GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/smiapp/smiapp-core.c
4  *
5  * Generic driver for SMIA/SMIA++ compliant camera modules
6  *
7  * Copyright (C) 2010--2012 Nokia Corporation
8  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9  *
10  * Based on smiapp driver by Vimarsh Zutshi
11  * Based on jt8ev1.c by Vimarsh Zutshi
12  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13  */
14
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/gpio.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/slab.h>
25 #include <linux/smiapp.h>
26 #include <linux/v4l2-mediabus.h>
27 #include <media/v4l2-fwnode.h>
28 #include <media/v4l2-device.h>
29
30 #include "smiapp.h"
31
32 #define SMIAPP_ALIGN_DIM(dim, flags)    \
33         ((flags) & V4L2_SEL_FLAG_GE     \
34          ? ALIGN((dim), 2)              \
35          : (dim) & ~1)
36
37 /*
38  * smiapp_module_idents - supported camera modules
39  */
40 static const struct smiapp_module_ident smiapp_module_idents[] = {
41         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
42         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
43         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
44         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
45         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
46         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
47         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
48         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
49         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
50         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
51         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
52 };
53
54 /*
55  *
56  * Dynamic Capability Identification
57  *
58  */
59
60 static u32 smiapp_get_limit(struct smiapp_sensor *sensor,
61                                  unsigned int limit)
62 {
63         if (WARN_ON(limit >= SMIAPP_LIMIT_LAST))
64                 return 1;
65
66         return sensor->limits[limit];
67 }
68
69 #define SMIA_LIM(sensor, limit) \
70         smiapp_get_limit(sensor, SMIAPP_LIMIT_##limit)
71
72 static int smiapp_read_all_smia_limits(struct smiapp_sensor *sensor)
73 {
74         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
75         unsigned int i;
76         int rval;
77
78         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
79                 u32 val;
80
81                 rval = smiapp_read(
82                         sensor, smiapp_reg_limits[i].addr, &val);
83                 if (rval)
84                         return rval;
85
86                 sensor->limits[i] = val;
87
88                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
89                         smiapp_reg_limits[i].addr,
90                         smiapp_reg_limits[i].what, val, val);
91         }
92
93         if (SMIA_LIM(sensor, SCALER_N_MIN) == 0)
94                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
95
96         return 0;
97 }
98
99 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
100 {
101         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
102         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
103         unsigned int i;
104         int pixel_count = 0;
105         int line_count = 0;
106         int rval;
107
108         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
109                            &fmt_model_type);
110         if (rval)
111                 return rval;
112
113         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
114                            &fmt_model_subtype);
115         if (rval)
116                 return rval;
117
118         ncol_desc = (fmt_model_subtype
119                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
120                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
121         nrow_desc = fmt_model_subtype
122                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
123
124         dev_dbg(&client->dev, "format_model_type %s\n",
125                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
126                 ? "2 byte" :
127                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
128                 ? "4 byte" : "is simply bad");
129
130         for (i = 0; i < ncol_desc + nrow_desc; i++) {
131                 u32 desc;
132                 u32 pixelcode;
133                 u32 pixels;
134                 char *which;
135                 char *what;
136                 u32 reg;
137
138                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
139                         reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
140                         rval = smiapp_read(sensor, reg, &desc);
141                         if (rval)
142                                 return rval;
143
144                         pixelcode =
145                                 (desc
146                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
147                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
148                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
149                 } else if (fmt_model_type
150                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
151                         reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
152                         rval = smiapp_read(sensor, reg, &desc);
153                         if (rval)
154                                 return rval;
155
156                         pixelcode =
157                                 (desc
158                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
159                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
160                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
161                 } else {
162                         dev_dbg(&client->dev,
163                                 "invalid frame format model type %d\n",
164                                 fmt_model_type);
165                         return -EINVAL;
166                 }
167
168                 if (i < ncol_desc)
169                         which = "columns";
170                 else
171                         which = "rows";
172
173                 switch (pixelcode) {
174                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
175                         what = "embedded";
176                         break;
177                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
178                         what = "dummy";
179                         break;
180                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
181                         what = "black";
182                         break;
183                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
184                         what = "dark";
185                         break;
186                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
187                         what = "visible";
188                         break;
189                 default:
190                         what = "invalid";
191                         break;
192                 }
193
194                 dev_dbg(&client->dev,
195                         "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
196                         what, pixels, which, pixelcode);
197
198                 if (i < ncol_desc) {
199                         if (pixelcode ==
200                             SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
201                                 sensor->visible_pixel_start = pixel_count;
202                         pixel_count += pixels;
203                         continue;
204                 }
205
206                 /* Handle row descriptors */
207                 switch (pixelcode) {
208                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
209                         if (sensor->embedded_end)
210                                 break;
211                         sensor->embedded_start = line_count;
212                         sensor->embedded_end = line_count + pixels;
213                         break;
214                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
215                         sensor->image_start = line_count;
216                         break;
217                 }
218                 line_count += pixels;
219         }
220
221         if (sensor->embedded_end > sensor->image_start) {
222                 dev_dbg(&client->dev,
223                         "adjusting image start line to %u (was %u)\n",
224                         sensor->embedded_end, sensor->image_start);
225                 sensor->image_start = sensor->embedded_end;
226         }
227
228         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
229                 sensor->embedded_start, sensor->embedded_end);
230         dev_dbg(&client->dev, "image data starts at line %d\n",
231                 sensor->image_start);
232
233         return 0;
234 }
235
236 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
237 {
238         struct smiapp_pll *pll = &sensor->pll;
239         int rval;
240
241         rval = smiapp_write(
242                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
243         if (rval < 0)
244                 return rval;
245
246         rval = smiapp_write(
247                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
248         if (rval < 0)
249                 return rval;
250
251         rval = smiapp_write(
252                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
253         if (rval < 0)
254                 return rval;
255
256         rval = smiapp_write(
257                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
258         if (rval < 0)
259                 return rval;
260
261         /* Lane op clock ratio does not apply here. */
262         rval = smiapp_write(
263                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
264                 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
265         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
266                 return rval;
267
268         rval = smiapp_write(
269                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
270         if (rval < 0)
271                 return rval;
272
273         return smiapp_write(
274                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
275 }
276
277 static int smiapp_pll_try(struct smiapp_sensor *sensor,
278                           struct smiapp_pll *pll)
279 {
280         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
281         struct smiapp_pll_limits lim = {
282                 .min_pre_pll_clk_div = SMIA_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
283                 .max_pre_pll_clk_div = SMIA_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
284                 .min_pll_ip_freq_hz = SMIA_LIM(sensor, MIN_PLL_IP_FREQ_HZ),
285                 .max_pll_ip_freq_hz = SMIA_LIM(sensor, MAX_PLL_IP_FREQ_HZ),
286                 .min_pll_multiplier = SMIA_LIM(sensor, MIN_PLL_MULTIPLIER),
287                 .max_pll_multiplier = SMIA_LIM(sensor, MAX_PLL_MULTIPLIER),
288                 .min_pll_op_freq_hz = SMIA_LIM(sensor, MIN_PLL_OP_FREQ_HZ),
289                 .max_pll_op_freq_hz = SMIA_LIM(sensor, MAX_PLL_OP_FREQ_HZ),
290
291                 .op.min_sys_clk_div = SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV),
292                 .op.max_sys_clk_div = SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV),
293                 .op.min_pix_clk_div = SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV),
294                 .op.max_pix_clk_div = SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV),
295                 .op.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_SYS_CLK_FREQ_HZ),
296                 .op.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_SYS_CLK_FREQ_HZ),
297                 .op.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_PIX_CLK_FREQ_HZ),
298                 .op.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_PIX_CLK_FREQ_HZ),
299
300                 .vt.min_sys_clk_div = SMIA_LIM(sensor, MIN_VT_SYS_CLK_DIV),
301                 .vt.max_sys_clk_div = SMIA_LIM(sensor, MAX_VT_SYS_CLK_DIV),
302                 .vt.min_pix_clk_div = SMIA_LIM(sensor, MIN_VT_PIX_CLK_DIV),
303                 .vt.max_pix_clk_div = SMIA_LIM(sensor, MAX_VT_PIX_CLK_DIV),
304                 .vt.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_SYS_CLK_FREQ_HZ),
305                 .vt.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_SYS_CLK_FREQ_HZ),
306                 .vt.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_PIX_CLK_FREQ_HZ),
307                 .vt.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_PIX_CLK_FREQ_HZ),
308
309                 .min_line_length_pck_bin = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
310                 .min_line_length_pck = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK),
311         };
312
313         return smiapp_pll_calculate(&client->dev, &lim, pll);
314 }
315
316 static int smiapp_pll_update(struct smiapp_sensor *sensor)
317 {
318         struct smiapp_pll *pll = &sensor->pll;
319         int rval;
320
321         pll->binning_horizontal = sensor->binning_horizontal;
322         pll->binning_vertical = sensor->binning_vertical;
323         pll->link_freq =
324                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
325         pll->scale_m = sensor->scale_m;
326         pll->bits_per_pixel = sensor->csi_format->compressed;
327
328         rval = smiapp_pll_try(sensor, pll);
329         if (rval < 0)
330                 return rval;
331
332         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
333                                  pll->pixel_rate_pixel_array);
334         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
335
336         return 0;
337 }
338
339
340 /*
341  *
342  * V4L2 Controls handling
343  *
344  */
345
346 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
347 {
348         struct v4l2_ctrl *ctrl = sensor->exposure;
349         int max;
350
351         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
352                 + sensor->vblank->val
353                 - SMIA_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
354
355         __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
356 }
357
358 /*
359  * Order matters.
360  *
361  * 1. Bits-per-pixel, descending.
362  * 2. Bits-per-pixel compressed, descending.
363  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
364  *    orders must be defined.
365  */
366 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
367         { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
368         { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
369         { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
370         { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
371         { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
372         { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
373         { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
374         { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
375         { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
376         { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
377         { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
378         { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
379         { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
380         { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
381         { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
382         { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
383         { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
384         { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
385         { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
386         { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
387         { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
388         { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
389         { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
390         { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
391 };
392
393 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
394
395 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
396                                  - (unsigned long)smiapp_csi_data_formats) \
397                                 / sizeof(*smiapp_csi_data_formats))
398
399 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
400 {
401         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
402         int flip = 0;
403
404         if (sensor->hflip) {
405                 if (sensor->hflip->val)
406                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
407
408                 if (sensor->vflip->val)
409                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
410         }
411
412         flip ^= sensor->hvflip_inv_mask;
413
414         dev_dbg(&client->dev, "flip %d\n", flip);
415         return sensor->default_pixel_order ^ flip;
416 }
417
418 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
419 {
420         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
421         unsigned int csi_format_idx =
422                 to_csi_format_idx(sensor->csi_format) & ~3;
423         unsigned int internal_csi_format_idx =
424                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
425         unsigned int pixel_order = smiapp_pixel_order(sensor);
426
427         sensor->mbus_frame_fmts =
428                 sensor->default_mbus_frame_fmts << pixel_order;
429         sensor->csi_format =
430                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
431         sensor->internal_csi_format =
432                 &smiapp_csi_data_formats[internal_csi_format_idx
433                                          + pixel_order];
434
435         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
436                >= ARRAY_SIZE(smiapp_csi_data_formats));
437
438         dev_dbg(&client->dev, "new pixel order %s\n",
439                 pixel_order_str[pixel_order]);
440 }
441
442 static const char * const smiapp_test_patterns[] = {
443         "Disabled",
444         "Solid Colour",
445         "Eight Vertical Colour Bars",
446         "Colour Bars With Fade to Grey",
447         "Pseudorandom Sequence (PN9)",
448 };
449
450 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
451 {
452         struct smiapp_sensor *sensor =
453                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
454                         ->sensor;
455         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
456         int pm_status;
457         u32 orient = 0;
458         unsigned int i;
459         int exposure;
460         int rval;
461
462         switch (ctrl->id) {
463         case V4L2_CID_HFLIP:
464         case V4L2_CID_VFLIP:
465                 if (sensor->streaming)
466                         return -EBUSY;
467
468                 if (sensor->hflip->val)
469                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
470
471                 if (sensor->vflip->val)
472                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
473
474                 orient ^= sensor->hvflip_inv_mask;
475
476                 smiapp_update_mbus_formats(sensor);
477
478                 break;
479         case V4L2_CID_VBLANK:
480                 exposure = sensor->exposure->val;
481
482                 __smiapp_update_exposure_limits(sensor);
483
484                 if (exposure > sensor->exposure->maximum) {
485                         sensor->exposure->val = sensor->exposure->maximum;
486                         rval = smiapp_set_ctrl(sensor->exposure);
487                         if (rval < 0)
488                                 return rval;
489                 }
490
491                 break;
492         case V4L2_CID_LINK_FREQ:
493                 if (sensor->streaming)
494                         return -EBUSY;
495
496                 rval = smiapp_pll_update(sensor);
497                 if (rval)
498                         return rval;
499
500                 return 0;
501         case V4L2_CID_TEST_PATTERN:
502                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
503                         v4l2_ctrl_activate(
504                                 sensor->test_data[i],
505                                 ctrl->val ==
506                                 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
507
508                 break;
509         }
510
511         pm_status = pm_runtime_get_if_active(&client->dev, true);
512         if (!pm_status)
513                 return 0;
514
515         switch (ctrl->id) {
516         case V4L2_CID_ANALOGUE_GAIN:
517                 rval = smiapp_write(
518                         sensor,
519                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
520
521                 break;
522         case V4L2_CID_EXPOSURE:
523                 rval = smiapp_write(
524                         sensor,
525                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
526
527                 break;
528         case V4L2_CID_HFLIP:
529         case V4L2_CID_VFLIP:
530                 rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
531                                     orient);
532
533                 break;
534         case V4L2_CID_VBLANK:
535                 rval = smiapp_write(
536                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
537                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
538                         + ctrl->val);
539
540                 break;
541         case V4L2_CID_HBLANK:
542                 rval = smiapp_write(
543                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
544                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
545                         + ctrl->val);
546
547                 break;
548         case V4L2_CID_TEST_PATTERN:
549                 rval = smiapp_write(
550                         sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
551
552                 break;
553         case V4L2_CID_TEST_PATTERN_RED:
554                 rval = smiapp_write(
555                         sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
556
557                 break;
558         case V4L2_CID_TEST_PATTERN_GREENR:
559                 rval = smiapp_write(
560                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
561
562                 break;
563         case V4L2_CID_TEST_PATTERN_BLUE:
564                 rval = smiapp_write(
565                         sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
566
567                 break;
568         case V4L2_CID_TEST_PATTERN_GREENB:
569                 rval = smiapp_write(
570                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
571
572                 break;
573         case V4L2_CID_PIXEL_RATE:
574                 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
575                 rval = 0;
576
577                 break;
578         default:
579                 rval = -EINVAL;
580         }
581
582         if (pm_status > 0) {
583                 pm_runtime_mark_last_busy(&client->dev);
584                 pm_runtime_put_autosuspend(&client->dev);
585         }
586
587         return rval;
588 }
589
590 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
591         .s_ctrl = smiapp_set_ctrl,
592 };
593
594 static int smiapp_init_controls(struct smiapp_sensor *sensor)
595 {
596         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
597         int rval;
598
599         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
600         if (rval)
601                 return rval;
602
603         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
604
605         sensor->analog_gain = v4l2_ctrl_new_std(
606                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
607                 V4L2_CID_ANALOGUE_GAIN,
608                 SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN),
609                 SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MAX),
610                 max(SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_STEP), 1U),
611                 SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN));
612
613         /* Exposure limits will be updated soon, use just something here. */
614         sensor->exposure = v4l2_ctrl_new_std(
615                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
616                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
617
618         sensor->hflip = v4l2_ctrl_new_std(
619                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
620                 V4L2_CID_HFLIP, 0, 1, 1, 0);
621         sensor->vflip = v4l2_ctrl_new_std(
622                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
623                 V4L2_CID_VFLIP, 0, 1, 1, 0);
624
625         sensor->vblank = v4l2_ctrl_new_std(
626                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
627                 V4L2_CID_VBLANK, 0, 1, 1, 0);
628
629         if (sensor->vblank)
630                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
631
632         sensor->hblank = v4l2_ctrl_new_std(
633                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
634                 V4L2_CID_HBLANK, 0, 1, 1, 0);
635
636         if (sensor->hblank)
637                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
638
639         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
640                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
641                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
642
643         v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
644                                      &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
645                                      ARRAY_SIZE(smiapp_test_patterns) - 1,
646                                      0, 0, smiapp_test_patterns);
647
648         if (sensor->pixel_array->ctrl_handler.error) {
649                 dev_err(&client->dev,
650                         "pixel array controls initialization failed (%d)\n",
651                         sensor->pixel_array->ctrl_handler.error);
652                 return sensor->pixel_array->ctrl_handler.error;
653         }
654
655         sensor->pixel_array->sd.ctrl_handler =
656                 &sensor->pixel_array->ctrl_handler;
657
658         v4l2_ctrl_cluster(2, &sensor->hflip);
659
660         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
661         if (rval)
662                 return rval;
663
664         sensor->src->ctrl_handler.lock = &sensor->mutex;
665
666         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
667                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
668                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
669
670         if (sensor->src->ctrl_handler.error) {
671                 dev_err(&client->dev,
672                         "src controls initialization failed (%d)\n",
673                         sensor->src->ctrl_handler.error);
674                 return sensor->src->ctrl_handler.error;
675         }
676
677         sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
678
679         return 0;
680 }
681
682 /*
683  * For controls that require information on available media bus codes
684  * and linke frequencies.
685  */
686 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
687 {
688         unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
689                 sensor->csi_format->compressed - sensor->compressed_min_bpp];
690         unsigned int i;
691
692         for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
693                 int max_value = (1 << sensor->csi_format->width) - 1;
694
695                 sensor->test_data[i] = v4l2_ctrl_new_std(
696                                 &sensor->pixel_array->ctrl_handler,
697                                 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
698                                 0, max_value, 1, max_value);
699         }
700
701         sensor->link_freq = v4l2_ctrl_new_int_menu(
702                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
703                 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
704                 __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
705
706         return sensor->src->ctrl_handler.error;
707 }
708
709 static void smiapp_free_controls(struct smiapp_sensor *sensor)
710 {
711         unsigned int i;
712
713         for (i = 0; i < sensor->ssds_used; i++)
714                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
715 }
716
717 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
718 {
719         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
720         struct smiapp_pll *pll = &sensor->pll;
721         u8 compressed_max_bpp = 0;
722         unsigned int type, n;
723         unsigned int i, pixel_order;
724         int rval;
725
726         rval = smiapp_read(
727                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
728         if (rval)
729                 return rval;
730
731         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
732
733         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
734                            &pixel_order);
735         if (rval)
736                 return rval;
737
738         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
739                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
740                 return -EINVAL;
741         }
742
743         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
744                 pixel_order_str[pixel_order]);
745
746         switch (type) {
747         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
748                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
749                 break;
750         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
751                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
752                 break;
753         default:
754                 return -EINVAL;
755         }
756
757         sensor->default_pixel_order = pixel_order;
758         sensor->mbus_frame_fmts = 0;
759
760         for (i = 0; i < n; i++) {
761                 unsigned int fmt, j;
762
763                 rval = smiapp_read(
764                         sensor,
765                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
766                 if (rval)
767                         return rval;
768
769                 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
770                         i, fmt >> 8, (u8)fmt);
771
772                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
773                         const struct smiapp_csi_data_format *f =
774                                 &smiapp_csi_data_formats[j];
775
776                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
777                                 continue;
778
779                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
780                                 continue;
781
782                         dev_dbg(&client->dev, "jolly good! %d\n", j);
783
784                         sensor->default_mbus_frame_fmts |= 1 << j;
785                 }
786         }
787
788         /* Figure out which BPP values can be used with which formats. */
789         pll->binning_horizontal = 1;
790         pll->binning_vertical = 1;
791         pll->scale_m = sensor->scale_m;
792
793         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
794                 sensor->compressed_min_bpp =
795                         min(smiapp_csi_data_formats[i].compressed,
796                             sensor->compressed_min_bpp);
797                 compressed_max_bpp =
798                         max(smiapp_csi_data_formats[i].compressed,
799                             compressed_max_bpp);
800         }
801
802         sensor->valid_link_freqs = devm_kcalloc(
803                 &client->dev,
804                 compressed_max_bpp - sensor->compressed_min_bpp + 1,
805                 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
806         if (!sensor->valid_link_freqs)
807                 return -ENOMEM;
808
809         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
810                 const struct smiapp_csi_data_format *f =
811                         &smiapp_csi_data_formats[i];
812                 unsigned long *valid_link_freqs =
813                         &sensor->valid_link_freqs[
814                                 f->compressed - sensor->compressed_min_bpp];
815                 unsigned int j;
816
817                 if (!(sensor->default_mbus_frame_fmts & 1 << i))
818                         continue;
819
820                 pll->bits_per_pixel = f->compressed;
821
822                 for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
823                         pll->link_freq = sensor->hwcfg->op_sys_clock[j];
824
825                         rval = smiapp_pll_try(sensor, pll);
826                         dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
827                                 pll->link_freq, pll->bits_per_pixel,
828                                 rval ? "not ok" : "ok");
829                         if (rval)
830                                 continue;
831
832                         set_bit(j, valid_link_freqs);
833                 }
834
835                 if (!*valid_link_freqs) {
836                         dev_info(&client->dev,
837                                  "no valid link frequencies for %u bpp\n",
838                                  f->compressed);
839                         sensor->default_mbus_frame_fmts &= ~BIT(i);
840                         continue;
841                 }
842
843                 if (!sensor->csi_format
844                     || f->width > sensor->csi_format->width
845                     || (f->width == sensor->csi_format->width
846                         && f->compressed > sensor->csi_format->compressed)) {
847                         sensor->csi_format = f;
848                         sensor->internal_csi_format = f;
849                 }
850         }
851
852         if (!sensor->csi_format) {
853                 dev_err(&client->dev, "no supported mbus code found\n");
854                 return -EINVAL;
855         }
856
857         smiapp_update_mbus_formats(sensor);
858
859         return 0;
860 }
861
862 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
863 {
864         struct v4l2_ctrl *vblank = sensor->vblank;
865         struct v4l2_ctrl *hblank = sensor->hblank;
866         uint16_t min_fll, max_fll, min_llp, max_llp, min_lbp;
867         int min, max;
868
869         if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
870                 min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
871                 max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
872                 min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
873                 max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
874                 min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
875         } else {
876                 min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES);
877                 max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES);
878                 min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK);
879                 max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK);
880                 min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK);
881         }
882
883         min = max_t(int,
884                     SMIA_LIM(sensor, MIN_FRAME_BLANKING_LINES),
885                     min_fll -
886                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
887         max = max_fll - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
888
889         __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
890
891         min = max_t(int,
892                     min_llp -
893                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
894                     min_lbp);
895         max = max_llp - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
896
897         __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
898
899         __smiapp_update_exposure_limits(sensor);
900 }
901
902 static int smiapp_pll_blanking_update(struct smiapp_sensor *sensor)
903 {
904         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
905         int rval;
906
907         rval = smiapp_pll_update(sensor);
908         if (rval < 0)
909                 return rval;
910
911         /* Output from pixel array, including blanking */
912         smiapp_update_blanking(sensor);
913
914         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
915         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
916
917         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
918                 sensor->pll.pixel_rate_pixel_array /
919                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
920                   + sensor->hblank->val) *
921                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
922                   + sensor->vblank->val) / 100));
923
924         return 0;
925 }
926
927 /*
928  *
929  * SMIA++ NVM handling
930  *
931  */
932
933 static int smiapp_read_nvm_page(struct smiapp_sensor *sensor, u32 p, u8 *nvm,
934                                 u8 *status)
935 {
936         unsigned int i;
937         int rval;
938         u32 s;
939
940         *status = 0;
941
942         rval = smiapp_write(sensor,
943                             SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
944         if (rval)
945                 return rval;
946
947         rval = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
948                             SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN);
949         if (rval)
950                 return rval;
951
952         rval = smiapp_read(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
953                            &s);
954         if (rval)
955                 return rval;
956
957         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE) {
958                 *status = s;
959                 return -ENODATA;
960         }
961
962         if (SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
963             SMIAPP_DATA_TRANSFER_IF_CAPABILITY_POLL) {
964                 for (i = 1000; i > 0; i--) {
965                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
966                                 break;
967
968                         rval = smiapp_read(
969                                 sensor,
970                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
971                                 &s);
972
973                         if (rval)
974                                 return rval;
975                 }
976
977                 if (!i)
978                         return -ETIMEDOUT;
979         }
980
981         for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
982                 u32 v;
983
984                 rval = smiapp_read(sensor,
985                                    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
986                                    &v);
987                 if (rval)
988                         return rval;
989
990                 *nvm++ = v;
991         }
992
993         return 0;
994 }
995
996 static int smiapp_read_nvm(struct smiapp_sensor *sensor, unsigned char *nvm,
997                            size_t nvm_size)
998 {
999         u8 status = 0;
1000         u32 p;
1001         int rval = 0, rval2;
1002
1003         for (p = 0; p < nvm_size / SMIAPP_NVM_PAGE_SIZE && !rval; p++) {
1004                 rval = smiapp_read_nvm_page(sensor, p, nvm, &status);
1005                 nvm += SMIAPP_NVM_PAGE_SIZE;
1006         }
1007
1008         if (rval == -ENODATA &&
1009             status & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE)
1010                 rval = 0;
1011
1012         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1013         if (rval < 0)
1014                 return rval;
1015         else
1016                 return rval2 ?: p * SMIAPP_NVM_PAGE_SIZE;
1017 }
1018
1019 /*
1020  *
1021  * SMIA++ CCI address control
1022  *
1023  */
1024 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1025 {
1026         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1027         int rval;
1028         u32 val;
1029
1030         client->addr = sensor->hwcfg->i2c_addr_dfl;
1031
1032         rval = smiapp_write(sensor,
1033                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1034                             sensor->hwcfg->i2c_addr_alt << 1);
1035         if (rval)
1036                 return rval;
1037
1038         client->addr = sensor->hwcfg->i2c_addr_alt;
1039
1040         /* verify addr change went ok */
1041         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1042         if (rval)
1043                 return rval;
1044
1045         if (val != sensor->hwcfg->i2c_addr_alt << 1)
1046                 return -ENODEV;
1047
1048         return 0;
1049 }
1050
1051 /*
1052  *
1053  * SMIA++ Mode Control
1054  *
1055  */
1056 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1057 {
1058         struct smiapp_flash_strobe_parms *strobe_setup;
1059         unsigned int ext_freq = sensor->hwcfg->ext_clk;
1060         u32 tmp;
1061         u32 strobe_adjustment;
1062         u32 strobe_width_high_rs;
1063         int rval;
1064
1065         strobe_setup = sensor->hwcfg->strobe_setup;
1066
1067         /*
1068          * How to calculate registers related to strobe length. Please
1069          * do not change, or if you do at least know what you're
1070          * doing. :-)
1071          *
1072          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1073          *
1074          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1075          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1076          *
1077          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1078          * flash_strobe_adjustment E N, [1 - 0xff]
1079          *
1080          * The formula above is written as below to keep it on one
1081          * line:
1082          *
1083          * l / 10^6 = w / e * a
1084          *
1085          * Let's mark w * a by x:
1086          *
1087          * x = w * a
1088          *
1089          * Thus, we get:
1090          *
1091          * x = l * e / 10^6
1092          *
1093          * The strobe width must be at least as long as requested,
1094          * thus rounding upwards is needed.
1095          *
1096          * x = (l * e + 10^6 - 1) / 10^6
1097          * -----------------------------
1098          *
1099          * Maximum possible accuracy is wanted at all times. Thus keep
1100          * a as small as possible.
1101          *
1102          * Calculate a, assuming maximum w, with rounding upwards:
1103          *
1104          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1105          * -------------------------------------
1106          *
1107          * Thus, we also get w, with that a, with rounding upwards:
1108          *
1109          * w = (x + a - 1) / a
1110          * -------------------
1111          *
1112          * To get limits:
1113          *
1114          * x E [1, (2^16 - 1) * (2^8 - 1)]
1115          *
1116          * Substituting maximum x to the original formula (with rounding),
1117          * the maximum l is thus
1118          *
1119          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1120          *
1121          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1122          * --------------------------------------------------
1123          *
1124          * flash_strobe_length must be clamped between 1 and
1125          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1126          *
1127          * Then,
1128          *
1129          * flash_strobe_adjustment = ((flash_strobe_length *
1130          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1131          *
1132          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1133          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1134          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1135          */
1136         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1137                       1000000 + 1, ext_freq);
1138         strobe_setup->strobe_width_high_us =
1139                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1140
1141         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1142                         1000000 - 1), 1000000ULL);
1143         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1144         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1145                                 strobe_adjustment;
1146
1147         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1148                             strobe_setup->mode);
1149         if (rval < 0)
1150                 goto out;
1151
1152         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1153                             strobe_adjustment);
1154         if (rval < 0)
1155                 goto out;
1156
1157         rval = smiapp_write(
1158                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1159                 strobe_width_high_rs);
1160         if (rval < 0)
1161                 goto out;
1162
1163         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1164                             strobe_setup->strobe_delay);
1165         if (rval < 0)
1166                 goto out;
1167
1168         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1169                             strobe_setup->stobe_start_point);
1170         if (rval < 0)
1171                 goto out;
1172
1173         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1174                             strobe_setup->trigger);
1175
1176 out:
1177         sensor->hwcfg->strobe_setup->trigger = 0;
1178
1179         return rval;
1180 }
1181
1182 /* -----------------------------------------------------------------------------
1183  * Power management
1184  */
1185
1186 static int smiapp_power_on(struct device *dev)
1187 {
1188         struct i2c_client *client = to_i2c_client(dev);
1189         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1190         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1191         /*
1192          * The sub-device related to the I2C device is always the
1193          * source one, i.e. ssds[0].
1194          */
1195         struct smiapp_sensor *sensor =
1196                 container_of(ssd, struct smiapp_sensor, ssds[0]);
1197         unsigned int sleep;
1198         int rval;
1199
1200         rval = regulator_enable(sensor->vana);
1201         if (rval) {
1202                 dev_err(&client->dev, "failed to enable vana regulator\n");
1203                 return rval;
1204         }
1205         usleep_range(1000, 1000);
1206
1207         rval = clk_prepare_enable(sensor->ext_clk);
1208         if (rval < 0) {
1209                 dev_dbg(&client->dev, "failed to enable xclk\n");
1210                 goto out_xclk_fail;
1211         }
1212         usleep_range(1000, 1000);
1213
1214         gpiod_set_value(sensor->xshutdown, 1);
1215
1216         sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1217         usleep_range(sleep, sleep);
1218
1219         /*
1220          * Failures to respond to the address change command have been noticed.
1221          * Those failures seem to be caused by the sensor requiring a longer
1222          * boot time than advertised. An additional 10ms delay seems to work
1223          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1224          * unnecessary. The failures need to be investigated to find a proper
1225          * fix, and a delay will likely need to be added here if the I2C write
1226          * retry hack is reverted before the root cause of the boot time issue
1227          * is found.
1228          */
1229
1230         if (sensor->hwcfg->i2c_addr_alt) {
1231                 rval = smiapp_change_cci_addr(sensor);
1232                 if (rval) {
1233                         dev_err(&client->dev, "cci address change error\n");
1234                         goto out_cci_addr_fail;
1235                 }
1236         }
1237
1238         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1239                             SMIAPP_SOFTWARE_RESET);
1240         if (rval < 0) {
1241                 dev_err(&client->dev, "software reset failed\n");
1242                 goto out_cci_addr_fail;
1243         }
1244
1245         if (sensor->hwcfg->i2c_addr_alt) {
1246                 rval = smiapp_change_cci_addr(sensor);
1247                 if (rval) {
1248                         dev_err(&client->dev, "cci address change error\n");
1249                         goto out_cci_addr_fail;
1250                 }
1251         }
1252
1253         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1254                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1255         if (rval) {
1256                 dev_err(&client->dev, "compression mode set failed\n");
1257                 goto out_cci_addr_fail;
1258         }
1259
1260         rval = smiapp_write(
1261                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1262                 sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1263         if (rval) {
1264                 dev_err(&client->dev, "extclk frequency set failed\n");
1265                 goto out_cci_addr_fail;
1266         }
1267
1268         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1269                             sensor->hwcfg->lanes - 1);
1270         if (rval) {
1271                 dev_err(&client->dev, "csi lane mode set failed\n");
1272                 goto out_cci_addr_fail;
1273         }
1274
1275         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1276                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1277         if (rval) {
1278                 dev_err(&client->dev, "fast standby set failed\n");
1279                 goto out_cci_addr_fail;
1280         }
1281
1282         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1283                             sensor->hwcfg->csi_signalling_mode);
1284         if (rval) {
1285                 dev_err(&client->dev, "csi signalling mode set failed\n");
1286                 goto out_cci_addr_fail;
1287         }
1288
1289         /* DPHY control done by sensor based on requested link rate */
1290         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1291                             SMIAPP_DPHY_CTRL_UI);
1292         if (rval < 0)
1293                 goto out_cci_addr_fail;
1294
1295         rval = smiapp_call_quirk(sensor, post_poweron);
1296         if (rval) {
1297                 dev_err(&client->dev, "post_poweron quirks failed\n");
1298                 goto out_cci_addr_fail;
1299         }
1300
1301         return 0;
1302
1303 out_cci_addr_fail:
1304         gpiod_set_value(sensor->xshutdown, 0);
1305         clk_disable_unprepare(sensor->ext_clk);
1306
1307 out_xclk_fail:
1308         regulator_disable(sensor->vana);
1309
1310         return rval;
1311 }
1312
1313 static int smiapp_power_off(struct device *dev)
1314 {
1315         struct i2c_client *client = to_i2c_client(dev);
1316         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1317         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1318         struct smiapp_sensor *sensor =
1319                 container_of(ssd, struct smiapp_sensor, ssds[0]);
1320
1321         /*
1322          * Currently power/clock to lens are enable/disabled separately
1323          * but they are essentially the same signals. So if the sensor is
1324          * powered off while the lens is powered on the sensor does not
1325          * really see a power off and next time the cci address change
1326          * will fail. So do a soft reset explicitly here.
1327          */
1328         if (sensor->hwcfg->i2c_addr_alt)
1329                 smiapp_write(sensor,
1330                              SMIAPP_REG_U8_SOFTWARE_RESET,
1331                              SMIAPP_SOFTWARE_RESET);
1332
1333         gpiod_set_value(sensor->xshutdown, 0);
1334         clk_disable_unprepare(sensor->ext_clk);
1335         usleep_range(5000, 5000);
1336         regulator_disable(sensor->vana);
1337         sensor->streaming = false;
1338
1339         return 0;
1340 }
1341
1342 /* -----------------------------------------------------------------------------
1343  * Video stream management
1344  */
1345
1346 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1347 {
1348         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1349         unsigned int binning_mode;
1350         int rval;
1351
1352         mutex_lock(&sensor->mutex);
1353
1354         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1355                             (sensor->csi_format->width << 8) |
1356                             sensor->csi_format->compressed);
1357         if (rval)
1358                 goto out;
1359
1360         /* Binning configuration */
1361         if (sensor->binning_horizontal == 1 &&
1362             sensor->binning_vertical == 1) {
1363                 binning_mode = 0;
1364         } else {
1365                 u8 binning_type =
1366                         (sensor->binning_horizontal << 4)
1367                         | sensor->binning_vertical;
1368
1369                 rval = smiapp_write(
1370                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
1371                 if (rval < 0)
1372                         goto out;
1373
1374                 binning_mode = 1;
1375         }
1376         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
1377         if (rval < 0)
1378                 goto out;
1379
1380         /* Set up PLL */
1381         rval = smiapp_pll_configure(sensor);
1382         if (rval)
1383                 goto out;
1384
1385         /* Analog crop start coordinates */
1386         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1387                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1388         if (rval < 0)
1389                 goto out;
1390
1391         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1392                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1393         if (rval < 0)
1394                 goto out;
1395
1396         /* Analog crop end coordinates */
1397         rval = smiapp_write(
1398                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1399                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1400                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1401         if (rval < 0)
1402                 goto out;
1403
1404         rval = smiapp_write(
1405                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1406                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1407                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1408         if (rval < 0)
1409                 goto out;
1410
1411         /*
1412          * Output from pixel array, including blanking, is set using
1413          * controls below. No need to set here.
1414          */
1415
1416         /* Digital crop */
1417         if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1418             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1419                 rval = smiapp_write(
1420                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1421                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1422                 if (rval < 0)
1423                         goto out;
1424
1425                 rval = smiapp_write(
1426                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1427                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1428                 if (rval < 0)
1429                         goto out;
1430
1431                 rval = smiapp_write(
1432                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1433                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1434                 if (rval < 0)
1435                         goto out;
1436
1437                 rval = smiapp_write(
1438                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1439                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1440                 if (rval < 0)
1441                         goto out;
1442         }
1443
1444         /* Scaling */
1445         if (SMIA_LIM(sensor, SCALING_CAPABILITY)
1446             != SMIAPP_SCALING_CAPABILITY_NONE) {
1447                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1448                                     sensor->scaling_mode);
1449                 if (rval < 0)
1450                         goto out;
1451
1452                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1453                                     sensor->scale_m);
1454                 if (rval < 0)
1455                         goto out;
1456         }
1457
1458         /* Output size from sensor */
1459         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1460                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1461         if (rval < 0)
1462                 goto out;
1463         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1464                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1465         if (rval < 0)
1466                 goto out;
1467
1468         if ((SMIA_LIM(sensor, FLASH_MODE_CAPABILITY) &
1469              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1470               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1471             sensor->hwcfg->strobe_setup != NULL &&
1472             sensor->hwcfg->strobe_setup->trigger != 0) {
1473                 rval = smiapp_setup_flash_strobe(sensor);
1474                 if (rval)
1475                         goto out;
1476         }
1477
1478         rval = smiapp_call_quirk(sensor, pre_streamon);
1479         if (rval) {
1480                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1481                 goto out;
1482         }
1483
1484         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1485                             SMIAPP_MODE_SELECT_STREAMING);
1486
1487 out:
1488         mutex_unlock(&sensor->mutex);
1489
1490         return rval;
1491 }
1492
1493 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1494 {
1495         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1496         int rval;
1497
1498         mutex_lock(&sensor->mutex);
1499         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1500                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1501         if (rval)
1502                 goto out;
1503
1504         rval = smiapp_call_quirk(sensor, post_streamoff);
1505         if (rval)
1506                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1507
1508 out:
1509         mutex_unlock(&sensor->mutex);
1510         return rval;
1511 }
1512
1513 /* -----------------------------------------------------------------------------
1514  * V4L2 subdev video operations
1515  */
1516
1517 static int smiapp_pm_get_init(struct smiapp_sensor *sensor)
1518 {
1519         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1520         int rval;
1521
1522         rval = pm_runtime_get_sync(&client->dev);
1523         if (rval < 0) {
1524                 if (rval != -EBUSY && rval != -EAGAIN)
1525                         pm_runtime_set_active(&client->dev);
1526                 pm_runtime_put_noidle(&client->dev);
1527
1528                 return rval;
1529         } else if (!rval) {
1530                 rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->
1531                                                ctrl_handler);
1532                 if (rval)
1533                         return rval;
1534
1535                 return v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1536         }
1537
1538         return 0;
1539 }
1540
1541 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1542 {
1543         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1544         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1545         int rval;
1546
1547         if (sensor->streaming == enable)
1548                 return 0;
1549
1550         if (!enable) {
1551                 smiapp_stop_streaming(sensor);
1552                 sensor->streaming = false;
1553                 pm_runtime_mark_last_busy(&client->dev);
1554                 pm_runtime_put_autosuspend(&client->dev);
1555
1556                 return 0;
1557         }
1558
1559         rval = smiapp_pm_get_init(sensor);
1560         if (rval)
1561                 return rval;
1562
1563         sensor->streaming = true;
1564
1565         rval = smiapp_start_streaming(sensor);
1566         if (rval < 0) {
1567                 sensor->streaming = false;
1568                 pm_runtime_mark_last_busy(&client->dev);
1569                 pm_runtime_put_autosuspend(&client->dev);
1570         }
1571
1572         return rval;
1573 }
1574
1575 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1576                                  struct v4l2_subdev_pad_config *cfg,
1577                                  struct v4l2_subdev_mbus_code_enum *code)
1578 {
1579         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1580         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1581         unsigned int i;
1582         int idx = -1;
1583         int rval = -EINVAL;
1584
1585         mutex_lock(&sensor->mutex);
1586
1587         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1588                 subdev->name, code->pad, code->index);
1589
1590         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1591                 if (code->index)
1592                         goto out;
1593
1594                 code->code = sensor->internal_csi_format->code;
1595                 rval = 0;
1596                 goto out;
1597         }
1598
1599         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1600                 if (sensor->mbus_frame_fmts & (1 << i))
1601                         idx++;
1602
1603                 if (idx == code->index) {
1604                         code->code = smiapp_csi_data_formats[i].code;
1605                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1606                                 code->index, i, code->code);
1607                         rval = 0;
1608                         break;
1609                 }
1610         }
1611
1612 out:
1613         mutex_unlock(&sensor->mutex);
1614
1615         return rval;
1616 }
1617
1618 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1619                                   unsigned int pad)
1620 {
1621         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1622
1623         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1624                 return sensor->csi_format->code;
1625         else
1626                 return sensor->internal_csi_format->code;
1627 }
1628
1629 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1630                                struct v4l2_subdev_pad_config *cfg,
1631                                struct v4l2_subdev_format *fmt)
1632 {
1633         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1634
1635         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1636                 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1637                                                           fmt->pad);
1638         } else {
1639                 struct v4l2_rect *r;
1640
1641                 if (fmt->pad == ssd->source_pad)
1642                         r = &ssd->crop[ssd->source_pad];
1643                 else
1644                         r = &ssd->sink_fmt;
1645
1646                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1647                 fmt->format.width = r->width;
1648                 fmt->format.height = r->height;
1649                 fmt->format.field = V4L2_FIELD_NONE;
1650         }
1651
1652         return 0;
1653 }
1654
1655 static int smiapp_get_format(struct v4l2_subdev *subdev,
1656                              struct v4l2_subdev_pad_config *cfg,
1657                              struct v4l2_subdev_format *fmt)
1658 {
1659         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1660         int rval;
1661
1662         mutex_lock(&sensor->mutex);
1663         rval = __smiapp_get_format(subdev, cfg, fmt);
1664         mutex_unlock(&sensor->mutex);
1665
1666         return rval;
1667 }
1668
1669 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1670                                     struct v4l2_subdev_pad_config *cfg,
1671                                     struct v4l2_rect **crops,
1672                                     struct v4l2_rect **comps, int which)
1673 {
1674         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1675         unsigned int i;
1676
1677         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1678                 if (crops)
1679                         for (i = 0; i < subdev->entity.num_pads; i++)
1680                                 crops[i] = &ssd->crop[i];
1681                 if (comps)
1682                         *comps = &ssd->compose;
1683         } else {
1684                 if (crops) {
1685                         for (i = 0; i < subdev->entity.num_pads; i++) {
1686                                 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1687                                 BUG_ON(!crops[i]);
1688                         }
1689                 }
1690                 if (comps) {
1691                         *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1692                                                              SMIAPP_PAD_SINK);
1693                         BUG_ON(!*comps);
1694                 }
1695         }
1696 }
1697
1698 /* Changes require propagation only on sink pad. */
1699 static void smiapp_propagate(struct v4l2_subdev *subdev,
1700                              struct v4l2_subdev_pad_config *cfg, int which,
1701                              int target)
1702 {
1703         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1704         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1705         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1706
1707         smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1708
1709         switch (target) {
1710         case V4L2_SEL_TGT_CROP:
1711                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1712                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1713                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1714                         if (ssd == sensor->scaler) {
1715                                 sensor->scale_m =
1716                                         SMIA_LIM(sensor, SCALER_N_MIN);
1717                                 sensor->scaling_mode =
1718                                         SMIAPP_SCALING_MODE_NONE;
1719                         } else if (ssd == sensor->binner) {
1720                                 sensor->binning_horizontal = 1;
1721                                 sensor->binning_vertical = 1;
1722                         }
1723                 }
1724                 fallthrough;
1725         case V4L2_SEL_TGT_COMPOSE:
1726                 *crops[SMIAPP_PAD_SRC] = *comp;
1727                 break;
1728         default:
1729                 BUG();
1730         }
1731 }
1732
1733 static const struct smiapp_csi_data_format
1734 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1735 {
1736         unsigned int i;
1737
1738         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1739                 if (sensor->mbus_frame_fmts & (1 << i)
1740                     && smiapp_csi_data_formats[i].code == code)
1741                         return &smiapp_csi_data_formats[i];
1742         }
1743
1744         return sensor->csi_format;
1745 }
1746
1747 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1748                                     struct v4l2_subdev_pad_config *cfg,
1749                                     struct v4l2_subdev_format *fmt)
1750 {
1751         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1752         const struct smiapp_csi_data_format *csi_format,
1753                 *old_csi_format = sensor->csi_format;
1754         unsigned long *valid_link_freqs;
1755         u32 code = fmt->format.code;
1756         unsigned int i;
1757         int rval;
1758
1759         rval = __smiapp_get_format(subdev, cfg, fmt);
1760         if (rval)
1761                 return rval;
1762
1763         /*
1764          * Media bus code is changeable on src subdev's source pad. On
1765          * other source pads we just get format here.
1766          */
1767         if (subdev != &sensor->src->sd)
1768                 return 0;
1769
1770         csi_format = smiapp_validate_csi_data_format(sensor, code);
1771
1772         fmt->format.code = csi_format->code;
1773
1774         if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1775                 return 0;
1776
1777         sensor->csi_format = csi_format;
1778
1779         if (csi_format->width != old_csi_format->width)
1780                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1781                         __v4l2_ctrl_modify_range(
1782                                 sensor->test_data[i], 0,
1783                                 (1 << csi_format->width) - 1, 1, 0);
1784
1785         if (csi_format->compressed == old_csi_format->compressed)
1786                 return 0;
1787
1788         valid_link_freqs =
1789                 &sensor->valid_link_freqs[sensor->csi_format->compressed
1790                                           - sensor->compressed_min_bpp];
1791
1792         __v4l2_ctrl_modify_range(
1793                 sensor->link_freq, 0,
1794                 __fls(*valid_link_freqs), ~*valid_link_freqs,
1795                 __ffs(*valid_link_freqs));
1796
1797         return smiapp_pll_update(sensor);
1798 }
1799
1800 static int smiapp_set_format(struct v4l2_subdev *subdev,
1801                              struct v4l2_subdev_pad_config *cfg,
1802                              struct v4l2_subdev_format *fmt)
1803 {
1804         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1805         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1806         struct v4l2_rect *crops[SMIAPP_PADS];
1807
1808         mutex_lock(&sensor->mutex);
1809
1810         if (fmt->pad == ssd->source_pad) {
1811                 int rval;
1812
1813                 rval = smiapp_set_format_source(subdev, cfg, fmt);
1814
1815                 mutex_unlock(&sensor->mutex);
1816
1817                 return rval;
1818         }
1819
1820         /* Sink pad. Width and height are changeable here. */
1821         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1822         fmt->format.width &= ~1;
1823         fmt->format.height &= ~1;
1824         fmt->format.field = V4L2_FIELD_NONE;
1825
1826         fmt->format.width =
1827                 clamp(fmt->format.width,
1828                       SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
1829                       SMIA_LIM(sensor, MAX_X_OUTPUT_SIZE));
1830         fmt->format.height =
1831                 clamp(fmt->format.height,
1832                       SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
1833                       SMIA_LIM(sensor, MAX_Y_OUTPUT_SIZE));
1834
1835         smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1836
1837         crops[ssd->sink_pad]->left = 0;
1838         crops[ssd->sink_pad]->top = 0;
1839         crops[ssd->sink_pad]->width = fmt->format.width;
1840         crops[ssd->sink_pad]->height = fmt->format.height;
1841         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1842                 ssd->sink_fmt = *crops[ssd->sink_pad];
1843         smiapp_propagate(subdev, cfg, fmt->which,
1844                          V4L2_SEL_TGT_CROP);
1845
1846         mutex_unlock(&sensor->mutex);
1847
1848         return 0;
1849 }
1850
1851 /*
1852  * Calculate goodness of scaled image size compared to expected image
1853  * size and flags provided.
1854  */
1855 #define SCALING_GOODNESS                100000
1856 #define SCALING_GOODNESS_EXTREME        100000000
1857 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1858                             int h, int ask_h, u32 flags)
1859 {
1860         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1861         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1862         int val = 0;
1863
1864         w &= ~1;
1865         ask_w &= ~1;
1866         h &= ~1;
1867         ask_h &= ~1;
1868
1869         if (flags & V4L2_SEL_FLAG_GE) {
1870                 if (w < ask_w)
1871                         val -= SCALING_GOODNESS;
1872                 if (h < ask_h)
1873                         val -= SCALING_GOODNESS;
1874         }
1875
1876         if (flags & V4L2_SEL_FLAG_LE) {
1877                 if (w > ask_w)
1878                         val -= SCALING_GOODNESS;
1879                 if (h > ask_h)
1880                         val -= SCALING_GOODNESS;
1881         }
1882
1883         val -= abs(w - ask_w);
1884         val -= abs(h - ask_h);
1885
1886         if (w < SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE))
1887                 val -= SCALING_GOODNESS_EXTREME;
1888
1889         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1890                 w, ask_w, h, ask_h, val);
1891
1892         return val;
1893 }
1894
1895 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1896                                       struct v4l2_subdev_pad_config *cfg,
1897                                       struct v4l2_subdev_selection *sel,
1898                                       struct v4l2_rect **crops,
1899                                       struct v4l2_rect *comp)
1900 {
1901         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1902         unsigned int i;
1903         unsigned int binh = 1, binv = 1;
1904         int best = scaling_goodness(
1905                 subdev,
1906                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1907                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1908
1909         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1910                 int this = scaling_goodness(
1911                         subdev,
1912                         crops[SMIAPP_PAD_SINK]->width
1913                         / sensor->binning_subtypes[i].horizontal,
1914                         sel->r.width,
1915                         crops[SMIAPP_PAD_SINK]->height
1916                         / sensor->binning_subtypes[i].vertical,
1917                         sel->r.height, sel->flags);
1918
1919                 if (this > best) {
1920                         binh = sensor->binning_subtypes[i].horizontal;
1921                         binv = sensor->binning_subtypes[i].vertical;
1922                         best = this;
1923                 }
1924         }
1925         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1926                 sensor->binning_vertical = binv;
1927                 sensor->binning_horizontal = binh;
1928         }
1929
1930         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1931         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1932 }
1933
1934 /*
1935  * Calculate best scaling ratio and mode for given output resolution.
1936  *
1937  * Try all of these: horizontal ratio, vertical ratio and smallest
1938  * size possible (horizontally).
1939  *
1940  * Also try whether horizontal scaler or full scaler gives a better
1941  * result.
1942  */
1943 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1944                                       struct v4l2_subdev_pad_config *cfg,
1945                                       struct v4l2_subdev_selection *sel,
1946                                       struct v4l2_rect **crops,
1947                                       struct v4l2_rect *comp)
1948 {
1949         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1950         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1951         u32 min, max, a, b, max_m;
1952         u32 scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
1953         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1954         u32 try[4];
1955         u32 ntry = 0;
1956         unsigned int i;
1957         int best = INT_MIN;
1958
1959         sel->r.width = min_t(unsigned int, sel->r.width,
1960                              crops[SMIAPP_PAD_SINK]->width);
1961         sel->r.height = min_t(unsigned int, sel->r.height,
1962                               crops[SMIAPP_PAD_SINK]->height);
1963
1964         a = crops[SMIAPP_PAD_SINK]->width
1965                 * SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.width;
1966         b = crops[SMIAPP_PAD_SINK]->height
1967                 * SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.height;
1968         max_m = crops[SMIAPP_PAD_SINK]->width
1969                 * SMIA_LIM(sensor, SCALER_N_MIN)
1970                 / SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE);
1971
1972         a = clamp(a, SMIA_LIM(sensor, SCALER_M_MIN),
1973                   SMIA_LIM(sensor, SCALER_M_MAX));
1974         b = clamp(b, SMIA_LIM(sensor, SCALER_M_MIN),
1975                   SMIA_LIM(sensor, SCALER_M_MAX));
1976         max_m = clamp(max_m, SMIA_LIM(sensor, SCALER_M_MIN),
1977                       SMIA_LIM(sensor, SCALER_M_MAX));
1978
1979         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1980
1981         min = min(max_m, min(a, b));
1982         max = min(max_m, max(a, b));
1983
1984         try[ntry] = min;
1985         ntry++;
1986         if (min != max) {
1987                 try[ntry] = max;
1988                 ntry++;
1989         }
1990         if (max != max_m) {
1991                 try[ntry] = min + 1;
1992                 ntry++;
1993                 if (min != max) {
1994                         try[ntry] = max + 1;
1995                         ntry++;
1996                 }
1997         }
1998
1999         for (i = 0; i < ntry; i++) {
2000                 int this = scaling_goodness(
2001                         subdev,
2002                         crops[SMIAPP_PAD_SINK]->width
2003                         / try[i]
2004                         * SMIA_LIM(sensor, SCALER_N_MIN),
2005                         sel->r.width,
2006                         crops[SMIAPP_PAD_SINK]->height,
2007                         sel->r.height,
2008                         sel->flags);
2009
2010                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2011
2012                 if (this > best) {
2013                         scale_m = try[i];
2014                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2015                         best = this;
2016                 }
2017
2018                 if (SMIA_LIM(sensor, SCALING_CAPABILITY)
2019                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2020                         continue;
2021
2022                 this = scaling_goodness(
2023                         subdev, crops[SMIAPP_PAD_SINK]->width
2024                         / try[i]
2025                         * SMIA_LIM(sensor, SCALER_N_MIN),
2026                         sel->r.width,
2027                         crops[SMIAPP_PAD_SINK]->height
2028                         / try[i]
2029                         * SMIA_LIM(sensor, SCALER_N_MIN),
2030                         sel->r.height,
2031                         sel->flags);
2032
2033                 if (this > best) {
2034                         scale_m = try[i];
2035                         mode = SMIAPP_SCALING_MODE_BOTH;
2036                         best = this;
2037                 }
2038         }
2039
2040         sel->r.width =
2041                 (crops[SMIAPP_PAD_SINK]->width
2042                  / scale_m
2043                  * SMIA_LIM(sensor, SCALER_N_MIN)) & ~1;
2044         if (mode == SMIAPP_SCALING_MODE_BOTH)
2045                 sel->r.height =
2046                         (crops[SMIAPP_PAD_SINK]->height
2047                          / scale_m
2048                          * SMIA_LIM(sensor, SCALER_N_MIN))
2049                         & ~1;
2050         else
2051                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2052
2053         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2054                 sensor->scale_m = scale_m;
2055                 sensor->scaling_mode = mode;
2056         }
2057 }
2058 /* We're only called on source pads. This function sets scaling. */
2059 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2060                               struct v4l2_subdev_pad_config *cfg,
2061                               struct v4l2_subdev_selection *sel)
2062 {
2063         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2064         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2065         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2066
2067         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2068
2069         sel->r.top = 0;
2070         sel->r.left = 0;
2071
2072         if (ssd == sensor->binner)
2073                 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2074         else
2075                 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2076
2077         *comp = sel->r;
2078         smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2079
2080         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2081                 return smiapp_pll_blanking_update(sensor);
2082
2083         return 0;
2084 }
2085
2086 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2087                                   struct v4l2_subdev_selection *sel)
2088 {
2089         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2090         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2091
2092         /* We only implement crop in three places. */
2093         switch (sel->target) {
2094         case V4L2_SEL_TGT_CROP:
2095         case V4L2_SEL_TGT_CROP_BOUNDS:
2096                 if (ssd == sensor->pixel_array
2097                     && sel->pad == SMIAPP_PA_PAD_SRC)
2098                         return 0;
2099                 if (ssd == sensor->src
2100                     && sel->pad == SMIAPP_PAD_SRC)
2101                         return 0;
2102                 if (ssd == sensor->scaler
2103                     && sel->pad == SMIAPP_PAD_SINK
2104                     && SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2105                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2106                         return 0;
2107                 return -EINVAL;
2108         case V4L2_SEL_TGT_NATIVE_SIZE:
2109                 if (ssd == sensor->pixel_array
2110                     && sel->pad == SMIAPP_PA_PAD_SRC)
2111                         return 0;
2112                 return -EINVAL;
2113         case V4L2_SEL_TGT_COMPOSE:
2114         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2115                 if (sel->pad == ssd->source_pad)
2116                         return -EINVAL;
2117                 if (ssd == sensor->binner)
2118                         return 0;
2119                 if (ssd == sensor->scaler
2120                     && SMIA_LIM(sensor, SCALING_CAPABILITY)
2121                     != SMIAPP_SCALING_CAPABILITY_NONE)
2122                         return 0;
2123                 fallthrough;
2124         default:
2125                 return -EINVAL;
2126         }
2127 }
2128
2129 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2130                            struct v4l2_subdev_pad_config *cfg,
2131                            struct v4l2_subdev_selection *sel)
2132 {
2133         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2134         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2135         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2136         struct v4l2_rect _r;
2137
2138         smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2139
2140         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2141                 if (sel->pad == ssd->sink_pad)
2142                         src_size = &ssd->sink_fmt;
2143                 else
2144                         src_size = &ssd->compose;
2145         } else {
2146                 if (sel->pad == ssd->sink_pad) {
2147                         _r.left = 0;
2148                         _r.top = 0;
2149                         _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2150                                 ->width;
2151                         _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2152                                 ->height;
2153                         src_size = &_r;
2154                 } else {
2155                         src_size = v4l2_subdev_get_try_compose(
2156                                 subdev, cfg, ssd->sink_pad);
2157                 }
2158         }
2159
2160         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2161                 sel->r.left = 0;
2162                 sel->r.top = 0;
2163         }
2164
2165         sel->r.width = min(sel->r.width, src_size->width);
2166         sel->r.height = min(sel->r.height, src_size->height);
2167
2168         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2169         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2170
2171         *crops[sel->pad] = sel->r;
2172
2173         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2174                 smiapp_propagate(subdev, cfg, sel->which,
2175                                  V4L2_SEL_TGT_CROP);
2176
2177         return 0;
2178 }
2179
2180 static void smiapp_get_native_size(struct smiapp_subdev *ssd,
2181                                     struct v4l2_rect *r)
2182 {
2183         r->top = 0;
2184         r->left = 0;
2185         r->width = SMIA_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2186         r->height = SMIA_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2187 }
2188
2189 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2190                                   struct v4l2_subdev_pad_config *cfg,
2191                                   struct v4l2_subdev_selection *sel)
2192 {
2193         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2194         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2195         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2196         struct v4l2_rect sink_fmt;
2197         int ret;
2198
2199         ret = __smiapp_sel_supported(subdev, sel);
2200         if (ret)
2201                 return ret;
2202
2203         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2204
2205         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2206                 sink_fmt = ssd->sink_fmt;
2207         } else {
2208                 struct v4l2_mbus_framefmt *fmt =
2209                         v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2210
2211                 sink_fmt.left = 0;
2212                 sink_fmt.top = 0;
2213                 sink_fmt.width = fmt->width;
2214                 sink_fmt.height = fmt->height;
2215         }
2216
2217         switch (sel->target) {
2218         case V4L2_SEL_TGT_CROP_BOUNDS:
2219         case V4L2_SEL_TGT_NATIVE_SIZE:
2220                 if (ssd == sensor->pixel_array)
2221                         smiapp_get_native_size(ssd, &sel->r);
2222                 else if (sel->pad == ssd->sink_pad)
2223                         sel->r = sink_fmt;
2224                 else
2225                         sel->r = *comp;
2226                 break;
2227         case V4L2_SEL_TGT_CROP:
2228         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2229                 sel->r = *crops[sel->pad];
2230                 break;
2231         case V4L2_SEL_TGT_COMPOSE:
2232                 sel->r = *comp;
2233                 break;
2234         }
2235
2236         return 0;
2237 }
2238
2239 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2240                                 struct v4l2_subdev_pad_config *cfg,
2241                                 struct v4l2_subdev_selection *sel)
2242 {
2243         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2244         int rval;
2245
2246         mutex_lock(&sensor->mutex);
2247         rval = __smiapp_get_selection(subdev, cfg, sel);
2248         mutex_unlock(&sensor->mutex);
2249
2250         return rval;
2251 }
2252 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2253                                 struct v4l2_subdev_pad_config *cfg,
2254                                 struct v4l2_subdev_selection *sel)
2255 {
2256         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2257         int ret;
2258
2259         ret = __smiapp_sel_supported(subdev, sel);
2260         if (ret)
2261                 return ret;
2262
2263         mutex_lock(&sensor->mutex);
2264
2265         sel->r.left = max(0, sel->r.left & ~1);
2266         sel->r.top = max(0, sel->r.top & ~1);
2267         sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2268         sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2269
2270         sel->r.width = max_t(unsigned int,
2271                              SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
2272                              sel->r.width);
2273         sel->r.height = max_t(unsigned int,
2274                               SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2275                               sel->r.height);
2276
2277         switch (sel->target) {
2278         case V4L2_SEL_TGT_CROP:
2279                 ret = smiapp_set_crop(subdev, cfg, sel);
2280                 break;
2281         case V4L2_SEL_TGT_COMPOSE:
2282                 ret = smiapp_set_compose(subdev, cfg, sel);
2283                 break;
2284         default:
2285                 ret = -EINVAL;
2286         }
2287
2288         mutex_unlock(&sensor->mutex);
2289         return ret;
2290 }
2291
2292 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2293 {
2294         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2295
2296         *frames = sensor->frame_skip;
2297         return 0;
2298 }
2299
2300 static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2301 {
2302         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2303
2304         *lines = sensor->image_start;
2305
2306         return 0;
2307 }
2308
2309 /* -----------------------------------------------------------------------------
2310  * sysfs attributes
2311  */
2312
2313 static ssize_t
2314 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2315                       char *buf)
2316 {
2317         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2318         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2319         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2320         int rval;
2321
2322         if (!sensor->dev_init_done)
2323                 return -EBUSY;
2324
2325         rval = smiapp_pm_get_init(sensor);
2326         if (rval < 0)
2327                 return -ENODEV;
2328
2329         rval = smiapp_read_nvm(sensor, buf, PAGE_SIZE);
2330         if (rval < 0) {
2331                 pm_runtime_put(&client->dev);
2332                 dev_err(&client->dev, "nvm read failed\n");
2333                 return -ENODEV;
2334         }
2335
2336         pm_runtime_mark_last_busy(&client->dev);
2337         pm_runtime_put_autosuspend(&client->dev);
2338
2339         /*
2340          * NVM is still way below a PAGE_SIZE, so we can safely
2341          * assume this for now.
2342          */
2343         return rval;
2344 }
2345 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2346
2347 static ssize_t
2348 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2349                         char *buf)
2350 {
2351         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2352         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2353         struct smiapp_module_info *minfo = &sensor->minfo;
2354
2355         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2356                         minfo->manufacturer_id, minfo->model_id,
2357                         minfo->revision_number_major) + 1;
2358 }
2359
2360 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2361
2362 /* -----------------------------------------------------------------------------
2363  * V4L2 subdev core operations
2364  */
2365
2366 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2367 {
2368         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2369         struct smiapp_module_info *minfo = &sensor->minfo;
2370         unsigned int i;
2371         int rval = 0;
2372
2373         minfo->name = SMIAPP_NAME;
2374
2375         /* Module info */
2376         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2377                                  &minfo->manufacturer_id);
2378         if (!rval)
2379                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2380                                          &minfo->model_id);
2381         if (!rval)
2382                 rval = smiapp_read_8only(sensor,
2383                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2384                                          &minfo->revision_number_major);
2385         if (!rval)
2386                 rval = smiapp_read_8only(sensor,
2387                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2388                                          &minfo->revision_number_minor);
2389         if (!rval)
2390                 rval = smiapp_read_8only(sensor,
2391                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2392                                          &minfo->module_year);
2393         if (!rval)
2394                 rval = smiapp_read_8only(sensor,
2395                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2396                                          &minfo->module_month);
2397         if (!rval)
2398                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2399                                          &minfo->module_day);
2400
2401         /* Sensor info */
2402         if (!rval)
2403                 rval = smiapp_read_8only(sensor,
2404                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2405                                          &minfo->sensor_manufacturer_id);
2406         if (!rval)
2407                 rval = smiapp_read_8only(sensor,
2408                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2409                                          &minfo->sensor_model_id);
2410         if (!rval)
2411                 rval = smiapp_read_8only(sensor,
2412                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2413                                          &minfo->sensor_revision_number);
2414         if (!rval)
2415                 rval = smiapp_read_8only(sensor,
2416                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2417                                          &minfo->sensor_firmware_version);
2418
2419         /* SMIA */
2420         if (!rval)
2421                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2422                                          &minfo->smia_version);
2423         if (!rval)
2424                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2425                                          &minfo->smiapp_version);
2426
2427         if (rval) {
2428                 dev_err(&client->dev, "sensor detection failed\n");
2429                 return -ENODEV;
2430         }
2431
2432         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2433                 minfo->manufacturer_id, minfo->model_id);
2434
2435         dev_dbg(&client->dev,
2436                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2437                 minfo->revision_number_major, minfo->revision_number_minor,
2438                 minfo->module_year, minfo->module_month, minfo->module_day);
2439
2440         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2441                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2442
2443         dev_dbg(&client->dev,
2444                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2445                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2446
2447         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2448                 minfo->smia_version, minfo->smiapp_version);
2449
2450         /*
2451          * Some modules have bad data in the lvalues below. Hope the
2452          * rvalues have better stuff. The lvalues are module
2453          * parameters whereas the rvalues are sensor parameters.
2454          */
2455         if (!minfo->manufacturer_id && !minfo->model_id) {
2456                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2457                 minfo->model_id = minfo->sensor_model_id;
2458                 minfo->revision_number_major = minfo->sensor_revision_number;
2459         }
2460
2461         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2462                 if (smiapp_module_idents[i].manufacturer_id
2463                     != minfo->manufacturer_id)
2464                         continue;
2465                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2466                         continue;
2467                 if (smiapp_module_idents[i].flags
2468                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2469                         if (smiapp_module_idents[i].revision_number_major
2470                             < minfo->revision_number_major)
2471                                 continue;
2472                 } else {
2473                         if (smiapp_module_idents[i].revision_number_major
2474                             != minfo->revision_number_major)
2475                                 continue;
2476                 }
2477
2478                 minfo->name = smiapp_module_idents[i].name;
2479                 minfo->quirk = smiapp_module_idents[i].quirk;
2480                 break;
2481         }
2482
2483         if (i >= ARRAY_SIZE(smiapp_module_idents))
2484                 dev_warn(&client->dev,
2485                          "no quirks for this module; let's hope it's fully compliant\n");
2486
2487         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2488                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2489                 minfo->revision_number_major);
2490
2491         return 0;
2492 }
2493
2494 static const struct v4l2_subdev_ops smiapp_ops;
2495 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2496 static const struct media_entity_operations smiapp_entity_ops;
2497
2498 static int smiapp_register_subdev(struct smiapp_sensor *sensor,
2499                                   struct smiapp_subdev *ssd,
2500                                   struct smiapp_subdev *sink_ssd,
2501                                   u16 source_pad, u16 sink_pad, u32 link_flags)
2502 {
2503         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2504         int rval;
2505
2506         if (!sink_ssd)
2507                 return 0;
2508
2509         rval = media_entity_pads_init(&ssd->sd.entity,
2510                                       ssd->npads, ssd->pads);
2511         if (rval) {
2512                 dev_err(&client->dev,
2513                         "media_entity_pads_init failed\n");
2514                 return rval;
2515         }
2516
2517         rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2518                                            &ssd->sd);
2519         if (rval) {
2520                 dev_err(&client->dev,
2521                         "v4l2_device_register_subdev failed\n");
2522                 return rval;
2523         }
2524
2525         rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2526                                      &sink_ssd->sd.entity, sink_pad,
2527                                      link_flags);
2528         if (rval) {
2529                 dev_err(&client->dev,
2530                         "media_create_pad_link failed\n");
2531                 v4l2_device_unregister_subdev(&ssd->sd);
2532                 return rval;
2533         }
2534
2535         return 0;
2536 }
2537
2538 static void smiapp_unregistered(struct v4l2_subdev *subdev)
2539 {
2540         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2541         unsigned int i;
2542
2543         for (i = 1; i < sensor->ssds_used; i++)
2544                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2545 }
2546
2547 static int smiapp_registered(struct v4l2_subdev *subdev)
2548 {
2549         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2550         int rval;
2551
2552         if (sensor->scaler) {
2553                 rval = smiapp_register_subdev(
2554                         sensor, sensor->binner, sensor->scaler,
2555                         SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
2556                         MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2557                 if (rval < 0)
2558                         return rval;
2559         }
2560
2561         rval = smiapp_register_subdev(
2562                 sensor, sensor->pixel_array, sensor->binner,
2563                 SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
2564                 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2565         if (rval)
2566                 goto out_err;
2567
2568         return 0;
2569
2570 out_err:
2571         smiapp_unregistered(subdev);
2572
2573         return rval;
2574 }
2575
2576 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2577 {
2578         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2579
2580         device_remove_file(&client->dev, &dev_attr_nvm);
2581         device_remove_file(&client->dev, &dev_attr_ident);
2582
2583         smiapp_free_controls(sensor);
2584 }
2585
2586 static void smiapp_create_subdev(struct smiapp_sensor *sensor,
2587                                  struct smiapp_subdev *ssd, const char *name,
2588                                  unsigned short num_pads)
2589 {
2590         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2591
2592         if (!ssd)
2593                 return;
2594
2595         if (ssd != sensor->src)
2596                 v4l2_subdev_init(&ssd->sd, &smiapp_ops);
2597
2598         ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2599         ssd->sensor = sensor;
2600
2601         ssd->npads = num_pads;
2602         ssd->source_pad = num_pads - 1;
2603
2604         v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2605
2606         smiapp_get_native_size(ssd, &ssd->sink_fmt);
2607
2608         ssd->compose.width = ssd->sink_fmt.width;
2609         ssd->compose.height = ssd->sink_fmt.height;
2610         ssd->crop[ssd->source_pad] = ssd->compose;
2611         ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2612         if (ssd != sensor->pixel_array) {
2613                 ssd->crop[ssd->sink_pad] = ssd->compose;
2614                 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2615         }
2616
2617         ssd->sd.entity.ops = &smiapp_entity_ops;
2618
2619         if (ssd == sensor->src)
2620                 return;
2621
2622         ssd->sd.internal_ops = &smiapp_internal_ops;
2623         ssd->sd.owner = THIS_MODULE;
2624         ssd->sd.dev = &client->dev;
2625         v4l2_set_subdevdata(&ssd->sd, client);
2626 }
2627
2628 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2629 {
2630         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2631         struct smiapp_sensor *sensor = ssd->sensor;
2632         unsigned int i;
2633
2634         mutex_lock(&sensor->mutex);
2635
2636         for (i = 0; i < ssd->npads; i++) {
2637                 struct v4l2_mbus_framefmt *try_fmt =
2638                         v4l2_subdev_get_try_format(sd, fh->pad, i);
2639                 struct v4l2_rect *try_crop =
2640                         v4l2_subdev_get_try_crop(sd, fh->pad, i);
2641                 struct v4l2_rect *try_comp;
2642
2643                 smiapp_get_native_size(ssd, try_crop);
2644
2645                 try_fmt->width = try_crop->width;
2646                 try_fmt->height = try_crop->height;
2647                 try_fmt->code = sensor->internal_csi_format->code;
2648                 try_fmt->field = V4L2_FIELD_NONE;
2649
2650                 if (ssd != sensor->pixel_array)
2651                         continue;
2652
2653                 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2654                 *try_comp = *try_crop;
2655         }
2656
2657         mutex_unlock(&sensor->mutex);
2658
2659         return 0;
2660 }
2661
2662 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2663         .s_stream = smiapp_set_stream,
2664 };
2665
2666 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2667         .enum_mbus_code = smiapp_enum_mbus_code,
2668         .get_fmt = smiapp_get_format,
2669         .set_fmt = smiapp_set_format,
2670         .get_selection = smiapp_get_selection,
2671         .set_selection = smiapp_set_selection,
2672 };
2673
2674 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2675         .g_skip_frames = smiapp_get_skip_frames,
2676         .g_skip_top_lines = smiapp_get_skip_top_lines,
2677 };
2678
2679 static const struct v4l2_subdev_ops smiapp_ops = {
2680         .video = &smiapp_video_ops,
2681         .pad = &smiapp_pad_ops,
2682         .sensor = &smiapp_sensor_ops,
2683 };
2684
2685 static const struct media_entity_operations smiapp_entity_ops = {
2686         .link_validate = v4l2_subdev_link_validate,
2687 };
2688
2689 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2690         .registered = smiapp_registered,
2691         .unregistered = smiapp_unregistered,
2692         .open = smiapp_open,
2693 };
2694
2695 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2696         .open = smiapp_open,
2697 };
2698
2699 /* -----------------------------------------------------------------------------
2700  * I2C Driver
2701  */
2702
2703 static int __maybe_unused smiapp_suspend(struct device *dev)
2704 {
2705         struct i2c_client *client = to_i2c_client(dev);
2706         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2707         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2708         bool streaming = sensor->streaming;
2709         int rval;
2710
2711         rval = pm_runtime_get_sync(dev);
2712         if (rval < 0) {
2713                 if (rval != -EBUSY && rval != -EAGAIN)
2714                         pm_runtime_set_active(&client->dev);
2715                 pm_runtime_put(dev);
2716                 return -EAGAIN;
2717         }
2718
2719         if (sensor->streaming)
2720                 smiapp_stop_streaming(sensor);
2721
2722         /* save state for resume */
2723         sensor->streaming = streaming;
2724
2725         return 0;
2726 }
2727
2728 static int __maybe_unused smiapp_resume(struct device *dev)
2729 {
2730         struct i2c_client *client = to_i2c_client(dev);
2731         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2732         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2733         int rval = 0;
2734
2735         pm_runtime_put(dev);
2736
2737         if (sensor->streaming)
2738                 rval = smiapp_start_streaming(sensor);
2739
2740         return rval;
2741 }
2742
2743 static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2744 {
2745         struct smiapp_hwconfig *hwcfg;
2746         struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2747         struct fwnode_handle *ep;
2748         struct fwnode_handle *fwnode = dev_fwnode(dev);
2749         u32 rotation;
2750         int i;
2751         int rval;
2752
2753         if (!fwnode)
2754                 return dev->platform_data;
2755
2756         ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2757         if (!ep)
2758                 return NULL;
2759
2760         bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
2761         rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2762         if (rval == -ENXIO) {
2763                 bus_cfg = (struct v4l2_fwnode_endpoint)
2764                         { .bus_type = V4L2_MBUS_CCP2 };
2765                 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2766         }
2767         if (rval)
2768                 goto out_err;
2769
2770         hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2771         if (!hwcfg)
2772                 goto out_err;
2773
2774         switch (bus_cfg.bus_type) {
2775         case V4L2_MBUS_CSI2_DPHY:
2776                 hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
2777                 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2778                 break;
2779         case V4L2_MBUS_CCP2:
2780                 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
2781                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2782                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2783                 hwcfg->lanes = 1;
2784                 break;
2785         default:
2786                 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
2787                 goto out_err;
2788         }
2789
2790         dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2791
2792         rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
2793         if (!rval) {
2794                 switch (rotation) {
2795                 case 180:
2796                         hwcfg->module_board_orient =
2797                                 SMIAPP_MODULE_BOARD_ORIENT_180;
2798                         fallthrough;
2799                 case 0:
2800                         break;
2801                 default:
2802                         dev_err(dev, "invalid rotation %u\n", rotation);
2803                         goto out_err;
2804                 }
2805         }
2806
2807         rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2808                                         &hwcfg->ext_clk);
2809         if (rval)
2810                 dev_info(dev, "can't get clock-frequency\n");
2811
2812         dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
2813                 hwcfg->csi_signalling_mode);
2814
2815         if (!bus_cfg.nr_of_link_frequencies) {
2816                 dev_warn(dev, "no link frequencies defined\n");
2817                 goto out_err;
2818         }
2819
2820         hwcfg->op_sys_clock = devm_kcalloc(
2821                 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
2822                 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2823         if (!hwcfg->op_sys_clock)
2824                 goto out_err;
2825
2826         for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
2827                 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
2828                 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2829         }
2830
2831         v4l2_fwnode_endpoint_free(&bus_cfg);
2832         fwnode_handle_put(ep);
2833         return hwcfg;
2834
2835 out_err:
2836         v4l2_fwnode_endpoint_free(&bus_cfg);
2837         fwnode_handle_put(ep);
2838         return NULL;
2839 }
2840
2841 static int smiapp_probe(struct i2c_client *client)
2842 {
2843         struct smiapp_sensor *sensor;
2844         struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
2845         unsigned int i;
2846         int rval;
2847
2848         if (hwcfg == NULL)
2849                 return -ENODEV;
2850
2851         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2852         if (sensor == NULL)
2853                 return -ENOMEM;
2854
2855         sensor->hwcfg = hwcfg;
2856         sensor->src = &sensor->ssds[sensor->ssds_used];
2857
2858         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2859         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2860
2861         sensor->vana = devm_regulator_get(&client->dev, "vana");
2862         if (IS_ERR(sensor->vana)) {
2863                 dev_err(&client->dev, "could not get regulator for vana\n");
2864                 return PTR_ERR(sensor->vana);
2865         }
2866
2867         sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2868         if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
2869                 dev_info(&client->dev, "no clock defined, continuing...\n");
2870                 sensor->ext_clk = NULL;
2871         } else if (IS_ERR(sensor->ext_clk)) {
2872                 dev_err(&client->dev, "could not get clock (%ld)\n",
2873                         PTR_ERR(sensor->ext_clk));
2874                 return -EPROBE_DEFER;
2875         }
2876
2877         if (sensor->ext_clk) {
2878                 if (sensor->hwcfg->ext_clk) {
2879                         unsigned long rate;
2880
2881                         rval = clk_set_rate(sensor->ext_clk,
2882                                             sensor->hwcfg->ext_clk);
2883                         if (rval < 0) {
2884                                 dev_err(&client->dev,
2885                                         "unable to set clock freq to %u\n",
2886                                         sensor->hwcfg->ext_clk);
2887                                 return rval;
2888                         }
2889
2890                         rate = clk_get_rate(sensor->ext_clk);
2891                         if (rate != sensor->hwcfg->ext_clk) {
2892                                 dev_err(&client->dev,
2893                                         "can't set clock freq, asked for %u but got %lu\n",
2894                                         sensor->hwcfg->ext_clk, rate);
2895                                 return rval;
2896                         }
2897                 } else {
2898                         sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
2899                         dev_dbg(&client->dev, "obtained clock freq %u\n",
2900                                 sensor->hwcfg->ext_clk);
2901                 }
2902         } else if (sensor->hwcfg->ext_clk) {
2903                 dev_dbg(&client->dev, "assuming clock freq %u\n",
2904                         sensor->hwcfg->ext_clk);
2905         } else {
2906                 dev_err(&client->dev, "unable to obtain clock freq\n");
2907                 return -EINVAL;
2908         }
2909
2910         sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2911                                                     GPIOD_OUT_LOW);
2912         if (IS_ERR(sensor->xshutdown))
2913                 return PTR_ERR(sensor->xshutdown);
2914
2915         rval = smiapp_power_on(&client->dev);
2916         if (rval < 0)
2917                 return rval;
2918
2919         mutex_init(&sensor->mutex);
2920
2921         rval = smiapp_identify_module(sensor);
2922         if (rval) {
2923                 rval = -ENODEV;
2924                 goto out_power_off;
2925         }
2926
2927         rval = smiapp_read_all_smia_limits(sensor);
2928         if (rval) {
2929                 rval = -ENODEV;
2930                 goto out_power_off;
2931         }
2932
2933         rval = smiapp_read_frame_fmt(sensor);
2934         if (rval) {
2935                 rval = -ENODEV;
2936                 goto out_power_off;
2937         }
2938
2939         /*
2940          * Handle Sensor Module orientation on the board.
2941          *
2942          * The application of H-FLIP and V-FLIP on the sensor is modified by
2943          * the sensor orientation on the board.
2944          *
2945          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2946          * both H-FLIP and V-FLIP for normal operation which also implies
2947          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2948          * controls will need to be internally inverted.
2949          *
2950          * Rotation also changes the bayer pattern.
2951          */
2952         if (sensor->hwcfg->module_board_orient ==
2953             SMIAPP_MODULE_BOARD_ORIENT_180)
2954                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2955                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2956
2957         rval = smiapp_call_quirk(sensor, limits);
2958         if (rval) {
2959                 dev_err(&client->dev, "limits quirks failed\n");
2960                 goto out_power_off;
2961         }
2962
2963         if (SMIA_LIM(sensor, BINNING_CAPABILITY)) {
2964                 u32 val;
2965
2966                 rval = smiapp_read(sensor,
2967                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2968                 if (rval < 0) {
2969                         rval = -ENODEV;
2970                         goto out_power_off;
2971                 }
2972                 sensor->nbinning_subtypes = min_t(u8, val,
2973                                                   SMIAPP_BINNING_SUBTYPES);
2974
2975                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2976                         rval = smiapp_read(
2977                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2978                         if (rval < 0) {
2979                                 rval = -ENODEV;
2980                                 goto out_power_off;
2981                         }
2982                         sensor->binning_subtypes[i] =
2983                                 *(struct smiapp_binning_subtype *)&val;
2984
2985                         dev_dbg(&client->dev, "binning %xx%x\n",
2986                                 sensor->binning_subtypes[i].horizontal,
2987                                 sensor->binning_subtypes[i].vertical);
2988                 }
2989         }
2990         sensor->binning_horizontal = 1;
2991         sensor->binning_vertical = 1;
2992
2993         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2994                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2995                 rval = -ENOENT;
2996                 goto out_power_off;
2997         }
2998
2999         if (sensor->minfo.smiapp_version &&
3000             SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3001             SMIAPP_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3002                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3003                         dev_err(&client->dev, "sysfs nvm entry failed\n");
3004                         rval = -EBUSY;
3005                         goto out_cleanup;
3006                 }
3007         }
3008
3009         /* We consider this as profile 0 sensor if any of these are zero. */
3010         if (!SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3011             !SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3012             !SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3013             !SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3014                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
3015         } else if (SMIA_LIM(sensor, SCALING_CAPABILITY)
3016                    != SMIAPP_SCALING_CAPABILITY_NONE) {
3017                 if (SMIA_LIM(sensor, SCALING_CAPABILITY)
3018                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
3019                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
3020                 else
3021                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
3022                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3023                 sensor->ssds_used++;
3024         } else if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3025                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3026                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3027                 sensor->ssds_used++;
3028         }
3029         sensor->binner = &sensor->ssds[sensor->ssds_used];
3030         sensor->ssds_used++;
3031         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3032         sensor->ssds_used++;
3033
3034         sensor->scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
3035
3036         /* prepare PLL configuration input values */
3037         sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
3038         sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
3039         sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
3040         sensor->pll.scale_n = SMIA_LIM(sensor, SCALER_N_MIN);
3041         /* Profile 0 sensors have no separate OP clock branch. */
3042         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
3043                 sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
3044
3045         smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
3046         smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
3047         smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
3048
3049         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
3050
3051         sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3052
3053         rval = smiapp_init_controls(sensor);
3054         if (rval < 0)
3055                 goto out_cleanup;
3056
3057         rval = smiapp_call_quirk(sensor, init);
3058         if (rval)
3059                 goto out_cleanup;
3060
3061         rval = smiapp_get_mbus_formats(sensor);
3062         if (rval) {
3063                 rval = -ENODEV;
3064                 goto out_cleanup;
3065         }
3066
3067         rval = smiapp_init_late_controls(sensor);
3068         if (rval) {
3069                 rval = -ENODEV;
3070                 goto out_cleanup;
3071         }
3072
3073         mutex_lock(&sensor->mutex);
3074         rval = smiapp_pll_blanking_update(sensor);
3075         mutex_unlock(&sensor->mutex);
3076         if (rval) {
3077                 dev_err(&client->dev, "update mode failed\n");
3078                 goto out_cleanup;
3079         }
3080
3081         sensor->streaming = false;
3082         sensor->dev_init_done = true;
3083
3084         rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3085                                  sensor->src->pads);
3086         if (rval < 0)
3087                 goto out_media_entity_cleanup;
3088
3089         pm_runtime_set_active(&client->dev);
3090         pm_runtime_get_noresume(&client->dev);
3091         pm_runtime_enable(&client->dev);
3092
3093         rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3094         if (rval < 0)
3095                 goto out_disable_runtime_pm;
3096
3097         pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3098         pm_runtime_use_autosuspend(&client->dev);
3099         pm_runtime_put_autosuspend(&client->dev);
3100
3101         return 0;
3102
3103 out_disable_runtime_pm:
3104         pm_runtime_put_noidle(&client->dev);
3105         pm_runtime_disable(&client->dev);
3106
3107 out_media_entity_cleanup:
3108         media_entity_cleanup(&sensor->src->sd.entity);
3109
3110 out_cleanup:
3111         smiapp_cleanup(sensor);
3112
3113 out_power_off:
3114         smiapp_power_off(&client->dev);
3115         mutex_destroy(&sensor->mutex);
3116
3117         return rval;
3118 }
3119
3120 static int smiapp_remove(struct i2c_client *client)
3121 {
3122         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3123         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3124         unsigned int i;
3125
3126         v4l2_async_unregister_subdev(subdev);
3127
3128         pm_runtime_disable(&client->dev);
3129         if (!pm_runtime_status_suspended(&client->dev))
3130                 smiapp_power_off(&client->dev);
3131         pm_runtime_set_suspended(&client->dev);
3132
3133         for (i = 0; i < sensor->ssds_used; i++) {
3134                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3135                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3136         }
3137         smiapp_cleanup(sensor);
3138         mutex_destroy(&sensor->mutex);
3139
3140         return 0;
3141 }
3142
3143 static const struct of_device_id smiapp_of_table[] = {
3144         { .compatible = "nokia,smia" },
3145         { },
3146 };
3147 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3148
3149 static const struct i2c_device_id smiapp_id_table[] = {
3150         { SMIAPP_NAME, 0 },
3151         { },
3152 };
3153 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3154
3155 static const struct dev_pm_ops smiapp_pm_ops = {
3156         SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
3157         SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
3158 };
3159
3160 static struct i2c_driver smiapp_i2c_driver = {
3161         .driver = {
3162                 .of_match_table = smiapp_of_table,
3163                 .name = SMIAPP_NAME,
3164                 .pm = &smiapp_pm_ops,
3165         },
3166         .probe_new = smiapp_probe,
3167         .remove = smiapp_remove,
3168         .id_table = smiapp_id_table,
3169 };
3170
3171 module_i2c_driver(smiapp_i2c_driver);
3172
3173 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3174 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3175 MODULE_LICENSE("GPL v2");