GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / media / radio / wl128x / fmdrv_common.c
1 /*
2  *  FM Driver for Connectivity chip of Texas Instruments.
3  *
4  *  This sub-module of FM driver is common for FM RX and TX
5  *  functionality. This module is responsible for:
6  *  1) Forming group of Channel-8 commands to perform particular
7  *     functionality (eg., frequency set require more than
8  *     one Channel-8 command to be sent to the chip).
9  *  2) Sending each Channel-8 command to the chip and reading
10  *     response back over Shared Transport.
11  *  3) Managing TX and RX Queues and Tasklets.
12  *  4) Handling FM Interrupt packet and taking appropriate action.
13  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  *     firmware files based on mode selection)
15  *
16  *  Copyright (C) 2011 Texas Instruments
17  *  Author: Raja Mani <raja_mani@ti.com>
18  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License version 2 as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope that it will be useful,
25  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  *  GNU General Public License for more details.
28  *
29  */
30
31 #include <linux/module.h>
32 #include <linux/firmware.h>
33 #include <linux/delay.h>
34 #include "fmdrv.h"
35 #include "fmdrv_v4l2.h"
36 #include "fmdrv_common.h"
37 #include <linux/ti_wilink_st.h>
38 #include "fmdrv_rx.h"
39 #include "fmdrv_tx.h"
40
41 /* Region info */
42 static struct region_info region_configs[] = {
43         /* Europe/US */
44         {
45          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
46          .bot_freq = 87500,     /* 87.5 MHz */
47          .top_freq = 108000,    /* 108 MHz */
48          .fm_band = 0,
49          },
50         /* Japan */
51         {
52          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
53          .bot_freq = 76000,     /* 76 MHz */
54          .top_freq = 90000,     /* 90 MHz */
55          .fm_band = 1,
56          },
57 };
58
59 /* Band selection */
60 static u8 default_radio_region; /* Europe/US */
61 module_param(default_radio_region, byte, 0);
62 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
63
64 /* RDS buffer blocks */
65 static u32 default_rds_buf = 300;
66 module_param(default_rds_buf, uint, 0444);
67 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
68
69 /* Radio Nr */
70 static u32 radio_nr = -1;
71 module_param(radio_nr, int, 0444);
72 MODULE_PARM_DESC(radio_nr, "Radio Nr");
73
74 /* FM irq handlers forward declaration */
75 static void fm_irq_send_flag_getcmd(struct fmdev *);
76 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
77 static void fm_irq_handle_hw_malfunction(struct fmdev *);
78 static void fm_irq_handle_rds_start(struct fmdev *);
79 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
80 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_rds_finish(struct fmdev *);
82 static void fm_irq_handle_tune_op_ended(struct fmdev *);
83 static void fm_irq_handle_power_enb(struct fmdev *);
84 static void fm_irq_handle_low_rssi_start(struct fmdev *);
85 static void fm_irq_afjump_set_pi(struct fmdev *);
86 static void fm_irq_handle_set_pi_resp(struct fmdev *);
87 static void fm_irq_afjump_set_pimask(struct fmdev *);
88 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
89 static void fm_irq_afjump_setfreq(struct fmdev *);
90 static void fm_irq_handle_setfreq_resp(struct fmdev *);
91 static void fm_irq_afjump_enableint(struct fmdev *);
92 static void fm_irq_afjump_enableint_resp(struct fmdev *);
93 static void fm_irq_start_afjump(struct fmdev *);
94 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
95 static void fm_irq_afjump_rd_freq(struct fmdev *);
96 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
97 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
98 static void fm_irq_send_intmsk_cmd(struct fmdev *);
99 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
100
101 /*
102  * When FM common module receives interrupt packet, following handlers
103  * will be executed one after another to service the interrupt(s)
104  */
105 enum fmc_irq_handler_index {
106         FM_SEND_FLAG_GETCMD_IDX,
107         FM_HANDLE_FLAG_GETCMD_RESP_IDX,
108
109         /* HW malfunction irq handler */
110         FM_HW_MAL_FUNC_IDX,
111
112         /* RDS threshold reached irq handler */
113         FM_RDS_START_IDX,
114         FM_RDS_SEND_RDS_GETCMD_IDX,
115         FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
116         FM_RDS_FINISH_IDX,
117
118         /* Tune operation ended irq handler */
119         FM_HW_TUNE_OP_ENDED_IDX,
120
121         /* TX power enable irq handler */
122         FM_HW_POWER_ENB_IDX,
123
124         /* Low RSSI irq handler */
125         FM_LOW_RSSI_START_IDX,
126         FM_AF_JUMP_SETPI_IDX,
127         FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
128         FM_AF_JUMP_SETPI_MASK_IDX,
129         FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
130         FM_AF_JUMP_SET_AF_FREQ_IDX,
131         FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
132         FM_AF_JUMP_ENABLE_INT_IDX,
133         FM_AF_JUMP_ENABLE_INT_RESP_IDX,
134         FM_AF_JUMP_START_AFJUMP_IDX,
135         FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
136         FM_AF_JUMP_RD_FREQ_IDX,
137         FM_AF_JUMP_RD_FREQ_RESP_IDX,
138         FM_LOW_RSSI_FINISH_IDX,
139
140         /* Interrupt process post action */
141         FM_SEND_INTMSK_CMD_IDX,
142         FM_HANDLE_INTMSK_CMD_RESP_IDX,
143 };
144
145 /* FM interrupt handler table */
146 static int_handler_prototype int_handler_table[] = {
147         fm_irq_send_flag_getcmd,
148         fm_irq_handle_flag_getcmd_resp,
149         fm_irq_handle_hw_malfunction,
150         fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
151         fm_irq_send_rdsdata_getcmd,
152         fm_irq_handle_rdsdata_getcmd_resp,
153         fm_irq_handle_rds_finish,
154         fm_irq_handle_tune_op_ended,
155         fm_irq_handle_power_enb, /* TX power enable irq handler */
156         fm_irq_handle_low_rssi_start,
157         fm_irq_afjump_set_pi,
158         fm_irq_handle_set_pi_resp,
159         fm_irq_afjump_set_pimask,
160         fm_irq_handle_set_pimask_resp,
161         fm_irq_afjump_setfreq,
162         fm_irq_handle_setfreq_resp,
163         fm_irq_afjump_enableint,
164         fm_irq_afjump_enableint_resp,
165         fm_irq_start_afjump,
166         fm_irq_handle_start_afjump_resp,
167         fm_irq_afjump_rd_freq,
168         fm_irq_afjump_rd_freq_resp,
169         fm_irq_handle_low_rssi_finish,
170         fm_irq_send_intmsk_cmd, /* Interrupt process post action */
171         fm_irq_handle_intmsk_cmd_resp
172 };
173
174 static long (*g_st_write) (struct sk_buff *skb);
175 static struct completion wait_for_fmdrv_reg_comp;
176
177 static inline void fm_irq_call(struct fmdev *fmdev)
178 {
179         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
180 }
181
182 /* Continue next function in interrupt handler table */
183 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
184 {
185         fmdev->irq_info.stage = stage;
186         fm_irq_call(fmdev);
187 }
188
189 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
190 {
191         fmdev->irq_info.stage = stage;
192         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
193 }
194
195 #ifdef FM_DUMP_TXRX_PKT
196  /* To dump outgoing FM Channel-8 packets */
197 inline void dump_tx_skb_data(struct sk_buff *skb)
198 {
199         int len, len_org;
200         u8 index;
201         struct fm_cmd_msg_hdr *cmd_hdr;
202
203         cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
204         printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
205                fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
206                cmd_hdr->len, cmd_hdr->op,
207                cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
208
209         len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
210         if (len_org > 0) {
211                 printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
212                 len = min(len_org, 14);
213                 for (index = 0; index < len; index++)
214                         printk(KERN_CONT "%x ",
215                                skb->data[FM_CMD_MSG_HDR_SIZE + index]);
216                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
217         }
218         printk(KERN_CONT "\n");
219 }
220
221  /* To dump incoming FM Channel-8 packets */
222 inline void dump_rx_skb_data(struct sk_buff *skb)
223 {
224         int len, len_org;
225         u8 index;
226         struct fm_event_msg_hdr *evt_hdr;
227
228         evt_hdr = (struct fm_event_msg_hdr *)skb->data;
229         printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
230                evt_hdr->hdr, evt_hdr->len,
231                evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
232                (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
233
234         len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
235         if (len_org > 0) {
236                 printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
237                 len = min(len_org, 14);
238                 for (index = 0; index < len; index++)
239                         printk(KERN_CONT "%x ",
240                                skb->data[FM_EVT_MSG_HDR_SIZE + index]);
241                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
242         }
243         printk(KERN_CONT "\n");
244 }
245 #endif
246
247 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
248 {
249         fmdev->rx.region = region_configs[region_to_set];
250 }
251
252 /*
253  * FM common sub-module will schedule this tasklet whenever it receives
254  * FM packet from ST driver.
255  */
256 static void recv_tasklet(unsigned long arg)
257 {
258         struct fmdev *fmdev;
259         struct fm_irq *irq_info;
260         struct fm_event_msg_hdr *evt_hdr;
261         struct sk_buff *skb;
262         u8 num_fm_hci_cmds;
263         unsigned long flags;
264
265         fmdev = (struct fmdev *)arg;
266         irq_info = &fmdev->irq_info;
267         /* Process all packets in the RX queue */
268         while ((skb = skb_dequeue(&fmdev->rx_q))) {
269                 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
270                         fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
271                               skb,
272                               skb->len, sizeof(struct fm_event_msg_hdr));
273                         kfree_skb(skb);
274                         continue;
275                 }
276
277                 evt_hdr = (void *)skb->data;
278                 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
279
280                 /* FM interrupt packet? */
281                 if (evt_hdr->op == FM_INTERRUPT) {
282                         /* FM interrupt handler started already? */
283                         if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
284                                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
285                                 if (irq_info->stage != 0) {
286                                         fmerr("Inval stage resetting to zero\n");
287                                         irq_info->stage = 0;
288                                 }
289
290                                 /*
291                                  * Execute first function in interrupt handler
292                                  * table.
293                                  */
294                                 irq_info->handlers[irq_info->stage](fmdev);
295                         } else {
296                                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
297                         }
298                         kfree_skb(skb);
299                 }
300                 /* Anyone waiting for this with completion handler? */
301                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
302
303                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
304                         fmdev->resp_skb = skb;
305                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
306                         complete(fmdev->resp_comp);
307
308                         fmdev->resp_comp = NULL;
309                         atomic_set(&fmdev->tx_cnt, 1);
310                 }
311                 /* Is this for interrupt handler? */
312                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
313                         if (fmdev->resp_skb != NULL)
314                                 fmerr("Response SKB ptr not NULL\n");
315
316                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
317                         fmdev->resp_skb = skb;
318                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
319
320                         /* Execute interrupt handler where state index points */
321                         irq_info->handlers[irq_info->stage](fmdev);
322
323                         kfree_skb(skb);
324                         atomic_set(&fmdev->tx_cnt, 1);
325                 } else {
326                         fmerr("Nobody claimed SKB(%p),purging\n", skb);
327                 }
328
329                 /*
330                  * Check flow control field. If Num_FM_HCI_Commands field is
331                  * not zero, schedule FM TX tasklet.
332                  */
333                 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
334                         if (!skb_queue_empty(&fmdev->tx_q))
335                                 tasklet_schedule(&fmdev->tx_task);
336         }
337 }
338
339 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
340 static void send_tasklet(unsigned long arg)
341 {
342         struct fmdev *fmdev;
343         struct sk_buff *skb;
344         int len;
345
346         fmdev = (struct fmdev *)arg;
347
348         if (!atomic_read(&fmdev->tx_cnt))
349                 return;
350
351         /* Check, is there any timeout happened to last transmitted packet */
352         if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
353                 fmerr("TX timeout occurred\n");
354                 atomic_set(&fmdev->tx_cnt, 1);
355         }
356
357         /* Send queued FM TX packets */
358         skb = skb_dequeue(&fmdev->tx_q);
359         if (!skb)
360                 return;
361
362         atomic_dec(&fmdev->tx_cnt);
363         fmdev->pre_op = fm_cb(skb)->fm_op;
364
365         if (fmdev->resp_comp != NULL)
366                 fmerr("Response completion handler is not NULL\n");
367
368         fmdev->resp_comp = fm_cb(skb)->completion;
369
370         /* Write FM packet to ST driver */
371         len = g_st_write(skb);
372         if (len < 0) {
373                 kfree_skb(skb);
374                 fmdev->resp_comp = NULL;
375                 fmerr("TX tasklet failed to send skb(%p)\n", skb);
376                 atomic_set(&fmdev->tx_cnt, 1);
377         } else {
378                 fmdev->last_tx_jiffies = jiffies;
379         }
380 }
381
382 /*
383  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
384  * transmission
385  */
386 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
387                 int payload_len, struct completion *wait_completion)
388 {
389         struct sk_buff *skb;
390         struct fm_cmd_msg_hdr *hdr;
391         int size;
392
393         if (fm_op >= FM_INTERRUPT) {
394                 fmerr("Invalid fm opcode - %d\n", fm_op);
395                 return -EINVAL;
396         }
397         if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
398                 fmerr("Payload data is NULL during fw download\n");
399                 return -EINVAL;
400         }
401         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
402                 size =
403                     FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
404         else
405                 size = payload_len;
406
407         skb = alloc_skb(size, GFP_ATOMIC);
408         if (!skb) {
409                 fmerr("No memory to create new SKB\n");
410                 return -ENOMEM;
411         }
412         /*
413          * Don't fill FM header info for the commands which come from
414          * FM firmware file.
415          */
416         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
417                         test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
418                 /* Fill command header info */
419                 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
420                 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
421
422                 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
423                 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
424
425                 /* FM opcode */
426                 hdr->op = fm_op;
427
428                 /* read/write type */
429                 hdr->rd_wr = type;
430                 hdr->dlen = payload_len;
431                 fm_cb(skb)->fm_op = fm_op;
432
433                 /*
434                  * If firmware download has finished and the command is
435                  * not a read command then payload is != NULL - a write
436                  * command with u16 payload - convert to be16
437                  */
438                 if (payload != NULL)
439                         *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
440
441         } else if (payload != NULL) {
442                 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
443         }
444         if (payload != NULL)
445                 skb_put_data(skb, payload, payload_len);
446
447         fm_cb(skb)->completion = wait_completion;
448         skb_queue_tail(&fmdev->tx_q, skb);
449         tasklet_schedule(&fmdev->tx_task);
450
451         return 0;
452 }
453
454 /* Sends FM Channel-8 command to the chip and waits for the response */
455 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
456                 unsigned int payload_len, void *response, int *response_len)
457 {
458         struct sk_buff *skb;
459         struct fm_event_msg_hdr *evt_hdr;
460         unsigned long flags;
461         int ret;
462
463         init_completion(&fmdev->maintask_comp);
464         ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
465                             &fmdev->maintask_comp);
466         if (ret)
467                 return ret;
468
469         if (!wait_for_completion_timeout(&fmdev->maintask_comp,
470                                          FM_DRV_TX_TIMEOUT)) {
471                 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
472                            jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
473                 return -ETIMEDOUT;
474         }
475         if (!fmdev->resp_skb) {
476                 fmerr("Response SKB is missing\n");
477                 return -EFAULT;
478         }
479         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
480         skb = fmdev->resp_skb;
481         fmdev->resp_skb = NULL;
482         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
483
484         evt_hdr = (void *)skb->data;
485         if (evt_hdr->status != 0) {
486                 fmerr("Received event pkt status(%d) is not zero\n",
487                            evt_hdr->status);
488                 kfree_skb(skb);
489                 return -EIO;
490         }
491         /* Send response data to caller */
492         if (response != NULL && response_len != NULL && evt_hdr->dlen &&
493             evt_hdr->dlen <= payload_len) {
494                 /* Skip header info and copy only response data */
495                 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
496                 memcpy(response, skb->data, evt_hdr->dlen);
497                 *response_len = evt_hdr->dlen;
498         } else if (response_len != NULL && evt_hdr->dlen == 0) {
499                 *response_len = 0;
500         }
501         kfree_skb(skb);
502
503         return 0;
504 }
505
506 /* --- Helper functions used in FM interrupt handlers ---*/
507 static inline int check_cmdresp_status(struct fmdev *fmdev,
508                 struct sk_buff **skb)
509 {
510         struct fm_event_msg_hdr *fm_evt_hdr;
511         unsigned long flags;
512
513         del_timer(&fmdev->irq_info.timer);
514
515         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
516         *skb = fmdev->resp_skb;
517         fmdev->resp_skb = NULL;
518         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
519
520         fm_evt_hdr = (void *)(*skb)->data;
521         if (fm_evt_hdr->status != 0) {
522                 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
523                                 fm_evt_hdr->op);
524
525                 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
526                 return -1;
527         }
528
529         return 0;
530 }
531
532 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
533 {
534         struct sk_buff *skb;
535
536         if (!check_cmdresp_status(fmdev, &skb))
537                 fm_irq_call_stage(fmdev, stage);
538 }
539
540 /*
541  * Interrupt process timeout handler.
542  * One of the irq handler did not get proper response from the chip. So take
543  * recovery action here. FM interrupts are disabled in the beginning of
544  * interrupt process. Therefore reset stage index to re-enable default
545  * interrupts. So that next interrupt will be processed as usual.
546  */
547 static void int_timeout_handler(unsigned long data)
548 {
549         struct fmdev *fmdev;
550         struct fm_irq *fmirq;
551
552         fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
553         fmdev = (struct fmdev *)data;
554         fmirq = &fmdev->irq_info;
555         fmirq->retry++;
556
557         if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
558                 /* Stop recovery action (interrupt reenable process) and
559                  * reset stage index & retry count values */
560                 fmirq->stage = 0;
561                 fmirq->retry = 0;
562                 fmerr("Recovery action failed duringirq processing, max retry reached\n");
563                 return;
564         }
565         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
566 }
567
568 /* --------- FM interrupt handlers ------------*/
569 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
570 {
571         u16 flag;
572
573         /* Send FLAG_GET command , to know the source of interrupt */
574         if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
575                 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
576 }
577
578 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
579 {
580         struct sk_buff *skb;
581         struct fm_event_msg_hdr *fm_evt_hdr;
582
583         if (check_cmdresp_status(fmdev, &skb))
584                 return;
585
586         fm_evt_hdr = (void *)skb->data;
587         if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
588                 return;
589
590         /* Skip header info and copy only response data */
591         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
592         memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
593
594         fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
595         fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
596
597         /* Continue next function in interrupt handler table */
598         fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
599 }
600
601 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
602 {
603         if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
604                 fmerr("irq: HW MAL int received - do nothing\n");
605
606         /* Continue next function in interrupt handler table */
607         fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
608 }
609
610 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
611 {
612         if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
613                 fmdbg("irq: rds threshold reached\n");
614                 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
615         } else {
616                 /* Continue next function in interrupt handler table */
617                 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
618         }
619
620         fm_irq_call(fmdev);
621 }
622
623 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
624 {
625         /* Send the command to read RDS data from the chip */
626         if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
627                             (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
628                 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
629 }
630
631 /* Keeps track of current RX channel AF (Alternate Frequency) */
632 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
633 {
634         struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
635         u8 reg_idx = fmdev->rx.region.fm_band;
636         u8 index;
637         u32 freq;
638
639         /* First AF indicates the number of AF follows. Reset the list */
640         if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
641                 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
642                 fmdev->rx.stat_info.afcache_size = 0;
643                 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
644                 return;
645         }
646
647         if (af < FM_RDS_MIN_AF)
648                 return;
649         if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
650                 return;
651         if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
652                 return;
653
654         freq = fmdev->rx.region.bot_freq + (af * 100);
655         if (freq == fmdev->rx.freq) {
656                 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
657                                 fmdev->rx.freq, freq);
658                 return;
659         }
660         /* Do check in AF cache */
661         for (index = 0; index < stat_info->afcache_size; index++) {
662                 if (stat_info->af_cache[index] == freq)
663                         break;
664         }
665         /* Reached the limit of the list - ignore the next AF */
666         if (index == stat_info->af_list_max) {
667                 fmdbg("AF cache is full\n");
668                 return;
669         }
670         /*
671          * If we reached the end of the list then this AF is not
672          * in the list - add it.
673          */
674         if (index == stat_info->afcache_size) {
675                 fmdbg("Storing AF %d to cache index %d\n", freq, index);
676                 stat_info->af_cache[index] = freq;
677                 stat_info->afcache_size++;
678         }
679 }
680
681 /*
682  * Converts RDS buffer data from big endian format
683  * to little endian format.
684  */
685 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
686                 struct fm_rdsdata_format *rds_format)
687 {
688         u8 index = 0;
689         u8 *rds_buff;
690
691         /*
692          * Since in Orca the 2 RDS Data bytes are in little endian and
693          * in Dolphin they are in big endian, the parsing of the RDS data
694          * is chip dependent
695          */
696         if (fmdev->asci_id != 0x6350) {
697                 rds_buff = &rds_format->data.groupdatabuff.buff[0];
698                 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
699                         swap(rds_buff[index], rds_buff[index + 1]);
700                         index += 2;
701                 }
702         }
703 }
704
705 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
706 {
707         struct sk_buff *skb;
708         struct fm_rdsdata_format rds_fmt;
709         struct fm_rds *rds = &fmdev->rx.rds;
710         unsigned long group_idx, flags;
711         u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
712         u8 type, blk_idx;
713         u16 cur_picode;
714         u32 rds_len;
715
716         if (check_cmdresp_status(fmdev, &skb))
717                 return;
718
719         /* Skip header info */
720         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
721         rds_data = skb->data;
722         rds_len = skb->len;
723
724         /* Parse the RDS data */
725         while (rds_len >= FM_RDS_BLK_SIZE) {
726                 meta_data = rds_data[2];
727                 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
728                 type = (meta_data & 0x07);
729
730                 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
731                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
732                 fmdbg("Block index:%d(%s)\n", blk_idx,
733                            (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
734
735                 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
736                         break;
737
738                 if (blk_idx > FM_RDS_BLK_IDX_D) {
739                         fmdbg("Block sequence mismatch\n");
740                         rds->last_blk_idx = -1;
741                         break;
742                 }
743
744                 /* Skip checkword (control) byte and copy only data byte */
745                 memcpy(&rds_fmt.data.groupdatabuff.
746                                 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
747                                 rds_data, (FM_RDS_BLK_SIZE - 1));
748
749                 rds->last_blk_idx = blk_idx;
750
751                 /* If completed a whole group then handle it */
752                 if (blk_idx == FM_RDS_BLK_IDX_D) {
753                         fmdbg("Good block received\n");
754                         fm_rdsparse_swapbytes(fmdev, &rds_fmt);
755
756                         /*
757                          * Extract PI code and store in local cache.
758                          * We need this during AF switch processing.
759                          */
760                         cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
761                         if (fmdev->rx.stat_info.picode != cur_picode)
762                                 fmdev->rx.stat_info.picode = cur_picode;
763
764                         fmdbg("picode:%d\n", cur_picode);
765
766                         group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767                         fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
768                                         (group_idx % 2) ? "B" : "A");
769
770                         group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
771                         if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
772                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
773                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
774                         }
775                 }
776                 rds_len -= FM_RDS_BLK_SIZE;
777                 rds_data += FM_RDS_BLK_SIZE;
778         }
779
780         /* Copy raw rds data to internal rds buffer */
781         rds_data = skb->data;
782         rds_len = skb->len;
783
784         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
785         while (rds_len > 0) {
786                 /*
787                  * Fill RDS buffer as per V4L2 specification.
788                  * Store control byte
789                  */
790                 type = (rds_data[2] & 0x07);
791                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
792                 tmpbuf[2] = blk_idx;    /* Offset name */
793                 tmpbuf[2] |= blk_idx << 3;      /* Received offset */
794
795                 /* Store data byte */
796                 tmpbuf[0] = rds_data[0];
797                 tmpbuf[1] = rds_data[1];
798
799                 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
800                 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
801
802                 /* Check for overflow & start over */
803                 if (rds->wr_idx == rds->rd_idx) {
804                         fmdbg("RDS buffer overflow\n");
805                         rds->wr_idx = 0;
806                         rds->rd_idx = 0;
807                         break;
808                 }
809                 rds_len -= FM_RDS_BLK_SIZE;
810                 rds_data += FM_RDS_BLK_SIZE;
811         }
812         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
813
814         /* Wakeup read queue */
815         if (rds->wr_idx != rds->rd_idx)
816                 wake_up_interruptible(&rds->read_queue);
817
818         fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
819 }
820
821 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
822 {
823         fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
824 }
825
826 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
827 {
828         if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
829             irq_info.mask) {
830                 fmdbg("irq: tune ended/bandlimit reached\n");
831                 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
832                         fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
833                 } else {
834                         complete(&fmdev->maintask_comp);
835                         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
836                 }
837         } else
838                 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
839
840         fm_irq_call(fmdev);
841 }
842
843 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
844 {
845         if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
846                 fmdbg("irq: Power Enabled/Disabled\n");
847                 complete(&fmdev->maintask_comp);
848         }
849
850         fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
851 }
852
853 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
854 {
855         if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
856             (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
857             (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
858             (fmdev->rx.stat_info.afcache_size != 0)) {
859                 fmdbg("irq: rssi level has fallen below threshold level\n");
860
861                 /* Disable further low RSSI interrupts */
862                 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
863
864                 fmdev->rx.afjump_idx = 0;
865                 fmdev->rx.freq_before_jump = fmdev->rx.freq;
866                 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
867         } else {
868                 /* Continue next function in interrupt handler table */
869                 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
870         }
871
872         fm_irq_call(fmdev);
873 }
874
875 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
876 {
877         u16 payload;
878
879         /* Set PI code - must be updated if the AF list is not empty */
880         payload = fmdev->rx.stat_info.picode;
881         if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
882                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
883 }
884
885 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
886 {
887         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
888 }
889
890 /*
891  * Set PI mask.
892  * 0xFFFF = Enable PI code matching
893  * 0x0000 = Disable PI code matching
894  */
895 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
896 {
897         u16 payload;
898
899         payload = 0x0000;
900         if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
901                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
902 }
903
904 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
905 {
906         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
907 }
908
909 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
910 {
911         u16 frq_index;
912         u16 payload;
913
914         fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
915         frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
916              fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
917
918         payload = frq_index;
919         if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
920                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
921 }
922
923 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
924 {
925         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
926 }
927
928 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
929 {
930         u16 payload;
931
932         /* Enable FR (tuning operation ended) interrupt */
933         payload = FM_FR_EVENT;
934         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
935                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
936 }
937
938 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
939 {
940         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
941 }
942
943 static void fm_irq_start_afjump(struct fmdev *fmdev)
944 {
945         u16 payload;
946
947         payload = FM_TUNER_AF_JUMP_MODE;
948         if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
949                         sizeof(payload), NULL))
950                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
951 }
952
953 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
954 {
955         struct sk_buff *skb;
956
957         if (check_cmdresp_status(fmdev, &skb))
958                 return;
959
960         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
961         set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
962         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
963 }
964
965 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
966 {
967         u16 payload;
968
969         if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
970                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
971 }
972
973 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
974 {
975         struct sk_buff *skb;
976         u16 read_freq;
977         u32 curr_freq, jumped_freq;
978
979         if (check_cmdresp_status(fmdev, &skb))
980                 return;
981
982         /* Skip header info and copy only response data */
983         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
984         memcpy(&read_freq, skb->data, sizeof(read_freq));
985         read_freq = be16_to_cpu((__force __be16)read_freq);
986         curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
987
988         jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
989
990         /* If the frequency was changed the jump succeeded */
991         if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
992                 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
993                 fmdev->rx.freq = curr_freq;
994                 fm_rx_reset_rds_cache(fmdev);
995
996                 /* AF feature is on, enable low level RSSI interrupt */
997                 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
998                         fmdev->irq_info.mask |= FM_LEV_EVENT;
999
1000                 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1001         } else {                /* jump to the next freq in the AF list */
1002                 fmdev->rx.afjump_idx++;
1003
1004                 /* If we reached the end of the list - stop searching */
1005                 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1006                         fmdbg("AF switch processing failed\n");
1007                         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008                 } else {        /* AF List is not over - try next one */
1009
1010                         fmdbg("Trying next freq in AF cache\n");
1011                         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1012                 }
1013         }
1014         fm_irq_call(fmdev);
1015 }
1016
1017 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1018 {
1019         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1020 }
1021
1022 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1023 {
1024         u16 payload;
1025
1026         /* Re-enable FM interrupts */
1027         payload = fmdev->irq_info.mask;
1028
1029         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1030                         sizeof(payload), NULL))
1031                 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1032 }
1033
1034 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1035 {
1036         struct sk_buff *skb;
1037
1038         if (check_cmdresp_status(fmdev, &skb))
1039                 return;
1040         /*
1041          * This is last function in interrupt table to be executed.
1042          * So, reset stage index to 0.
1043          */
1044         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1045
1046         /* Start processing any pending interrupt */
1047         if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1048                 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1049         else
1050                 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1051 }
1052
1053 /* Returns availability of RDS data in internel buffer */
1054 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1055                                 struct poll_table_struct *pts)
1056 {
1057         poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1058         if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1059                 return 0;
1060
1061         return -EAGAIN;
1062 }
1063
1064 /* Copies RDS data from internal buffer to user buffer */
1065 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1066                 u8 __user *buf, size_t count)
1067 {
1068         u32 block_count;
1069         u8 tmpbuf[FM_RDS_BLK_SIZE];
1070         unsigned long flags;
1071         int ret;
1072
1073         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1074                 if (file->f_flags & O_NONBLOCK)
1075                         return -EWOULDBLOCK;
1076
1077                 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1078                                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1079                 if (ret)
1080                         return -EINTR;
1081         }
1082
1083         /* Calculate block count from byte count */
1084         count /= FM_RDS_BLK_SIZE;
1085         block_count = 0;
1086         ret = 0;
1087
1088         while (block_count < count) {
1089                 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1090
1091                 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1092                         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1093                         break;
1094                 }
1095                 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1096                                         FM_RDS_BLK_SIZE);
1097                 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1098                 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1099                         fmdev->rx.rds.rd_idx = 0;
1100
1101                 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1102
1103                 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1104                         break;
1105
1106                 block_count++;
1107                 buf += FM_RDS_BLK_SIZE;
1108                 ret += FM_RDS_BLK_SIZE;
1109         }
1110         return ret;
1111 }
1112
1113 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1114 {
1115         switch (fmdev->curr_fmmode) {
1116         case FM_MODE_RX:
1117                 return fm_rx_set_freq(fmdev, freq_to_set);
1118
1119         case FM_MODE_TX:
1120                 return fm_tx_set_freq(fmdev, freq_to_set);
1121
1122         default:
1123                 return -EINVAL;
1124         }
1125 }
1126
1127 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1128 {
1129         if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1130                 fmerr("RX frequency is not set\n");
1131                 return -EPERM;
1132         }
1133         if (cur_tuned_frq == NULL) {
1134                 fmerr("Invalid memory\n");
1135                 return -ENOMEM;
1136         }
1137
1138         switch (fmdev->curr_fmmode) {
1139         case FM_MODE_RX:
1140                 *cur_tuned_frq = fmdev->rx.freq;
1141                 return 0;
1142
1143         case FM_MODE_TX:
1144                 *cur_tuned_frq = 0;     /* TODO : Change this later */
1145                 return 0;
1146
1147         default:
1148                 return -EINVAL;
1149         }
1150
1151 }
1152
1153 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1154 {
1155         switch (fmdev->curr_fmmode) {
1156         case FM_MODE_RX:
1157                 return fm_rx_set_region(fmdev, region_to_set);
1158
1159         case FM_MODE_TX:
1160                 return fm_tx_set_region(fmdev, region_to_set);
1161
1162         default:
1163                 return -EINVAL;
1164         }
1165 }
1166
1167 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1168 {
1169         switch (fmdev->curr_fmmode) {
1170         case FM_MODE_RX:
1171                 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1172
1173         case FM_MODE_TX:
1174                 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1175
1176         default:
1177                 return -EINVAL;
1178         }
1179 }
1180
1181 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1182 {
1183         switch (fmdev->curr_fmmode) {
1184         case FM_MODE_RX:
1185                 return fm_rx_set_stereo_mono(fmdev, mode);
1186
1187         case FM_MODE_TX:
1188                 return fm_tx_set_stereo_mono(fmdev, mode);
1189
1190         default:
1191                 return -EINVAL;
1192         }
1193 }
1194
1195 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1196 {
1197         switch (fmdev->curr_fmmode) {
1198         case FM_MODE_RX:
1199                 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1200
1201         case FM_MODE_TX:
1202                 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1203
1204         default:
1205                 return -EINVAL;
1206         }
1207 }
1208
1209 /* Sends power off command to the chip */
1210 static int fm_power_down(struct fmdev *fmdev)
1211 {
1212         u16 payload;
1213         int ret;
1214
1215         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1216                 fmerr("FM core is not ready\n");
1217                 return -EPERM;
1218         }
1219         if (fmdev->curr_fmmode == FM_MODE_OFF) {
1220                 fmdbg("FM chip is already in OFF state\n");
1221                 return 0;
1222         }
1223
1224         payload = 0x0;
1225         ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1226                 sizeof(payload), NULL, NULL);
1227         if (ret < 0)
1228                 return ret;
1229
1230         return fmc_release(fmdev);
1231 }
1232
1233 /* Reads init command from FM firmware file and loads to the chip */
1234 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1235 {
1236         const struct firmware *fw_entry;
1237         struct bts_header *fw_header;
1238         struct bts_action *action;
1239         struct bts_action_delay *delay;
1240         u8 *fw_data;
1241         int ret, fw_len, cmd_cnt;
1242
1243         cmd_cnt = 0;
1244         set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1245
1246         ret = reject_firmware(&fw_entry, fw_name,
1247                                 &fmdev->radio_dev->dev);
1248         if (ret < 0) {
1249                 fmerr("Unable to read firmware(%s) content\n", fw_name);
1250                 return ret;
1251         }
1252         fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1253
1254         fw_data = (void *)fw_entry->data;
1255         fw_len = fw_entry->size;
1256
1257         fw_header = (struct bts_header *)fw_data;
1258         if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1259                 fmerr("%s not a legal TI firmware file\n", fw_name);
1260                 ret = -EINVAL;
1261                 goto rel_fw;
1262         }
1263         fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1264
1265         /* Skip file header info , we already verified it */
1266         fw_data += sizeof(struct bts_header);
1267         fw_len -= sizeof(struct bts_header);
1268
1269         while (fw_data && fw_len > 0) {
1270                 action = (struct bts_action *)fw_data;
1271
1272                 switch (action->type) {
1273                 case ACTION_SEND_COMMAND:       /* Send */
1274                         ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1275                                            action->size, NULL, NULL);
1276                         if (ret)
1277                                 goto rel_fw;
1278
1279                         cmd_cnt++;
1280                         break;
1281
1282                 case ACTION_DELAY:      /* Delay */
1283                         delay = (struct bts_action_delay *)action->data;
1284                         mdelay(delay->msec);
1285                         break;
1286                 }
1287
1288                 fw_data += (sizeof(struct bts_action) + (action->size));
1289                 fw_len -= (sizeof(struct bts_action) + (action->size));
1290         }
1291         fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1292 rel_fw:
1293         release_firmware(fw_entry);
1294         clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1295
1296         return ret;
1297 }
1298
1299 /* Loads default RX configuration to the chip */
1300 static int load_default_rx_configuration(struct fmdev *fmdev)
1301 {
1302         int ret;
1303
1304         ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1305         if (ret < 0)
1306                 return ret;
1307
1308         return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1309 }
1310
1311 /* Does FM power on sequence */
1312 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1313 {
1314         u16 payload;
1315         __be16 asic_id = 0, asic_ver = 0;
1316         int resp_len, ret;
1317         u8 fw_name[50];
1318
1319         if (mode >= FM_MODE_ENTRY_MAX) {
1320                 fmerr("Invalid firmware download option\n");
1321                 return -EINVAL;
1322         }
1323
1324         /*
1325          * Initialize FM common module. FM GPIO toggling is
1326          * taken care in Shared Transport driver.
1327          */
1328         ret = fmc_prepare(fmdev);
1329         if (ret < 0) {
1330                 fmerr("Unable to prepare FM Common\n");
1331                 return ret;
1332         }
1333
1334         payload = FM_ENABLE;
1335         if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1336                         sizeof(payload), NULL, NULL))
1337                 goto rel;
1338
1339         /* Allow the chip to settle down in Channel-8 mode */
1340         msleep(20);
1341
1342         if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1343                         sizeof(asic_id), &asic_id, &resp_len))
1344                 goto rel;
1345
1346         if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1347                         sizeof(asic_ver), &asic_ver, &resp_len))
1348                 goto rel;
1349
1350         fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1351                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1352
1353         sprintf(fw_name, "/*(DEBLOBBED)*/", FM_FMC_FW_FILE_START,
1354                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355
1356         ret = fm_download_firmware(fmdev, fw_name);
1357         if (ret < 0) {
1358                 fmdbg("Failed to download firmware file %s\n", fw_name);
1359                 goto rel;
1360         }
1361         sprintf(fw_name, "/*(DEBLOBBED)*/", (mode == FM_MODE_RX) ?
1362                         FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1363                         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1364
1365         ret = fm_download_firmware(fmdev, fw_name);
1366         if (ret < 0) {
1367                 fmdbg("Failed to download firmware file %s\n", fw_name);
1368                 goto rel;
1369         } else
1370                 return ret;
1371 rel:
1372         return fmc_release(fmdev);
1373 }
1374
1375 /* Set FM Modes(TX, RX, OFF) */
1376 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1377 {
1378         int ret = 0;
1379
1380         if (fm_mode >= FM_MODE_ENTRY_MAX) {
1381                 fmerr("Invalid FM mode\n");
1382                 return -EINVAL;
1383         }
1384         if (fmdev->curr_fmmode == fm_mode) {
1385                 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1386                 return ret;
1387         }
1388
1389         switch (fm_mode) {
1390         case FM_MODE_OFF:       /* OFF Mode */
1391                 ret = fm_power_down(fmdev);
1392                 if (ret < 0) {
1393                         fmerr("Failed to set OFF mode\n");
1394                         return ret;
1395                 }
1396                 break;
1397
1398         case FM_MODE_TX:        /* TX Mode */
1399         case FM_MODE_RX:        /* RX Mode */
1400                 /* Power down before switching to TX or RX mode */
1401                 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1402                         ret = fm_power_down(fmdev);
1403                         if (ret < 0) {
1404                                 fmerr("Failed to set OFF mode\n");
1405                                 return ret;
1406                         }
1407                         msleep(30);
1408                 }
1409                 ret = fm_power_up(fmdev, fm_mode);
1410                 if (ret < 0) {
1411                         fmerr("Failed to load firmware\n");
1412                         return ret;
1413                 }
1414         }
1415         fmdev->curr_fmmode = fm_mode;
1416
1417         /* Set default configuration */
1418         if (fmdev->curr_fmmode == FM_MODE_RX) {
1419                 fmdbg("Loading default rx configuration..\n");
1420                 ret = load_default_rx_configuration(fmdev);
1421                 if (ret < 0)
1422                         fmerr("Failed to load default values\n");
1423         }
1424
1425         return ret;
1426 }
1427
1428 /* Returns current FM mode (TX, RX, OFF) */
1429 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1430 {
1431         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1432                 fmerr("FM core is not ready\n");
1433                 return -EPERM;
1434         }
1435         if (fmmode == NULL) {
1436                 fmerr("Invalid memory\n");
1437                 return -ENOMEM;
1438         }
1439
1440         *fmmode = fmdev->curr_fmmode;
1441         return 0;
1442 }
1443
1444 /* Called by ST layer when FM packet is available */
1445 static long fm_st_receive(void *arg, struct sk_buff *skb)
1446 {
1447         struct fmdev *fmdev;
1448
1449         fmdev = (struct fmdev *)arg;
1450
1451         if (skb == NULL) {
1452                 fmerr("Invalid SKB received from ST\n");
1453                 return -EFAULT;
1454         }
1455
1456         if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1457                 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1458                 return -EINVAL;
1459         }
1460
1461         memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1462         skb_queue_tail(&fmdev->rx_q, skb);
1463         tasklet_schedule(&fmdev->rx_task);
1464
1465         return 0;
1466 }
1467
1468 /*
1469  * Called by ST layer to indicate protocol registration completion
1470  * status.
1471  */
1472 static void fm_st_reg_comp_cb(void *arg, int data)
1473 {
1474         struct fmdev *fmdev;
1475
1476         fmdev = (struct fmdev *)arg;
1477         fmdev->streg_cbdata = data;
1478         complete(&wait_for_fmdrv_reg_comp);
1479 }
1480
1481 /*
1482  * This function will be called from FM V4L2 open function.
1483  * Register with ST driver and initialize driver data.
1484  */
1485 int fmc_prepare(struct fmdev *fmdev)
1486 {
1487         static struct st_proto_s fm_st_proto;
1488         int ret;
1489
1490         if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1491                 fmdbg("FM Core is already up\n");
1492                 return 0;
1493         }
1494
1495         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1496         fm_st_proto.recv = fm_st_receive;
1497         fm_st_proto.match_packet = NULL;
1498         fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1499         fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1500         fm_st_proto.priv_data = fmdev;
1501         fm_st_proto.chnl_id = 0x08;
1502         fm_st_proto.max_frame_size = 0xff;
1503         fm_st_proto.hdr_len = 1;
1504         fm_st_proto.offset_len_in_hdr = 0;
1505         fm_st_proto.len_size = 1;
1506         fm_st_proto.reserve = 1;
1507
1508         ret = st_register(&fm_st_proto);
1509         if (ret == -EINPROGRESS) {
1510                 init_completion(&wait_for_fmdrv_reg_comp);
1511                 fmdev->streg_cbdata = -EINPROGRESS;
1512                 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1513
1514                 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1515                                                  FM_ST_REG_TIMEOUT)) {
1516                         fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1517                                         jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1518                         return -ETIMEDOUT;
1519                 }
1520                 if (fmdev->streg_cbdata != 0) {
1521                         fmerr("ST reg comp CB called with error status %d\n",
1522                               fmdev->streg_cbdata);
1523                         return -EAGAIN;
1524                 }
1525
1526                 ret = 0;
1527         } else if (ret == -1) {
1528                 fmerr("st_register failed %d\n", ret);
1529                 return -EAGAIN;
1530         }
1531
1532         if (fm_st_proto.write != NULL) {
1533                 g_st_write = fm_st_proto.write;
1534         } else {
1535                 fmerr("Failed to get ST write func pointer\n");
1536                 ret = st_unregister(&fm_st_proto);
1537                 if (ret < 0)
1538                         fmerr("st_unregister failed %d\n", ret);
1539                 return -EAGAIN;
1540         }
1541
1542         spin_lock_init(&fmdev->rds_buff_lock);
1543         spin_lock_init(&fmdev->resp_skb_lock);
1544
1545         /* Initialize TX queue and TX tasklet */
1546         skb_queue_head_init(&fmdev->tx_q);
1547         tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1548
1549         /* Initialize RX Queue and RX tasklet */
1550         skb_queue_head_init(&fmdev->rx_q);
1551         tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1552
1553         fmdev->irq_info.stage = 0;
1554         atomic_set(&fmdev->tx_cnt, 1);
1555         fmdev->resp_comp = NULL;
1556
1557         setup_timer(&fmdev->irq_info.timer, &int_timeout_handler,
1558                     (unsigned long)fmdev);
1559         /*TODO: add FM_STIC_EVENT later */
1560         fmdev->irq_info.mask = FM_MAL_EVENT;
1561
1562         /* Region info */
1563         fmdev->rx.region = region_configs[default_radio_region];
1564
1565         fmdev->rx.mute_mode = FM_MUTE_OFF;
1566         fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1567         fmdev->rx.rds.flag = FM_RDS_DISABLE;
1568         fmdev->rx.freq = FM_UNDEFINED_FREQ;
1569         fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1570         fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1571         fmdev->irq_info.retry = 0;
1572
1573         fm_rx_reset_rds_cache(fmdev);
1574         init_waitqueue_head(&fmdev->rx.rds.read_queue);
1575
1576         fm_rx_reset_station_info(fmdev);
1577         set_bit(FM_CORE_READY, &fmdev->flag);
1578
1579         return ret;
1580 }
1581
1582 /*
1583  * This function will be called from FM V4L2 release function.
1584  * Unregister from ST driver.
1585  */
1586 int fmc_release(struct fmdev *fmdev)
1587 {
1588         static struct st_proto_s fm_st_proto;
1589         int ret;
1590
1591         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1592                 fmdbg("FM Core is already down\n");
1593                 return 0;
1594         }
1595         /* Service pending read */
1596         wake_up_interruptible(&fmdev->rx.rds.read_queue);
1597
1598         tasklet_kill(&fmdev->tx_task);
1599         tasklet_kill(&fmdev->rx_task);
1600
1601         skb_queue_purge(&fmdev->tx_q);
1602         skb_queue_purge(&fmdev->rx_q);
1603
1604         fmdev->resp_comp = NULL;
1605         fmdev->rx.freq = 0;
1606
1607         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1608         fm_st_proto.chnl_id = 0x08;
1609
1610         ret = st_unregister(&fm_st_proto);
1611
1612         if (ret < 0)
1613                 fmerr("Failed to de-register FM from ST %d\n", ret);
1614         else
1615                 fmdbg("Successfully unregistered from ST\n");
1616
1617         clear_bit(FM_CORE_READY, &fmdev->flag);
1618         return ret;
1619 }
1620
1621 /*
1622  * Module init function. Ask FM V4L module to register video device.
1623  * Allocate memory for FM driver context and RX RDS buffer.
1624  */
1625 static int __init fm_drv_init(void)
1626 {
1627         struct fmdev *fmdev = NULL;
1628         int ret = -ENOMEM;
1629
1630         fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1631
1632         fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1633         if (NULL == fmdev) {
1634                 fmerr("Can't allocate operation structure memory\n");
1635                 return ret;
1636         }
1637         fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1638         fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1639         if (NULL == fmdev->rx.rds.buff) {
1640                 fmerr("Can't allocate rds ring buffer\n");
1641                 goto rel_dev;
1642         }
1643
1644         ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1645         if (ret < 0)
1646                 goto rel_rdsbuf;
1647
1648         fmdev->irq_info.handlers = int_handler_table;
1649         fmdev->curr_fmmode = FM_MODE_OFF;
1650         fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1651         fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1652         return ret;
1653
1654 rel_rdsbuf:
1655         kfree(fmdev->rx.rds.buff);
1656 rel_dev:
1657         kfree(fmdev);
1658
1659         return ret;
1660 }
1661
1662 /* Module exit function. Ask FM V4L module to unregister video device */
1663 static void __exit fm_drv_exit(void)
1664 {
1665         struct fmdev *fmdev = NULL;
1666
1667         fmdev = fm_v4l2_deinit_video_device();
1668         if (fmdev != NULL) {
1669                 kfree(fmdev->rx.rds.buff);
1670                 kfree(fmdev);
1671         }
1672 }
1673
1674 module_init(fm_drv_init);
1675 module_exit(fm_drv_exit);
1676
1677 /* ------------- Module Info ------------- */
1678 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1679 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1680 MODULE_VERSION(FM_DRV_VERSION);
1681 MODULE_LICENSE("GPL");