_op);
389                 return -EINVAL;
390         }
391         if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392                 fmerr("Payload data is NULL during fw download\n");
393                 return -EINVAL;
394         }
395         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396                 size =
397                     FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398         else
399                 size = payload_len;
400
401         skb = alloc_skb(size, GFP_ATOMIC);
402         if (!skb) {
403                 fmerr("No memory to create new SKB\n");
404                 return -ENOMEM;
405         }
406         /*
407          * Don't fill FM header info for the commands which come from
408          * FM firmware file.
409          */
410         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411                         test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412                 /* Fill command header info */
413                 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414                 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
415
416                 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417                 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418
419                 /* FM opcode */
420                 hdr->op = fm_op;
421
422                 /* read/write type */
423                 hdr->rd_wr = type;
424                 hdr->dlen = payload_len;
425                 fm_cb(skb)->fm_op = fm_op;
426
427                 /*
428                  * If firmware download has finished and the command is
429                  * not a read command then payload is != NULL - a write
430                  * command with u16 payload - convert to be16
431                  */
432                 if (payload != NULL)
433                         *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434
435         } else if (payload != NULL) {
436                 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437         }
438         if (payload != NULL)
439                 skb_put_data(skb, payload, payload_len);
440
441         fm_cb(skb)->completion = wait_completion;
442         skb_queue_tail(&fmdev->tx_q, skb);
443         tasklet_schedule(&fmdev->tx_task);
444
445         return 0;
446 }
447
448 /* Sends FM Channel-8 command to the chip and waits for the response */
449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450                 unsigned int payload_len, void *response, int *response_len)
451 {
452         struct sk_buff *skb;
453         struct fm_event_msg_hdr *evt_hdr;
454         unsigned long flags;
455         int ret;
456
457         init_completion(&fmdev->maintask_comp);
458         ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459                             &fmdev->maintask_comp);
460         if (ret)
461                 return ret;
462
463         if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464                                          FM_DRV_TX_TIMEOUT)) {
465                 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
466                            jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467                 return -ETIMEDOUT;
468         }
469         if (!fmdev->resp_skb) {
470                 fmerr("Response SKB is missing\n");
471                 return -EFAULT;
472         }
473         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
474         skb = fmdev->resp_skb;
475         fmdev->resp_skb = NULL;
476         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
477
478         evt_hdr = (void *)skb->data;
479         if (evt_hdr->status != 0) {
480                 fmerr("Received event pkt status(%d) is not zero\n",
481                            evt_hdr->status);
482                 kfree_skb(skb);
483                 return -EIO;
484         }
485         /* Send response data to caller */
486         if (response != NULL && response_len != NULL && evt_hdr->dlen &&
487             evt_hdr->dlen <= payload_len) {
488                 /* Skip header info and copy only response data */
489                 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
490                 memcpy(response, skb->data, evt_hdr->dlen);
491                 *response_len = evt_hdr->dlen;
492         } else if (response_len != NULL && evt_hdr->dlen == 0) {
493                 *response_len = 0;
494         }
495         kfree_skb(skb);
496
497         return 0;
498 }
499
500 /* --- Helper functions used in FM interrupt handlers ---*/
501 static inline int check_cmdresp_status(struct fmdev *fmdev,
502                 struct sk_buff **skb)
503 {
504         struct fm_event_msg_hdr *fm_evt_hdr;
505         unsigned long flags;
506
507         del_timer(&fmdev->irq_info.timer);
508
509         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
510         *skb = fmdev->resp_skb;
511         fmdev->resp_skb = NULL;
512         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
513
514         fm_evt_hdr = (void *)(*skb)->data;
515         if (fm_evt_hdr->status != 0) {
516                 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
517                                 fm_evt_hdr->op);
518
519                 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
520                 return -1;
521         }
522
523         return 0;
524 }
525
526 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
527 {
528         struct sk_buff *skb;
529
530         if (!check_cmdresp_status(fmdev, &skb))
531                 fm_irq_call_stage(fmdev, stage);
532 }
533
534 /*
535  * Interrupt process timeout handler.
536  * One of the irq handler did not get proper response from the chip. So take
537  * recovery action here. FM interrupts are disabled in the beginning of
538  * interrupt process. Therefore reset stage index to re-enable default
539  * interrupts. So that next interrupt will be processed as usual.
540  */
541 static void int_timeout_handler(struct timer_list *t)
542 {
543         struct fmdev *fmdev;
544         struct fm_irq *fmirq;
545
546         fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
547         fmdev = from_timer(fmdev, t, irq_info.timer);
548         fmirq = &fmdev->irq_info;
549         fmirq->retry++;
550
551         if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
552                 /* Stop recovery action (interrupt reenable process) and
553                  * reset stage index & retry count values */
554                 fmirq->stage = 0;
555                 fmirq->retry = 0;
556                 fmerr("Recovery action failed duringirq processing, max retry reached\n");
557                 return;
558         }
559         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
560 }
561
562 /* --------- FM interrupt handlers ------------*/
563 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
564 {
565         u16 flag;
566
567         /* Send FLAG_GET command , to know the source of interrupt */
568         if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
569                 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
570 }
571
572 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
573 {
574         struct sk_buff *skb;
575         struct fm_event_msg_hdr *fm_evt_hdr;
576
577         if (check_cmdresp_status(fmdev, &skb))
578                 return;
579
580         fm_evt_hdr = (void *)skb->data;
581         if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
582                 return;
583
584         /* Skip header info and copy only response data */
585         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
586         memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
587
588         fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
589         fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
590
591         /* Continue next function in interrupt handler table */
592         fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
593 }
594
595 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
596 {
597         if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
598                 fmerr("irq: HW MAL int received - do nothing\n");
599
600         /* Continue next function in interrupt handler table */
601         fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
602 }
603
604 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
605 {
606         if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
607                 fmdbg("irq: rds threshold reached\n");
608                 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
609         } else {
610                 /* Continue next function in interrupt handler table */
611                 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
612         }
613
614         fm_irq_call(fmdev);
615 }
616
617 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
618 {
619         /* Send the command to read RDS data from the chip */
620         if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
621                             (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
622                 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
623 }
624
625 /* Keeps track of current RX channel AF (Alternate Frequency) */
626 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
627 {
628         struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
629         u8 reg_idx = fmdev->rx.region.fm_band;
630         u8 index;
631         u32 freq;
632
633         /* First AF indicates the number of AF follows. Reset the list */
634         if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
635                 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
636                 fmdev->rx.stat_info.afcache_size = 0;
637                 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
638                 return;
639         }
640
641         if (af < FM_RDS_MIN_AF)
642                 return;
643         if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
644                 return;
645         if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
646                 return;
647
648         freq = fmdev->rx.region.bot_freq + (af * 100);
649         if (freq == fmdev->rx.freq) {
650                 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
651                                 fmdev->rx.freq, freq);
652                 return;
653         }
654         /* Do check in AF cache */
655         for (index = 0; index < stat_info->afcache_size; index++) {
656                 if (stat_info->af_cache[index] == freq)
657                         break;
658         }
659         /* Reached the limit of the list - ignore the next AF */
660         if (index == stat_info->af_list_max) {
661                 fmdbg("AF cache is full\n");
662                 return;
663         }
664         /*
665          * If we reached the end of the list then this AF is not
666          * in the list - add it.
667          */
668         if (index == stat_info->afcache_size) {
669                 fmdbg("Storing AF %d to cache index %d\n", freq, index);
670                 stat_info->af_cache[index] = freq;
671                 stat_info->afcache_size++;
672         }
673 }
674
675 /*
676  * Converts RDS buffer data from big endian format
677  * to little endian format.
678  */
679 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
680                 struct fm_rdsdata_format *rds_format)
681 {
682         u8 index = 0;
683         u8 *rds_buff;
684
685         /*
686          * Since in Orca the 2 RDS Data bytes are in little endian and
687          * in Dolphin they are in big endian, the parsing of the RDS data
688          * is chip dependent
689          */
690         if (fmdev->asci_id != 0x6350) {
691                 rds_buff = &rds_format->data.groupdatabuff.buff[0];
692                 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
693                         swap(rds_buff[index], rds_buff[index + 1]);
694                         index += 2;
695                 }
696         }
697 }
698
699 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
700 {
701         struct sk_buff *skb;
702         struct fm_rdsdata_format rds_fmt;
703         struct fm_rds *rds = &fmdev->rx.rds;
704         unsigned long group_idx, flags;
705         u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
706         u8 type, blk_idx, idx;
707         u16 cur_picode;
708         u32 rds_len;
709
710         if (check_cmdresp_status(fmdev, &skb))
711                 return;
712
713         /* Skip header info */
714         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
715         rds_data = skb->data;
716         rds_len = skb->len;
717
718         /* Parse the RDS data */
719         while (rds_len >= FM_RDS_BLK_SIZE) {
720                 meta_data = rds_data[2];
721                 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
722                 type = (meta_data & 0x07);
723
724                 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
725                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
726                 fmdbg("Block index:%d(%s)\n", blk_idx,
727                            (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
728
729                 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
730                         break;
731
732                 if (blk_idx > FM_RDS_BLK_IDX_D) {
733                         fmdbg("Block sequence mismatch\n");
734                         rds->last_blk_idx = -1;
735                         break;
736                 }
737
738                 /* Skip checkword (control) byte and copy only data byte */
739                 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
740                                          FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
741
742                 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
743                        FM_RDS_BLK_SIZE - 1);
744
745                 rds->last_blk_idx = blk_idx;
746
747                 /* If completed a whole group then handle it */
748                 if (blk_idx == FM_RDS_BLK_IDX_D) {
749                         fmdbg("Good block received\n");
750                         fm_rdsparse_swapbytes(fmdev, &rds_fmt);
751
752                         /*
753                          * Extract PI code and store in local cache.
754                          * We need this during AF switch processing.
755                          */
756                         cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
757                         if (fmdev->rx.stat_info.picode != cur_picode)
758                                 fmdev->rx.stat_info.picode = cur_picode;
759
760                         fmdbg("picode:%d\n", cur_picode);
761
762                         group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
763                         fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
764                                         (group_idx % 2) ? "B" : "A");
765
766                         group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767                         if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
768                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
769                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
770                         }
771                 }
772                 rds_len -= FM_RDS_BLK_SIZE;
773                 rds_data += FM_RDS_BLK_SIZE;
774         }
775
776         /* Copy raw rds data to internal rds buffer */
777         rds_data = skb->data;
778         rds_len = skb->len;
779
780         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
781         while (rds_len > 0) {
782                 /*
783                  * Fill RDS buffer as per V4L2 specification.
784                  * Store control byte
785                  */
786                 type = (rds_data[2] & 0x07);
787                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
788                 tmpbuf[2] = blk_idx;    /* Offset name */
789                 tmpbuf[2] |= blk_idx << 3;      /* Received offset */
790
791                 /* Store data byte */
792                 tmpbuf[0] = rds_data[0];
793                 tmpbuf[1] = rds_data[1];
794
795                 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
796                 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
797
798                 /* Check for overflow & start over */
799                 if (rds->wr_idx == rds->rd_idx) {
800                         fmdbg("RDS buffer overflow\n");
801                         rds->wr_idx = 0;
802                         rds->rd_idx = 0;
803                         break;
804                 }
805                 rds_len -= FM_RDS_BLK_SIZE;
806                 rds_data += FM_RDS_BLK_SIZE;
807         }
808         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
809
810         /* Wakeup read queue */
811         if (rds->wr_idx != rds->rd_idx)
812                 wake_up_interruptible(&rds->read_queue);
813
814         fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
815 }
816
817 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
818 {
819         fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
820 }
821
822 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
823 {
824         if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
825             irq_info.mask) {
826                 fmdbg("irq: tune ended/bandlimit reached\n");
827                 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
828                         fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
829                 } else {
830                         complete(&fmdev->maintask_comp);
831                         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
832                 }
833         } else
834                 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
835
836         fm_irq_call(fmdev);
837 }
838
839 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
840 {
841         if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
842                 fmdbg("irq: Power Enabled/Disabled\n");
843                 complete(&fmdev->maintask_comp);
844         }
845
846         fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
847 }
848
849 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
850 {
851         if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
852             (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
853             (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
854             (fmdev->rx.stat_info.afcache_size != 0)) {
855                 fmdbg("irq: rssi level has fallen below threshold level\n");
856
857                 /* Disable further low RSSI interrupts */
858                 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
859
860                 fmdev->rx.afjump_idx = 0;
861                 fmdev->rx.freq_before_jump = fmdev->rx.freq;
862                 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
863         } else {
864                 /* Continue next function in interrupt handler table */
865                 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
866         }
867
868         fm_irq_call(fmdev);
869 }
870
871 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
872 {
873         u16 payload;
874
875         /* Set PI code - must be updated if the AF list is not empty */
876         payload = fmdev->rx.stat_info.picode;
877         if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
878                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
879 }
880
881 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
882 {
883         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
884 }
885
886 /*
887  * Set PI mask.
888  * 0xFFFF = Enable PI code matching
889  * 0x0000 = Disable PI code matching
890  */
891 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
892 {
893         u16 payload;
894
895         payload = 0x0000;
896         if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
897                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
898 }
899
900 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
901 {
902         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
903 }
904
905 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
906 {
907         u16 frq_index;
908         u16 payload;
909
910         fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
911         frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
912              fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
913
914         payload = frq_index;
915         if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
916                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
917 }
918
919 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
920 {
921         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
922 }
923
924 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
925 {
926         u16 payload;
927
928         /* Enable FR (tuning operation ended) interrupt */
929         payload = FM_FR_EVENT;
930         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
931                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
932 }
933
934 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
935 {
936         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
937 }
938
939 static void fm_irq_start_afjump(struct fmdev *fmdev)
940 {
941         u16 payload;
942
943         payload = FM_TUNER_AF_JUMP_MODE;
944         if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
945                         sizeof(payload), NULL))
946                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
947 }
948
949 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
950 {
951         struct sk_buff *skb;
952
953         if (check_cmdresp_status(fmdev, &skb))
954                 return;
955
956         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
957         set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
958         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
959 }
960
961 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
962 {
963         u16 payload;
964
965         if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
966                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
967 }
968
969 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
970 {
971         struct sk_buff *skb;
972         u16 read_freq;
973         u32 curr_freq, jumped_freq;
974
975         if (check_cmdresp_status(fmdev, &skb))
976                 return;
977
978         /* Skip header info and copy only response data */
979         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
980         memcpy(&read_freq, skb->data, sizeof(read_freq));
981         read_freq = be16_to_cpu((__force __be16)read_freq);
982         curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
983
984         jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
985
986         /* If the frequency was changed the jump succeeded */
987         if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
988                 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
989                 fmdev->rx.freq = curr_freq;
990                 fm_rx_reset_rds_cache(fmdev);
991
992                 /* AF feature is on, enable low level RSSI interrupt */
993                 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
994                         fmdev->irq_info.mask |= FM_LEV_EVENT;
995
996                 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
997         } else {                /* jump to the next freq in the AF list */
998                 fmdev->rx.afjump_idx++;
999
1000                 /* If we reached the end of the list - stop searching */
1001                 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1002                         fmdbg("AF switch processing failed\n");
1003                         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1004                 } else {        /* AF List is not over - try next one */
1005
1006                         fmdbg("Trying next freq in AF cache\n");
1007                         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1008                 }
1009         }
1010         fm_irq_call(fmdev);
1011 }
1012
1013 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1014 {
1015         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1016 }
1017
1018 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1019 {
1020         u16 payload;
1021
1022         /* Re-enable FM interrupts */
1023         payload = fmdev->irq_info.mask;
1024
1025         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1026                         sizeof(payload), NULL))
1027                 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1028 }
1029
1030 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1031 {
1032         struct sk_buff *skb;
1033
1034         if (check_cmdresp_status(fmdev, &skb))
1035                 return;
1036         /*
1037          * This is last function in interrupt table to be executed.
1038          * So, reset stage index to 0.
1039          */
1040         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1041
1042         /* Start processing any pending interrupt */
1043         if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1044                 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1045         else
1046                 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1047 }
1048
1049 /* Returns availability of RDS data in internal buffer */
1050 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1051                                 struct poll_table_struct *pts)
1052 {
1053         poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1054         if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1055                 return 0;
1056
1057         return -EAGAIN;
1058 }
1059
1060 /* Copies RDS data from internal buffer to user buffer */
1061 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1062                 u8 __user *buf, size_t count)
1063 {
1064         u32 block_count;
1065         u8 tmpbuf[FM_RDS_BLK_SIZE];
1066         unsigned long flags;
1067         int ret;
1068
1069         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1070                 if (file->f_flags & O_NONBLOCK)
1071                         return -EWOULDBLOCK;
1072
1073                 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1074                                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1075                 if (ret)
1076                         return -EINTR;
1077         }
1078
1079         /* Calculate block count from byte count */
1080         count /= FM_RDS_BLK_SIZE;
1081         block_count = 0;
1082         ret = 0;
1083
1084         while (block_count < count) {
1085                 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1086
1087                 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1088                         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1089                         break;
1090                 }
1091                 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1092                                         FM_RDS_BLK_SIZE);
1093                 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1094                 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1095                         fmdev->rx.rds.rd_idx = 0;
1096
1097                 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1098
1099                 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1100                         break;
1101
1102                 block_count++;
1103                 buf += FM_RDS_BLK_SIZE;
1104                 ret += FM_RDS_BLK_SIZE;
1105         }
1106         return ret;
1107 }
1108
1109 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1110 {
1111         switch (fmdev->curr_fmmode) {
1112         case FM_MODE_RX:
1113                 return fm_rx_set_freq(fmdev, freq_to_set);
1114
1115         case FM_MODE_TX:
1116                 return fm_tx_set_freq(fmdev, freq_to_set);
1117
1118         default:
1119                 return -EINVAL;
1120         }
1121 }
1122
1123 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1124 {
1125         if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1126                 fmerr("RX frequency is not set\n");
1127                 return -EPERM;
1128         }
1129         if (cur_tuned_frq == NULL) {
1130                 fmerr("Invalid memory\n");
1131                 return -ENOMEM;
1132         }
1133
1134         switch (fmdev->curr_fmmode) {
1135         case FM_MODE_RX:
1136                 *cur_tuned_frq = fmdev->rx.freq;
1137                 return 0;
1138
1139         case FM_MODE_TX:
1140                 *cur_tuned_frq = 0;     /* TODO : Change this later */
1141                 return 0;
1142
1143         default:
1144                 return -EINVAL;
1145         }
1146
1147 }
1148
1149 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1150 {
1151         switch (fmdev->curr_fmmode) {
1152         case FM_MODE_RX:
1153                 return fm_rx_set_region(fmdev, region_to_set);
1154
1155         case FM_MODE_TX:
1156                 return fm_tx_set_region(fmdev, region_to_set);
1157
1158         default:
1159                 return -EINVAL;
1160         }
1161 }
1162
1163 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1164 {
1165         switch (fmdev->curr_fmmode) {
1166         case FM_MODE_RX:
1167                 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1168
1169         case FM_MODE_TX:
1170                 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1171
1172         default:
1173                 return -EINVAL;
1174         }
1175 }
1176
1177 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1178 {
1179         switch (fmdev->curr_fmmode) {
1180         case FM_MODE_RX:
1181                 return fm_rx_set_stereo_mono(fmdev, mode);
1182
1183         case FM_MODE_TX:
1184                 return fm_tx_set_stereo_mono(fmdev, mode);
1185
1186         default:
1187                 return -EINVAL;
1188         }
1189 }
1190
1191 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1192 {
1193         switch (fmdev->curr_fmmode) {
1194         case FM_MODE_RX:
1195                 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1196
1197         case FM_MODE_TX:
1198                 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1199
1200         default:
1201                 return -EINVAL;
1202         }
1203 }
1204
1205 /* Sends power off command to the chip */
1206 static int fm_power_down(struct fmdev *fmdev)
1207 {
1208         u16 payload;
1209         int ret;
1210
1211         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1212                 fmerr("FM core is not ready\n");
1213                 return -EPERM;
1214         }
1215         if (fmdev->curr_fmmode == FM_MODE_OFF) {
1216                 fmdbg("FM chip is already in OFF state\n");
1217                 return 0;
1218         }
1219
1220         payload = 0x0;
1221         ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1222                 sizeof(payload), NULL, NULL);
1223         if (ret < 0)
1224                 return ret;
1225
1226         return fmc_release(fmdev);
1227 }
1228
1229 /* Reads init command from FM firmware file and loads to the chip */
1230 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1231 {
1232         const struct firmware *fw_entry;
1233         struct bts_header *fw_header;
1234         struct bts_action *action;
1235         struct bts_action_delay *delay;
1236         u8 *fw_data;
1237         int ret, fw_len;
1238
1239         set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240
1241         ret = reject_firmware(&fw_entry, fw_name,
1242                                 &fmdev->radio_dev->dev);
1243         if (ret < 0) {
1244                 fmerr("Unable to read firmware(%s) content\n", fw_name);
1245                 return ret;
1246         }
1247         fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248
1249         fw_data = (void *)fw_entry->data;
1250         fw_len = fw_entry->size;
1251
1252         fw_header = (struct bts_header *)fw_data;
1253         if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254                 fmerr("%s not a legal TI firmware file\n", fw_name);
1255                 ret = -EINVAL;
1256                 goto rel_fw;
1257         }
1258         fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259
1260         /* Skip file header info , we already verified it */
1261         fw_data += sizeof(struct bts_header);
1262         fw_len -= sizeof(struct bts_header);
1263
1264         while (fw_data && fw_len > 0) {
1265                 action = (struct bts_action *)fw_data;
1266
1267                 switch (action->type) {
1268                 case ACTION_SEND_COMMAND:       /* Send */
1269                         ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270                                            action->size, NULL, NULL);
1271                         if (ret)
1272                                 goto rel_fw;
1273
1274                         break;
1275
1276                 case ACTION_DELAY:      /* Delay */
1277                         delay = (struct bts_action_delay *)action->data;
1278                         mdelay(delay->msec);
1279                         break;
1280                 }
1281
1282                 fw_data += (sizeof(struct bts_action) + (action->size));
1283                 fw_len -= (sizeof(struct bts_action) + (action->size));
1284         }
1285         fmdbg("Transferred only %d of %d bytes of the firmware to chip\n",
1286               fw_entry->size - fw_len, fw_entry->size);
1287 rel_fw:
1288         release_firmware(fw_entry);
1289         clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1290
1291         return ret;
1292 }
1293
1294 /* Loads default RX configuration to the chip */
1295 static int load_default_rx_configuration(struct fmdev *fmdev)
1296 {
1297         int ret;
1298
1299         ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1300         if (ret < 0)
1301                 return ret;
1302
1303         return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1304 }
1305
1306 /* Does FM power on sequence */
1307 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1308 {
1309         u16 payload;
1310         __be16 asic_id = 0, asic_ver = 0;
1311         int resp_len, ret;
1312         u8 fw_name[50];
1313
1314         if (mode >= FM_MODE_ENTRY_MAX) {
1315                 fmerr("Invalid firmware download option\n");
1316                 return -EINVAL;
1317         }
1318
1319         /*
1320          * Initialize FM common module. FM GPIO toggling is
1321          * taken care in Shared Transport driver.
1322          */
1323         ret = fmc_prepare(fmdev);
1324         if (ret < 0) {
1325                 fmerr("Unable to prepare FM Common\n");
1326                 return ret;
1327         }
1328
1329         payload = FM_ENABLE;
1330         if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1331                         sizeof(payload), NULL, NULL))
1332                 goto rel;
1333
1334         /* Allow the chip to settle down in Channel-8 mode */
1335         msleep(20);
1336
1337         if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1338                         sizeof(asic_id), &asic_id, &resp_len))
1339                 goto rel;
1340
1341         if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1342                         sizeof(asic_ver), &asic_ver, &resp_len))
1343                 goto rel;
1344
1345         fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1346                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1347
1348         sprintf(fw_name, "/*(DEBLOBBED)*/", FM_FMC_FW_FILE_START,
1349                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1350
1351         ret = fm_download_firmware(fmdev, fw_name);
1352         if (ret < 0) {
1353                 fmdbg("Failed to download firmware file %s\n", fw_name);
1354                 goto rel;
1355         }
1356         sprintf(fw_name, "/*(DEBLOBBED)*/", (mode == FM_MODE_RX) ?
1357                         FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1358                         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360         ret = fm_download_firmware(fmdev, fw_name);
1361         if (ret < 0) {
1362                 fmdbg("Failed to download firmware file %s\n", fw_name);
1363                 goto rel;
1364         } else
1365                 return ret;
1366 rel:
1367         return fmc_release(fmdev);
1368 }
1369
1370 /* Set FM Modes(TX, RX, OFF) */
1371 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1372 {
1373         int ret = 0;
1374
1375         if (fm_mode >= FM_MODE_ENTRY_MAX) {
1376                 fmerr("Invalid FM mode\n");
1377                 return -EINVAL;
1378         }
1379         if (fmdev->curr_fmmode == fm_mode) {
1380                 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1381                 return ret;
1382         }
1383
1384         switch (fm_mode) {
1385         case FM_MODE_OFF:       /* OFF Mode */
1386                 ret = fm_power_down(fmdev);
1387                 if (ret < 0) {
1388                         fmerr("Failed to set OFF mode\n");
1389                         return ret;
1390                 }
1391                 break;
1392
1393         case FM_MODE_TX:        /* TX Mode */
1394         case FM_MODE_RX:        /* RX Mode */
1395                 /* Power down before switching to TX or RX mode */
1396                 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1397                         ret = fm_power_down(fmdev);
1398                         if (ret < 0) {
1399                                 fmerr("Failed to set OFF mode\n");
1400                                 return ret;
1401                         }
1402                         msleep(30);
1403                 }
1404                 ret = fm_power_up(fmdev, fm_mode);
1405                 if (ret < 0) {
1406                         fmerr("Failed to load firmware\n");
1407                         return ret;
1408                 }
1409         }
1410         fmdev->curr_fmmode = fm_mode;
1411
1412         /* Set default configuration */
1413         if (fmdev->curr_fmmode == FM_MODE_RX) {
1414                 fmdbg("Loading default rx configuration..\n");
1415                 ret = load_default_rx_configuration(fmdev);
1416                 if (ret < 0)
1417                         fmerr("Failed to load default values\n");
1418         }
1419
1420         return ret;
1421 }
1422
1423 /* Returns current FM mode (TX, RX, OFF) */
1424 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1425 {
1426         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1427                 fmerr("FM core is not ready\n");
1428                 return -EPERM;
1429         }
1430         if (fmmode == NULL) {
1431                 fmerr("Invalid memory\n");
1432                 return -ENOMEM;
1433         }
1434
1435         *fmmode = fmdev->curr_fmmode;
1436         return 0;
1437 }
1438
1439 /* Called by ST layer when FM packet is available */
1440 static long fm_st_receive(void *arg, struct sk_buff *skb)
1441 {
1442         struct fmdev *fmdev;
1443
1444         fmdev = arg;
1445
1446         if (skb == NULL) {
1447                 fmerr("Invalid SKB received from ST\n");
1448                 return -EFAULT;
1449         }
1450
1451         if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1452                 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1453                 return -EINVAL;
1454         }
1455
1456         memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1457         skb_queue_tail(&fmdev->rx_q, skb);
1458         tasklet_schedule(&fmdev->rx_task);
1459
1460         return 0;
1461 }
1462
1463 /*
1464  * Called by ST layer to indicate protocol registration completion
1465  * status.
1466  */
1467 static void fm_st_reg_comp_cb(void *arg, int data)
1468 {
1469         struct fmdev *fmdev;
1470
1471         fmdev = (struct fmdev *)arg;
1472         fmdev->streg_cbdata = data;
1473         complete(&wait_for_fmdrv_reg_comp);
1474 }
1475
1476 /*
1477  * This function will be called from FM V4L2 open function.
1478  * Register with ST driver and initialize driver data.
1479  */
1480 int fmc_prepare(struct fmdev *fmdev)
1481 {
1482         static struct st_proto_s fm_st_proto;
1483         int ret;
1484
1485         if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1486                 fmdbg("FM Core is already up\n");
1487                 return 0;
1488         }
1489
1490         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1491         fm_st_proto.recv = fm_st_receive;
1492         fm_st_proto.match_packet = NULL;
1493         fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1494         fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1495         fm_st_proto.priv_data = fmdev;
1496         fm_st_proto.chnl_id = 0x08;
1497         fm_st_proto.max_frame_size = 0xff;
1498         fm_st_proto.hdr_len = 1;
1499         fm_st_proto.offset_len_in_hdr = 0;
1500         fm_st_proto.len_size = 1;
1501         fm_st_proto.reserve = 1;
1502
1503         ret = st_register(&fm_st_proto);
1504         if (ret == -EINPROGRESS) {
1505                 init_completion(&wait_for_fmdrv_reg_comp);
1506                 fmdev->streg_cbdata = -EINPROGRESS;
1507                 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1508
1509                 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1510                                                  FM_ST_REG_TIMEOUT)) {
1511                         fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1512                                         jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1513                         return -ETIMEDOUT;
1514                 }
1515                 if (fmdev->streg_cbdata != 0) {
1516                         fmerr("ST reg comp CB called with error status %d\n",
1517                               fmdev->streg_cbdata);
1518                         return -EAGAIN;
1519                 }
1520
1521                 ret = 0;
1522         } else if (ret < 0) {
1523                 fmerr("st_register failed %d\n", ret);
1524                 return -EAGAIN;
1525         }
1526
1527         if (fm_st_proto.write != NULL) {
1528                 g_st_write = fm_st_proto.write;
1529         } else {
1530                 fmerr("Failed to get ST write func pointer\n");
1531                 ret = st_unregister(&fm_st_proto);
1532                 if (ret < 0)
1533                         fmerr("st_unregister failed %d\n", ret);
1534                 return -EAGAIN;
1535         }
1536
1537         spin_lock_init(&fmdev->rds_buff_lock);
1538         spin_lock_init(&fmdev->resp_skb_lock);
1539
1540         /* Initialize TX queue and TX tasklet */
1541         skb_queue_head_init(&fmdev->tx_q);
1542         tasklet_setup(&fmdev->tx_task, send_tasklet);
1543
1544         /* Initialize RX Queue and RX tasklet */
1545         skb_queue_head_init(&fmdev->rx_q);
1546         tasklet_setup(&fmdev->rx_task, recv_tasklet);
1547
1548         fmdev->irq_info.stage = 0;
1549         atomic_set(&fmdev->tx_cnt, 1);
1550         fmdev->resp_comp = NULL;
1551
1552         timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1553         /*TODO: add FM_STIC_EVENT later */
1554         fmdev->irq_info.mask = FM_MAL_EVENT;
1555
1556         /* Region info */
1557         fmdev->rx.region = region_configs[default_radio_region];
1558
1559         fmdev->rx.mute_mode = FM_MUTE_OFF;
1560         fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1561         fmdev->rx.rds.flag = FM_RDS_DISABLE;
1562         fmdev->rx.freq = FM_UNDEFINED_FREQ;
1563         fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1564         fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1565         fmdev->irq_info.retry = 0;
1566
1567         fm_rx_reset_rds_cache(fmdev);
1568         init_waitqueue_head(&fmdev->rx.rds.read_queue);
1569
1570         fm_rx_reset_station_info(fmdev);
1571         set_bit(FM_CORE_READY, &fmdev->flag);
1572
1573         return ret;
1574 }
1575
1576 /*
1577  * This function will be called from FM V4L2 release function.
1578  * Unregister from ST driver.
1579  */
1580 int fmc_release(struct fmdev *fmdev)
1581 {
1582         static struct st_proto_s fm_st_proto;
1583         int ret;
1584
1585         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1586                 fmdbg("FM Core is already down\n");
1587                 return 0;
1588         }
1589         /* Service pending read */
1590         wake_up_interruptible(&fmdev->rx.rds.read_queue);
1591
1592         tasklet_kill(&fmdev->tx_task);
1593         tasklet_kill(&fmdev->rx_task);
1594
1595         skb_queue_purge(&fmdev->tx_q);
1596         skb_queue_purge(&fmdev->rx_q);
1597
1598         fmdev->resp_comp = NULL;
1599         fmdev->rx.freq = 0;
1600
1601         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1602         fm_st_proto.chnl_id = 0x08;
1603
1604         ret = st_unregister(&fm_st_proto);
1605
1606         if (ret < 0)
1607                 fmerr("Failed to de-register FM from ST %d\n", ret);
1608         else
1609                 fmdbg("Successfully unregistered from ST\n");
1610
1611         clear_bit(FM_CORE_READY, &fmdev->flag);
1612         return ret;
1613 }
1614
1615 /*
1616  * Module init function. Ask FM V4L module to register video device.
1617  * Allocate memory for FM driver context and RX RDS buffer.
1618  */
1619 static int __init fm_drv_init(void)
1620 {
1621         struct fmdev *fmdev = NULL;
1622         int ret = -ENOMEM;
1623
1624         fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1625
1626         fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1627         if (NULL == fmdev) {
1628                 fmerr("Can't allocate operation structure memory\n");
1629                 return ret;
1630         }
1631         fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1632         fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1633         if (NULL == fmdev->rx.rds.buff) {
1634                 fmerr("Can't allocate rds ring buffer\n");
1635                 goto rel_dev;
1636         }
1637
1638         ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1639         if (ret < 0)
1640                 goto rel_rdsbuf;
1641
1642         fmdev->irq_info.handlers = int_handler_table;
1643         fmdev->curr_fmmode = FM_MODE_OFF;
1644         fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1645         fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1646         return ret;
1647
1648 rel_rdsbuf:
1649         kfree(fmdev->rx.rds.buff);
1650 rel_dev:
1651         kfree(fmdev);
1652
1653         return ret;
1654 }
1655
1656 /* Module exit function. Ask FM V4L module to unregister video device */
1657 static void __exit fm_drv_exit(void)
1658 {
1659         struct fmdev *fmdev = NULL;
1660
1661         fmdev = fm_v4l2_deinit_video_device();
1662         if (fmdev != NULL) {
1663                 kfree(fmdev->rx.rds.buff);
1664                 kfree(fmdev);
1665         }
1666 }
1667
1668 module_init(fm_drv_init);
1669 module_exit(fm_drv_exit);
1670
1671 /* ------------- Module Info ------------- */
1672 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1673 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1674 MODULE_VERSION(FM_DRV_VERSION);
1675 MODULE_LICENSE("GPL");