GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / media / i2c / tda1997x.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Gateworks Corporation
4  */
5 #include <linux/delay.h>
6 #include <linux/hdmi.h>
7 #include <linux/i2c.h>
8 #include <linux/init.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/types.h>
16 #include <linux/v4l2-dv-timings.h>
17 #include <linux/videodev2.h>
18
19 #include <media/v4l2-ctrls.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-dv-timings.h>
22 #include <media/v4l2-event.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/i2c/tda1997x.h>
25
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30
31 #include <dt-bindings/media/tda1997x.h>
32
33 #include "tda1997x_regs.h"
34
35 #define TDA1997X_MBUS_CODES     5
36
37 /* debug level */
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "debug level (0-2)");
41
42 /* Audio formats */
43 static const char * const audtype_names[] = {
44         "PCM",                  /* PCM Samples */
45         "HBR",                  /* High Bit Rate Audio */
46         "OBA",                  /* One-Bit Audio */
47         "DST"                   /* Direct Stream Transfer */
48 };
49
50 /* Audio output port formats */
51 enum audfmt_types {
52         AUDFMT_TYPE_DISABLED = 0,
53         AUDFMT_TYPE_I2S,
54         AUDFMT_TYPE_SPDIF,
55 };
56 static const char * const audfmt_names[] = {
57         "Disabled",
58         "I2S",
59         "SPDIF",
60 };
61
62 /* Video input formats */
63 static const char * const hdmi_colorspace_names[] = {
64         "RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
65 };
66 static const char * const hdmi_colorimetry_names[] = {
67         "", "ITU601", "ITU709", "Extended",
68 };
69 static const char * const v4l2_quantization_names[] = {
70         "Default",
71         "Full Range (0-255)",
72         "Limited Range (16-235)",
73 };
74
75 /* Video output port formats */
76 static const char * const vidfmt_names[] = {
77         "RGB444/YUV444",        /* RGB/YUV444 16bit data bus, 8bpp */
78         "YUV422 semi-planar",   /* YUV422 16bit data base, 8bpp */
79         "YUV422 CCIR656",       /* BT656 (YUV 8bpp 2 clock per pixel) */
80         "Invalid",
81 };
82
83 /*
84  * Colorspace conversion matrices
85  */
86 struct color_matrix_coefs {
87         const char *name;
88         /* Input offsets */
89         s16 offint1;
90         s16 offint2;
91         s16 offint3;
92         /* Coeficients */
93         s16 p11coef;
94         s16 p12coef;
95         s16 p13coef;
96         s16 p21coef;
97         s16 p22coef;
98         s16 p23coef;
99         s16 p31coef;
100         s16 p32coef;
101         s16 p33coef;
102         /* Output offsets */
103         s16 offout1;
104         s16 offout2;
105         s16 offout3;
106 };
107
108 enum {
109         ITU709_RGBFULL,
110         ITU601_RGBFULL,
111         RGBLIMITED_RGBFULL,
112         RGBLIMITED_ITU601,
113         RGBLIMITED_ITU709,
114         RGBFULL_ITU601,
115         RGBFULL_ITU709,
116 };
117
118 /* NB: 4096 is 1.0 using fixed point numbers */
119 static const struct color_matrix_coefs conv_matrix[] = {
120         {
121                 "YUV709 -> RGB full",
122                  -256, -2048,  -2048,
123                  4769, -2183,   -873,
124                  4769,  7343,      0,
125                  4769,     0,   8652,
126                     0,     0,      0,
127         },
128         {
129                 "YUV601 -> RGB full",
130                  -256, -2048,  -2048,
131                  4769, -3330,  -1602,
132                  4769,  6538,      0,
133                  4769,     0,   8264,
134                   256,   256,    256,
135         },
136         {
137                 "RGB limited -> RGB full",
138                  -256,  -256,   -256,
139                     0,  4769,      0,
140                     0,     0,   4769,
141                  4769,     0,      0,
142                     0,     0,      0,
143         },
144         {
145                 "RGB limited -> ITU601",
146                  -256,  -256,   -256,
147                  2404,  1225,    467,
148                 -1754,  2095,   -341,
149                 -1388,  -707,   2095,
150                   256,  2048,   2048,
151         },
152         {
153                 "RGB limited -> ITU709",
154                  -256,  -256,   -256,
155                  2918,   867,    295,
156                 -1894,  2087,   -190,
157                 -1607,  -477,   2087,
158                   256,  2048,   2048,
159         },
160         {
161                 "RGB full -> ITU601",
162                     0,     0,      0,
163                  2065,  1052,    401,
164                 -1506,  1799,   -293,
165                 -1192,  -607,   1799,
166                   256,  2048,   2048,
167         },
168         {
169                 "RGB full -> ITU709",
170                     0,     0,      0,
171                  2506,   745,    253,
172                 -1627,  1792,   -163,
173                 -1380,  -410,   1792,
174                   256,  2048,   2048,
175         },
176 };
177
178 static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
179         .type = V4L2_DV_BT_656_1120,
180         /* keep this initialization for compatibility with GCC < 4.4.6 */
181         .reserved = { 0 },
182
183         V4L2_INIT_BT_TIMINGS(
184                 640, 1920,                      /* min/max width */
185                 350, 1200,                      /* min/max height */
186                 13000000, 165000000,            /* min/max pixelclock */
187                 /* standards */
188                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
189                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
190                 /* capabilities */
191                 V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
192                         V4L2_DV_BT_CAP_REDUCED_BLANKING |
193                         V4L2_DV_BT_CAP_CUSTOM
194         )
195 };
196
197 /* regulator supplies */
198 static const char * const tda1997x_supply_name[] = {
199         "DOVDD", /* Digital I/O supply */
200         "DVDD",  /* Digital Core supply */
201         "AVDD",  /* Analog supply */
202 };
203
204 #define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
205
206 enum tda1997x_type {
207         TDA19971,
208         TDA19973,
209 };
210
211 enum tda1997x_hdmi_pads {
212         TDA1997X_PAD_SOURCE,
213         TDA1997X_NUM_PADS,
214 };
215
216 struct tda1997x_chip_info {
217         enum tda1997x_type type;
218         const char *name;
219 };
220
221 struct tda1997x_state {
222         const struct tda1997x_chip_info *info;
223         struct tda1997x_platform_data pdata;
224         struct i2c_client *client;
225         struct i2c_client *client_cec;
226         struct v4l2_subdev sd;
227         struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
228         struct media_pad pads[TDA1997X_NUM_PADS];
229         struct mutex lock;
230         struct mutex page_lock;
231         char page;
232
233         /* detected info from chip */
234         int chip_revision;
235         char port_30bit;
236         char output_2p5;
237         char tmdsb_clk;
238         char tmdsb_soc;
239
240         /* status info */
241         char hdmi_status;
242         char mptrw_in_progress;
243         char activity_status;
244         char input_detect[2];
245
246         /* video */
247         struct hdmi_avi_infoframe avi_infoframe;
248         struct v4l2_hdmi_colorimetry colorimetry;
249         u32 rgb_quantization_range;
250         struct v4l2_dv_timings timings;
251         int fps;
252         const struct color_matrix_coefs *conv;
253         u32 mbus_codes[TDA1997X_MBUS_CODES];    /* available modes */
254         u32 mbus_code;          /* current mode */
255         u8 vid_fmt;
256
257         /* controls */
258         struct v4l2_ctrl_handler hdl;
259         struct v4l2_ctrl *detect_tx_5v_ctrl;
260         struct v4l2_ctrl *rgb_quantization_range_ctrl;
261
262         /* audio */
263         u8  audio_ch_alloc;
264         int audio_samplerate;
265         int audio_channels;
266         int audio_samplesize;
267         int audio_type;
268         struct mutex audio_lock;
269         struct snd_pcm_substream *audio_stream;
270
271         /* EDID */
272         struct {
273                 u8 edid[256];
274                 u32 present;
275                 unsigned int blocks;
276         } edid;
277         struct delayed_work delayed_work_enable_hpd;
278 };
279
280 static const struct v4l2_event tda1997x_ev_fmt = {
281         .type = V4L2_EVENT_SOURCE_CHANGE,
282         .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
283 };
284
285 static const struct tda1997x_chip_info tda1997x_chip_info[] = {
286         [TDA19971] = {
287                 .type = TDA19971,
288                 .name = "tda19971",
289         },
290         [TDA19973] = {
291                 .type = TDA19973,
292                 .name = "tda19973",
293         },
294 };
295
296 static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
297 {
298         return container_of(sd, struct tda1997x_state, sd);
299 }
300
301 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
302 {
303         return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
304 }
305
306 static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
307 {
308         struct tda1997x_state *state = to_state(sd);
309         int val;
310
311         val = i2c_smbus_read_byte_data(state->client_cec, reg);
312         if (val < 0) {
313                 v4l_err(state->client, "read reg error: reg=%2x\n", reg);
314                 val = -1;
315         }
316
317         return val;
318 }
319
320 static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
321 {
322         struct tda1997x_state *state = to_state(sd);
323         int ret = 0;
324
325         ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
326         if (ret < 0) {
327                 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
328                         reg, val);
329                 ret = -1;
330         }
331
332         return ret;
333 }
334
335 /* -----------------------------------------------------------------------------
336  * I2C transfer
337  */
338
339 static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
340 {
341         struct tda1997x_state *state = to_state(sd);
342         int ret;
343
344         if (state->page != page) {
345                 ret = i2c_smbus_write_byte_data(state->client,
346                         REG_CURPAGE_00H, page);
347                 if (ret < 0) {
348                         v4l_err(state->client,
349                                 "write reg error:reg=%2x,val=%2x\n",
350                                 REG_CURPAGE_00H, page);
351                         return ret;
352                 }
353                 state->page = page;
354         }
355         return 0;
356 }
357
358 static inline int io_read(struct v4l2_subdev *sd, u16 reg)
359 {
360         struct tda1997x_state *state = to_state(sd);
361         int val;
362
363         mutex_lock(&state->page_lock);
364         if (tda1997x_setpage(sd, reg >> 8)) {
365                 val = -1;
366                 goto out;
367         }
368
369         val = i2c_smbus_read_byte_data(state->client, reg&0xff);
370         if (val < 0) {
371                 v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
372                 val = -1;
373                 goto out;
374         }
375
376 out:
377         mutex_unlock(&state->page_lock);
378         return val;
379 }
380
381 static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
382 {
383         int val;
384         long lval = 0;
385
386         val = io_read(sd, reg);
387         if (val < 0)
388                 return val;
389         lval |= (val << 8);
390         val = io_read(sd, reg + 1);
391         if (val < 0)
392                 return val;
393         lval |= val;
394
395         return lval;
396 }
397
398 static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
399 {
400         int val;
401         long lval = 0;
402
403         val = io_read(sd, reg);
404         if (val < 0)
405                 return val;
406         lval |= (val << 16);
407         val = io_read(sd, reg + 1);
408         if (val < 0)
409                 return val;
410         lval |= (val << 8);
411         val = io_read(sd, reg + 2);
412         if (val < 0)
413                 return val;
414         lval |= val;
415
416         return lval;
417 }
418
419 static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
420 {
421         int i;
422         int sz = 0;
423         int val;
424
425         for (i = 0; i < len; i++) {
426                 val = io_read(sd, reg + i);
427                 if (val < 0)
428                         break;
429                 data[i] = val;
430                 sz++;
431         }
432
433         return sz;
434 }
435
436 static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
437 {
438         struct tda1997x_state *state = to_state(sd);
439         s32 ret = 0;
440
441         mutex_lock(&state->page_lock);
442         if (tda1997x_setpage(sd, reg >> 8)) {
443                 ret = -1;
444                 goto out;
445         }
446
447         ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
448         if (ret < 0) {
449                 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
450                         reg&0xff, val);
451                 ret = -1;
452                 goto out;
453         }
454
455 out:
456         mutex_unlock(&state->page_lock);
457         return ret;
458 }
459
460 static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
461 {
462         int ret;
463
464         ret = io_write(sd, reg, (val >> 8) & 0xff);
465         if (ret < 0)
466                 return ret;
467         ret = io_write(sd, reg + 1, val & 0xff);
468         if (ret < 0)
469                 return ret;
470         return 0;
471 }
472
473 static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
474 {
475         int ret;
476
477         ret = io_write(sd, reg, (val >> 16) & 0xff);
478         if (ret < 0)
479                 return ret;
480         ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
481         if (ret < 0)
482                 return ret;
483         ret = io_write(sd, reg + 2, val & 0xff);
484         if (ret < 0)
485                 return ret;
486         return 0;
487 }
488
489 /* -----------------------------------------------------------------------------
490  * Hotplug
491  */
492
493 enum hpd_mode {
494         HPD_LOW_BP,     /* HPD low and pulse of at least 100ms */
495         HPD_LOW_OTHER,  /* HPD low and pulse of at least 100ms */
496         HPD_HIGH_BP,    /* HIGH */
497         HPD_HIGH_OTHER,
498         HPD_PULSE,      /* HPD low pulse */
499 };
500
501 /* manual HPD (Hot Plug Detect) control */
502 static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
503 {
504         u8 hpd_auto, hpd_pwr, hpd_man;
505
506         hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
507         hpd_pwr = io_read(sd, REG_HPD_POWER);
508         hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
509
510         /* mask out unused bits */
511         hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
512                     HPD_MAN_CTRL_5VEN |
513                     HPD_MAN_CTRL_HPD_B |
514                     HPD_MAN_CTRL_HPD_A);
515
516         switch (mode) {
517         /* HPD low and pulse of at least 100ms */
518         case HPD_LOW_BP:
519                 /* hpd_bp=0 */
520                 hpd_pwr &= ~HPD_POWER_BP_MASK;
521                 /* disable HPD_A and HPD_B */
522                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
523                 io_write(sd, REG_HPD_POWER, hpd_pwr);
524                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
525                 break;
526         /* HPD high */
527         case HPD_HIGH_BP:
528                 /* hpd_bp=1 */
529                 hpd_pwr &= ~HPD_POWER_BP_MASK;
530                 hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
531                 io_write(sd, REG_HPD_POWER, hpd_pwr);
532                 break;
533         /* HPD low and pulse of at least 100ms */
534         case HPD_LOW_OTHER:
535                 /* disable HPD_A and HPD_B */
536                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
537                 /* hp_other=0 */
538                 hpd_auto &= ~HPD_AUTO_HP_OTHER;
539                 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
540                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
541                 break;
542         /* HPD high */
543         case HPD_HIGH_OTHER:
544                 hpd_auto |= HPD_AUTO_HP_OTHER;
545                 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
546                 break;
547         /* HPD low pulse */
548         case HPD_PULSE:
549                 /* disable HPD_A and HPD_B */
550                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
551                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
552                 break;
553         }
554
555         return 0;
556 }
557
558 static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
559 {
560         struct delayed_work *dwork = to_delayed_work(work);
561         struct tda1997x_state *state = container_of(dwork,
562                                                     struct tda1997x_state,
563                                                     delayed_work_enable_hpd);
564         struct v4l2_subdev *sd = &state->sd;
565
566         v4l2_dbg(2, debug, sd, "%s:\n", __func__);
567
568         /* Set HPD high */
569         tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
570         tda1997x_manual_hpd(sd, HPD_HIGH_BP);
571
572         state->edid.present = 1;
573 }
574
575 static void tda1997x_disable_edid(struct v4l2_subdev *sd)
576 {
577         struct tda1997x_state *state = to_state(sd);
578
579         v4l2_dbg(1, debug, sd, "%s\n", __func__);
580         cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
581
582         /* Set HPD low */
583         tda1997x_manual_hpd(sd, HPD_LOW_BP);
584 }
585
586 static void tda1997x_enable_edid(struct v4l2_subdev *sd)
587 {
588         struct tda1997x_state *state = to_state(sd);
589
590         v4l2_dbg(1, debug, sd, "%s\n", __func__);
591
592         /* Enable hotplug after 100ms */
593         schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
594 }
595
596 /* -----------------------------------------------------------------------------
597  * Signal Control
598  */
599
600 /*
601  * configure vid_fmt based on mbus_code
602  */
603 static int
604 tda1997x_setup_format(struct tda1997x_state *state, u32 code)
605 {
606         v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
607         switch (code) {
608         case MEDIA_BUS_FMT_RGB121212_1X36:
609         case MEDIA_BUS_FMT_RGB888_1X24:
610         case MEDIA_BUS_FMT_YUV12_1X36:
611         case MEDIA_BUS_FMT_YUV8_1X24:
612                 state->vid_fmt = OF_FMT_444;
613                 break;
614         case MEDIA_BUS_FMT_UYVY12_1X24:
615         case MEDIA_BUS_FMT_UYVY10_1X20:
616         case MEDIA_BUS_FMT_UYVY8_1X16:
617                 state->vid_fmt = OF_FMT_422_SMPT;
618                 break;
619         case MEDIA_BUS_FMT_UYVY12_2X12:
620         case MEDIA_BUS_FMT_UYVY10_2X10:
621         case MEDIA_BUS_FMT_UYVY8_2X8:
622                 state->vid_fmt = OF_FMT_422_CCIR;
623                 break;
624         default:
625                 v4l_err(state->client, "incompatible format (0x%x)\n", code);
626                 return -EINVAL;
627         }
628         v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
629                 code, vidfmt_names[state->vid_fmt]);
630         state->mbus_code = code;
631
632         return 0;
633 }
634
635 /*
636  * The color conversion matrix will convert between the colorimetry of the
637  * HDMI input to the desired output format RGB|YUV. RGB output is to be
638  * full-range and YUV is to be limited range.
639  *
640  * RGB full-range uses values from 0 to 255 which is recommended on a monitor
641  * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
642  * typically recommended on a TV.
643  */
644 static void
645 tda1997x_configure_csc(struct v4l2_subdev *sd)
646 {
647         struct tda1997x_state *state = to_state(sd);
648         struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
649         struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
650         /* Blanking code values depend on output colorspace (RGB or YUV) */
651         struct blanking_codes {
652                 s16 code_gy;
653                 s16 code_bu;
654                 s16 code_rv;
655         };
656         static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
657         static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
658         const struct blanking_codes *blanking_codes = NULL;
659         u8 reg;
660
661         v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
662                 hdmi_colorspace_names[avi->colorspace],
663                 v4l2_quantization_names[c->quantization],
664                 vidfmt_names[state->vid_fmt]);
665         state->conv = NULL;
666         switch (state->vid_fmt) {
667         /* RGB output */
668         case OF_FMT_444:
669                 blanking_codes = &rgb_blanking;
670                 if (c->colorspace == V4L2_COLORSPACE_SRGB) {
671                         if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
672                                 state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
673                 } else {
674                         if (c->colorspace == V4L2_COLORSPACE_REC709)
675                                 state->conv = &conv_matrix[ITU709_RGBFULL];
676                         else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
677                                 state->conv = &conv_matrix[ITU601_RGBFULL];
678                 }
679                 break;
680
681         /* YUV output */
682         case OF_FMT_422_SMPT: /* semi-planar */
683         case OF_FMT_422_CCIR: /* CCIR656 */
684                 blanking_codes = &yuv_blanking;
685                 if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
686                     (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
687                         if (state->timings.bt.height <= 576)
688                                 state->conv = &conv_matrix[RGBFULL_ITU601];
689                         else
690                                 state->conv = &conv_matrix[RGBFULL_ITU709];
691                 } else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
692                            (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
693                         if (state->timings.bt.height <= 576)
694                                 state->conv = &conv_matrix[RGBLIMITED_ITU601];
695                         else
696                                 state->conv = &conv_matrix[RGBLIMITED_ITU709];
697                 }
698                 break;
699         }
700
701         if (state->conv) {
702                 v4l_dbg(1, debug, state->client, "%s\n",
703                         state->conv->name);
704                 /* enable matrix conversion */
705                 reg = io_read(sd, REG_VDP_CTRL);
706                 reg &= ~VDP_CTRL_MATRIX_BP;
707                 io_write(sd, REG_VDP_CTRL, reg);
708                 /* offset inputs */
709                 io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
710                 io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
711                 io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
712                 /* coefficients */
713                 io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
714                 io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
715                 io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
716                 io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
717                 io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
718                 io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
719                 io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
720                 io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
721                 io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
722                 /* offset outputs */
723                 io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
724                 io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
725                 io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
726         } else {
727                 /* disable matrix conversion */
728                 reg = io_read(sd, REG_VDP_CTRL);
729                 reg |= VDP_CTRL_MATRIX_BP;
730                 io_write(sd, REG_VDP_CTRL, reg);
731         }
732
733         /* SetBlankingCodes */
734         if (blanking_codes) {
735                 io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
736                 io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
737                 io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
738         }
739 }
740
741 /* Configure frame detection window and VHREF timing generator */
742 static void
743 tda1997x_configure_vhref(struct v4l2_subdev *sd)
744 {
745         struct tda1997x_state *state = to_state(sd);
746         const struct v4l2_bt_timings *bt = &state->timings.bt;
747         int width, lines;
748         u16 href_start, href_end;
749         u16 vref_f1_start, vref_f2_start;
750         u8 vref_f1_width, vref_f2_width;
751         u8 field_polarity;
752         u16 fieldref_f1_start, fieldref_f2_start;
753         u8 reg;
754
755         href_start = bt->hbackporch + bt->hsync + 1;
756         href_end = href_start + bt->width;
757         vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
758                         bt->il_vbackporch + bt->il_vsync +
759                         bt->il_vfrontporch;
760         vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
761         vref_f2_start = 0;
762         vref_f2_width = 0;
763         fieldref_f1_start = 0;
764         fieldref_f2_start = 0;
765         if (bt->interlaced) {
766                 vref_f2_start = (bt->height / 2) +
767                                 (bt->il_vbackporch + bt->il_vsync - 1);
768                 vref_f2_width = bt->il_vbackporch + bt->il_vsync +
769                                 bt->il_vfrontporch;
770                 fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
771                                     fieldref_f1_start;
772         }
773         field_polarity = 0;
774
775         width = V4L2_DV_BT_FRAME_WIDTH(bt);
776         lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
777
778         /*
779          * Configure Frame Detection Window:
780          *  horiz area where the VHREF module consider a VSYNC a new frame
781          */
782         io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
783         io_write16(sd, REG_FDW_E, 0x141); /* end position */
784
785         /* Set Pixel And Line Counters */
786         if (state->chip_revision == 0)
787                 io_write16(sd, REG_PXCNT_PR, 4);
788         else
789                 io_write16(sd, REG_PXCNT_PR, 1);
790         io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
791         io_write16(sd, REG_LCNT_PR, 1);
792         io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
793
794         /*
795          * Configure the VHRef timing generator responsible for rebuilding all
796          * horiz and vert synch and ref signals from its input allowing auto
797          * detection algorithms and forcing predefined modes (480i & 576i)
798          */
799         reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
800         io_write(sd, REG_VHREF_CTRL, reg);
801
802         /*
803          * Configure the VHRef timing values. In case the VHREF generator has
804          * been configured in manual mode, this will allow to manually set all
805          * horiz and vert ref values (non-active pixel areas) of the generator
806          * and allows setting the frame reference params.
807          */
808         /* horizontal reference start/end */
809         io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
810         io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
811         /* vertical reference f1 start/end */
812         io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
813         io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
814         /* vertical reference f2 start/end */
815         io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
816         io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
817
818         /* F1/F2 FREF, field polarity */
819         reg = fieldref_f1_start & MASK_VHREF;
820         reg |= field_polarity << 8;
821         io_write16(sd, REG_FREF_F1_S, reg);
822         reg = fieldref_f2_start & MASK_VHREF;
823         io_write16(sd, REG_FREF_F2_S, reg);
824 }
825
826 /* Configure Video Output port signals */
827 static int
828 tda1997x_configure_vidout(struct tda1997x_state *state)
829 {
830         struct v4l2_subdev *sd = &state->sd;
831         struct tda1997x_platform_data *pdata = &state->pdata;
832         u8 prefilter;
833         u8 reg;
834
835         /* Configure pixel clock generator: delay, polarity, rate */
836         reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
837                PCLK_SEL_X2 : PCLK_SEL_X1;
838         reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
839         reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
840         io_write(sd, REG_PCLK, reg);
841
842         /* Configure pre-filter */
843         prefilter = 0; /* filters off */
844         /* YUV422 mode requires conversion */
845         if ((state->vid_fmt == OF_FMT_422_SMPT) ||
846             (state->vid_fmt == OF_FMT_422_CCIR)) {
847                 /* 2/7 taps for Rv and Bu */
848                 prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
849                             FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
850         }
851         io_write(sd, REG_FILTERS_CTRL, prefilter);
852
853         /* Configure video port */
854         reg = state->vid_fmt & OF_FMT_MASK;
855         if (state->vid_fmt == OF_FMT_422_CCIR)
856                 reg |= (OF_BLK | OF_TRC);
857         reg |= OF_VP_ENABLE;
858         io_write(sd, REG_OF, reg);
859
860         /* Configure formatter and conversions */
861         reg = io_read(sd, REG_VDP_CTRL);
862         /* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
863         if (!prefilter)
864                 reg |= VDP_CTRL_PREFILTER_BP;
865         else
866                 reg &= ~VDP_CTRL_PREFILTER_BP;
867         /* formatter is needed for YUV422 and for trc/blc codes */
868         if (state->vid_fmt == OF_FMT_444)
869                 reg |= VDP_CTRL_FORMATTER_BP;
870         /* formatter and compdel needed for timing/blanking codes */
871         else
872                 reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
873         /* activate compdel for small sync delays */
874         if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
875                 reg &= ~VDP_CTRL_COMPDEL_BP;
876         io_write(sd, REG_VDP_CTRL, reg);
877
878         /* Configure DE output signal: delay, polarity, and source */
879         reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
880               pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
881               pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
882         io_write(sd, REG_DE_FREF, reg);
883
884         /* Configure HS/HREF output signal: delay, polarity, and source */
885         if (state->vid_fmt != OF_FMT_422_CCIR) {
886                 reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
887                       pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
888                       pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
889         } else
890                 reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
891         io_write(sd, REG_HS_HREF, reg);
892
893         /* Configure VS/VREF output signal: delay, polarity, and source */
894         if (state->vid_fmt != OF_FMT_422_CCIR) {
895                 reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
896                       pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
897                       pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
898         } else
899                 reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
900         io_write(sd, REG_VS_VREF, reg);
901
902         return 0;
903 }
904
905 /* Configure Audio output port signals */
906 static int
907 tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
908 {
909         struct tda1997x_state *state = to_state(sd);
910         struct tda1997x_platform_data *pdata = &state->pdata;
911         bool sp_used_by_fifo = true;
912         u8 reg;
913
914         if (!pdata->audout_format)
915                 return 0;
916
917         /* channel assignment (CEA-861-D Table 20) */
918         io_write(sd, REG_AUDIO_PATH, channel_assignment);
919
920         /* Audio output configuration */
921         reg = 0;
922         switch (pdata->audout_format) {
923         case AUDFMT_TYPE_I2S:
924                 reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
925                 break;
926         case AUDFMT_TYPE_SPDIF:
927                 reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
928                 break;
929         }
930         switch (state->audio_type) {
931         case AUDCFG_TYPE_PCM:
932                 reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
933                 break;
934         case AUDCFG_TYPE_OBA:
935                 reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
936                 break;
937         case AUDCFG_TYPE_DST:
938                 reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
939                 sp_used_by_fifo = false;
940                 break;
941         case AUDCFG_TYPE_HBR:
942                 reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
943                 if (pdata->audout_layout == 1) {
944                         /* demuxed via AP0:AP3 */
945                         reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
946                         if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
947                                 sp_used_by_fifo = false;
948                 } else {
949                         /* straight via AP0 */
950                         reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
951                 }
952                 break;
953         }
954         if (pdata->audout_width == 32)
955                 reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
956         else
957                 reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
958
959         /* automatic hardware mute */
960         if (pdata->audio_auto_mute)
961                 reg |= AUDCFG_AUTO_MUTE_EN;
962         /* clock polarity */
963         if (pdata->audout_invert_clk)
964                 reg |= AUDCFG_CLK_INVERT;
965         io_write(sd, REG_AUDCFG, reg);
966
967         /* audio layout */
968         reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
969         if (!pdata->audout_layoutauto)
970                 reg |= AUDIO_LAYOUT_MANUAL;
971         if (sp_used_by_fifo)
972                 reg |= AUDIO_LAYOUT_SP_FLAG;
973         io_write(sd, REG_AUDIO_LAYOUT, reg);
974
975         /* FIFO Latency value */
976         io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
977
978         /* Audio output port config */
979         if (sp_used_by_fifo) {
980                 reg = AUDIO_OUT_ENABLE_AP0;
981                 if (channel_assignment >= 0x01)
982                         reg |= AUDIO_OUT_ENABLE_AP1;
983                 if (channel_assignment >= 0x04)
984                         reg |= AUDIO_OUT_ENABLE_AP2;
985                 if (channel_assignment >= 0x0c)
986                         reg |= AUDIO_OUT_ENABLE_AP3;
987                 /* specific cases where AP1 is not used */
988                 if ((channel_assignment == 0x04)
989                  || (channel_assignment == 0x08)
990                  || (channel_assignment == 0x0c)
991                  || (channel_assignment == 0x10)
992                  || (channel_assignment == 0x14)
993                  || (channel_assignment == 0x18)
994                  || (channel_assignment == 0x1c))
995                         reg &= ~AUDIO_OUT_ENABLE_AP1;
996                 /* specific cases where AP2 is not used */
997                 if ((channel_assignment >= 0x14)
998                  && (channel_assignment <= 0x17))
999                         reg &= ~AUDIO_OUT_ENABLE_AP2;
1000         } else {
1001                 reg = AUDIO_OUT_ENABLE_AP3 |
1002                       AUDIO_OUT_ENABLE_AP2 |
1003                       AUDIO_OUT_ENABLE_AP1 |
1004                       AUDIO_OUT_ENABLE_AP0;
1005         }
1006         if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007                 reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008         io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009
1010         /* reset test mode to normal audio freq auto selection */
1011         io_write(sd, REG_TEST_MODE, 0x00);
1012
1013         return 0;
1014 }
1015
1016 /* Soft Reset of specific hdmi info */
1017 static int
1018 tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019 {
1020         u8 reg;
1021
1022         /* reset infoframe engine packets */
1023         reg = io_read(sd, REG_HDMI_INFO_RST);
1024         io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025
1026         /* if infoframe engine has been reset clear INT_FLG_MODE */
1027         if (reg & RESET_IF) {
1028                 reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029                 io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030         }
1031
1032         /* Disable REFTIM to restart start-up-sequencer (SUS) */
1033         reg = io_read(sd, REG_RATE_CTRL);
1034         reg &= ~RATE_REFTIM_ENABLE;
1035         if (!reset_sus)
1036                 reg |= RATE_REFTIM_ENABLE;
1037         reg = io_write(sd, REG_RATE_CTRL, reg);
1038
1039         return 0;
1040 }
1041
1042 static void
1043 tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044 {
1045         struct v4l2_subdev *sd = &state->sd;
1046         u8 reg;
1047
1048         if (enable) {
1049                 /* Automatic control of TMDS */
1050                 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051                 /* Enable current bias unit */
1052                 io_write(sd, REG_CFG1, PON_EN);
1053                 /* Enable deep color PLL */
1054                 io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055                 /* Output buffers active */
1056                 reg = io_read(sd, REG_OF);
1057                 reg &= ~OF_VP_ENABLE;
1058                 io_write(sd, REG_OF, reg);
1059         } else {
1060                 /* Power down EDID mode sequence */
1061                 /* Output buffers in HiZ */
1062                 reg = io_read(sd, REG_OF);
1063                 reg |= OF_VP_ENABLE;
1064                 io_write(sd, REG_OF, reg);
1065                 /* Disable deep color PLL */
1066                 io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067                 /* Disable current bias unit */
1068                 io_write(sd, REG_CFG1, PON_DIS);
1069                 /* Manual control of TMDS */
1070                 io_write(sd, REG_PON_OVR_EN, PON_EN);
1071         }
1072 }
1073
1074 static bool
1075 tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076 {
1077         u8 reg = io_read(sd, REG_DETECT_5V);
1078
1079         return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080 }
1081
1082 static bool
1083 tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084 {
1085         u8 reg = io_read(sd, REG_DETECT_5V);
1086
1087         return ((reg & DETECT_HPD) ? 1 : 0);
1088 }
1089
1090 static int
1091 tda1997x_detect_std(struct tda1997x_state *state,
1092                     struct v4l2_dv_timings *timings)
1093 {
1094         struct v4l2_subdev *sd = &state->sd;
1095         u32 vper;
1096         u16 hper;
1097         u16 hsper;
1098         int i;
1099
1100         /*
1101          * Read the FMT registers
1102          *   REG_V_PER: Period of a frame (or two fields) in MCLK(27MHz) cycles
1103          *   REG_H_PER: Period of a line in MCLK(27MHz) cycles
1104          *   REG_HS_WIDTH: Period of horiz sync pulse in MCLK(27MHz) cycles
1105          */
1106         vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1107         hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1108         hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1109         v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1110         if (!vper || !hper || !hsper)
1111                 return -ENOLINK;
1112
1113         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1114                 const struct v4l2_bt_timings *bt;
1115                 u32 lines, width, _hper, _hsper;
1116                 u32 vmin, vmax, hmin, hmax, hsmin, hsmax;
1117                 bool vmatch, hmatch, hsmatch;
1118
1119                 bt = &v4l2_dv_timings_presets[i].bt;
1120                 width = V4L2_DV_BT_FRAME_WIDTH(bt);
1121                 lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
1122                 _hper = (u32)bt->pixelclock / width;
1123                 if (bt->interlaced)
1124                         lines /= 2;
1125                 /* vper +/- 0.7% */
1126                 vmin = ((27000000 / 1000) * 993) / _hper * lines;
1127                 vmax = ((27000000 / 1000) * 1007) / _hper * lines;
1128                 /* hper +/- 1.0% */
1129                 hmin = ((27000000 / 100) * 99) / _hper;
1130                 hmax = ((27000000 / 100) * 101) / _hper;
1131                 /* hsper +/- 2 (take care to avoid 32bit overflow) */
1132                 _hsper = 27000 * bt->hsync / ((u32)bt->pixelclock/1000);
1133                 hsmin = _hsper - 2;
1134                 hsmax = _hsper + 2;
1135
1136                 /* vmatch matches the framerate */
1137                 vmatch = ((vper <= vmax) && (vper >= vmin)) ? 1 : 0;
1138                 /* hmatch matches the width */
1139                 hmatch = ((hper <= hmax) && (hper >= hmin)) ? 1 : 0;
1140                 /* hsmatch matches the hswidth */
1141                 hsmatch = ((hsper <= hsmax) && (hsper >= hsmin)) ? 1 : 0;
1142                 if (hmatch && vmatch && hsmatch) {
1143                         v4l2_print_dv_timings(sd->name, "Detected format: ",
1144                                               &v4l2_dv_timings_presets[i],
1145                                               false);
1146                         if (timings)
1147                                 *timings = v4l2_dv_timings_presets[i];
1148                         return 0;
1149                 }
1150         }
1151
1152         v4l_err(state->client, "no resolution match for timings: %d/%d/%d\n",
1153                 vper, hper, hsper);
1154         return -ERANGE;
1155 }
1156
1157 /* some sort of errata workaround for chip revision 0 (N1) */
1158 static void tda1997x_reset_n1(struct tda1997x_state *state)
1159 {
1160         struct v4l2_subdev *sd = &state->sd;
1161         u8 reg;
1162
1163         /* clear HDMI mode flag in BCAPS */
1164         io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1165         io_write(sd, REG_PON_OVR_EN, PON_EN);
1166         io_write(sd, REG_PON_CBIAS, PON_EN);
1167         io_write(sd, REG_PON_PLL, PON_EN);
1168
1169         reg = io_read(sd, REG_MODE_REC_CFG1);
1170         reg &= ~0x06;
1171         reg |= 0x02;
1172         io_write(sd, REG_MODE_REC_CFG1, reg);
1173         io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1174         io_write(sd, REG_PON_OVR_EN, PON_DIS);
1175         reg = io_read(sd, REG_MODE_REC_CFG1);
1176         reg &= ~0x06;
1177         io_write(sd, REG_MODE_REC_CFG1, reg);
1178 }
1179
1180 /*
1181  * Activity detection must only be notified when stable_clk_x AND active_x
1182  * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1183  * active_x, it means that the TMDS clock is not in the defined range
1184  * and activity detection must not be notified.
1185  */
1186 static u8
1187 tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1188 {
1189         u8 reg, status = 0;
1190
1191         /* Read CLK_A_STATUS register */
1192         reg = io_read(sd, REG_CLK_A_STATUS);
1193         /* ignore if not active */
1194         if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1195                 reg &= ~MASK_CLK_STABLE;
1196         status |= ((reg & MASK_CLK_STABLE) >> 2);
1197
1198         /* Read CLK_B_STATUS register */
1199         reg = io_read(sd, REG_CLK_B_STATUS);
1200         /* ignore if not active */
1201         if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1202                 reg &= ~MASK_CLK_STABLE;
1203         status |= ((reg & MASK_CLK_STABLE) >> 1);
1204
1205         /* Read the SUS_STATUS register */
1206         reg = io_read(sd, REG_SUS_STATUS);
1207
1208         /* If state = 5 => TMDS is locked */
1209         if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1210                 status |= MASK_SUS_STATE;
1211         else
1212                 status &= ~MASK_SUS_STATE;
1213
1214         return status;
1215 }
1216
1217 static void
1218 set_rgb_quantization_range(struct tda1997x_state *state)
1219 {
1220         struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1221
1222         state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1223                                                       NULL,
1224                                                       state->timings.bt.height);
1225         /* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1226         if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1227                 switch (state->rgb_quantization_range) {
1228                 case V4L2_DV_RGB_RANGE_LIMITED:
1229                         c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1230                         break;
1231                 case V4L2_DV_RGB_RANGE_FULL:
1232                         c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1233                         break;
1234                 }
1235         }
1236         v4l_dbg(1, debug, state->client,
1237                 "colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1238                 state->avi_infoframe.colorspace, c->colorspace,
1239                 state->avi_infoframe.colorimetry,
1240                 v4l2_quantization_names[c->quantization],
1241                 state->avi_infoframe.content_type);
1242 }
1243
1244 /* parse an infoframe and do some sanity checks on it */
1245 static unsigned int
1246 tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1247 {
1248         struct v4l2_subdev *sd = &state->sd;
1249         union hdmi_infoframe frame;
1250         u8 buffer[40] = { 0 };
1251         u8 reg;
1252         int len, err;
1253
1254         /* read data */
1255         len = io_readn(sd, addr, sizeof(buffer), buffer);
1256         err = hdmi_infoframe_unpack(&frame, buffer, len);
1257         if (err) {
1258                 v4l_err(state->client,
1259                         "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1260                         len, addr, buffer[0]);
1261                 return err;
1262         }
1263         hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1264         switch (frame.any.type) {
1265         /* Audio InfoFrame: see HDMI spec 8.2.2 */
1266         case HDMI_INFOFRAME_TYPE_AUDIO:
1267                 /* sample rate */
1268                 switch (frame.audio.sample_frequency) {
1269                 case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1270                         state->audio_samplerate = 32000;
1271                         break;
1272                 case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1273                         state->audio_samplerate = 44100;
1274                         break;
1275                 case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1276                         state->audio_samplerate = 48000;
1277                         break;
1278                 case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1279                         state->audio_samplerate = 88200;
1280                         break;
1281                 case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1282                         state->audio_samplerate = 96000;
1283                         break;
1284                 case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1285                         state->audio_samplerate = 176400;
1286                         break;
1287                 case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1288                         state->audio_samplerate = 192000;
1289                         break;
1290                 default:
1291                 case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1292                         break;
1293                 }
1294
1295                 /* sample size */
1296                 switch (frame.audio.sample_size) {
1297                 case HDMI_AUDIO_SAMPLE_SIZE_16:
1298                         state->audio_samplesize = 16;
1299                         break;
1300                 case HDMI_AUDIO_SAMPLE_SIZE_20:
1301                         state->audio_samplesize = 20;
1302                         break;
1303                 case HDMI_AUDIO_SAMPLE_SIZE_24:
1304                         state->audio_samplesize = 24;
1305                         break;
1306                 case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1307                 default:
1308                         break;
1309                 }
1310
1311                 /* Channel Count */
1312                 state->audio_channels = frame.audio.channels;
1313                 if (frame.audio.channel_allocation &&
1314                     frame.audio.channel_allocation != state->audio_ch_alloc) {
1315                         /* use the channel assignment from the infoframe */
1316                         state->audio_ch_alloc = frame.audio.channel_allocation;
1317                         tda1997x_configure_audout(sd, state->audio_ch_alloc);
1318                         /* reset the audio FIFO */
1319                         tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1320                 }
1321                 break;
1322
1323         /* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1324         case HDMI_INFOFRAME_TYPE_AVI:
1325                 state->avi_infoframe = frame.avi;
1326                 set_rgb_quantization_range(state);
1327
1328                 /* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1329                 reg = io_read(sd, REG_PIX_REPEAT);
1330                 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1331                 if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1332                         reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1333                 io_write(sd, REG_PIX_REPEAT, reg);
1334
1335                 /* ConfigurePixelRepeater: repeat n-times each pixel */
1336                 reg = io_read(sd, REG_PIX_REPEAT);
1337                 reg &= ~PIX_REPEAT_MASK_REP;
1338                 reg |= frame.avi.pixel_repeat;
1339                 io_write(sd, REG_PIX_REPEAT, reg);
1340
1341                 /* configure the receiver with the new colorspace */
1342                 tda1997x_configure_csc(sd);
1343                 break;
1344         default:
1345                 break;
1346         }
1347         return 0;
1348 }
1349
1350 static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1351 {
1352         struct v4l2_subdev *sd = &state->sd;
1353         u8 reg, source;
1354
1355         source = io_read(sd, REG_INT_FLG_CLR_SUS);
1356         io_write(sd, REG_INT_FLG_CLR_SUS, source);
1357
1358         if (source & MASK_MPT) {
1359                 /* reset MTP in use flag if set */
1360                 if (state->mptrw_in_progress)
1361                         state->mptrw_in_progress = 0;
1362         }
1363
1364         if (source & MASK_SUS_END) {
1365                 /* reset audio FIFO */
1366                 reg = io_read(sd, REG_HDMI_INFO_RST);
1367                 reg |= MASK_SR_FIFO_FIFO_CTRL;
1368                 io_write(sd, REG_HDMI_INFO_RST, reg);
1369                 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1370                 io_write(sd, REG_HDMI_INFO_RST, reg);
1371
1372                 /* reset HDMI flags */
1373                 state->hdmi_status = 0;
1374         }
1375
1376         /* filter FMT interrupt based on SUS state */
1377         reg = io_read(sd, REG_SUS_STATUS);
1378         if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1379            || (source & MASK_MPT)) {
1380                 source &= ~MASK_FMT;
1381         }
1382
1383         if (source & (MASK_FMT | MASK_SUS_END)) {
1384                 reg = io_read(sd, REG_SUS_STATUS);
1385                 if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1386                         v4l_err(state->client, "BAD SUS STATUS\n");
1387                         return;
1388                 }
1389                 if (debug)
1390                         tda1997x_detect_std(state, NULL);
1391                 /* notify user of change in resolution */
1392                 v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1393         }
1394 }
1395
1396 static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1397 {
1398         struct v4l2_subdev *sd = &state->sd;
1399         u8 source;
1400
1401         source = io_read(sd, REG_INT_FLG_CLR_DDC);
1402         io_write(sd, REG_INT_FLG_CLR_DDC, source);
1403         if (source & MASK_EDID_MTP) {
1404                 /* reset MTP in use flag if set */
1405                 if (state->mptrw_in_progress)
1406                         state->mptrw_in_progress = 0;
1407         }
1408
1409         /* Detection of +5V */
1410         if (source & MASK_DET_5V) {
1411                 v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1412                                  tda1997x_detect_tx_5v(sd));
1413         }
1414 }
1415
1416 static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1417 {
1418         struct v4l2_subdev *sd = &state->sd;
1419         u8 reg, source;
1420
1421         u8 irq_status;
1422
1423         source = io_read(sd, REG_INT_FLG_CLR_RATE);
1424         io_write(sd, REG_INT_FLG_CLR_RATE, source);
1425
1426         /* read status regs */
1427         irq_status = tda1997x_read_activity_status_regs(sd);
1428
1429         /*
1430          * read clock status reg until INT_FLG_CLR_RATE is still 0
1431          * after the read to make sure its the last one
1432          */
1433         reg = source;
1434         while (reg != 0) {
1435                 irq_status = tda1997x_read_activity_status_regs(sd);
1436                 reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1437                 io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1438                 source |= reg;
1439         }
1440
1441         /* we only pay attention to stability change events */
1442         if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1443                 int input = (source & MASK_RATE_A_ST)?0:1;
1444                 u8 mask = 1<<input;
1445
1446                 /* state change */
1447                 if ((irq_status & mask) != (state->activity_status & mask)) {
1448                         /* activity lost */
1449                         if ((irq_status & mask) == 0) {
1450                                 v4l_info(state->client,
1451                                          "HDMI-%c: Digital Activity Lost\n",
1452                                          input+'A');
1453
1454                                 /* bypass up/down sampler and pixel repeater */
1455                                 reg = io_read(sd, REG_PIX_REPEAT);
1456                                 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1457                                 reg &= ~PIX_REPEAT_MASK_REP;
1458                                 io_write(sd, REG_PIX_REPEAT, reg);
1459
1460                                 if (state->chip_revision == 0)
1461                                         tda1997x_reset_n1(state);
1462
1463                                 state->input_detect[input] = 0;
1464                                 v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1465                         }
1466
1467                         /* activity detected */
1468                         else {
1469                                 v4l_info(state->client,
1470                                          "HDMI-%c: Digital Activity Detected\n",
1471                                          input+'A');
1472                                 state->input_detect[input] = 1;
1473                         }
1474
1475                         /* hold onto current state */
1476                         state->activity_status = (irq_status & mask);
1477                 }
1478         }
1479 }
1480
1481 static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1482 {
1483         struct v4l2_subdev *sd = &state->sd;
1484         u8 source;
1485
1486         source = io_read(sd, REG_INT_FLG_CLR_INFO);
1487         io_write(sd, REG_INT_FLG_CLR_INFO, source);
1488
1489         /* Audio infoframe */
1490         if (source & MASK_AUD_IF) {
1491                 tda1997x_parse_infoframe(state, AUD_IF);
1492                 source &= ~MASK_AUD_IF;
1493         }
1494
1495         /* Source Product Descriptor infoframe change */
1496         if (source & MASK_SPD_IF) {
1497                 tda1997x_parse_infoframe(state, SPD_IF);
1498                 source &= ~MASK_SPD_IF;
1499         }
1500
1501         /* Auxiliary Video Information infoframe */
1502         if (source & MASK_AVI_IF) {
1503                 tda1997x_parse_infoframe(state, AVI_IF);
1504                 source &= ~MASK_AVI_IF;
1505         }
1506 }
1507
1508 static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1509 {
1510         struct v4l2_subdev *sd = &state->sd;
1511         u8 reg, source;
1512
1513         source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1514         io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1515
1516         /* reset audio FIFO on FIFO pointer error or audio mute */
1517         if (source & MASK_ERROR_FIFO_PT ||
1518             source & MASK_MUTE_FLG) {
1519                 /* audio reset audio FIFO */
1520                 reg = io_read(sd, REG_SUS_STATUS);
1521                 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1522                         reg = io_read(sd, REG_HDMI_INFO_RST);
1523                         reg |= MASK_SR_FIFO_FIFO_CTRL;
1524                         io_write(sd, REG_HDMI_INFO_RST, reg);
1525                         reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1526                         io_write(sd, REG_HDMI_INFO_RST, reg);
1527                         /* reset channel status IT if present */
1528                         source &= ~(MASK_CH_STATE);
1529                 }
1530         }
1531         if (source & MASK_AUDIO_FREQ_FLG) {
1532                 static const int freq[] = {
1533                         0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1534                 };
1535
1536                 reg = io_read(sd, REG_AUDIO_FREQ);
1537                 state->audio_samplerate = freq[reg & 7];
1538                 v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1539                          state->audio_samplerate);
1540         }
1541         if (source & MASK_AUDIO_FLG) {
1542                 reg = io_read(sd, REG_AUDIO_FLAGS);
1543                 if (reg & BIT(AUDCFG_TYPE_DST))
1544                         state->audio_type = AUDCFG_TYPE_DST;
1545                 if (reg & BIT(AUDCFG_TYPE_OBA))
1546                         state->audio_type = AUDCFG_TYPE_OBA;
1547                 if (reg & BIT(AUDCFG_TYPE_HBR))
1548                         state->audio_type = AUDCFG_TYPE_HBR;
1549                 if (reg & BIT(AUDCFG_TYPE_PCM))
1550                         state->audio_type = AUDCFG_TYPE_PCM;
1551                 v4l_info(state->client, "Audio Type: %s\n",
1552                          audtype_names[state->audio_type]);
1553         }
1554 }
1555
1556 static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1557 {
1558         struct v4l2_subdev *sd = &state->sd;
1559         u8 reg, source;
1560
1561         source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1562         io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1563
1564         /* reset MTP in use flag if set */
1565         if (source & MASK_HDCP_MTP)
1566                 state->mptrw_in_progress = 0;
1567         if (source & MASK_STATE_C5) {
1568                 /* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1569                 reg = io_read(sd, REG_INT_MASK_TOP);
1570                 reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1571                 io_write(sd, REG_INT_MASK_TOP, reg);
1572                 *flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1573         }
1574 }
1575
1576 static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1577 {
1578         struct tda1997x_state *state = d;
1579         struct v4l2_subdev *sd = &state->sd;
1580         u8 flags;
1581
1582         mutex_lock(&state->lock);
1583         do {
1584                 /* read interrupt flags */
1585                 flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1586                 if (flags == 0)
1587                         break;
1588
1589                 /* SUS interrupt source (Input activity events) */
1590                 if (flags & INTERRUPT_SUS)
1591                         tda1997x_irq_sus(state, &flags);
1592                 /* DDC interrupt source (Display Data Channel) */
1593                 else if (flags & INTERRUPT_DDC)
1594                         tda1997x_irq_ddc(state, &flags);
1595                 /* RATE interrupt source (Digital Input activity) */
1596                 else if (flags & INTERRUPT_RATE)
1597                         tda1997x_irq_rate(state, &flags);
1598                 /* Infoframe change interrupt */
1599                 else if (flags & INTERRUPT_INFO)
1600                         tda1997x_irq_info(state, &flags);
1601                 /* Audio interrupt source:
1602                  *   freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1603                  */
1604                 else if (flags & INTERRUPT_AUDIO)
1605                         tda1997x_irq_audio(state, &flags);
1606                 /* HDCP interrupt source (content protection) */
1607                 if (flags & INTERRUPT_HDCP)
1608                         tda1997x_irq_hdcp(state, &flags);
1609         } while (flags != 0);
1610         mutex_unlock(&state->lock);
1611
1612         return IRQ_HANDLED;
1613 }
1614
1615 /* -----------------------------------------------------------------------------
1616  * v4l2_subdev_video_ops
1617  */
1618
1619 static int
1620 tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1621 {
1622         struct tda1997x_state *state = to_state(sd);
1623         u32 vper;
1624         u16 hper;
1625         u16 hsper;
1626
1627         mutex_lock(&state->lock);
1628         vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1629         hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1630         hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1631         /*
1632          * The tda1997x supports A/B inputs but only a single output.
1633          * The irq handler monitors for timing changes on both inputs and
1634          * sets the input_detect array to 0|1 depending on signal presence.
1635          * I believe selection of A vs B is automatic.
1636          *
1637          * The vper/hper/hsper registers provide the frame period, line period
1638          * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1639          * testing shows these values to be random if no signal is present
1640          * or locked.
1641          */
1642         v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1643                  state->input_detect[0], state->input_detect[1],
1644                  vper, hper, hsper);
1645         if (!state->input_detect[0] && !state->input_detect[1])
1646                 *status = V4L2_IN_ST_NO_SIGNAL;
1647         else if (!vper || !hper || !hsper)
1648                 *status = V4L2_IN_ST_NO_SYNC;
1649         else
1650                 *status = 0;
1651         mutex_unlock(&state->lock);
1652
1653         return 0;
1654 };
1655
1656 static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1657                                 struct v4l2_dv_timings *timings)
1658 {
1659         struct tda1997x_state *state = to_state(sd);
1660
1661         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1662
1663         if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1664                 return 0; /* no changes */
1665
1666         if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1667                                    NULL, NULL))
1668                 return -ERANGE;
1669
1670         mutex_lock(&state->lock);
1671         state->timings = *timings;
1672         /* setup frame detection window and VHREF timing generator */
1673         tda1997x_configure_vhref(sd);
1674         /* configure colorspace conversion */
1675         tda1997x_configure_csc(sd);
1676         mutex_unlock(&state->lock);
1677
1678         return 0;
1679 }
1680
1681 static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1682                                  struct v4l2_dv_timings *timings)
1683 {
1684         struct tda1997x_state *state = to_state(sd);
1685
1686         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1687         mutex_lock(&state->lock);
1688         *timings = state->timings;
1689         mutex_unlock(&state->lock);
1690
1691         return 0;
1692 }
1693
1694 static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1695                                      struct v4l2_dv_timings *timings)
1696 {
1697         struct tda1997x_state *state = to_state(sd);
1698         int ret;
1699
1700         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1701         memset(timings, 0, sizeof(struct v4l2_dv_timings));
1702         mutex_lock(&state->lock);
1703         ret = tda1997x_detect_std(state, timings);
1704         mutex_unlock(&state->lock);
1705
1706         return ret;
1707 }
1708
1709 static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1710         .g_input_status = tda1997x_g_input_status,
1711         .s_dv_timings = tda1997x_s_dv_timings,
1712         .g_dv_timings = tda1997x_g_dv_timings,
1713         .query_dv_timings = tda1997x_query_dv_timings,
1714 };
1715
1716
1717 /* -----------------------------------------------------------------------------
1718  * v4l2_subdev_pad_ops
1719  */
1720
1721 static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1722                              struct v4l2_subdev_pad_config *cfg)
1723 {
1724         struct tda1997x_state *state = to_state(sd);
1725         struct v4l2_mbus_framefmt *mf;
1726
1727         mf = v4l2_subdev_get_try_format(sd, cfg, 0);
1728         mf->code = state->mbus_codes[0];
1729
1730         return 0;
1731 }
1732
1733 static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1734                                   struct v4l2_subdev_pad_config *cfg,
1735                                   struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737         struct tda1997x_state *state = to_state(sd);
1738
1739         v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1740         if (code->index >= ARRAY_SIZE(state->mbus_codes))
1741                 return -EINVAL;
1742
1743         if (!state->mbus_codes[code->index])
1744                 return -EINVAL;
1745
1746         code->code = state->mbus_codes[code->index];
1747
1748         return 0;
1749 }
1750
1751 static void tda1997x_fill_format(struct tda1997x_state *state,
1752                                  struct v4l2_mbus_framefmt *format)
1753 {
1754         const struct v4l2_bt_timings *bt;
1755
1756         memset(format, 0, sizeof(*format));
1757         bt = &state->timings.bt;
1758         format->width = bt->width;
1759         format->height = bt->height;
1760         format->colorspace = state->colorimetry.colorspace;
1761         format->field = (bt->interlaced) ?
1762                 V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1763 }
1764
1765 static int tda1997x_get_format(struct v4l2_subdev *sd,
1766                                struct v4l2_subdev_pad_config *cfg,
1767                                struct v4l2_subdev_format *format)
1768 {
1769         struct tda1997x_state *state = to_state(sd);
1770
1771         v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1772                 __func__, format->pad, format->which);
1773
1774         tda1997x_fill_format(state, &format->format);
1775
1776         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1777                 struct v4l2_mbus_framefmt *fmt;
1778
1779                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1780                 format->format.code = fmt->code;
1781         } else
1782                 format->format.code = state->mbus_code;
1783
1784         return 0;
1785 }
1786
1787 static int tda1997x_set_format(struct v4l2_subdev *sd,
1788                                struct v4l2_subdev_pad_config *cfg,
1789                                struct v4l2_subdev_format *format)
1790 {
1791         struct tda1997x_state *state = to_state(sd);
1792         u32 code = 0;
1793         int i;
1794
1795         v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1796                 __func__, format->pad, format->which, format->format.code);
1797
1798         for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1799                 if (format->format.code == state->mbus_codes[i]) {
1800                         code = state->mbus_codes[i];
1801                         break;
1802                 }
1803         }
1804         if (!code)
1805                 code = state->mbus_codes[0];
1806
1807         tda1997x_fill_format(state, &format->format);
1808         format->format.code = code;
1809
1810         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1811                 struct v4l2_mbus_framefmt *fmt;
1812
1813                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1814                 *fmt = format->format;
1815         } else {
1816                 int ret = tda1997x_setup_format(state, format->format.code);
1817
1818                 if (ret)
1819                         return ret;
1820                 /* mbus_code has changed - re-configure csc/vidout */
1821                 tda1997x_configure_csc(sd);
1822                 tda1997x_configure_vidout(state);
1823         }
1824
1825         return 0;
1826 }
1827
1828 static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1829 {
1830         struct tda1997x_state *state = to_state(sd);
1831
1832         v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1833         memset(edid->reserved, 0, sizeof(edid->reserved));
1834
1835         if (edid->start_block == 0 && edid->blocks == 0) {
1836                 edid->blocks = state->edid.blocks;
1837                 return 0;
1838         }
1839
1840         if (!state->edid.present)
1841                 return -ENODATA;
1842
1843         if (edid->start_block >= state->edid.blocks)
1844                 return -EINVAL;
1845
1846         if (edid->start_block + edid->blocks > state->edid.blocks)
1847                 edid->blocks = state->edid.blocks - edid->start_block;
1848
1849         memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1850                edid->blocks * 128);
1851
1852         return 0;
1853 }
1854
1855 static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1856 {
1857         struct tda1997x_state *state = to_state(sd);
1858         int i;
1859
1860         v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1861         memset(edid->reserved, 0, sizeof(edid->reserved));
1862
1863         if (edid->start_block != 0)
1864                 return -EINVAL;
1865
1866         if (edid->blocks == 0) {
1867                 state->edid.blocks = 0;
1868                 state->edid.present = 0;
1869                 tda1997x_disable_edid(sd);
1870                 return 0;
1871         }
1872
1873         if (edid->blocks > 2) {
1874                 edid->blocks = 2;
1875                 return -E2BIG;
1876         }
1877
1878         tda1997x_disable_edid(sd);
1879
1880         /* write base EDID */
1881         for (i = 0; i < 128; i++)
1882                 io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1883
1884         /* write CEA Extension */
1885         for (i = 0; i < 128; i++)
1886                 io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1887
1888         /* store state */
1889         memcpy(state->edid.edid, edid->edid, 256);
1890         state->edid.blocks = edid->blocks;
1891
1892         tda1997x_enable_edid(sd);
1893
1894         return 0;
1895 }
1896
1897 static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1898                                        struct v4l2_dv_timings_cap *cap)
1899 {
1900         *cap = tda1997x_dv_timings_cap;
1901         return 0;
1902 }
1903
1904 static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1905                                     struct v4l2_enum_dv_timings *timings)
1906 {
1907         return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1908                                         NULL, NULL);
1909 }
1910
1911 static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1912         .init_cfg = tda1997x_init_cfg,
1913         .enum_mbus_code = tda1997x_enum_mbus_code,
1914         .get_fmt = tda1997x_get_format,
1915         .set_fmt = tda1997x_set_format,
1916         .get_edid = tda1997x_get_edid,
1917         .set_edid = tda1997x_set_edid,
1918         .dv_timings_cap = tda1997x_get_dv_timings_cap,
1919         .enum_dv_timings = tda1997x_enum_dv_timings,
1920 };
1921
1922 /* -----------------------------------------------------------------------------
1923  * v4l2_subdev_core_ops
1924  */
1925
1926 static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1927 {
1928         struct tda1997x_state *state = to_state(sd);
1929         union hdmi_infoframe frame;
1930         u8 buffer[40] = { 0 };
1931         int len, err;
1932
1933         /* read data */
1934         len = io_readn(sd, addr, sizeof(buffer), buffer);
1935         v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1936         err = hdmi_infoframe_unpack(&frame, buffer, len);
1937         if (err) {
1938                 v4l_err(state->client,
1939                         "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1940                         len, addr, buffer[0]);
1941                 return err;
1942         }
1943         hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1944
1945         return 0;
1946 }
1947
1948 static int tda1997x_log_status(struct v4l2_subdev *sd)
1949 {
1950         struct tda1997x_state *state = to_state(sd);
1951         struct v4l2_dv_timings timings;
1952         struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1953
1954         v4l2_info(sd, "-----Chip status-----\n");
1955         v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1956                   state->chip_revision + 1);
1957         v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1958
1959         v4l2_info(sd, "-----Signal status-----\n");
1960         v4l2_info(sd, "Cable detected (+5V power): %s\n",
1961                   tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1962         v4l2_info(sd, "HPD detected: %s\n",
1963                   tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1964
1965         v4l2_info(sd, "-----Video Timings-----\n");
1966         switch (tda1997x_detect_std(state, &timings)) {
1967         case -ENOLINK:
1968                 v4l2_info(sd, "No video detected\n");
1969                 break;
1970         case -ERANGE:
1971                 v4l2_info(sd, "Invalid signal detected\n");
1972                 break;
1973         }
1974         v4l2_print_dv_timings(sd->name, "Configured format: ",
1975                               &state->timings, true);
1976
1977         v4l2_info(sd, "-----Color space-----\n");
1978         v4l2_info(sd, "Input color space: %s %s %s",
1979                   hdmi_colorspace_names[avi->colorspace],
1980                   (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1981                         hdmi_colorimetry_names[avi->colorimetry],
1982                   v4l2_quantization_names[state->colorimetry.quantization]);
1983         v4l2_info(sd, "Output color space: %s",
1984                   vidfmt_names[state->vid_fmt]);
1985         v4l2_info(sd, "Color space conversion: %s", state->conv ?
1986                   state->conv->name : "None");
1987
1988         v4l2_info(sd, "-----Audio-----\n");
1989         if (state->audio_channels) {
1990                 v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
1991                           state->audio_samplerate);
1992         } else {
1993                 v4l2_info(sd, "audio: none\n");
1994         }
1995
1996         v4l2_info(sd, "-----Infoframes-----\n");
1997         tda1997x_log_infoframe(sd, AUD_IF);
1998         tda1997x_log_infoframe(sd, SPD_IF);
1999         tda1997x_log_infoframe(sd, AVI_IF);
2000
2001         return 0;
2002 }
2003
2004 static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2005                                     struct v4l2_fh *fh,
2006                                     struct v4l2_event_subscription *sub)
2007 {
2008         switch (sub->type) {
2009         case V4L2_EVENT_SOURCE_CHANGE:
2010                 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2011         case V4L2_EVENT_CTRL:
2012                 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2013         default:
2014                 return -EINVAL;
2015         }
2016 }
2017
2018 static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2019         .log_status = tda1997x_log_status,
2020         .subscribe_event = tda1997x_subscribe_event,
2021         .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2022 };
2023
2024 /* -----------------------------------------------------------------------------
2025  * v4l2_subdev_ops
2026  */
2027
2028 static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2029         .core = &tda1997x_core_ops,
2030         .video = &tda1997x_video_ops,
2031         .pad = &tda1997x_pad_ops,
2032 };
2033
2034 /* -----------------------------------------------------------------------------
2035  * v4l2_controls
2036  */
2037
2038 static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2039 {
2040         struct v4l2_subdev *sd = to_sd(ctrl);
2041         struct tda1997x_state *state = to_state(sd);
2042
2043         switch (ctrl->id) {
2044         /* allow overriding the default RGB quantization range */
2045         case V4L2_CID_DV_RX_RGB_RANGE:
2046                 state->rgb_quantization_range = ctrl->val;
2047                 set_rgb_quantization_range(state);
2048                 tda1997x_configure_csc(sd);
2049                 return 0;
2050         }
2051
2052         return -EINVAL;
2053 };
2054
2055 static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2056 {
2057         struct v4l2_subdev *sd = to_sd(ctrl);
2058         struct tda1997x_state *state = to_state(sd);
2059
2060         if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2061                 ctrl->val = state->avi_infoframe.content_type;
2062                 return 0;
2063         }
2064         return -EINVAL;
2065 };
2066
2067 static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2068         .s_ctrl = tda1997x_s_ctrl,
2069         .g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2070 };
2071
2072 static int tda1997x_core_init(struct v4l2_subdev *sd)
2073 {
2074         struct tda1997x_state *state = to_state(sd);
2075         struct tda1997x_platform_data *pdata = &state->pdata;
2076         u8 reg;
2077         int i;
2078
2079         /* disable HPD */
2080         io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2081         if (state->chip_revision == 0) {
2082                 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2083                 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2084         }
2085
2086         /* reset infoframe at end of start-up-sequencer */
2087         io_write(sd, REG_SUS_SET_RGB2, 0x06);
2088         io_write(sd, REG_SUS_SET_RGB3, 0x06);
2089
2090         /* Enable TMDS pull-ups */
2091         io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2092                  RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2093
2094         /* enable sync measurement timing */
2095         tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2096         /* adjust CEC clock divider */
2097         tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2098         tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2099         io_write(sd, REG_TIMER_D, 0x54);
2100         /* enable power switch */
2101         reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2102         reg |= 0x20;
2103         tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2104         mdelay(50);
2105
2106         /* read the chip version */
2107         reg = io_read(sd, REG_VERSION);
2108         /* get the chip configuration */
2109         reg = io_read(sd, REG_CMTP_REG10);
2110
2111         /* enable interrupts we care about */
2112         io_write(sd, REG_INT_MASK_TOP,
2113                  INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2114                  INTERRUPT_RATE | INTERRUPT_SUS);
2115         /* config_mtp,fmt,sus_end,sus_st */
2116         io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2117         /* rate stability change for inputs A/B */
2118         io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2119         /* aud,spd,avi*/
2120         io_write(sd, REG_INT_MASK_INFO,
2121                  MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2122         /* audio_freq,audio_flg,mute_flg,fifo_err */
2123         io_write(sd, REG_INT_MASK_AUDIO,
2124                  MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2125                  MASK_ERROR_FIFO_PT);
2126         /* HDCP C5 state reached */
2127         io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2128         /* 5V detect and HDP pulse end */
2129         io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2130         /* don't care about AFE/MODE */
2131         io_write(sd, REG_INT_MASK_AFE, 0);
2132         io_write(sd, REG_INT_MASK_MODE, 0);
2133
2134         /* clear all interrupts */
2135         io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2136         io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2137         io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2138         io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2139         io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2140         io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2141         io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2142         io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2143         io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2144
2145         /* init TMDS equalizer */
2146         if (state->chip_revision == 0)
2147                 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2148         io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2149         io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2150         if (state->chip_revision == 0)
2151                 io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2152         /* DC filter */
2153         io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2154         /* disable test pattern */
2155         io_write(sd, REG_SVC_MODE, 0x00);
2156         /* update HDMI INFO CTRL */
2157         io_write(sd, REG_INFO_CTRL, 0xff);
2158         /* write HDMI INFO EXCEED value */
2159         io_write(sd, REG_INFO_EXCEED, 3);
2160
2161         if (state->chip_revision == 0)
2162                 tda1997x_reset_n1(state);
2163
2164         /*
2165          * No HDCP acknowledge when HDCP is disabled
2166          * and reset SUS to force format detection
2167          */
2168         tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2169
2170         /* Set HPD low */
2171         tda1997x_manual_hpd(sd, HPD_LOW_BP);
2172
2173         /* Configure receiver capabilities */
2174         io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2175
2176         /* Configure HDMI: Auto HDCP mode, packet controlled mute */
2177         reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2178         reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2179         io_write(sd, REG_HDMI_CTRL, reg);
2180
2181         /* reset start-up-sequencer to force format detection */
2182         tda1997x_hdmi_info_reset(sd, 0, true);
2183
2184         /* disable matrix conversion */
2185         reg = io_read(sd, REG_VDP_CTRL);
2186         reg |= VDP_CTRL_MATRIX_BP;
2187         io_write(sd, REG_VDP_CTRL, reg);
2188
2189         /* set video output mode */
2190         tda1997x_configure_vidout(state);
2191
2192         /* configure video output port */
2193         for (i = 0; i < 9; i++) {
2194                 v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2195                         pdata->vidout_port_cfg[i]);
2196                 io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2197         }
2198
2199         /* configure audio output port */
2200         tda1997x_configure_audout(sd, 0);
2201
2202         /* configure audio clock freq */
2203         switch (pdata->audout_mclk_fs) {
2204         case 512:
2205                 reg = AUDIO_CLOCK_SEL_512FS;
2206                 break;
2207         case 256:
2208                 reg = AUDIO_CLOCK_SEL_256FS;
2209                 break;
2210         case 128:
2211                 reg = AUDIO_CLOCK_SEL_128FS;
2212                 break;
2213         case 64:
2214                 reg = AUDIO_CLOCK_SEL_64FS;
2215                 break;
2216         case 32:
2217                 reg = AUDIO_CLOCK_SEL_32FS;
2218                 break;
2219         default:
2220                 reg = AUDIO_CLOCK_SEL_16FS;
2221                 break;
2222         }
2223         io_write(sd, REG_AUDIO_CLOCK, reg);
2224
2225         /* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2226         tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2227         /* reset infoframe */
2228         tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2229         /* reset audio infoframes */
2230         tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2231         /* reset gamut */
2232         tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2233
2234         /* get initial HDMI status */
2235         state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2236
2237         io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2238         return 0;
2239 }
2240
2241 static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2242 {
2243         int ret = 0;
2244
2245         if (on) {
2246                 ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2247                                              state->supplies);
2248                 msleep(300);
2249         } else {
2250                 ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2251                                              state->supplies);
2252         }
2253
2254         return ret;
2255 }
2256
2257 static const struct i2c_device_id tda1997x_i2c_id[] = {
2258         {"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2259         {"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2260         { },
2261 };
2262 MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2263
2264 static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2265         { .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2266         { .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2267         { },
2268 };
2269 MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2270
2271 static int tda1997x_parse_dt(struct tda1997x_state *state)
2272 {
2273         struct tda1997x_platform_data *pdata = &state->pdata;
2274         struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2275         struct device_node *ep;
2276         struct device_node *np;
2277         unsigned int flags;
2278         const char *str;
2279         int ret;
2280         u32 v;
2281
2282         /*
2283          * setup default values:
2284          * - HREF: active high from start to end of row
2285          * - VS: Vertical Sync active high at beginning of frame
2286          * - DE: Active high when data valid
2287          * - A_CLK: 128*Fs
2288          */
2289         pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2290         pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2291         pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2292
2293         np = state->client->dev.of_node;
2294         ep = of_graph_get_next_endpoint(np, NULL);
2295         if (!ep)
2296                 return -EINVAL;
2297
2298         ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2299         if (ret) {
2300                 of_node_put(ep);
2301                 return ret;
2302         }
2303         of_node_put(ep);
2304         pdata->vidout_bus_type = bus_cfg.bus_type;
2305
2306         /* polarity of HS/VS/DE */
2307         flags = bus_cfg.bus.parallel.flags;
2308         if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2309                 pdata->vidout_inv_hs = 1;
2310         if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2311                 pdata->vidout_inv_vs = 1;
2312         if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2313                 pdata->vidout_inv_de = 1;
2314         pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2315
2316         /* video output port config */
2317         ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2318         if (ret > 0) {
2319                 u32 reg, val, i;
2320
2321                 for (i = 0; i < ret / 2 && i < 9; i++) {
2322                         of_property_read_u32_index(np, "nxp,vidout-portcfg",
2323                                                    i * 2, &reg);
2324                         of_property_read_u32_index(np, "nxp,vidout-portcfg",
2325                                                    i * 2 + 1, &val);
2326                         if (reg < 9)
2327                                 pdata->vidout_port_cfg[reg] = val;
2328                 }
2329         } else {
2330                 v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2331                 return -EINVAL;
2332         }
2333
2334         /* default to channel layout dictated by packet header */
2335         pdata->audout_layoutauto = true;
2336
2337         pdata->audout_format = AUDFMT_TYPE_DISABLED;
2338         if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2339                 if (strcmp(str, "i2s") == 0)
2340                         pdata->audout_format = AUDFMT_TYPE_I2S;
2341                 else if (strcmp(str, "spdif") == 0)
2342                         pdata->audout_format = AUDFMT_TYPE_SPDIF;
2343                 else {
2344                         v4l_err(state->client, "nxp,audout-format invalid\n");
2345                         return -EINVAL;
2346                 }
2347                 if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2348                         switch (v) {
2349                         case 0:
2350                         case 1:
2351                                 break;
2352                         default:
2353                                 v4l_err(state->client,
2354                                         "nxp,audout-layout invalid\n");
2355                                 return -EINVAL;
2356                         }
2357                         pdata->audout_layout = v;
2358                 }
2359                 if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2360                         switch (v) {
2361                         case 16:
2362                         case 32:
2363                                 break;
2364                         default:
2365                                 v4l_err(state->client,
2366                                         "nxp,audout-width invalid\n");
2367                                 return -EINVAL;
2368                         }
2369                         pdata->audout_width = v;
2370                 }
2371                 if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2372                         switch (v) {
2373                         case 512:
2374                         case 256:
2375                         case 128:
2376                         case 64:
2377                         case 32:
2378                         case 16:
2379                                 break;
2380                         default:
2381                                 v4l_err(state->client,
2382                                         "nxp,audout-mclk-fs invalid\n");
2383                                 return -EINVAL;
2384                         }
2385                         pdata->audout_mclk_fs = v;
2386                 }
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int tda1997x_get_regulators(struct tda1997x_state *state)
2393 {
2394         int i;
2395
2396         for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2397                 state->supplies[i].supply = tda1997x_supply_name[i];
2398
2399         return devm_regulator_bulk_get(&state->client->dev,
2400                                        TDA1997X_NUM_SUPPLIES,
2401                                        state->supplies);
2402 }
2403
2404 static int tda1997x_identify_module(struct tda1997x_state *state)
2405 {
2406         struct v4l2_subdev *sd = &state->sd;
2407         enum tda1997x_type type;
2408         u8 reg;
2409
2410         /* Read chip configuration*/
2411         reg = io_read(sd, REG_CMTP_REG10);
2412         state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2413         state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2414         state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2415         state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2416         switch ((reg >> 4) & 0x03) {
2417         case 0x00:
2418                 type = TDA19971;
2419                 break;
2420         case 0x02:
2421         case 0x03:
2422                 type = TDA19973;
2423                 break;
2424         default:
2425                 dev_err(&state->client->dev, "unsupported chip ID\n");
2426                 return -EIO;
2427         }
2428         if (state->info->type != type) {
2429                 dev_err(&state->client->dev, "chip id mismatch\n");
2430                 return -EIO;
2431         }
2432
2433         /* read chip revision */
2434         state->chip_revision = io_read(sd, REG_CMTP_REG11);
2435
2436         return 0;
2437 }
2438
2439 static const struct media_entity_operations tda1997x_media_ops = {
2440         .link_validate = v4l2_subdev_link_validate,
2441 };
2442
2443
2444 /* -----------------------------------------------------------------------------
2445  * HDMI Audio Codec
2446  */
2447
2448 /* refine sample-rate based on HDMI source */
2449 static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2450                                 struct snd_soc_dai *dai)
2451 {
2452         struct tda1997x_state *state = snd_soc_dai_get_drvdata(dai);
2453         struct snd_soc_component *component = dai->component;
2454         struct snd_pcm_runtime *rtd = substream->runtime;
2455         int rate, err;
2456
2457         rate = state->audio_samplerate;
2458         err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2459                                            rate, rate);
2460         if (err < 0) {
2461                 dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2462                         rate);
2463                 return err;
2464         }
2465         dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2466
2467         return 0;
2468 }
2469
2470 static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2471         .startup = tda1997x_pcm_startup,
2472 };
2473
2474 static struct snd_soc_dai_driver tda1997x_audio_dai = {
2475         .name = "tda1997x",
2476         .capture = {
2477                 .stream_name = "Capture",
2478                 .channels_min = 2,
2479                 .channels_max = 8,
2480                 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2481                          SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2482                          SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2483                          SNDRV_PCM_RATE_192000,
2484         },
2485         .ops = &tda1997x_dai_ops,
2486 };
2487
2488 static int tda1997x_codec_probe(struct snd_soc_component *component)
2489 {
2490         return 0;
2491 }
2492
2493 static void tda1997x_codec_remove(struct snd_soc_component *component)
2494 {
2495 }
2496
2497 static struct snd_soc_component_driver tda1997x_codec_driver = {
2498         .probe                  = tda1997x_codec_probe,
2499         .remove                 = tda1997x_codec_remove,
2500         .idle_bias_on           = 1,
2501         .use_pmdown_time        = 1,
2502         .endianness             = 1,
2503         .non_legacy_dai_naming  = 1,
2504 };
2505
2506 static int tda1997x_probe(struct i2c_client *client,
2507                          const struct i2c_device_id *id)
2508 {
2509         struct tda1997x_state *state;
2510         struct tda1997x_platform_data *pdata;
2511         struct v4l2_subdev *sd;
2512         struct v4l2_ctrl_handler *hdl;
2513         struct v4l2_ctrl *ctrl;
2514         static const struct v4l2_dv_timings cea1920x1080 =
2515                 V4L2_DV_BT_CEA_1920X1080P60;
2516         u32 *mbus_codes;
2517         int i, ret;
2518
2519         /* Check if the adapter supports the needed features */
2520         if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2521                 return -EIO;
2522
2523         state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2524         if (!state)
2525                 return -ENOMEM;
2526
2527         state->client = client;
2528         pdata = &state->pdata;
2529         if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2530                 const struct of_device_id *oid;
2531
2532                 oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2533                 state->info = oid->data;
2534
2535                 ret = tda1997x_parse_dt(state);
2536                 if (ret < 0) {
2537                         v4l_err(client, "DT parsing error\n");
2538                         goto err_free_state;
2539                 }
2540         } else if (client->dev.platform_data) {
2541                 struct tda1997x_platform_data *pdata =
2542                         client->dev.platform_data;
2543                 state->info =
2544                         (const struct tda1997x_chip_info *)id->driver_data;
2545                 state->pdata = *pdata;
2546         } else {
2547                 v4l_err(client, "No platform data\n");
2548                 ret = -ENODEV;
2549                 goto err_free_state;
2550         }
2551
2552         ret = tda1997x_get_regulators(state);
2553         if (ret)
2554                 goto err_free_state;
2555
2556         ret = tda1997x_set_power(state, 1);
2557         if (ret)
2558                 goto err_free_state;
2559
2560         mutex_init(&state->page_lock);
2561         mutex_init(&state->lock);
2562         state->page = 0xff;
2563
2564         INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2565                           tda1997x_delayed_work_enable_hpd);
2566
2567         /* set video format based on chip and bus width */
2568         ret = tda1997x_identify_module(state);
2569         if (ret)
2570                 goto err_free_mutex;
2571
2572         /* initialize subdev */
2573         sd = &state->sd;
2574         v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2575         snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2576                  id->name, i2c_adapter_id(client->adapter),
2577                  client->addr);
2578         sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2579         sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2580         sd->entity.ops = &tda1997x_media_ops;
2581
2582         /* set allowed mbus modes based on chip, bus-type, and bus-width */
2583         i = 0;
2584         mbus_codes = state->mbus_codes;
2585         switch (state->info->type) {
2586         case TDA19973:
2587                 switch (pdata->vidout_bus_type) {
2588                 case V4L2_MBUS_PARALLEL:
2589                         switch (pdata->vidout_bus_width) {
2590                         case 36:
2591                                 mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2592                                 mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2593                                 fallthrough;
2594                         case 24:
2595                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2596                                 break;
2597                         }
2598                         break;
2599                 case V4L2_MBUS_BT656:
2600                         switch (pdata->vidout_bus_width) {
2601                         case 36:
2602                         case 24:
2603                         case 12:
2604                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2605                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2606                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2607                                 break;
2608                         }
2609                         break;
2610                 default:
2611                         break;
2612                 }
2613                 break;
2614         case TDA19971:
2615                 switch (pdata->vidout_bus_type) {
2616                 case V4L2_MBUS_PARALLEL:
2617                         switch (pdata->vidout_bus_width) {
2618                         case 24:
2619                                 mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2620                                 mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2621                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2622                                 fallthrough;
2623                         case 20:
2624                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2625                                 fallthrough;
2626                         case 16:
2627                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2628                                 break;
2629                         }
2630                         break;
2631                 case V4L2_MBUS_BT656:
2632                         switch (pdata->vidout_bus_width) {
2633                         case 24:
2634                         case 20:
2635                         case 16:
2636                         case 12:
2637                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2638                                 fallthrough;
2639                         case 10:
2640                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2641                                 fallthrough;
2642                         case 8:
2643                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2644                                 break;
2645                         }
2646                         break;
2647                 default:
2648                         break;
2649                 }
2650                 break;
2651         }
2652         if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2653                 ret = -EINVAL;
2654                 goto err_free_mutex;
2655         }
2656
2657         /* default format */
2658         tda1997x_setup_format(state, state->mbus_codes[0]);
2659         state->timings = cea1920x1080;
2660
2661         /*
2662          * default to SRGB full range quantization
2663          * (in case we don't get an infoframe such as DVI signal
2664          */
2665         state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2666         state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2667
2668         /* disable/reset HDCP to get correct I2C access to Rx HDMI */
2669         io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2670
2671         /*
2672          * if N2 version, reset compdel_bp as it may generate some small pixel
2673          * shifts in case of embedded sync/or delay lower than 4
2674          */
2675         if (state->chip_revision != 0) {
2676                 io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2677                 io_write(sd, REG_VDP_CTRL, 0x1f);
2678         }
2679
2680         v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2681                  state->chip_revision + 1);
2682         v4l_info(client, "video: %dbit %s %d formats available\n",
2683                 pdata->vidout_bus_width,
2684                 (pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2685                         "parallel" : "BT656",
2686                 i);
2687         if (pdata->audout_format) {
2688                 v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2689                          pdata->audout_layout ? 2 : 8,
2690                          audfmt_names[pdata->audout_format],
2691                          pdata->audout_layout,
2692                          pdata->audout_mclk_fs);
2693         }
2694
2695         ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2696         state->client_cec = devm_i2c_new_dummy_device(&client->dev,
2697                                                       client->adapter, ret);
2698         if (IS_ERR(state->client_cec)) {
2699                 ret = PTR_ERR(state->client_cec);
2700                 goto err_free_mutex;
2701         }
2702
2703         v4l_info(client, "CEC slave address 0x%02x\n", ret);
2704
2705         ret = tda1997x_core_init(sd);
2706         if (ret)
2707                 goto err_free_mutex;
2708
2709         /* control handlers */
2710         hdl = &state->hdl;
2711         v4l2_ctrl_handler_init(hdl, 3);
2712         ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2713                         V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2714                         V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2715                         V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2716         if (ctrl)
2717                 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2718         /* custom controls */
2719         state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2720                         V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2721         state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2722                         &tda1997x_ctrl_ops,
2723                         V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2724                         V4L2_DV_RGB_RANGE_AUTO);
2725         state->sd.ctrl_handler = hdl;
2726         if (hdl->error) {
2727                 ret = hdl->error;
2728                 goto err_free_handler;
2729         }
2730         v4l2_ctrl_handler_setup(hdl);
2731
2732         /* initialize source pads */
2733         state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2734         ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2735                 state->pads);
2736         if (ret) {
2737                 v4l_err(client, "failed entity_init: %d", ret);
2738                 goto err_free_handler;
2739         }
2740
2741         ret = v4l2_async_register_subdev(sd);
2742         if (ret)
2743                 goto err_free_media;
2744
2745         /* register audio DAI */
2746         if (pdata->audout_format) {
2747                 u64 formats;
2748
2749                 if (pdata->audout_width == 32)
2750                         formats = SNDRV_PCM_FMTBIT_S32_LE;
2751                 else
2752                         formats = SNDRV_PCM_FMTBIT_S16_LE;
2753                 tda1997x_audio_dai.capture.formats = formats;
2754                 ret = devm_snd_soc_register_component(&state->client->dev,
2755                                              &tda1997x_codec_driver,
2756                                              &tda1997x_audio_dai, 1);
2757                 if (ret) {
2758                         dev_err(&client->dev, "register audio codec failed\n");
2759                         goto err_free_media;
2760                 }
2761                 dev_set_drvdata(&state->client->dev, state);
2762                 v4l_info(state->client, "registered audio codec\n");
2763         }
2764
2765         /* request irq */
2766         ret = devm_request_threaded_irq(&client->dev, client->irq,
2767                                         NULL, tda1997x_isr_thread,
2768                                         IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2769                                         KBUILD_MODNAME, state);
2770         if (ret) {
2771                 v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2772                 goto err_free_media;
2773         }
2774
2775         return 0;
2776
2777 err_free_media:
2778         media_entity_cleanup(&sd->entity);
2779 err_free_handler:
2780         v4l2_ctrl_handler_free(&state->hdl);
2781 err_free_mutex:
2782         cancel_delayed_work(&state->delayed_work_enable_hpd);
2783         mutex_destroy(&state->page_lock);
2784         mutex_destroy(&state->lock);
2785 err_free_state:
2786         kfree(state);
2787         dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2788
2789         return ret;
2790 }
2791
2792 static int tda1997x_remove(struct i2c_client *client)
2793 {
2794         struct v4l2_subdev *sd = i2c_get_clientdata(client);
2795         struct tda1997x_state *state = to_state(sd);
2796         struct tda1997x_platform_data *pdata = &state->pdata;
2797
2798         if (pdata->audout_format) {
2799                 mutex_destroy(&state->audio_lock);
2800         }
2801
2802         disable_irq(state->client->irq);
2803         tda1997x_power_mode(state, 0);
2804
2805         v4l2_async_unregister_subdev(sd);
2806         media_entity_cleanup(&sd->entity);
2807         v4l2_ctrl_handler_free(&state->hdl);
2808         regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2809         cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
2810         mutex_destroy(&state->page_lock);
2811         mutex_destroy(&state->lock);
2812
2813         kfree(state);
2814
2815         return 0;
2816 }
2817
2818 static struct i2c_driver tda1997x_i2c_driver = {
2819         .driver = {
2820                 .name = "tda1997x",
2821                 .of_match_table = of_match_ptr(tda1997x_of_id),
2822         },
2823         .probe = tda1997x_probe,
2824         .remove = tda1997x_remove,
2825         .id_table = tda1997x_i2c_id,
2826 };
2827
2828 module_i2c_driver(tda1997x_i2c_driver);
2829
2830 MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2831 MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2832 MODULE_LICENSE("GPL v2");