GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / media / platform / omap / omap_vout_vrfb.c
1 /*
2  * omap_vout_vrfb.c
3  *
4  * Copyright (C) 2010 Texas Instruments.
5  *
6  * This file is licensed under the terms of the GNU General Public License
7  * version 2. This program is licensed "as is" without any warranty of any
8  * kind, whether express or implied.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15 #include <linux/slab.h>
16
17 #include <media/videobuf-dma-contig.h>
18 #include <media/v4l2-device.h>
19
20 #include <video/omapvrfb.h>
21
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 #include "omap_vout_vrfb.h"
25
26 #define OMAP_DMA_NO_DEVICE      0
27
28 /*
29  * Function for allocating video buffers
30  */
31 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
32                 unsigned int *count, int startindex)
33 {
34         int i, j;
35
36         for (i = 0; i < *count; i++) {
37                 if (!vout->smsshado_virt_addr[i]) {
38                         vout->smsshado_virt_addr[i] =
39                                 omap_vout_alloc_buffer(vout->smsshado_size,
40                                                 &vout->smsshado_phy_addr[i]);
41                 }
42                 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
43                         if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
44                                 break;
45                 }
46                 if (!vout->smsshado_virt_addr[i]) {
47                         for (j = 0; j < i; j++) {
48                                 omap_vout_free_buffer(
49                                                 vout->smsshado_virt_addr[j],
50                                                 vout->smsshado_size);
51                                 vout->smsshado_virt_addr[j] = 0;
52                                 vout->smsshado_phy_addr[j] = 0;
53                         }
54                         *count = 0;
55                         return -ENOMEM;
56                 }
57                 memset((void *) vout->smsshado_virt_addr[i], 0,
58                                 vout->smsshado_size);
59         }
60         return 0;
61 }
62
63 /*
64  * Wakes up the application once the DMA transfer to VRFB space is completed.
65  */
66 static void omap_vout_vrfb_dma_tx_callback(void *data)
67 {
68         struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
69
70         t->tx_status = 1;
71         wake_up_interruptible(&t->wait);
72 }
73
74 /*
75  * Free VRFB buffers
76  */
77 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
78 {
79         int j;
80
81         for (j = 0; j < VRFB_NUM_BUFS; j++) {
82                 if (vout->smsshado_virt_addr[j]) {
83                         omap_vout_free_buffer(vout->smsshado_virt_addr[j],
84                                               vout->smsshado_size);
85                         vout->smsshado_virt_addr[j] = 0;
86                         vout->smsshado_phy_addr[j] = 0;
87                 }
88         }
89 }
90
91 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
92                               bool static_vrfb_allocation)
93 {
94         int ret = 0, i, j;
95         struct omap_vout_device *vout;
96         struct video_device *vfd;
97         dma_cap_mask_t mask;
98         int image_width, image_height;
99         int vrfb_num_bufs = VRFB_NUM_BUFS;
100         struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
101         struct omap2video_device *vid_dev =
102                 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
103
104         vout = vid_dev->vouts[vid_num];
105         vfd = vout->vfd;
106
107         for (i = 0; i < VRFB_NUM_BUFS; i++) {
108                 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
109                         dev_info(&pdev->dev, ": VRFB allocation failed\n");
110                         for (j = 0; j < i; j++)
111                                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
112                         ret = -ENOMEM;
113                         goto free_buffers;
114                 }
115         }
116
117         /* Calculate VRFB memory size */
118         /* allocate for worst case size */
119         image_width = VID_MAX_WIDTH / TILE_SIZE;
120         if (VID_MAX_WIDTH % TILE_SIZE)
121                 image_width++;
122
123         image_width = image_width * TILE_SIZE;
124         image_height = VID_MAX_HEIGHT / TILE_SIZE;
125
126         if (VID_MAX_HEIGHT % TILE_SIZE)
127                 image_height++;
128
129         image_height = image_height * TILE_SIZE;
130         vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
131
132         /*
133          * Request and Initialize DMA, for DMA based VRFB transfer
134          */
135         dma_cap_zero(mask);
136         dma_cap_set(DMA_INTERLEAVE, mask);
137         vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
138         if (IS_ERR(vout->vrfb_dma_tx.chan)) {
139                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
140         } else {
141                 size_t xt_size = sizeof(struct dma_interleaved_template) +
142                                  sizeof(struct data_chunk);
143
144                 vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
145                 if (!vout->vrfb_dma_tx.xt) {
146                         dma_release_channel(vout->vrfb_dma_tx.chan);
147                         vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
148                 }
149         }
150
151         if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
152                 dev_info(&pdev->dev,
153                          ": failed to allocate DMA Channel for video%d\n",
154                          vfd->minor);
155
156         init_waitqueue_head(&vout->vrfb_dma_tx.wait);
157
158         /* statically allocated the VRFB buffer is done through
159            commands line aruments */
160         if (static_vrfb_allocation) {
161                 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
162                         ret =  -ENOMEM;
163                         goto release_vrfb_ctx;
164                 }
165                 vout->vrfb_static_allocation = true;
166         }
167         return 0;
168
169 release_vrfb_ctx:
170         for (j = 0; j < VRFB_NUM_BUFS; j++)
171                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
172 free_buffers:
173         omap_vout_free_buffers(vout);
174
175         return ret;
176 }
177
178 /*
179  * Release the VRFB context once the module exits
180  */
181 void omap_vout_release_vrfb(struct omap_vout_device *vout)
182 {
183         int i;
184
185         for (i = 0; i < VRFB_NUM_BUFS; i++)
186                 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
187
188         if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
189                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
190                 kfree(vout->vrfb_dma_tx.xt);
191                 dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
192                 dma_release_channel(vout->vrfb_dma_tx.chan);
193         }
194 }
195
196 /*
197  * Allocate the buffers for the VRFB space.  Data is copied from V4L2
198  * buffers to the VRFB buffers using the DMA engine.
199  */
200 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
201                           unsigned int *count, unsigned int startindex)
202 {
203         int i;
204         bool yuv_mode;
205
206         if (!is_rotation_enabled(vout))
207                 return 0;
208
209         /* If rotation is enabled, allocate memory for VRFB space also */
210         *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
211
212         /* Allocate the VRFB buffers only if the buffers are not
213          * allocated during init time.
214          */
215         if (!vout->vrfb_static_allocation)
216                 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
217                         return -ENOMEM;
218
219         if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
220                         vout->dss_mode == OMAP_DSS_COLOR_UYVY)
221                 yuv_mode = true;
222         else
223                 yuv_mode = false;
224
225         for (i = 0; i < *count; i++)
226                 omap_vrfb_setup(&vout->vrfb_context[i],
227                                 vout->smsshado_phy_addr[i], vout->pix.width,
228                                 vout->pix.height, vout->bpp, yuv_mode);
229
230         return 0;
231 }
232
233 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
234                            struct videobuf_buffer *vb)
235 {
236         struct dma_async_tx_descriptor *tx;
237         enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
238         struct dma_chan *chan = vout->vrfb_dma_tx.chan;
239         struct dma_device *dmadev = chan->device;
240         struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
241         dma_cookie_t cookie;
242         enum dma_status status;
243         enum dss_rotation rotation;
244         size_t dst_icg;
245         u32 pixsize;
246
247         if (!is_rotation_enabled(vout))
248                 return 0;
249
250         /* If rotation is enabled, copy input buffer into VRFB
251          * memory space using DMA. We are copying input buffer
252          * into VRFB memory space of desired angle and DSS will
253          * read image VRFB memory for 0 degree angle
254          */
255
256         pixsize = vout->bpp * vout->vrfb_bpp;
257         dst_icg = ((MAX_PIXELS_PER_LINE * pixsize) -
258                   (vout->pix.width * vout->bpp)) + 1;
259
260         xt->src_start = vout->buf_phy_addr[vb->i];
261         xt->dst_start = vout->vrfb_context[vb->i].paddr[0];
262
263         xt->numf = vout->pix.height;
264         xt->frame_size = 1;
265         xt->sgl[0].size = vout->pix.width * vout->bpp;
266         xt->sgl[0].icg = dst_icg;
267
268         xt->dir = DMA_MEM_TO_MEM;
269         xt->src_sgl = false;
270         xt->src_inc = true;
271         xt->dst_sgl = true;
272         xt->dst_inc = true;
273
274         tx = dmadev->device_prep_interleaved_dma(chan, xt, flags);
275         if (tx == NULL) {
276                 pr_err("%s: DMA interleaved prep error\n", __func__);
277                 return -EINVAL;
278         }
279
280         tx->callback = omap_vout_vrfb_dma_tx_callback;
281         tx->callback_param = &vout->vrfb_dma_tx;
282
283         cookie = dmaengine_submit(tx);
284         if (dma_submit_error(cookie)) {
285                 pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
286                 return -EINVAL;
287         }
288
289         vout->vrfb_dma_tx.tx_status = 0;
290         dma_async_issue_pending(chan);
291
292         wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
293                                          vout->vrfb_dma_tx.tx_status == 1,
294                                          VRFB_TX_TIMEOUT);
295
296         status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
297
298         if (vout->vrfb_dma_tx.tx_status == 0) {
299                 pr_err("%s: Timeout while waiting for DMA\n", __func__);
300                 dmaengine_terminate_sync(chan);
301                 return -EINVAL;
302         } else if (status != DMA_COMPLETE) {
303                 pr_err("%s: DMA completion %s status\n", __func__,
304                        status == DMA_ERROR ? "error" : "busy");
305                 dmaengine_terminate_sync(chan);
306                 return -EINVAL;
307         }
308
309         /* Store buffers physical address into an array. Addresses
310          * from this array will be used to configure DSS */
311         rotation = calc_rotation(vout);
312         vout->queued_buf_addr[vb->i] = (u8 *)
313                 vout->vrfb_context[vb->i].paddr[rotation];
314         return 0;
315 }
316
317 /*
318  * Calculate the buffer offsets from which the streaming should
319  * start. This offset calculation is mainly required because of
320  * the VRFB 32 pixels alignment with rotation.
321  */
322 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
323 {
324         enum dss_rotation rotation;
325         bool mirroring = vout->mirror;
326         struct v4l2_rect *crop = &vout->crop;
327         struct v4l2_pix_format *pix = &vout->pix;
328         int *cropped_offset = &vout->cropped_offset;
329         int vr_ps = 1, ps = 2, temp_ps = 2;
330         int offset = 0, ctop = 0, cleft = 0, line_length = 0;
331
332         rotation = calc_rotation(vout);
333
334         if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
335                         V4L2_PIX_FMT_UYVY == pix->pixelformat) {
336                 if (is_rotation_enabled(vout)) {
337                         /*
338                          * ps    - Actual pixel size for YUYV/UYVY for
339                          *         VRFB/Mirroring is 4 bytes
340                          * vr_ps - Virtually pixel size for YUYV/UYVY is
341                          *         2 bytes
342                          */
343                         ps = 4;
344                         vr_ps = 2;
345                 } else {
346                         ps = 2; /* otherwise the pixel size is 2 byte */
347                 }
348         } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
349                 ps = 4;
350         } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
351                 ps = 3;
352         }
353         vout->ps = ps;
354         vout->vr_ps = vr_ps;
355
356         if (is_rotation_enabled(vout)) {
357                 line_length = MAX_PIXELS_PER_LINE;
358                 ctop = (pix->height - crop->height) - crop->top;
359                 cleft = (pix->width - crop->width) - crop->left;
360         } else {
361                 line_length = pix->width;
362         }
363         vout->line_length = line_length;
364         switch (rotation) {
365         case dss_rotation_90_degree:
366                 offset = vout->vrfb_context[0].yoffset *
367                         vout->vrfb_context[0].bytespp;
368                 temp_ps = ps / vr_ps;
369                 if (!mirroring) {
370                         *cropped_offset = offset + line_length *
371                                 temp_ps * cleft + crop->top * temp_ps;
372                 } else {
373                         *cropped_offset = offset + line_length * temp_ps *
374                                 cleft + crop->top * temp_ps + (line_length *
375                                 ((crop->width / (vr_ps)) - 1) * ps);
376                 }
377                 break;
378         case dss_rotation_180_degree:
379                 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
380                         vout->vrfb_context[0].bytespp) +
381                         (vout->vrfb_context[0].xoffset *
382                         vout->vrfb_context[0].bytespp));
383                 if (!mirroring) {
384                         *cropped_offset = offset + (line_length * ps * ctop) +
385                                 (cleft / vr_ps) * ps;
386
387                 } else {
388                         *cropped_offset = offset + (line_length * ps * ctop) +
389                                 (cleft / vr_ps) * ps + (line_length *
390                                 (crop->height - 1) * ps);
391                 }
392                 break;
393         case dss_rotation_270_degree:
394                 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
395                         vout->vrfb_context[0].bytespp;
396                 temp_ps = ps / vr_ps;
397                 if (!mirroring) {
398                         *cropped_offset = offset + line_length *
399                             temp_ps * crop->left + ctop * ps;
400                 } else {
401                         *cropped_offset = offset + line_length *
402                                 temp_ps * crop->left + ctop * ps +
403                                 (line_length * ((crop->width / vr_ps) - 1) *
404                                  ps);
405                 }
406                 break;
407         case dss_rotation_0_degree:
408                 if (!mirroring) {
409                         *cropped_offset = (line_length * ps) *
410                                 crop->top + (crop->left / vr_ps) * ps;
411                 } else {
412                         *cropped_offset = (line_length * ps) *
413                                 crop->top + (crop->left / vr_ps) * ps +
414                                 (line_length * (crop->height - 1) * ps);
415                 }
416                 break;
417         default:
418                 *cropped_offset = (line_length * ps * crop->top) /
419                         vr_ps + (crop->left * ps) / vr_ps +
420                         ((crop->width / vr_ps) - 1) * ps;
421                 break;
422         }
423 }