GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / media / i2c / tda1997x.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Gateworks Corporation
4  */
5 #include <linux/delay.h>
6 #include <linux/hdmi.h>
7 #include <linux/i2c.h>
8 #include <linux/init.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/types.h>
16 #include <linux/v4l2-dv-timings.h>
17 #include <linux/videodev2.h>
18
19 #include <media/v4l2-ctrls.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-dv-timings.h>
22 #include <media/v4l2-event.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/i2c/tda1997x.h>
25
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30
31 #include <dt-bindings/media/tda1997x.h>
32
33 #include "tda1997x_regs.h"
34
35 #define TDA1997X_MBUS_CODES     5
36
37 /* debug level */
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "debug level (0-2)");
41
42 /* Audio formats */
43 static const char * const audtype_names[] = {
44         "PCM",                  /* PCM Samples */
45         "HBR",                  /* High Bit Rate Audio */
46         "OBA",                  /* One-Bit Audio */
47         "DST"                   /* Direct Stream Transfer */
48 };
49
50 /* Audio output port formats */
51 enum audfmt_types {
52         AUDFMT_TYPE_DISABLED = 0,
53         AUDFMT_TYPE_I2S,
54         AUDFMT_TYPE_SPDIF,
55 };
56 static const char * const audfmt_names[] = {
57         "Disabled",
58         "I2S",
59         "SPDIF",
60 };
61
62 /* Video input formats */
63 static const char * const hdmi_colorspace_names[] = {
64         "RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
65 };
66 static const char * const hdmi_colorimetry_names[] = {
67         "", "ITU601", "ITU709", "Extended",
68 };
69 static const char * const v4l2_quantization_names[] = {
70         "Default",
71         "Full Range (0-255)",
72         "Limited Range (16-235)",
73 };
74
75 /* Video output port formats */
76 static const char * const vidfmt_names[] = {
77         "RGB444/YUV444",        /* RGB/YUV444 16bit data bus, 8bpp */
78         "YUV422 semi-planar",   /* YUV422 16bit data base, 8bpp */
79         "YUV422 CCIR656",       /* BT656 (YUV 8bpp 2 clock per pixel) */
80         "Invalid",
81 };
82
83 /*
84  * Colorspace conversion matrices
85  */
86 struct color_matrix_coefs {
87         const char *name;
88         /* Input offsets */
89         s16 offint1;
90         s16 offint2;
91         s16 offint3;
92         /* Coeficients */
93         s16 p11coef;
94         s16 p12coef;
95         s16 p13coef;
96         s16 p21coef;
97         s16 p22coef;
98         s16 p23coef;
99         s16 p31coef;
100         s16 p32coef;
101         s16 p33coef;
102         /* Output offsets */
103         s16 offout1;
104         s16 offout2;
105         s16 offout3;
106 };
107
108 enum {
109         ITU709_RGBFULL,
110         ITU601_RGBFULL,
111         RGBLIMITED_RGBFULL,
112         RGBLIMITED_ITU601,
113         RGBLIMITED_ITU709,
114         RGBFULL_ITU601,
115         RGBFULL_ITU709,
116 };
117
118 /* NB: 4096 is 1.0 using fixed point numbers */
119 static const struct color_matrix_coefs conv_matrix[] = {
120         {
121                 "YUV709 -> RGB full",
122                  -256, -2048,  -2048,
123                  4769, -2183,   -873,
124                  4769,  7343,      0,
125                  4769,     0,   8652,
126                     0,     0,      0,
127         },
128         {
129                 "YUV601 -> RGB full",
130                  -256, -2048,  -2048,
131                  4769, -3330,  -1602,
132                  4769,  6538,      0,
133                  4769,     0,   8264,
134                   256,   256,    256,
135         },
136         {
137                 "RGB limited -> RGB full",
138                  -256,  -256,   -256,
139                     0,  4769,      0,
140                     0,     0,   4769,
141                  4769,     0,      0,
142                     0,     0,      0,
143         },
144         {
145                 "RGB limited -> ITU601",
146                  -256,  -256,   -256,
147                  2404,  1225,    467,
148                 -1754,  2095,   -341,
149                 -1388,  -707,   2095,
150                   256,  2048,   2048,
151         },
152         {
153                 "RGB limited -> ITU709",
154                  -256,  -256,   -256,
155                  2918,   867,    295,
156                 -1894,  2087,   -190,
157                 -1607,  -477,   2087,
158                   256,  2048,   2048,
159         },
160         {
161                 "RGB full -> ITU601",
162                     0,     0,      0,
163                  2065,  1052,    401,
164                 -1506,  1799,   -293,
165                 -1192,  -607,   1799,
166                   256,  2048,   2048,
167         },
168         {
169                 "RGB full -> ITU709",
170                     0,     0,      0,
171                  2506,   745,    253,
172                 -1627,  1792,   -163,
173                 -1380,  -410,   1792,
174                   256,  2048,   2048,
175         },
176 };
177
178 static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
179         .type = V4L2_DV_BT_656_1120,
180         /* keep this initialization for compatibility with GCC < 4.4.6 */
181         .reserved = { 0 },
182
183         V4L2_INIT_BT_TIMINGS(
184                 640, 1920,                      /* min/max width */
185                 350, 1200,                      /* min/max height */
186                 13000000, 165000000,            /* min/max pixelclock */
187                 /* standards */
188                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
189                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
190                 /* capabilities */
191                 V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
192                         V4L2_DV_BT_CAP_REDUCED_BLANKING |
193                         V4L2_DV_BT_CAP_CUSTOM
194         )
195 };
196
197 /* regulator supplies */
198 static const char * const tda1997x_supply_name[] = {
199         "DOVDD", /* Digital I/O supply */
200         "DVDD",  /* Digital Core supply */
201         "AVDD",  /* Analog supply */
202 };
203
204 #define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
205
206 enum tda1997x_type {
207         TDA19971,
208         TDA19973,
209 };
210
211 enum tda1997x_hdmi_pads {
212         TDA1997X_PAD_SOURCE,
213         TDA1997X_NUM_PADS,
214 };
215
216 struct tda1997x_chip_info {
217         enum tda1997x_type type;
218         const char *name;
219 };
220
221 struct tda1997x_state {
222         const struct tda1997x_chip_info *info;
223         struct tda1997x_platform_data pdata;
224         struct i2c_client *client;
225         struct i2c_client *client_cec;
226         struct v4l2_subdev sd;
227         struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
228         struct media_pad pads[TDA1997X_NUM_PADS];
229         struct mutex lock;
230         struct mutex page_lock;
231         char page;
232
233         /* detected info from chip */
234         int chip_revision;
235         char port_30bit;
236         char output_2p5;
237         char tmdsb_clk;
238         char tmdsb_soc;
239
240         /* status info */
241         char hdmi_status;
242         char mptrw_in_progress;
243         char activity_status;
244         char input_detect[2];
245
246         /* video */
247         struct hdmi_avi_infoframe avi_infoframe;
248         struct v4l2_hdmi_colorimetry colorimetry;
249         u32 rgb_quantization_range;
250         struct v4l2_dv_timings timings;
251         int fps;
252         const struct color_matrix_coefs *conv;
253         u32 mbus_codes[TDA1997X_MBUS_CODES];    /* available modes */
254         u32 mbus_code;          /* current mode */
255         u8 vid_fmt;
256
257         /* controls */
258         struct v4l2_ctrl_handler hdl;
259         struct v4l2_ctrl *detect_tx_5v_ctrl;
260         struct v4l2_ctrl *rgb_quantization_range_ctrl;
261
262         /* audio */
263         u8  audio_ch_alloc;
264         int audio_samplerate;
265         int audio_channels;
266         int audio_samplesize;
267         int audio_type;
268         struct mutex audio_lock;
269         struct snd_pcm_substream *audio_stream;
270
271         /* EDID */
272         struct {
273                 u8 edid[256];
274                 u32 present;
275                 unsigned int blocks;
276         } edid;
277         struct delayed_work delayed_work_enable_hpd;
278 };
279
280 static const struct v4l2_event tda1997x_ev_fmt = {
281         .type = V4L2_EVENT_SOURCE_CHANGE,
282         .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
283 };
284
285 static const struct tda1997x_chip_info tda1997x_chip_info[] = {
286         [TDA19971] = {
287                 .type = TDA19971,
288                 .name = "tda19971",
289         },
290         [TDA19973] = {
291                 .type = TDA19973,
292                 .name = "tda19973",
293         },
294 };
295
296 static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
297 {
298         return container_of(sd, struct tda1997x_state, sd);
299 }
300
301 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
302 {
303         return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
304 }
305
306 static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
307 {
308         struct tda1997x_state *state = to_state(sd);
309         int val;
310
311         val = i2c_smbus_read_byte_data(state->client_cec, reg);
312         if (val < 0) {
313                 v4l_err(state->client, "read reg error: reg=%2x\n", reg);
314                 val = -1;
315         }
316
317         return val;
318 }
319
320 static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
321 {
322         struct tda1997x_state *state = to_state(sd);
323         int ret = 0;
324
325         ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
326         if (ret < 0) {
327                 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
328                         reg, val);
329                 ret = -1;
330         }
331
332         return ret;
333 }
334
335 /* -----------------------------------------------------------------------------
336  * I2C transfer
337  */
338
339 static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
340 {
341         struct tda1997x_state *state = to_state(sd);
342         int ret;
343
344         if (state->page != page) {
345                 ret = i2c_smbus_write_byte_data(state->client,
346                         REG_CURPAGE_00H, page);
347                 if (ret < 0) {
348                         v4l_err(state->client,
349                                 "write reg error:reg=%2x,val=%2x\n",
350                                 REG_CURPAGE_00H, page);
351                         return ret;
352                 }
353                 state->page = page;
354         }
355         return 0;
356 }
357
358 static inline int io_read(struct v4l2_subdev *sd, u16 reg)
359 {
360         struct tda1997x_state *state = to_state(sd);
361         int val;
362
363         mutex_lock(&state->page_lock);
364         if (tda1997x_setpage(sd, reg >> 8)) {
365                 val = -1;
366                 goto out;
367         }
368
369         val = i2c_smbus_read_byte_data(state->client, reg&0xff);
370         if (val < 0) {
371                 v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
372                 val = -1;
373                 goto out;
374         }
375
376 out:
377         mutex_unlock(&state->page_lock);
378         return val;
379 }
380
381 static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
382 {
383         int val;
384         long lval = 0;
385
386         val = io_read(sd, reg);
387         if (val < 0)
388                 return val;
389         lval |= (val << 8);
390         val = io_read(sd, reg + 1);
391         if (val < 0)
392                 return val;
393         lval |= val;
394
395         return lval;
396 }
397
398 static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
399 {
400         int val;
401         long lval = 0;
402
403         val = io_read(sd, reg);
404         if (val < 0)
405                 return val;
406         lval |= (val << 16);
407         val = io_read(sd, reg + 1);
408         if (val < 0)
409                 return val;
410         lval |= (val << 8);
411         val = io_read(sd, reg + 2);
412         if (val < 0)
413                 return val;
414         lval |= val;
415
416         return lval;
417 }
418
419 static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
420 {
421         int i;
422         int sz = 0;
423         int val;
424
425         for (i = 0; i < len; i++) {
426                 val = io_read(sd, reg + i);
427                 if (val < 0)
428                         break;
429                 data[i] = val;
430                 sz++;
431         }
432
433         return sz;
434 }
435
436 static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
437 {
438         struct tda1997x_state *state = to_state(sd);
439         s32 ret = 0;
440
441         mutex_lock(&state->page_lock);
442         if (tda1997x_setpage(sd, reg >> 8)) {
443                 ret = -1;
444                 goto out;
445         }
446
447         ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
448         if (ret < 0) {
449                 v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
450                         reg&0xff, val);
451                 ret = -1;
452                 goto out;
453         }
454
455 out:
456         mutex_unlock(&state->page_lock);
457         return ret;
458 }
459
460 static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
461 {
462         int ret;
463
464         ret = io_write(sd, reg, (val >> 8) & 0xff);
465         if (ret < 0)
466                 return ret;
467         ret = io_write(sd, reg + 1, val & 0xff);
468         if (ret < 0)
469                 return ret;
470         return 0;
471 }
472
473 static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
474 {
475         int ret;
476
477         ret = io_write(sd, reg, (val >> 16) & 0xff);
478         if (ret < 0)
479                 return ret;
480         ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
481         if (ret < 0)
482                 return ret;
483         ret = io_write(sd, reg + 2, val & 0xff);
484         if (ret < 0)
485                 return ret;
486         return 0;
487 }
488
489 /* -----------------------------------------------------------------------------
490  * Hotplug
491  */
492
493 enum hpd_mode {
494         HPD_LOW_BP,     /* HPD low and pulse of at least 100ms */
495         HPD_LOW_OTHER,  /* HPD low and pulse of at least 100ms */
496         HPD_HIGH_BP,    /* HIGH */
497         HPD_HIGH_OTHER,
498         HPD_PULSE,      /* HPD low pulse */
499 };
500
501 /* manual HPD (Hot Plug Detect) control */
502 static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
503 {
504         u8 hpd_auto, hpd_pwr, hpd_man;
505
506         hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
507         hpd_pwr = io_read(sd, REG_HPD_POWER);
508         hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
509
510         /* mask out unused bits */
511         hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
512                     HPD_MAN_CTRL_5VEN |
513                     HPD_MAN_CTRL_HPD_B |
514                     HPD_MAN_CTRL_HPD_A);
515
516         switch (mode) {
517         /* HPD low and pulse of at least 100ms */
518         case HPD_LOW_BP:
519                 /* hpd_bp=0 */
520                 hpd_pwr &= ~HPD_POWER_BP_MASK;
521                 /* disable HPD_A and HPD_B */
522                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
523                 io_write(sd, REG_HPD_POWER, hpd_pwr);
524                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
525                 break;
526         /* HPD high */
527         case HPD_HIGH_BP:
528                 /* hpd_bp=1 */
529                 hpd_pwr &= ~HPD_POWER_BP_MASK;
530                 hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
531                 io_write(sd, REG_HPD_POWER, hpd_pwr);
532                 break;
533         /* HPD low and pulse of at least 100ms */
534         case HPD_LOW_OTHER:
535                 /* disable HPD_A and HPD_B */
536                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
537                 /* hp_other=0 */
538                 hpd_auto &= ~HPD_AUTO_HP_OTHER;
539                 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
540                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
541                 break;
542         /* HPD high */
543         case HPD_HIGH_OTHER:
544                 hpd_auto |= HPD_AUTO_HP_OTHER;
545                 io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
546                 break;
547         /* HPD low pulse */
548         case HPD_PULSE:
549                 /* disable HPD_A and HPD_B */
550                 hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
551                 io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
552                 break;
553         }
554
555         return 0;
556 }
557
558 static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
559 {
560         struct delayed_work *dwork = to_delayed_work(work);
561         struct tda1997x_state *state = container_of(dwork,
562                                                     struct tda1997x_state,
563                                                     delayed_work_enable_hpd);
564         struct v4l2_subdev *sd = &state->sd;
565
566         v4l2_dbg(2, debug, sd, "%s:\n", __func__);
567
568         /* Set HPD high */
569         tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
570         tda1997x_manual_hpd(sd, HPD_HIGH_BP);
571
572         state->edid.present = 1;
573 }
574
575 static void tda1997x_disable_edid(struct v4l2_subdev *sd)
576 {
577         struct tda1997x_state *state = to_state(sd);
578
579         v4l2_dbg(1, debug, sd, "%s\n", __func__);
580         cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
581
582         /* Set HPD low */
583         tda1997x_manual_hpd(sd, HPD_LOW_BP);
584 }
585
586 static void tda1997x_enable_edid(struct v4l2_subdev *sd)
587 {
588         struct tda1997x_state *state = to_state(sd);
589
590         v4l2_dbg(1, debug, sd, "%s\n", __func__);
591
592         /* Enable hotplug after 100ms */
593         schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
594 }
595
596 /* -----------------------------------------------------------------------------
597  * Signal Control
598  */
599
600 /*
601  * configure vid_fmt based on mbus_code
602  */
603 static int
604 tda1997x_setup_format(struct tda1997x_state *state, u32 code)
605 {
606         v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
607         switch (code) {
608         case MEDIA_BUS_FMT_RGB121212_1X36:
609         case MEDIA_BUS_FMT_RGB888_1X24:
610         case MEDIA_BUS_FMT_YUV12_1X36:
611         case MEDIA_BUS_FMT_YUV8_1X24:
612                 state->vid_fmt = OF_FMT_444;
613                 break;
614         case MEDIA_BUS_FMT_UYVY12_1X24:
615         case MEDIA_BUS_FMT_UYVY10_1X20:
616         case MEDIA_BUS_FMT_UYVY8_1X16:
617                 state->vid_fmt = OF_FMT_422_SMPT;
618                 break;
619         case MEDIA_BUS_FMT_UYVY12_2X12:
620         case MEDIA_BUS_FMT_UYVY10_2X10:
621         case MEDIA_BUS_FMT_UYVY8_2X8:
622                 state->vid_fmt = OF_FMT_422_CCIR;
623                 break;
624         default:
625                 v4l_err(state->client, "incompatible format (0x%x)\n", code);
626                 return -EINVAL;
627         }
628         v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
629                 code, vidfmt_names[state->vid_fmt]);
630         state->mbus_code = code;
631
632         return 0;
633 }
634
635 /*
636  * The color conversion matrix will convert between the colorimetry of the
637  * HDMI input to the desired output format RGB|YUV. RGB output is to be
638  * full-range and YUV is to be limited range.
639  *
640  * RGB full-range uses values from 0 to 255 which is recommended on a monitor
641  * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
642  * typically recommended on a TV.
643  */
644 static void
645 tda1997x_configure_csc(struct v4l2_subdev *sd)
646 {
647         struct tda1997x_state *state = to_state(sd);
648         struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
649         struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
650         /* Blanking code values depend on output colorspace (RGB or YUV) */
651         struct blanking_codes {
652                 s16 code_gy;
653                 s16 code_bu;
654                 s16 code_rv;
655         };
656         static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
657         static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
658         const struct blanking_codes *blanking_codes = NULL;
659         u8 reg;
660
661         v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
662                 hdmi_colorspace_names[avi->colorspace],
663                 v4l2_quantization_names[c->quantization],
664                 vidfmt_names[state->vid_fmt]);
665         state->conv = NULL;
666         switch (state->vid_fmt) {
667         /* RGB output */
668         case OF_FMT_444:
669                 blanking_codes = &rgb_blanking;
670                 if (c->colorspace == V4L2_COLORSPACE_SRGB) {
671                         if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
672                                 state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
673                 } else {
674                         if (c->colorspace == V4L2_COLORSPACE_REC709)
675                                 state->conv = &conv_matrix[ITU709_RGBFULL];
676                         else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
677                                 state->conv = &conv_matrix[ITU601_RGBFULL];
678                 }
679                 break;
680
681         /* YUV output */
682         case OF_FMT_422_SMPT: /* semi-planar */
683         case OF_FMT_422_CCIR: /* CCIR656 */
684                 blanking_codes = &yuv_blanking;
685                 if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
686                     (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
687                         if (state->timings.bt.height <= 576)
688                                 state->conv = &conv_matrix[RGBFULL_ITU601];
689                         else
690                                 state->conv = &conv_matrix[RGBFULL_ITU709];
691                 } else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
692                            (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
693                         if (state->timings.bt.height <= 576)
694                                 state->conv = &conv_matrix[RGBLIMITED_ITU601];
695                         else
696                                 state->conv = &conv_matrix[RGBLIMITED_ITU709];
697                 }
698                 break;
699         }
700
701         if (state->conv) {
702                 v4l_dbg(1, debug, state->client, "%s\n",
703                         state->conv->name);
704                 /* enable matrix conversion */
705                 reg = io_read(sd, REG_VDP_CTRL);
706                 reg &= ~VDP_CTRL_MATRIX_BP;
707                 io_write(sd, REG_VDP_CTRL, reg);
708                 /* offset inputs */
709                 io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
710                 io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
711                 io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
712                 /* coefficients */
713                 io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
714                 io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
715                 io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
716                 io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
717                 io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
718                 io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
719                 io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
720                 io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
721                 io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
722                 /* offset outputs */
723                 io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
724                 io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
725                 io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
726         } else {
727                 /* disable matrix conversion */
728                 reg = io_read(sd, REG_VDP_CTRL);
729                 reg |= VDP_CTRL_MATRIX_BP;
730                 io_write(sd, REG_VDP_CTRL, reg);
731         }
732
733         /* SetBlankingCodes */
734         if (blanking_codes) {
735                 io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
736                 io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
737                 io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
738         }
739 }
740
741 /* Configure frame detection window and VHREF timing generator */
742 static void
743 tda1997x_configure_vhref(struct v4l2_subdev *sd)
744 {
745         struct tda1997x_state *state = to_state(sd);
746         const struct v4l2_bt_timings *bt = &state->timings.bt;
747         int width, lines;
748         u16 href_start, href_end;
749         u16 vref_f1_start, vref_f2_start;
750         u8 vref_f1_width, vref_f2_width;
751         u8 field_polarity;
752         u16 fieldref_f1_start, fieldref_f2_start;
753         u8 reg;
754
755         href_start = bt->hbackporch + bt->hsync + 1;
756         href_end = href_start + bt->width;
757         vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
758                         bt->il_vbackporch + bt->il_vsync +
759                         bt->il_vfrontporch;
760         vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
761         vref_f2_start = 0;
762         vref_f2_width = 0;
763         fieldref_f1_start = 0;
764         fieldref_f2_start = 0;
765         if (bt->interlaced) {
766                 vref_f2_start = (bt->height / 2) +
767                                 (bt->il_vbackporch + bt->il_vsync - 1);
768                 vref_f2_width = bt->il_vbackporch + bt->il_vsync +
769                                 bt->il_vfrontporch;
770                 fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
771                                     fieldref_f1_start;
772         }
773         field_polarity = 0;
774
775         width = V4L2_DV_BT_FRAME_WIDTH(bt);
776         lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
777
778         /*
779          * Configure Frame Detection Window:
780          *  horiz area where the VHREF module consider a VSYNC a new frame
781          */
782         io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
783         io_write16(sd, REG_FDW_E, 0x141); /* end position */
784
785         /* Set Pixel And Line Counters */
786         if (state->chip_revision == 0)
787                 io_write16(sd, REG_PXCNT_PR, 4);
788         else
789                 io_write16(sd, REG_PXCNT_PR, 1);
790         io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
791         io_write16(sd, REG_LCNT_PR, 1);
792         io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
793
794         /*
795          * Configure the VHRef timing generator responsible for rebuilding all
796          * horiz and vert synch and ref signals from its input allowing auto
797          * detection algorithms and forcing predefined modes (480i & 576i)
798          */
799         reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
800         io_write(sd, REG_VHREF_CTRL, reg);
801
802         /*
803          * Configure the VHRef timing values. In case the VHREF generator has
804          * been configured in manual mode, this will allow to manually set all
805          * horiz and vert ref values (non-active pixel areas) of the generator
806          * and allows setting the frame reference params.
807          */
808         /* horizontal reference start/end */
809         io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
810         io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
811         /* vertical reference f1 start/end */
812         io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
813         io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
814         /* vertical reference f2 start/end */
815         io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
816         io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
817
818         /* F1/F2 FREF, field polarity */
819         reg = fieldref_f1_start & MASK_VHREF;
820         reg |= field_polarity << 8;
821         io_write16(sd, REG_FREF_F1_S, reg);
822         reg = fieldref_f2_start & MASK_VHREF;
823         io_write16(sd, REG_FREF_F2_S, reg);
824 }
825
826 /* Configure Video Output port signals */
827 static int
828 tda1997x_configure_vidout(struct tda1997x_state *state)
829 {
830         struct v4l2_subdev *sd = &state->sd;
831         struct tda1997x_platform_data *pdata = &state->pdata;
832         u8 prefilter;
833         u8 reg;
834
835         /* Configure pixel clock generator: delay, polarity, rate */
836         reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
837                PCLK_SEL_X2 : PCLK_SEL_X1;
838         reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
839         reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
840         io_write(sd, REG_PCLK, reg);
841
842         /* Configure pre-filter */
843         prefilter = 0; /* filters off */
844         /* YUV422 mode requires conversion */
845         if ((state->vid_fmt == OF_FMT_422_SMPT) ||
846             (state->vid_fmt == OF_FMT_422_CCIR)) {
847                 /* 2/7 taps for Rv and Bu */
848                 prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
849                             FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
850         }
851         io_write(sd, REG_FILTERS_CTRL, prefilter);
852
853         /* Configure video port */
854         reg = state->vid_fmt & OF_FMT_MASK;
855         if (state->vid_fmt == OF_FMT_422_CCIR)
856                 reg |= (OF_BLK | OF_TRC);
857         reg |= OF_VP_ENABLE;
858         io_write(sd, REG_OF, reg);
859
860         /* Configure formatter and conversions */
861         reg = io_read(sd, REG_VDP_CTRL);
862         /* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
863         if (!prefilter)
864                 reg |= VDP_CTRL_PREFILTER_BP;
865         else
866                 reg &= ~VDP_CTRL_PREFILTER_BP;
867         /* formatter is needed for YUV422 and for trc/blc codes */
868         if (state->vid_fmt == OF_FMT_444)
869                 reg |= VDP_CTRL_FORMATTER_BP;
870         /* formatter and compdel needed for timing/blanking codes */
871         else
872                 reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
873         /* activate compdel for small sync delays */
874         if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
875                 reg &= ~VDP_CTRL_COMPDEL_BP;
876         io_write(sd, REG_VDP_CTRL, reg);
877
878         /* Configure DE output signal: delay, polarity, and source */
879         reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
880               pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
881               pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
882         io_write(sd, REG_DE_FREF, reg);
883
884         /* Configure HS/HREF output signal: delay, polarity, and source */
885         if (state->vid_fmt != OF_FMT_422_CCIR) {
886                 reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
887                       pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
888                       pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
889         } else
890                 reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
891         io_write(sd, REG_HS_HREF, reg);
892
893         /* Configure VS/VREF output signal: delay, polarity, and source */
894         if (state->vid_fmt != OF_FMT_422_CCIR) {
895                 reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
896                       pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
897                       pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
898         } else
899                 reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
900         io_write(sd, REG_VS_VREF, reg);
901
902         return 0;
903 }
904
905 /* Configure Audio output port signals */
906 static int
907 tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
908 {
909         struct tda1997x_state *state = to_state(sd);
910         struct tda1997x_platform_data *pdata = &state->pdata;
911         bool sp_used_by_fifo = 1;
912         u8 reg;
913
914         if (!pdata->audout_format)
915                 return 0;
916
917         /* channel assignment (CEA-861-D Table 20) */
918         io_write(sd, REG_AUDIO_PATH, channel_assignment);
919
920         /* Audio output configuration */
921         reg = 0;
922         switch (pdata->audout_format) {
923         case AUDFMT_TYPE_I2S:
924                 reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
925                 break;
926         case AUDFMT_TYPE_SPDIF:
927                 reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
928                 break;
929         }
930         switch (state->audio_type) {
931         case AUDCFG_TYPE_PCM:
932                 reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
933                 break;
934         case AUDCFG_TYPE_OBA:
935                 reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
936                 break;
937         case AUDCFG_TYPE_DST:
938                 reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
939                 sp_used_by_fifo = 0;
940                 break;
941         case AUDCFG_TYPE_HBR:
942                 reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
943                 if (pdata->audout_layout == 1) {
944                         /* demuxed via AP0:AP3 */
945                         reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
946                         if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
947                                 sp_used_by_fifo = 0;
948                 } else {
949                         /* straight via AP0 */
950                         reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
951                 }
952                 break;
953         }
954         if (pdata->audout_width == 32)
955                 reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
956         else
957                 reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
958
959         /* automatic hardware mute */
960         if (pdata->audio_auto_mute)
961                 reg |= AUDCFG_AUTO_MUTE_EN;
962         /* clock polarity */
963         if (pdata->audout_invert_clk)
964                 reg |= AUDCFG_CLK_INVERT;
965         io_write(sd, REG_AUDCFG, reg);
966
967         /* audio layout */
968         reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
969         if (!pdata->audout_layoutauto)
970                 reg |= AUDIO_LAYOUT_MANUAL;
971         if (sp_used_by_fifo)
972                 reg |= AUDIO_LAYOUT_SP_FLAG;
973         io_write(sd, REG_AUDIO_LAYOUT, reg);
974
975         /* FIFO Latency value */
976         io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
977
978         /* Audio output port config */
979         if (sp_used_by_fifo) {
980                 reg = AUDIO_OUT_ENABLE_AP0;
981                 if (channel_assignment >= 0x01)
982                         reg |= AUDIO_OUT_ENABLE_AP1;
983                 if (channel_assignment >= 0x04)
984                         reg |= AUDIO_OUT_ENABLE_AP2;
985                 if (channel_assignment >= 0x0c)
986                         reg |= AUDIO_OUT_ENABLE_AP3;
987                 /* specific cases where AP1 is not used */
988                 if ((channel_assignment == 0x04)
989                  || (channel_assignment == 0x08)
990                  || (channel_assignment == 0x0c)
991                  || (channel_assignment == 0x10)
992                  || (channel_assignment == 0x14)
993                  || (channel_assignment == 0x18)
994                  || (channel_assignment == 0x1c))
995                         reg &= ~AUDIO_OUT_ENABLE_AP1;
996                 /* specific cases where AP2 is not used */
997                 if ((channel_assignment >= 0x14)
998                  && (channel_assignment <= 0x17))
999                         reg &= ~AUDIO_OUT_ENABLE_AP2;
1000         } else {
1001                 reg = AUDIO_OUT_ENABLE_AP3 |
1002                       AUDIO_OUT_ENABLE_AP2 |
1003                       AUDIO_OUT_ENABLE_AP1 |
1004                       AUDIO_OUT_ENABLE_AP0;
1005         }
1006         if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007                 reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008         io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009
1010         /* reset test mode to normal audio freq auto selection */
1011         io_write(sd, REG_TEST_MODE, 0x00);
1012
1013         return 0;
1014 }
1015
1016 /* Soft Reset of specific hdmi info */
1017 static int
1018 tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019 {
1020         u8 reg;
1021
1022         /* reset infoframe engine packets */
1023         reg = io_read(sd, REG_HDMI_INFO_RST);
1024         io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025
1026         /* if infoframe engine has been reset clear INT_FLG_MODE */
1027         if (reg & RESET_IF) {
1028                 reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029                 io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030         }
1031
1032         /* Disable REFTIM to restart start-up-sequencer (SUS) */
1033         reg = io_read(sd, REG_RATE_CTRL);
1034         reg &= ~RATE_REFTIM_ENABLE;
1035         if (!reset_sus)
1036                 reg |= RATE_REFTIM_ENABLE;
1037         reg = io_write(sd, REG_RATE_CTRL, reg);
1038
1039         return 0;
1040 }
1041
1042 static void
1043 tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044 {
1045         struct v4l2_subdev *sd = &state->sd;
1046         u8 reg;
1047
1048         if (enable) {
1049                 /* Automatic control of TMDS */
1050                 io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051                 /* Enable current bias unit */
1052                 io_write(sd, REG_CFG1, PON_EN);
1053                 /* Enable deep color PLL */
1054                 io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055                 /* Output buffers active */
1056                 reg = io_read(sd, REG_OF);
1057                 reg &= ~OF_VP_ENABLE;
1058                 io_write(sd, REG_OF, reg);
1059         } else {
1060                 /* Power down EDID mode sequence */
1061                 /* Output buffers in HiZ */
1062                 reg = io_read(sd, REG_OF);
1063                 reg |= OF_VP_ENABLE;
1064                 io_write(sd, REG_OF, reg);
1065                 /* Disable deep color PLL */
1066                 io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067                 /* Disable current bias unit */
1068                 io_write(sd, REG_CFG1, PON_DIS);
1069                 /* Manual control of TMDS */
1070                 io_write(sd, REG_PON_OVR_EN, PON_EN);
1071         }
1072 }
1073
1074 static bool
1075 tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076 {
1077         u8 reg = io_read(sd, REG_DETECT_5V);
1078
1079         return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080 }
1081
1082 static bool
1083 tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084 {
1085         u8 reg = io_read(sd, REG_DETECT_5V);
1086
1087         return ((reg & DETECT_HPD) ? 1 : 0);
1088 }
1089
1090 static int
1091 tda1997x_detect_std(struct tda1997x_state *state,
1092                     struct v4l2_dv_timings *timings)
1093 {
1094         struct v4l2_subdev *sd = &state->sd;
1095         u32 vper;
1096         u16 hper;
1097         u16 hsper;
1098         int i;
1099
1100         /*
1101          * Read the FMT registers
1102          *   REG_V_PER: Period of a frame (or two fields) in MCLK(27MHz) cycles
1103          *   REG_H_PER: Period of a line in MCLK(27MHz) cycles
1104          *   REG_HS_WIDTH: Period of horiz sync pulse in MCLK(27MHz) cycles
1105          */
1106         vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1107         hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1108         hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1109         v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1110         if (!vper || !hper || !hsper)
1111                 return -ENOLINK;
1112
1113         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1114                 const struct v4l2_bt_timings *bt;
1115                 u32 lines, width, _hper, _hsper;
1116                 u32 vmin, vmax, hmin, hmax, hsmin, hsmax;
1117                 bool vmatch, hmatch, hsmatch;
1118
1119                 bt = &v4l2_dv_timings_presets[i].bt;
1120                 width = V4L2_DV_BT_FRAME_WIDTH(bt);
1121                 lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
1122                 _hper = (u32)bt->pixelclock / width;
1123                 if (bt->interlaced)
1124                         lines /= 2;
1125                 /* vper +/- 0.7% */
1126                 vmin = ((27000000 / 1000) * 993) / _hper * lines;
1127                 vmax = ((27000000 / 1000) * 1007) / _hper * lines;
1128                 /* hper +/- 1.0% */
1129                 hmin = ((27000000 / 100) * 99) / _hper;
1130                 hmax = ((27000000 / 100) * 101) / _hper;
1131                 /* hsper +/- 2 (take care to avoid 32bit overflow) */
1132                 _hsper = 27000 * bt->hsync / ((u32)bt->pixelclock/1000);
1133                 hsmin = _hsper - 2;
1134                 hsmax = _hsper + 2;
1135
1136                 /* vmatch matches the framerate */
1137                 vmatch = ((vper <= vmax) && (vper >= vmin)) ? 1 : 0;
1138                 /* hmatch matches the width */
1139                 hmatch = ((hper <= hmax) && (hper >= hmin)) ? 1 : 0;
1140                 /* hsmatch matches the hswidth */
1141                 hsmatch = ((hsper <= hsmax) && (hsper >= hsmin)) ? 1 : 0;
1142                 if (hmatch && vmatch && hsmatch) {
1143                         v4l2_print_dv_timings(sd->name, "Detected format: ",
1144                                               &v4l2_dv_timings_presets[i],
1145                                               false);
1146                         if (timings)
1147                                 *timings = v4l2_dv_timings_presets[i];
1148                         return 0;
1149                 }
1150         }
1151
1152         v4l_err(state->client, "no resolution match for timings: %d/%d/%d\n",
1153                 vper, hper, hsper);
1154         return -ERANGE;
1155 }
1156
1157 /* some sort of errata workaround for chip revision 0 (N1) */
1158 static void tda1997x_reset_n1(struct tda1997x_state *state)
1159 {
1160         struct v4l2_subdev *sd = &state->sd;
1161         u8 reg;
1162
1163         /* clear HDMI mode flag in BCAPS */
1164         io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1165         io_write(sd, REG_PON_OVR_EN, PON_EN);
1166         io_write(sd, REG_PON_CBIAS, PON_EN);
1167         io_write(sd, REG_PON_PLL, PON_EN);
1168
1169         reg = io_read(sd, REG_MODE_REC_CFG1);
1170         reg &= ~0x06;
1171         reg |= 0x02;
1172         io_write(sd, REG_MODE_REC_CFG1, reg);
1173         io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1174         io_write(sd, REG_PON_OVR_EN, PON_DIS);
1175         reg = io_read(sd, REG_MODE_REC_CFG1);
1176         reg &= ~0x06;
1177         io_write(sd, REG_MODE_REC_CFG1, reg);
1178 }
1179
1180 /*
1181  * Activity detection must only be notified when stable_clk_x AND active_x
1182  * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1183  * active_x, it means that the TMDS clock is not in the defined range
1184  * and activity detection must not be notified.
1185  */
1186 static u8
1187 tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1188 {
1189         u8 reg, status = 0;
1190
1191         /* Read CLK_A_STATUS register */
1192         reg = io_read(sd, REG_CLK_A_STATUS);
1193         /* ignore if not active */
1194         if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1195                 reg &= ~MASK_CLK_STABLE;
1196         status |= ((reg & MASK_CLK_STABLE) >> 2);
1197
1198         /* Read CLK_B_STATUS register */
1199         reg = io_read(sd, REG_CLK_B_STATUS);
1200         /* ignore if not active */
1201         if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1202                 reg &= ~MASK_CLK_STABLE;
1203         status |= ((reg & MASK_CLK_STABLE) >> 1);
1204
1205         /* Read the SUS_STATUS register */
1206         reg = io_read(sd, REG_SUS_STATUS);
1207
1208         /* If state = 5 => TMDS is locked */
1209         if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1210                 status |= MASK_SUS_STATE;
1211         else
1212                 status &= ~MASK_SUS_STATE;
1213
1214         return status;
1215 }
1216
1217 static void
1218 set_rgb_quantization_range(struct tda1997x_state *state)
1219 {
1220         struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1221
1222         state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1223                                                       NULL,
1224                                                       state->timings.bt.height);
1225         /* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1226         if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1227                 switch (state->rgb_quantization_range) {
1228                 case V4L2_DV_RGB_RANGE_LIMITED:
1229                         c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1230                         break;
1231                 case V4L2_DV_RGB_RANGE_FULL:
1232                         c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1233                         break;
1234                 }
1235         }
1236         v4l_dbg(1, debug, state->client,
1237                 "colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1238                 state->avi_infoframe.colorspace, c->colorspace,
1239                 state->avi_infoframe.colorimetry,
1240                 v4l2_quantization_names[c->quantization],
1241                 state->avi_infoframe.content_type);
1242 }
1243
1244 /* parse an infoframe and do some sanity checks on it */
1245 static unsigned int
1246 tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1247 {
1248         struct v4l2_subdev *sd = &state->sd;
1249         union hdmi_infoframe frame;
1250         u8 buffer[40];
1251         u8 reg;
1252         int len, err;
1253
1254         /* read data */
1255         len = io_readn(sd, addr, sizeof(buffer), buffer);
1256         err = hdmi_infoframe_unpack(&frame, buffer);
1257         if (err) {
1258                 v4l_err(state->client,
1259                         "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1260                         len, addr, buffer[0]);
1261                 return err;
1262         }
1263         hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1264         switch (frame.any.type) {
1265         /* Audio InfoFrame: see HDMI spec 8.2.2 */
1266         case HDMI_INFOFRAME_TYPE_AUDIO:
1267                 /* sample rate */
1268                 switch (frame.audio.sample_frequency) {
1269                 case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1270                         state->audio_samplerate = 32000;
1271                         break;
1272                 case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1273                         state->audio_samplerate = 44100;
1274                         break;
1275                 case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1276                         state->audio_samplerate = 48000;
1277                         break;
1278                 case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1279                         state->audio_samplerate = 88200;
1280                         break;
1281                 case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1282                         state->audio_samplerate = 96000;
1283                         break;
1284                 case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1285                         state->audio_samplerate = 176400;
1286                         break;
1287                 case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1288                         state->audio_samplerate = 192000;
1289                         break;
1290                 default:
1291                 case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1292                         break;
1293                 }
1294
1295                 /* sample size */
1296                 switch (frame.audio.sample_size) {
1297                 case HDMI_AUDIO_SAMPLE_SIZE_16:
1298                         state->audio_samplesize = 16;
1299                         break;
1300                 case HDMI_AUDIO_SAMPLE_SIZE_20:
1301                         state->audio_samplesize = 20;
1302                         break;
1303                 case HDMI_AUDIO_SAMPLE_SIZE_24:
1304                         state->audio_samplesize = 24;
1305                         break;
1306                 case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1307                 default:
1308                         break;
1309                 }
1310
1311                 /* Channel Count */
1312                 state->audio_channels = frame.audio.channels;
1313                 if (frame.audio.channel_allocation &&
1314                     frame.audio.channel_allocation != state->audio_ch_alloc) {
1315                         /* use the channel assignment from the infoframe */
1316                         state->audio_ch_alloc = frame.audio.channel_allocation;
1317                         tda1997x_configure_audout(sd, state->audio_ch_alloc);
1318                         /* reset the audio FIFO */
1319                         tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1320                 }
1321                 break;
1322
1323         /* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1324         case HDMI_INFOFRAME_TYPE_AVI:
1325                 state->avi_infoframe = frame.avi;
1326                 set_rgb_quantization_range(state);
1327
1328                 /* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1329                 reg = io_read(sd, REG_PIX_REPEAT);
1330                 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1331                 if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1332                         reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1333                 io_write(sd, REG_PIX_REPEAT, reg);
1334
1335                 /* ConfigurePixelRepeater: repeat n-times each pixel */
1336                 reg = io_read(sd, REG_PIX_REPEAT);
1337                 reg &= ~PIX_REPEAT_MASK_REP;
1338                 reg |= frame.avi.pixel_repeat;
1339                 io_write(sd, REG_PIX_REPEAT, reg);
1340
1341                 /* configure the receiver with the new colorspace */
1342                 tda1997x_configure_csc(sd);
1343                 break;
1344         default:
1345                 break;
1346         }
1347         return 0;
1348 }
1349
1350 static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1351 {
1352         struct v4l2_subdev *sd = &state->sd;
1353         u8 reg, source;
1354
1355         source = io_read(sd, REG_INT_FLG_CLR_SUS);
1356         io_write(sd, REG_INT_FLG_CLR_SUS, source);
1357
1358         if (source & MASK_MPT) {
1359                 /* reset MTP in use flag if set */
1360                 if (state->mptrw_in_progress)
1361                         state->mptrw_in_progress = 0;
1362         }
1363
1364         if (source & MASK_SUS_END) {
1365                 /* reset audio FIFO */
1366                 reg = io_read(sd, REG_HDMI_INFO_RST);
1367                 reg |= MASK_SR_FIFO_FIFO_CTRL;
1368                 io_write(sd, REG_HDMI_INFO_RST, reg);
1369                 reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1370                 io_write(sd, REG_HDMI_INFO_RST, reg);
1371
1372                 /* reset HDMI flags */
1373                 state->hdmi_status = 0;
1374         }
1375
1376         /* filter FMT interrupt based on SUS state */
1377         reg = io_read(sd, REG_SUS_STATUS);
1378         if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1379            || (source & MASK_MPT)) {
1380                 source &= ~MASK_FMT;
1381         }
1382
1383         if (source & (MASK_FMT | MASK_SUS_END)) {
1384                 reg = io_read(sd, REG_SUS_STATUS);
1385                 if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1386                         v4l_err(state->client, "BAD SUS STATUS\n");
1387                         return;
1388                 }
1389                 if (debug)
1390                         tda1997x_detect_std(state, NULL);
1391                 /* notify user of change in resolution */
1392                 v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1393         }
1394 }
1395
1396 static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1397 {
1398         struct v4l2_subdev *sd = &state->sd;
1399         u8 source;
1400
1401         source = io_read(sd, REG_INT_FLG_CLR_DDC);
1402         io_write(sd, REG_INT_FLG_CLR_DDC, source);
1403         if (source & MASK_EDID_MTP) {
1404                 /* reset MTP in use flag if set */
1405                 if (state->mptrw_in_progress)
1406                         state->mptrw_in_progress = 0;
1407         }
1408
1409         /* Detection of +5V */
1410         if (source & MASK_DET_5V) {
1411                 v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1412                                  tda1997x_detect_tx_5v(sd));
1413         }
1414 }
1415
1416 static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1417 {
1418         struct v4l2_subdev *sd = &state->sd;
1419         u8 reg, source;
1420
1421         u8 irq_status;
1422
1423         source = io_read(sd, REG_INT_FLG_CLR_RATE);
1424         io_write(sd, REG_INT_FLG_CLR_RATE, source);
1425
1426         /* read status regs */
1427         irq_status = tda1997x_read_activity_status_regs(sd);
1428
1429         /*
1430          * read clock status reg until INT_FLG_CLR_RATE is still 0
1431          * after the read to make sure its the last one
1432          */
1433         reg = source;
1434         while (reg != 0) {
1435                 irq_status = tda1997x_read_activity_status_regs(sd);
1436                 reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1437                 io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1438                 source |= reg;
1439         }
1440
1441         /* we only pay attention to stability change events */
1442         if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1443                 int input = (source & MASK_RATE_A_ST)?0:1;
1444                 u8 mask = 1<<input;
1445
1446                 /* state change */
1447                 if ((irq_status & mask) != (state->activity_status & mask)) {
1448                         /* activity lost */
1449                         if ((irq_status & mask) == 0) {
1450                                 v4l_info(state->client,
1451                                          "HDMI-%c: Digital Activity Lost\n",
1452                                          input+'A');
1453
1454                                 /* bypass up/down sampler and pixel repeater */
1455                                 reg = io_read(sd, REG_PIX_REPEAT);
1456                                 reg &= ~PIX_REPEAT_MASK_UP_SEL;
1457                                 reg &= ~PIX_REPEAT_MASK_REP;
1458                                 io_write(sd, REG_PIX_REPEAT, reg);
1459
1460                                 if (state->chip_revision == 0)
1461                                         tda1997x_reset_n1(state);
1462
1463                                 state->input_detect[input] = 0;
1464                                 v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1465                         }
1466
1467                         /* activity detected */
1468                         else {
1469                                 v4l_info(state->client,
1470                                          "HDMI-%c: Digital Activity Detected\n",
1471                                          input+'A');
1472                                 state->input_detect[input] = 1;
1473                         }
1474
1475                         /* hold onto current state */
1476                         state->activity_status = (irq_status & mask);
1477                 }
1478         }
1479 }
1480
1481 static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1482 {
1483         struct v4l2_subdev *sd = &state->sd;
1484         u8 source;
1485
1486         source = io_read(sd, REG_INT_FLG_CLR_INFO);
1487         io_write(sd, REG_INT_FLG_CLR_INFO, source);
1488
1489         /* Audio infoframe */
1490         if (source & MASK_AUD_IF) {
1491                 tda1997x_parse_infoframe(state, AUD_IF);
1492                 source &= ~MASK_AUD_IF;
1493         }
1494
1495         /* Source Product Descriptor infoframe change */
1496         if (source & MASK_SPD_IF) {
1497                 tda1997x_parse_infoframe(state, SPD_IF);
1498                 source &= ~MASK_SPD_IF;
1499         }
1500
1501         /* Auxiliary Video Information infoframe */
1502         if (source & MASK_AVI_IF) {
1503                 tda1997x_parse_infoframe(state, AVI_IF);
1504                 source &= ~MASK_AVI_IF;
1505         }
1506 }
1507
1508 static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1509 {
1510         struct v4l2_subdev *sd = &state->sd;
1511         u8 reg, source;
1512
1513         source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1514         io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1515
1516         /* reset audio FIFO on FIFO pointer error or audio mute */
1517         if (source & MASK_ERROR_FIFO_PT ||
1518             source & MASK_MUTE_FLG) {
1519                 /* audio reset audio FIFO */
1520                 reg = io_read(sd, REG_SUS_STATUS);
1521                 if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1522                         reg = io_read(sd, REG_HDMI_INFO_RST);
1523                         reg |= MASK_SR_FIFO_FIFO_CTRL;
1524                         io_write(sd, REG_HDMI_INFO_RST, reg);
1525                         reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1526                         io_write(sd, REG_HDMI_INFO_RST, reg);
1527                         /* reset channel status IT if present */
1528                         source &= ~(MASK_CH_STATE);
1529                 }
1530         }
1531         if (source & MASK_AUDIO_FREQ_FLG) {
1532                 static const int freq[] = {
1533                         0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1534                 };
1535
1536                 reg = io_read(sd, REG_AUDIO_FREQ);
1537                 state->audio_samplerate = freq[reg & 7];
1538                 v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1539                          state->audio_samplerate);
1540         }
1541         if (source & MASK_AUDIO_FLG) {
1542                 reg = io_read(sd, REG_AUDIO_FLAGS);
1543                 if (reg & BIT(AUDCFG_TYPE_DST))
1544                         state->audio_type = AUDCFG_TYPE_DST;
1545                 if (reg & BIT(AUDCFG_TYPE_OBA))
1546                         state->audio_type = AUDCFG_TYPE_OBA;
1547                 if (reg & BIT(AUDCFG_TYPE_HBR))
1548                         state->audio_type = AUDCFG_TYPE_HBR;
1549                 if (reg & BIT(AUDCFG_TYPE_PCM))
1550                         state->audio_type = AUDCFG_TYPE_PCM;
1551                 v4l_info(state->client, "Audio Type: %s\n",
1552                          audtype_names[state->audio_type]);
1553         }
1554 }
1555
1556 static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1557 {
1558         struct v4l2_subdev *sd = &state->sd;
1559         u8 reg, source;
1560
1561         source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1562         io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1563
1564         /* reset MTP in use flag if set */
1565         if (source & MASK_HDCP_MTP)
1566                 state->mptrw_in_progress = 0;
1567         if (source & MASK_STATE_C5) {
1568                 /* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1569                 reg = io_read(sd, REG_INT_MASK_TOP);
1570                 reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1571                 io_write(sd, REG_INT_MASK_TOP, reg);
1572                 *flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1573         }
1574 }
1575
1576 static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1577 {
1578         struct tda1997x_state *state = d;
1579         struct v4l2_subdev *sd = &state->sd;
1580         u8 flags;
1581
1582         mutex_lock(&state->lock);
1583         do {
1584                 /* read interrupt flags */
1585                 flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1586                 if (flags == 0)
1587                         break;
1588
1589                 /* SUS interrupt source (Input activity events) */
1590                 if (flags & INTERRUPT_SUS)
1591                         tda1997x_irq_sus(state, &flags);
1592                 /* DDC interrupt source (Display Data Channel) */
1593                 else if (flags & INTERRUPT_DDC)
1594                         tda1997x_irq_ddc(state, &flags);
1595                 /* RATE interrupt source (Digital Input activity) */
1596                 else if (flags & INTERRUPT_RATE)
1597                         tda1997x_irq_rate(state, &flags);
1598                 /* Infoframe change interrupt */
1599                 else if (flags & INTERRUPT_INFO)
1600                         tda1997x_irq_info(state, &flags);
1601                 /* Audio interrupt source:
1602                  *   freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1603                  */
1604                 else if (flags & INTERRUPT_AUDIO)
1605                         tda1997x_irq_audio(state, &flags);
1606                 /* HDCP interrupt source (content protection) */
1607                 if (flags & INTERRUPT_HDCP)
1608                         tda1997x_irq_hdcp(state, &flags);
1609         } while (flags != 0);
1610         mutex_unlock(&state->lock);
1611
1612         return IRQ_HANDLED;
1613 }
1614
1615 /* -----------------------------------------------------------------------------
1616  * v4l2_subdev_video_ops
1617  */
1618
1619 static int
1620 tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1621 {
1622         struct tda1997x_state *state = to_state(sd);
1623         u32 vper;
1624         u16 hper;
1625         u16 hsper;
1626
1627         mutex_lock(&state->lock);
1628         vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1629         hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1630         hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1631         /*
1632          * The tda1997x supports A/B inputs but only a single output.
1633          * The irq handler monitors for timing changes on both inputs and
1634          * sets the input_detect array to 0|1 depending on signal presence.
1635          * I believe selection of A vs B is automatic.
1636          *
1637          * The vper/hper/hsper registers provide the frame period, line period
1638          * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1639          * testing shows these values to be random if no signal is present
1640          * or locked.
1641          */
1642         v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1643                  state->input_detect[0], state->input_detect[1],
1644                  vper, hper, hsper);
1645         if (!state->input_detect[0] && !state->input_detect[1])
1646                 *status = V4L2_IN_ST_NO_SIGNAL;
1647         else if (!vper || !hper || !hsper)
1648                 *status = V4L2_IN_ST_NO_SYNC;
1649         else
1650                 *status = 0;
1651         mutex_unlock(&state->lock);
1652
1653         return 0;
1654 };
1655
1656 static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1657                                 struct v4l2_dv_timings *timings)
1658 {
1659         struct tda1997x_state *state = to_state(sd);
1660
1661         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1662
1663         if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1664                 return 0; /* no changes */
1665
1666         if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1667                                    NULL, NULL))
1668                 return -ERANGE;
1669
1670         mutex_lock(&state->lock);
1671         state->timings = *timings;
1672         /* setup frame detection window and VHREF timing generator */
1673         tda1997x_configure_vhref(sd);
1674         /* configure colorspace conversion */
1675         tda1997x_configure_csc(sd);
1676         mutex_unlock(&state->lock);
1677
1678         return 0;
1679 }
1680
1681 static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1682                                  struct v4l2_dv_timings *timings)
1683 {
1684         struct tda1997x_state *state = to_state(sd);
1685
1686         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1687         mutex_lock(&state->lock);
1688         *timings = state->timings;
1689         mutex_unlock(&state->lock);
1690
1691         return 0;
1692 }
1693
1694 static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1695                                      struct v4l2_dv_timings *timings)
1696 {
1697         struct tda1997x_state *state = to_state(sd);
1698         int ret;
1699
1700         v4l_dbg(1, debug, state->client, "%s\n", __func__);
1701         memset(timings, 0, sizeof(struct v4l2_dv_timings));
1702         mutex_lock(&state->lock);
1703         ret = tda1997x_detect_std(state, timings);
1704         mutex_unlock(&state->lock);
1705
1706         return ret;
1707 }
1708
1709 static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1710         .g_input_status = tda1997x_g_input_status,
1711         .s_dv_timings = tda1997x_s_dv_timings,
1712         .g_dv_timings = tda1997x_g_dv_timings,
1713         .query_dv_timings = tda1997x_query_dv_timings,
1714 };
1715
1716
1717 /* -----------------------------------------------------------------------------
1718  * v4l2_subdev_pad_ops
1719  */
1720
1721 static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1722                              struct v4l2_subdev_pad_config *cfg)
1723 {
1724         struct tda1997x_state *state = to_state(sd);
1725         struct v4l2_mbus_framefmt *mf;
1726
1727         mf = v4l2_subdev_get_try_format(sd, cfg, 0);
1728         mf->code = state->mbus_codes[0];
1729
1730         return 0;
1731 }
1732
1733 static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1734                                   struct v4l2_subdev_pad_config *cfg,
1735                                   struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737         struct tda1997x_state *state = to_state(sd);
1738
1739         v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1740         if (code->index >= ARRAY_SIZE(state->mbus_codes))
1741                 return -EINVAL;
1742
1743         if (!state->mbus_codes[code->index])
1744                 return -EINVAL;
1745
1746         code->code = state->mbus_codes[code->index];
1747
1748         return 0;
1749 }
1750
1751 static void tda1997x_fill_format(struct tda1997x_state *state,
1752                                  struct v4l2_mbus_framefmt *format)
1753 {
1754         const struct v4l2_bt_timings *bt;
1755
1756         memset(format, 0, sizeof(*format));
1757         bt = &state->timings.bt;
1758         format->width = bt->width;
1759         format->height = bt->height;
1760         format->colorspace = state->colorimetry.colorspace;
1761         format->field = (bt->interlaced) ?
1762                 V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1763 }
1764
1765 static int tda1997x_get_format(struct v4l2_subdev *sd,
1766                                struct v4l2_subdev_pad_config *cfg,
1767                                struct v4l2_subdev_format *format)
1768 {
1769         struct tda1997x_state *state = to_state(sd);
1770
1771         v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1772                 __func__, format->pad, format->which);
1773
1774         tda1997x_fill_format(state, &format->format);
1775
1776         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1777                 struct v4l2_mbus_framefmt *fmt;
1778
1779                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1780                 format->format.code = fmt->code;
1781         } else
1782                 format->format.code = state->mbus_code;
1783
1784         return 0;
1785 }
1786
1787 static int tda1997x_set_format(struct v4l2_subdev *sd,
1788                                struct v4l2_subdev_pad_config *cfg,
1789                                struct v4l2_subdev_format *format)
1790 {
1791         struct tda1997x_state *state = to_state(sd);
1792         u32 code = 0;
1793         int i;
1794
1795         v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1796                 __func__, format->pad, format->which, format->format.code);
1797
1798         for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1799                 if (format->format.code == state->mbus_codes[i]) {
1800                         code = state->mbus_codes[i];
1801                         break;
1802                 }
1803         }
1804         if (!code)
1805                 code = state->mbus_codes[0];
1806
1807         tda1997x_fill_format(state, &format->format);
1808         format->format.code = code;
1809
1810         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1811                 struct v4l2_mbus_framefmt *fmt;
1812
1813                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1814                 *fmt = format->format;
1815         } else {
1816                 int ret = tda1997x_setup_format(state, format->format.code);
1817
1818                 if (ret)
1819                         return ret;
1820                 /* mbus_code has changed - re-configure csc/vidout */
1821                 tda1997x_configure_csc(sd);
1822                 tda1997x_configure_vidout(state);
1823         }
1824
1825         return 0;
1826 }
1827
1828 static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1829 {
1830         struct tda1997x_state *state = to_state(sd);
1831
1832         v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1833         memset(edid->reserved, 0, sizeof(edid->reserved));
1834
1835         if (edid->start_block == 0 && edid->blocks == 0) {
1836                 edid->blocks = state->edid.blocks;
1837                 return 0;
1838         }
1839
1840         if (!state->edid.present)
1841                 return -ENODATA;
1842
1843         if (edid->start_block >= state->edid.blocks)
1844                 return -EINVAL;
1845
1846         if (edid->start_block + edid->blocks > state->edid.blocks)
1847                 edid->blocks = state->edid.blocks - edid->start_block;
1848
1849         memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1850                edid->blocks * 128);
1851
1852         return 0;
1853 }
1854
1855 static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1856 {
1857         struct tda1997x_state *state = to_state(sd);
1858         int i;
1859
1860         v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1861         memset(edid->reserved, 0, sizeof(edid->reserved));
1862
1863         if (edid->start_block != 0)
1864                 return -EINVAL;
1865
1866         if (edid->blocks == 0) {
1867                 state->edid.blocks = 0;
1868                 state->edid.present = 0;
1869                 tda1997x_disable_edid(sd);
1870                 return 0;
1871         }
1872
1873         if (edid->blocks > 2) {
1874                 edid->blocks = 2;
1875                 return -E2BIG;
1876         }
1877
1878         tda1997x_disable_edid(sd);
1879
1880         /* write base EDID */
1881         for (i = 0; i < 128; i++)
1882                 io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1883
1884         /* write CEA Extension */
1885         for (i = 0; i < 128; i++)
1886                 io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1887
1888         tda1997x_enable_edid(sd);
1889
1890         return 0;
1891 }
1892
1893 static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1894                                        struct v4l2_dv_timings_cap *cap)
1895 {
1896         *cap = tda1997x_dv_timings_cap;
1897         return 0;
1898 }
1899
1900 static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1901                                     struct v4l2_enum_dv_timings *timings)
1902 {
1903         return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1904                                         NULL, NULL);
1905 }
1906
1907 static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1908         .init_cfg = tda1997x_init_cfg,
1909         .enum_mbus_code = tda1997x_enum_mbus_code,
1910         .get_fmt = tda1997x_get_format,
1911         .set_fmt = tda1997x_set_format,
1912         .get_edid = tda1997x_get_edid,
1913         .set_edid = tda1997x_set_edid,
1914         .dv_timings_cap = tda1997x_get_dv_timings_cap,
1915         .enum_dv_timings = tda1997x_enum_dv_timings,
1916 };
1917
1918 /* -----------------------------------------------------------------------------
1919  * v4l2_subdev_core_ops
1920  */
1921
1922 static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1923 {
1924         struct tda1997x_state *state = to_state(sd);
1925         union hdmi_infoframe frame;
1926         u8 buffer[40];
1927         int len, err;
1928
1929         /* read data */
1930         len = io_readn(sd, addr, sizeof(buffer), buffer);
1931         v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1932         err = hdmi_infoframe_unpack(&frame, buffer);
1933         if (err) {
1934                 v4l_err(state->client,
1935                         "failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1936                         len, addr, buffer[0]);
1937                 return err;
1938         }
1939         hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1940
1941         return 0;
1942 }
1943
1944 static int tda1997x_log_status(struct v4l2_subdev *sd)
1945 {
1946         struct tda1997x_state *state = to_state(sd);
1947         struct v4l2_dv_timings timings;
1948         struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1949
1950         v4l2_info(sd, "-----Chip status-----\n");
1951         v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1952                   state->chip_revision + 1);
1953         v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1954
1955         v4l2_info(sd, "-----Signal status-----\n");
1956         v4l2_info(sd, "Cable detected (+5V power): %s\n",
1957                   tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1958         v4l2_info(sd, "HPD detected: %s\n",
1959                   tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1960
1961         v4l2_info(sd, "-----Video Timings-----\n");
1962         switch (tda1997x_detect_std(state, &timings)) {
1963         case -ENOLINK:
1964                 v4l2_info(sd, "No video detected\n");
1965                 break;
1966         case -ERANGE:
1967                 v4l2_info(sd, "Invalid signal detected\n");
1968                 break;
1969         }
1970         v4l2_print_dv_timings(sd->name, "Configured format: ",
1971                               &state->timings, true);
1972
1973         v4l2_info(sd, "-----Color space-----\n");
1974         v4l2_info(sd, "Input color space: %s %s %s",
1975                   hdmi_colorspace_names[avi->colorspace],
1976                   (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1977                         hdmi_colorimetry_names[avi->colorimetry],
1978                   v4l2_quantization_names[state->colorimetry.quantization]);
1979         v4l2_info(sd, "Output color space: %s",
1980                   vidfmt_names[state->vid_fmt]);
1981         v4l2_info(sd, "Color space conversion: %s", state->conv ?
1982                   state->conv->name : "None");
1983
1984         v4l2_info(sd, "-----Audio-----\n");
1985         if (state->audio_channels) {
1986                 v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
1987                           state->audio_samplerate);
1988         } else {
1989                 v4l2_info(sd, "audio: none\n");
1990         }
1991
1992         v4l2_info(sd, "-----Infoframes-----\n");
1993         tda1997x_log_infoframe(sd, AUD_IF);
1994         tda1997x_log_infoframe(sd, SPD_IF);
1995         tda1997x_log_infoframe(sd, AVI_IF);
1996
1997         return 0;
1998 }
1999
2000 static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2001                                     struct v4l2_fh *fh,
2002                                     struct v4l2_event_subscription *sub)
2003 {
2004         switch (sub->type) {
2005         case V4L2_EVENT_SOURCE_CHANGE:
2006                 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2007         case V4L2_EVENT_CTRL:
2008                 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2009         default:
2010                 return -EINVAL;
2011         }
2012 }
2013
2014 static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2015         .log_status = tda1997x_log_status,
2016         .subscribe_event = tda1997x_subscribe_event,
2017         .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2018 };
2019
2020 /* -----------------------------------------------------------------------------
2021  * v4l2_subdev_ops
2022  */
2023
2024 static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2025         .core = &tda1997x_core_ops,
2026         .video = &tda1997x_video_ops,
2027         .pad = &tda1997x_pad_ops,
2028 };
2029
2030 /* -----------------------------------------------------------------------------
2031  * v4l2_controls
2032  */
2033
2034 static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2035 {
2036         struct v4l2_subdev *sd = to_sd(ctrl);
2037         struct tda1997x_state *state = to_state(sd);
2038
2039         switch (ctrl->id) {
2040         /* allow overriding the default RGB quantization range */
2041         case V4L2_CID_DV_RX_RGB_RANGE:
2042                 state->rgb_quantization_range = ctrl->val;
2043                 set_rgb_quantization_range(state);
2044                 tda1997x_configure_csc(sd);
2045                 return 0;
2046         }
2047
2048         return -EINVAL;
2049 };
2050
2051 static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2052 {
2053         struct v4l2_subdev *sd = to_sd(ctrl);
2054         struct tda1997x_state *state = to_state(sd);
2055
2056         if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2057                 ctrl->val = state->avi_infoframe.content_type;
2058                 return 0;
2059         }
2060         return -EINVAL;
2061 };
2062
2063 static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2064         .s_ctrl = tda1997x_s_ctrl,
2065         .g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2066 };
2067
2068 static int tda1997x_core_init(struct v4l2_subdev *sd)
2069 {
2070         struct tda1997x_state *state = to_state(sd);
2071         struct tda1997x_platform_data *pdata = &state->pdata;
2072         u8 reg;
2073         int i;
2074
2075         /* disable HPD */
2076         io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2077         if (state->chip_revision == 0) {
2078                 io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2079                 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2080         }
2081
2082         /* reset infoframe at end of start-up-sequencer */
2083         io_write(sd, REG_SUS_SET_RGB2, 0x06);
2084         io_write(sd, REG_SUS_SET_RGB3, 0x06);
2085
2086         /* Enable TMDS pull-ups */
2087         io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2088                  RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2089
2090         /* enable sync measurement timing */
2091         tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2092         /* adjust CEC clock divider */
2093         tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2094         tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2095         io_write(sd, REG_TIMER_D, 0x54);
2096         /* enable power switch */
2097         reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2098         reg |= 0x20;
2099         tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2100         mdelay(50);
2101
2102         /* read the chip version */
2103         reg = io_read(sd, REG_VERSION);
2104         /* get the chip configuration */
2105         reg = io_read(sd, REG_CMTP_REG10);
2106
2107         /* enable interrupts we care about */
2108         io_write(sd, REG_INT_MASK_TOP,
2109                  INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2110                  INTERRUPT_RATE | INTERRUPT_SUS);
2111         /* config_mtp,fmt,sus_end,sus_st */
2112         io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2113         /* rate stability change for inputs A/B */
2114         io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2115         /* aud,spd,avi*/
2116         io_write(sd, REG_INT_MASK_INFO,
2117                  MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2118         /* audio_freq,audio_flg,mute_flg,fifo_err */
2119         io_write(sd, REG_INT_MASK_AUDIO,
2120                  MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2121                  MASK_ERROR_FIFO_PT);
2122         /* HDCP C5 state reached */
2123         io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2124         /* 5V detect and HDP pulse end */
2125         io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2126         /* don't care about AFE/MODE */
2127         io_write(sd, REG_INT_MASK_AFE, 0);
2128         io_write(sd, REG_INT_MASK_MODE, 0);
2129
2130         /* clear all interrupts */
2131         io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2132         io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2133         io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2134         io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2135         io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2136         io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2137         io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2138         io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2139         io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2140
2141         /* init TMDS equalizer */
2142         if (state->chip_revision == 0)
2143                 io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2144         io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2145         io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2146         if (state->chip_revision == 0)
2147                 io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2148         /* DC filter */
2149         io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2150         /* disable test pattern */
2151         io_write(sd, REG_SVC_MODE, 0x00);
2152         /* update HDMI INFO CTRL */
2153         io_write(sd, REG_INFO_CTRL, 0xff);
2154         /* write HDMI INFO EXCEED value */
2155         io_write(sd, REG_INFO_EXCEED, 3);
2156
2157         if (state->chip_revision == 0)
2158                 tda1997x_reset_n1(state);
2159
2160         /*
2161          * No HDCP acknowledge when HDCP is disabled
2162          * and reset SUS to force format detection
2163          */
2164         tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2165
2166         /* Set HPD low */
2167         tda1997x_manual_hpd(sd, HPD_LOW_BP);
2168
2169         /* Configure receiver capabilities */
2170         io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2171
2172         /* Configure HDMI: Auto HDCP mode, packet controlled mute */
2173         reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2174         reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2175         io_write(sd, REG_HDMI_CTRL, reg);
2176
2177         /* reset start-up-sequencer to force format detection */
2178         tda1997x_hdmi_info_reset(sd, 0, true);
2179
2180         /* disable matrix conversion */
2181         reg = io_read(sd, REG_VDP_CTRL);
2182         reg |= VDP_CTRL_MATRIX_BP;
2183         io_write(sd, REG_VDP_CTRL, reg);
2184
2185         /* set video output mode */
2186         tda1997x_configure_vidout(state);
2187
2188         /* configure video output port */
2189         for (i = 0; i < 9; i++) {
2190                 v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2191                         pdata->vidout_port_cfg[i]);
2192                 io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2193         }
2194
2195         /* configure audio output port */
2196         tda1997x_configure_audout(sd, 0);
2197
2198         /* configure audio clock freq */
2199         switch (pdata->audout_mclk_fs) {
2200         case 512:
2201                 reg = AUDIO_CLOCK_SEL_512FS;
2202                 break;
2203         case 256:
2204                 reg = AUDIO_CLOCK_SEL_256FS;
2205                 break;
2206         case 128:
2207                 reg = AUDIO_CLOCK_SEL_128FS;
2208                 break;
2209         case 64:
2210                 reg = AUDIO_CLOCK_SEL_64FS;
2211                 break;
2212         case 32:
2213                 reg = AUDIO_CLOCK_SEL_32FS;
2214                 break;
2215         default:
2216                 reg = AUDIO_CLOCK_SEL_16FS;
2217                 break;
2218         }
2219         io_write(sd, REG_AUDIO_CLOCK, reg);
2220
2221         /* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2222         tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2223         /* reset infoframe */
2224         tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2225         /* reset audio infoframes */
2226         tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2227         /* reset gamut */
2228         tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2229
2230         /* get initial HDMI status */
2231         state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2232
2233         io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2234         return 0;
2235 }
2236
2237 static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2238 {
2239         int ret = 0;
2240
2241         if (on) {
2242                 ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2243                                              state->supplies);
2244                 msleep(300);
2245         } else {
2246                 ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2247                                              state->supplies);
2248         }
2249
2250         return ret;
2251 }
2252
2253 static const struct i2c_device_id tda1997x_i2c_id[] = {
2254         {"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2255         {"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2256         { },
2257 };
2258 MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2259
2260 static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2261         { .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2262         { .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2263         { },
2264 };
2265 MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2266
2267 static int tda1997x_parse_dt(struct tda1997x_state *state)
2268 {
2269         struct tda1997x_platform_data *pdata = &state->pdata;
2270         struct v4l2_fwnode_endpoint bus_cfg;
2271         struct device_node *ep;
2272         struct device_node *np;
2273         unsigned int flags;
2274         const char *str;
2275         int ret;
2276         u32 v;
2277
2278         /*
2279          * setup default values:
2280          * - HREF: active high from start to end of row
2281          * - VS: Vertical Sync active high at beginning of frame
2282          * - DE: Active high when data valid
2283          * - A_CLK: 128*Fs
2284          */
2285         pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2286         pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2287         pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2288
2289         np = state->client->dev.of_node;
2290         ep = of_graph_get_next_endpoint(np, NULL);
2291         if (!ep)
2292                 return -EINVAL;
2293
2294         ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2295         if (ret) {
2296                 of_node_put(ep);
2297                 return ret;
2298         }
2299         of_node_put(ep);
2300         pdata->vidout_bus_type = bus_cfg.bus_type;
2301
2302         /* polarity of HS/VS/DE */
2303         flags = bus_cfg.bus.parallel.flags;
2304         if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2305                 pdata->vidout_inv_hs = 1;
2306         if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2307                 pdata->vidout_inv_vs = 1;
2308         if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2309                 pdata->vidout_inv_de = 1;
2310         pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2311
2312         /* video output port config */
2313         ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2314         if (ret > 0) {
2315                 u32 reg, val, i;
2316
2317                 for (i = 0; i < ret / 2 && i < 9; i++) {
2318                         of_property_read_u32_index(np, "nxp,vidout-portcfg",
2319                                                    i * 2, &reg);
2320                         of_property_read_u32_index(np, "nxp,vidout-portcfg",
2321                                                    i * 2 + 1, &val);
2322                         if (reg < 9)
2323                                 pdata->vidout_port_cfg[reg] = val;
2324                 }
2325         } else {
2326                 v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2327                 return -EINVAL;
2328         }
2329
2330         /* default to channel layout dictated by packet header */
2331         pdata->audout_layoutauto = true;
2332
2333         pdata->audout_format = AUDFMT_TYPE_DISABLED;
2334         if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2335                 if (strcmp(str, "i2s") == 0)
2336                         pdata->audout_format = AUDFMT_TYPE_I2S;
2337                 else if (strcmp(str, "spdif") == 0)
2338                         pdata->audout_format = AUDFMT_TYPE_SPDIF;
2339                 else {
2340                         v4l_err(state->client, "nxp,audout-format invalid\n");
2341                         return -EINVAL;
2342                 }
2343                 if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2344                         switch (v) {
2345                         case 0:
2346                         case 1:
2347                                 break;
2348                         default:
2349                                 v4l_err(state->client,
2350                                         "nxp,audout-layout invalid\n");
2351                                 return -EINVAL;
2352                         }
2353                         pdata->audout_layout = v;
2354                 }
2355                 if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2356                         switch (v) {
2357                         case 16:
2358                         case 32:
2359                                 break;
2360                         default:
2361                                 v4l_err(state->client,
2362                                         "nxp,audout-width invalid\n");
2363                                 return -EINVAL;
2364                         }
2365                         pdata->audout_width = v;
2366                 }
2367                 if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2368                         switch (v) {
2369                         case 512:
2370                         case 256:
2371                         case 128:
2372                         case 64:
2373                         case 32:
2374                         case 16:
2375                                 break;
2376                         default:
2377                                 v4l_err(state->client,
2378                                         "nxp,audout-mclk-fs invalid\n");
2379                                 return -EINVAL;
2380                         }
2381                         pdata->audout_mclk_fs = v;
2382                 }
2383         }
2384
2385         return 0;
2386 }
2387
2388 static int tda1997x_get_regulators(struct tda1997x_state *state)
2389 {
2390         int i;
2391
2392         for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2393                 state->supplies[i].supply = tda1997x_supply_name[i];
2394
2395         return devm_regulator_bulk_get(&state->client->dev,
2396                                        TDA1997X_NUM_SUPPLIES,
2397                                        state->supplies);
2398 }
2399
2400 static int tda1997x_identify_module(struct tda1997x_state *state)
2401 {
2402         struct v4l2_subdev *sd = &state->sd;
2403         enum tda1997x_type type;
2404         u8 reg;
2405
2406         /* Read chip configuration*/
2407         reg = io_read(sd, REG_CMTP_REG10);
2408         state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2409         state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2410         state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2411         state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2412         switch ((reg >> 4) & 0x03) {
2413         case 0x00:
2414                 type = TDA19971;
2415                 break;
2416         case 0x02:
2417         case 0x03:
2418                 type = TDA19973;
2419                 break;
2420         default:
2421                 dev_err(&state->client->dev, "unsupported chip ID\n");
2422                 return -EIO;
2423         }
2424         if (state->info->type != type) {
2425                 dev_err(&state->client->dev, "chip id mismatch\n");
2426                 return -EIO;
2427         }
2428
2429         /* read chip revision */
2430         state->chip_revision = io_read(sd, REG_CMTP_REG11);
2431
2432         return 0;
2433 }
2434
2435 static const struct media_entity_operations tda1997x_media_ops = {
2436         .link_validate = v4l2_subdev_link_validate,
2437 };
2438
2439
2440 /* -----------------------------------------------------------------------------
2441  * HDMI Audio Codec
2442  */
2443
2444 /* refine sample-rate based on HDMI source */
2445 static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2446                                 struct snd_soc_dai *dai)
2447 {
2448         struct tda1997x_state *state = snd_soc_dai_get_drvdata(dai);
2449         struct snd_soc_component *component = dai->component;
2450         struct snd_pcm_runtime *rtd = substream->runtime;
2451         int rate, err;
2452
2453         rate = state->audio_samplerate;
2454         err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2455                                            rate, rate);
2456         if (err < 0) {
2457                 dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2458                         rate);
2459                 return err;
2460         }
2461         dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2462
2463         return 0;
2464 }
2465
2466 static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2467         .startup = tda1997x_pcm_startup,
2468 };
2469
2470 static struct snd_soc_dai_driver tda1997x_audio_dai = {
2471         .name = "tda1997x",
2472         .capture = {
2473                 .stream_name = "Capture",
2474                 .channels_min = 2,
2475                 .channels_max = 8,
2476                 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2477                          SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2478                          SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2479                          SNDRV_PCM_RATE_192000,
2480         },
2481         .ops = &tda1997x_dai_ops,
2482 };
2483
2484 static int tda1997x_codec_probe(struct snd_soc_component *component)
2485 {
2486         return 0;
2487 }
2488
2489 static void tda1997x_codec_remove(struct snd_soc_component *component)
2490 {
2491 }
2492
2493 static struct snd_soc_component_driver tda1997x_codec_driver = {
2494         .probe                  = tda1997x_codec_probe,
2495         .remove                 = tda1997x_codec_remove,
2496         .idle_bias_on           = 1,
2497         .use_pmdown_time        = 1,
2498         .endianness             = 1,
2499         .non_legacy_dai_naming  = 1,
2500 };
2501
2502 static int tda1997x_probe(struct i2c_client *client,
2503                          const struct i2c_device_id *id)
2504 {
2505         struct tda1997x_state *state;
2506         struct tda1997x_platform_data *pdata;
2507         struct v4l2_subdev *sd;
2508         struct v4l2_ctrl_handler *hdl;
2509         struct v4l2_ctrl *ctrl;
2510         static const struct v4l2_dv_timings cea1920x1080 =
2511                 V4L2_DV_BT_CEA_1920X1080P60;
2512         u32 *mbus_codes;
2513         int i, ret;
2514
2515         /* Check if the adapter supports the needed features */
2516         if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2517                 return -EIO;
2518
2519         state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2520         if (!state)
2521                 return -ENOMEM;
2522
2523         state->client = client;
2524         pdata = &state->pdata;
2525         if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2526                 const struct of_device_id *oid;
2527
2528                 oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2529                 state->info = oid->data;
2530
2531                 ret = tda1997x_parse_dt(state);
2532                 if (ret < 0) {
2533                         v4l_err(client, "DT parsing error\n");
2534                         goto err_free_state;
2535                 }
2536         } else if (client->dev.platform_data) {
2537                 struct tda1997x_platform_data *pdata =
2538                         client->dev.platform_data;
2539                 state->info =
2540                         (const struct tda1997x_chip_info *)id->driver_data;
2541                 state->pdata = *pdata;
2542         } else {
2543                 v4l_err(client, "No platform data\n");
2544                 ret = -ENODEV;
2545                 goto err_free_state;
2546         }
2547
2548         ret = tda1997x_get_regulators(state);
2549         if (ret)
2550                 goto err_free_state;
2551
2552         ret = tda1997x_set_power(state, 1);
2553         if (ret)
2554                 goto err_free_state;
2555
2556         mutex_init(&state->page_lock);
2557         mutex_init(&state->lock);
2558         state->page = 0xff;
2559
2560         INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2561                           tda1997x_delayed_work_enable_hpd);
2562
2563         /* set video format based on chip and bus width */
2564         ret = tda1997x_identify_module(state);
2565         if (ret)
2566                 goto err_free_mutex;
2567
2568         /* initialize subdev */
2569         sd = &state->sd;
2570         v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2571         snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2572                  id->name, i2c_adapter_id(client->adapter),
2573                  client->addr);
2574         sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2575         sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2576         sd->entity.ops = &tda1997x_media_ops;
2577
2578         /* set allowed mbus modes based on chip, bus-type, and bus-width */
2579         i = 0;
2580         mbus_codes = state->mbus_codes;
2581         switch (state->info->type) {
2582         case TDA19973:
2583                 switch (pdata->vidout_bus_type) {
2584                 case V4L2_MBUS_PARALLEL:
2585                         switch (pdata->vidout_bus_width) {
2586                         case 36:
2587                                 mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2588                                 mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2589                                 /* fall-through */
2590                         case 24:
2591                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2592                                 break;
2593                         }
2594                         break;
2595                 case V4L2_MBUS_BT656:
2596                         switch (pdata->vidout_bus_width) {
2597                         case 36:
2598                         case 24:
2599                         case 12:
2600                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2601                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2602                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2603                                 break;
2604                         }
2605                         break;
2606                 default:
2607                         break;
2608                 }
2609                 break;
2610         case TDA19971:
2611                 switch (pdata->vidout_bus_type) {
2612                 case V4L2_MBUS_PARALLEL:
2613                         switch (pdata->vidout_bus_width) {
2614                         case 24:
2615                                 mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2616                                 mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2617                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2618                                 /* fall through */
2619                         case 20:
2620                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2621                                 /* fall through */
2622                         case 16:
2623                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2624                                 break;
2625                         }
2626                         break;
2627                 case V4L2_MBUS_BT656:
2628                         switch (pdata->vidout_bus_width) {
2629                         case 24:
2630                         case 20:
2631                         case 16:
2632                         case 12:
2633                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2634                                 /* fall through */
2635                         case 10:
2636                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2637                                 /* fall through */
2638                         case 8:
2639                                 mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2640                                 break;
2641                         }
2642                         break;
2643                 default:
2644                         break;
2645                 }
2646                 break;
2647         }
2648         if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2649                 ret = -EINVAL;
2650                 goto err_free_mutex;
2651         }
2652
2653         /* default format */
2654         tda1997x_setup_format(state, state->mbus_codes[0]);
2655         state->timings = cea1920x1080;
2656
2657         /*
2658          * default to SRGB full range quantization
2659          * (in case we don't get an infoframe such as DVI signal
2660          */
2661         state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2662         state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2663
2664         /* disable/reset HDCP to get correct I2C access to Rx HDMI */
2665         io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2666
2667         /*
2668          * if N2 version, reset compdel_bp as it may generate some small pixel
2669          * shifts in case of embedded sync/or delay lower than 4
2670          */
2671         if (state->chip_revision != 0) {
2672                 io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2673                 io_write(sd, REG_VDP_CTRL, 0x1f);
2674         }
2675
2676         v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2677                  state->chip_revision + 1);
2678         v4l_info(client, "video: %dbit %s %d formats available\n",
2679                 pdata->vidout_bus_width,
2680                 (pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2681                         "parallel" : "BT656",
2682                 i);
2683         if (pdata->audout_format) {
2684                 v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2685                          pdata->audout_layout ? 2 : 8,
2686                          audfmt_names[pdata->audout_format],
2687                          pdata->audout_layout,
2688                          pdata->audout_mclk_fs);
2689         }
2690
2691         ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2692         state->client_cec = i2c_new_dummy(client->adapter, ret);
2693         v4l_info(client, "CEC slave address 0x%02x\n", ret);
2694
2695         ret = tda1997x_core_init(sd);
2696         if (ret)
2697                 goto err_free_mutex;
2698
2699         /* control handlers */
2700         hdl = &state->hdl;
2701         v4l2_ctrl_handler_init(hdl, 3);
2702         ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2703                         V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2704                         V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2705                         V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2706         if (ctrl)
2707                 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2708         /* custom controls */
2709         state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2710                         V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2711         state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2712                         &tda1997x_ctrl_ops,
2713                         V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2714                         V4L2_DV_RGB_RANGE_AUTO);
2715         state->sd.ctrl_handler = hdl;
2716         if (hdl->error) {
2717                 ret = hdl->error;
2718                 goto err_free_handler;
2719         }
2720         v4l2_ctrl_handler_setup(hdl);
2721
2722         /* initialize source pads */
2723         state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2724         ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2725                 state->pads);
2726         if (ret) {
2727                 v4l_err(client, "failed entity_init: %d", ret);
2728                 goto err_free_handler;
2729         }
2730
2731         ret = v4l2_async_register_subdev(sd);
2732         if (ret)
2733                 goto err_free_media;
2734
2735         /* register audio DAI */
2736         if (pdata->audout_format) {
2737                 u64 formats;
2738
2739                 if (pdata->audout_width == 32)
2740                         formats = SNDRV_PCM_FMTBIT_S32_LE;
2741                 else
2742                         formats = SNDRV_PCM_FMTBIT_S16_LE;
2743                 tda1997x_audio_dai.capture.formats = formats;
2744                 ret = devm_snd_soc_register_component(&state->client->dev,
2745                                              &tda1997x_codec_driver,
2746                                              &tda1997x_audio_dai, 1);
2747                 if (ret) {
2748                         dev_err(&client->dev, "register audio codec failed\n");
2749                         goto err_free_media;
2750                 }
2751                 dev_set_drvdata(&state->client->dev, state);
2752                 v4l_info(state->client, "registered audio codec\n");
2753         }
2754
2755         /* request irq */
2756         ret = devm_request_threaded_irq(&client->dev, client->irq,
2757                                         NULL, tda1997x_isr_thread,
2758                                         IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2759                                         KBUILD_MODNAME, state);
2760         if (ret) {
2761                 v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2762                 goto err_free_media;
2763         }
2764
2765         return 0;
2766
2767 err_free_media:
2768         media_entity_cleanup(&sd->entity);
2769 err_free_handler:
2770         v4l2_ctrl_handler_free(&state->hdl);
2771 err_free_mutex:
2772         cancel_delayed_work(&state->delayed_work_enable_hpd);
2773         mutex_destroy(&state->page_lock);
2774         mutex_destroy(&state->lock);
2775 err_free_state:
2776         kfree(state);
2777         dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2778
2779         return ret;
2780 }
2781
2782 static int tda1997x_remove(struct i2c_client *client)
2783 {
2784         struct v4l2_subdev *sd = i2c_get_clientdata(client);
2785         struct tda1997x_state *state = to_state(sd);
2786         struct tda1997x_platform_data *pdata = &state->pdata;
2787
2788         if (pdata->audout_format) {
2789                 mutex_destroy(&state->audio_lock);
2790         }
2791
2792         disable_irq(state->client->irq);
2793         tda1997x_power_mode(state, 0);
2794
2795         v4l2_async_unregister_subdev(sd);
2796         media_entity_cleanup(&sd->entity);
2797         v4l2_ctrl_handler_free(&state->hdl);
2798         regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2799         i2c_unregister_device(state->client_cec);
2800         cancel_delayed_work(&state->delayed_work_enable_hpd);
2801         mutex_destroy(&state->page_lock);
2802         mutex_destroy(&state->lock);
2803
2804         kfree(state);
2805
2806         return 0;
2807 }
2808
2809 static struct i2c_driver tda1997x_i2c_driver = {
2810         .driver = {
2811                 .name = "tda1997x",
2812                 .of_match_table = of_match_ptr(tda1997x_of_id),
2813         },
2814         .probe = tda1997x_probe,
2815         .remove = tda1997x_remove,
2816         .id_table = tda1997x_i2c_id,
2817 };
2818
2819 module_i2c_driver(tda1997x_i2c_driver);
2820
2821 MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2822 MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2823 MODULE_LICENSE("GPL v2");