GNU Linux-libre 4.19.281-gnu1
[releases.git] / drivers / media / i2c / adv7604.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *              Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *              the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30
31 #include <media/i2c/adv7604.h>
32 #include <media/cec.h>
33 #include <media/v4l2-ctrls.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-event.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-fwnode.h>
38
39 static int debug;
40 module_param(debug, int, 0644);
41 MODULE_PARM_DESC(debug, "debug level (0-2)");
42
43 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
44 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
45 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
46 MODULE_LICENSE("GPL");
47
48 /* ADV7604 system clock frequency */
49 #define ADV76XX_FSC (28636360)
50
51 #define ADV76XX_RGB_OUT                                 (1 << 1)
52
53 #define ADV76XX_OP_FORMAT_SEL_8BIT                      (0 << 0)
54 #define ADV7604_OP_FORMAT_SEL_10BIT                     (1 << 0)
55 #define ADV76XX_OP_FORMAT_SEL_12BIT                     (2 << 0)
56
57 #define ADV76XX_OP_MODE_SEL_SDR_422                     (0 << 5)
58 #define ADV7604_OP_MODE_SEL_DDR_422                     (1 << 5)
59 #define ADV76XX_OP_MODE_SEL_SDR_444                     (2 << 5)
60 #define ADV7604_OP_MODE_SEL_DDR_444                     (3 << 5)
61 #define ADV76XX_OP_MODE_SEL_SDR_422_2X                  (4 << 5)
62 #define ADV7604_OP_MODE_SEL_ADI_CM                      (5 << 5)
63
64 #define ADV76XX_OP_CH_SEL_GBR                           (0 << 5)
65 #define ADV76XX_OP_CH_SEL_GRB                           (1 << 5)
66 #define ADV76XX_OP_CH_SEL_BGR                           (2 << 5)
67 #define ADV76XX_OP_CH_SEL_RGB                           (3 << 5)
68 #define ADV76XX_OP_CH_SEL_BRG                           (4 << 5)
69 #define ADV76XX_OP_CH_SEL_RBG                           (5 << 5)
70
71 #define ADV76XX_OP_SWAP_CB_CR                           (1 << 0)
72
73 #define ADV76XX_MAX_ADDRS (3)
74
75 enum adv76xx_type {
76         ADV7604,
77         ADV7611,
78         ADV7612,
79 };
80
81 struct adv76xx_reg_seq {
82         unsigned int reg;
83         u8 val;
84 };
85
86 struct adv76xx_format_info {
87         u32 code;
88         u8 op_ch_sel;
89         bool rgb_out;
90         bool swap_cb_cr;
91         u8 op_format_sel;
92 };
93
94 struct adv76xx_cfg_read_infoframe {
95         const char *desc;
96         u8 present_mask;
97         u8 head_addr;
98         u8 payload_addr;
99 };
100
101 struct adv76xx_chip_info {
102         enum adv76xx_type type;
103
104         bool has_afe;
105         unsigned int max_port;
106         unsigned int num_dv_ports;
107
108         unsigned int edid_enable_reg;
109         unsigned int edid_status_reg;
110         unsigned int lcf_reg;
111
112         unsigned int cable_det_mask;
113         unsigned int tdms_lock_mask;
114         unsigned int fmt_change_digital_mask;
115         unsigned int cp_csc;
116
117         const struct adv76xx_format_info *formats;
118         unsigned int nformats;
119
120         void (*set_termination)(struct v4l2_subdev *sd, bool enable);
121         void (*setup_irqs)(struct v4l2_subdev *sd);
122         unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
123         unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
124
125         /* 0 = AFE, 1 = HDMI */
126         const struct adv76xx_reg_seq *recommended_settings[2];
127         unsigned int num_recommended_settings[2];
128
129         unsigned long page_mask;
130
131         /* Masks for timings */
132         unsigned int linewidth_mask;
133         unsigned int field0_height_mask;
134         unsigned int field1_height_mask;
135         unsigned int hfrontporch_mask;
136         unsigned int hsync_mask;
137         unsigned int hbackporch_mask;
138         unsigned int field0_vfrontporch_mask;
139         unsigned int field1_vfrontporch_mask;
140         unsigned int field0_vsync_mask;
141         unsigned int field1_vsync_mask;
142         unsigned int field0_vbackporch_mask;
143         unsigned int field1_vbackporch_mask;
144 };
145
146 /*
147  **********************************************************************
148  *
149  *  Arrays with configuration parameters for the ADV7604
150  *
151  **********************************************************************
152  */
153
154 struct adv76xx_state {
155         const struct adv76xx_chip_info *info;
156         struct adv76xx_platform_data pdata;
157
158         struct gpio_desc *hpd_gpio[4];
159         struct gpio_desc *reset_gpio;
160
161         struct v4l2_subdev sd;
162         struct media_pad pads[ADV76XX_PAD_MAX];
163         unsigned int source_pad;
164
165         struct v4l2_ctrl_handler hdl;
166
167         enum adv76xx_pad selected_input;
168
169         struct v4l2_dv_timings timings;
170         const struct adv76xx_format_info *format;
171
172         struct {
173                 u8 edid[256];
174                 u32 present;
175                 unsigned blocks;
176         } edid;
177         u16 spa_port_a[2];
178         struct v4l2_fract aspect_ratio;
179         u32 rgb_quantization_range;
180         struct delayed_work delayed_work_enable_hotplug;
181         bool restart_stdi_once;
182
183         /* CEC */
184         struct cec_adapter *cec_adap;
185         u8   cec_addr[ADV76XX_MAX_ADDRS];
186         u8   cec_valid_addrs;
187         bool cec_enabled_adap;
188
189         /* i2c clients */
190         struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
191
192         /* Regmaps */
193         struct regmap *regmap[ADV76XX_PAGE_MAX];
194
195         /* controls */
196         struct v4l2_ctrl *detect_tx_5v_ctrl;
197         struct v4l2_ctrl *analog_sampling_phase_ctrl;
198         struct v4l2_ctrl *free_run_color_manual_ctrl;
199         struct v4l2_ctrl *free_run_color_ctrl;
200         struct v4l2_ctrl *rgb_quantization_range_ctrl;
201 };
202
203 static bool adv76xx_has_afe(struct adv76xx_state *state)
204 {
205         return state->info->has_afe;
206 }
207
208 /* Unsupported timings. This device cannot support 720p30. */
209 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
210         V4L2_DV_BT_CEA_1280X720P30,
211         { }
212 };
213
214 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
215 {
216         int i;
217
218         for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
219                 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
220                         return false;
221         return true;
222 }
223
224 struct adv76xx_video_standards {
225         struct v4l2_dv_timings timings;
226         u8 vid_std;
227         u8 v_freq;
228 };
229
230 /* sorted by number of lines */
231 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
232         /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
233         { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
234         { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
235         { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
236         { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
237         { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
238         { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
239         { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
240         { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
241         /* TODO add 1920x1080P60_RB (CVT timing) */
242         { },
243 };
244
245 /* sorted by number of lines */
246 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
247         { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
248         { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
249         { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
250         { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
251         { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
252         { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
253         { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
254         { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
255         { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
256         { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
257         { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
258         { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
259         { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
260         { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
261         { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
262         { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
263         { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
264         { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
265         { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
266         { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
267         /* TODO add 1600X1200P60_RB (not a DMT timing) */
268         { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
269         { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
270         { },
271 };
272
273 /* sorted by number of lines */
274 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
275         { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
276         { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
277         { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
278         { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
279         { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
280         { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
281         { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
282         { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
283         { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
284         { },
285 };
286
287 /* sorted by number of lines */
288 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
289         { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
290         { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
291         { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
292         { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
293         { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
294         { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
295         { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
296         { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
297         { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
298         { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
299         { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
300         { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
301         { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
302         { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
303         { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
304         { },
305 };
306
307 static const struct v4l2_event adv76xx_ev_fmt = {
308         .type = V4L2_EVENT_SOURCE_CHANGE,
309         .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
310 };
311
312 /* ----------------------------------------------------------------------- */
313
314 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
315 {
316         return container_of(sd, struct adv76xx_state, sd);
317 }
318
319 static inline unsigned htotal(const struct v4l2_bt_timings *t)
320 {
321         return V4L2_DV_BT_FRAME_WIDTH(t);
322 }
323
324 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
325 {
326         return V4L2_DV_BT_FRAME_HEIGHT(t);
327 }
328
329 /* ----------------------------------------------------------------------- */
330
331 static int adv76xx_read_check(struct adv76xx_state *state,
332                              int client_page, u8 reg)
333 {
334         struct i2c_client *client = state->i2c_clients[client_page];
335         int err;
336         unsigned int val;
337
338         err = regmap_read(state->regmap[client_page], reg, &val);
339
340         if (err) {
341                 v4l_err(client, "error reading %02x, %02x\n",
342                                 client->addr, reg);
343                 return err;
344         }
345         return val;
346 }
347
348 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
349  * size to one or more registers.
350  *
351  * A value of zero will be returned on success, a negative errno will
352  * be returned in error cases.
353  */
354 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
355                               unsigned int init_reg, const void *val,
356                               size_t val_len)
357 {
358         struct regmap *regmap = state->regmap[client_page];
359
360         if (val_len > I2C_SMBUS_BLOCK_MAX)
361                 val_len = I2C_SMBUS_BLOCK_MAX;
362
363         return regmap_raw_write(regmap, init_reg, val, val_len);
364 }
365
366 /* ----------------------------------------------------------------------- */
367
368 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
369 {
370         struct adv76xx_state *state = to_state(sd);
371
372         return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
373 }
374
375 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
376 {
377         struct adv76xx_state *state = to_state(sd);
378
379         return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
380 }
381
382 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
383                                    u8 val)
384 {
385         return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
386 }
387
388 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
389 {
390         struct adv76xx_state *state = to_state(sd);
391
392         return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
393 }
394
395 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
396 {
397         struct adv76xx_state *state = to_state(sd);
398
399         return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
400 }
401
402 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
403 {
404         struct adv76xx_state *state = to_state(sd);
405
406         return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
407 }
408
409 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
410 {
411         struct adv76xx_state *state = to_state(sd);
412
413         return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
414 }
415
416 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
417                                    u8 val)
418 {
419         return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
420 }
421
422 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
423 {
424         struct adv76xx_state *state = to_state(sd);
425
426         return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
427 }
428
429 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
430 {
431         struct adv76xx_state *state = to_state(sd);
432
433         return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
434 }
435
436 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
437 {
438         struct adv76xx_state *state = to_state(sd);
439
440         return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
441 }
442
443 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
444 {
445         struct adv76xx_state *state = to_state(sd);
446
447         return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
448 }
449
450 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
451 {
452         struct adv76xx_state *state = to_state(sd);
453
454         return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
455 }
456
457 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
458 {
459         struct adv76xx_state *state = to_state(sd);
460
461         return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
462 }
463
464 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
465 {
466         return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
467 }
468
469 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
470 {
471         struct adv76xx_state *state = to_state(sd);
472
473         return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
474 }
475
476 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
477 {
478         struct adv76xx_state *state = to_state(sd);
479
480         return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
481 }
482
483 static inline int edid_write_block(struct v4l2_subdev *sd,
484                                         unsigned int total_len, const u8 *val)
485 {
486         struct adv76xx_state *state = to_state(sd);
487         int err = 0;
488         int i = 0;
489         int len = 0;
490
491         v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
492                                 __func__, total_len);
493
494         while (!err && i < total_len) {
495                 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
496                                 I2C_SMBUS_BLOCK_MAX :
497                                 (total_len - i);
498
499                 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
500                                 i, val + i, len);
501                 i += len;
502         }
503
504         return err;
505 }
506
507 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
508 {
509         unsigned int i;
510
511         for (i = 0; i < state->info->num_dv_ports; ++i)
512                 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
513
514         v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
515 }
516
517 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
518 {
519         struct delayed_work *dwork = to_delayed_work(work);
520         struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
521                                                 delayed_work_enable_hotplug);
522         struct v4l2_subdev *sd = &state->sd;
523
524         v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
525
526         adv76xx_set_hpd(state, state->edid.present);
527 }
528
529 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
530 {
531         struct adv76xx_state *state = to_state(sd);
532
533         return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
534 }
535
536 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
537 {
538         return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
539 }
540
541 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
542 {
543         struct adv76xx_state *state = to_state(sd);
544
545         return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
546 }
547
548 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
549 {
550         return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
551 }
552
553 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
554 {
555         struct adv76xx_state *state = to_state(sd);
556
557         return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
558 }
559
560 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
561 {
562         struct adv76xx_state *state = to_state(sd);
563
564         return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
565 }
566
567 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
568 {
569         return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
570 }
571
572 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
573 {
574         struct adv76xx_state *state = to_state(sd);
575
576         return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
577 }
578
579 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
580 {
581         return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
582 }
583
584 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
585 {
586         struct adv76xx_state *state = to_state(sd);
587
588         return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
589 }
590
591 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
592 {
593         struct adv76xx_state *state = to_state(sd);
594
595         return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
596 }
597
598 #define ADV76XX_REG(page, offset)       (((page) << 8) | (offset))
599 #define ADV76XX_REG_SEQ_TERM            0xffff
600
601 #ifdef CONFIG_VIDEO_ADV_DEBUG
602 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
603 {
604         struct adv76xx_state *state = to_state(sd);
605         unsigned int page = reg >> 8;
606         unsigned int val;
607         int err;
608
609         if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
610                 return -EINVAL;
611
612         reg &= 0xff;
613         err = regmap_read(state->regmap[page], reg, &val);
614
615         return err ? err : val;
616 }
617 #endif
618
619 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
620 {
621         struct adv76xx_state *state = to_state(sd);
622         unsigned int page = reg >> 8;
623
624         if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
625                 return -EINVAL;
626
627         reg &= 0xff;
628
629         return regmap_write(state->regmap[page], reg, val);
630 }
631
632 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
633                                   const struct adv76xx_reg_seq *reg_seq)
634 {
635         unsigned int i;
636
637         for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
638                 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
639 }
640
641 /* -----------------------------------------------------------------------------
642  * Format helpers
643  */
644
645 static const struct adv76xx_format_info adv7604_formats[] = {
646         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
647           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
648         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
649           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
650         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
651           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
652         { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
653           ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
654         { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
655           ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
656         { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
657           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
658         { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
659           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
660         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
661           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
662         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
663           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
664         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
665           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
666         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
667           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668         { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
669           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
670         { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
671           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
672         { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
673           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
674         { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
675           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676         { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
677           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
678         { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
679           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
680         { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
681           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
682         { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
683           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 };
685
686 static const struct adv76xx_format_info adv7611_formats[] = {
687         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
688           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
689         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
690           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
691         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
692           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
693         { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
694           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
695         { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
696           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
697         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
698           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
699         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
700           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
701         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
702           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
703         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
704           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705         { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
706           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707         { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
708           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
709         { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
710           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
711         { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
712           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 };
714
715 static const struct adv76xx_format_info adv7612_formats[] = {
716         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
717           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
718         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
719           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
720         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
721           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
722         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
723           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
724         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
725           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
726         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
727           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
728         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
729           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 };
731
732 static const struct adv76xx_format_info *
733 adv76xx_format_info(struct adv76xx_state *state, u32 code)
734 {
735         unsigned int i;
736
737         for (i = 0; i < state->info->nformats; ++i) {
738                 if (state->info->formats[i].code == code)
739                         return &state->info->formats[i];
740         }
741
742         return NULL;
743 }
744
745 /* ----------------------------------------------------------------------- */
746
747 static inline bool is_analog_input(struct v4l2_subdev *sd)
748 {
749         struct adv76xx_state *state = to_state(sd);
750
751         return state->selected_input == ADV7604_PAD_VGA_RGB ||
752                state->selected_input == ADV7604_PAD_VGA_COMP;
753 }
754
755 static inline bool is_digital_input(struct v4l2_subdev *sd)
756 {
757         struct adv76xx_state *state = to_state(sd);
758
759         return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
760                state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
761                state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
762                state->selected_input == ADV7604_PAD_HDMI_PORT_D;
763 }
764
765 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
766         .type = V4L2_DV_BT_656_1120,
767         /* keep this initialization for compatibility with GCC < 4.4.6 */
768         .reserved = { 0 },
769         V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
770                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
771                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
772                 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
773                         V4L2_DV_BT_CAP_CUSTOM)
774 };
775
776 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
777         .type = V4L2_DV_BT_656_1120,
778         /* keep this initialization for compatibility with GCC < 4.4.6 */
779         .reserved = { 0 },
780         V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
781                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
782                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
783                 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
784                         V4L2_DV_BT_CAP_CUSTOM)
785 };
786
787 /*
788  * Return the DV timings capabilities for the requested sink pad. As a special
789  * case, pad value -1 returns the capabilities for the currently selected input.
790  */
791 static const struct v4l2_dv_timings_cap *
792 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
793 {
794         if (pad == -1) {
795                 struct adv76xx_state *state = to_state(sd);
796
797                 pad = state->selected_input;
798         }
799
800         switch (pad) {
801         case ADV76XX_PAD_HDMI_PORT_A:
802         case ADV7604_PAD_HDMI_PORT_B:
803         case ADV7604_PAD_HDMI_PORT_C:
804         case ADV7604_PAD_HDMI_PORT_D:
805                 return &adv76xx_timings_cap_digital;
806
807         case ADV7604_PAD_VGA_RGB:
808         case ADV7604_PAD_VGA_COMP:
809         default:
810                 return &adv7604_timings_cap_analog;
811         }
812 }
813
814
815 /* ----------------------------------------------------------------------- */
816
817 #ifdef CONFIG_VIDEO_ADV_DEBUG
818 static void adv76xx_inv_register(struct v4l2_subdev *sd)
819 {
820         v4l2_info(sd, "0x000-0x0ff: IO Map\n");
821         v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
822         v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
823         v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
824         v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
825         v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
826         v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
827         v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
828         v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
829         v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
830         v4l2_info(sd, "0xa00-0xaff: Test Map\n");
831         v4l2_info(sd, "0xb00-0xbff: CP Map\n");
832         v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
833 }
834
835 static int adv76xx_g_register(struct v4l2_subdev *sd,
836                                         struct v4l2_dbg_register *reg)
837 {
838         int ret;
839
840         ret = adv76xx_read_reg(sd, reg->reg);
841         if (ret < 0) {
842                 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
843                 adv76xx_inv_register(sd);
844                 return ret;
845         }
846
847         reg->size = 1;
848         reg->val = ret;
849
850         return 0;
851 }
852
853 static int adv76xx_s_register(struct v4l2_subdev *sd,
854                                         const struct v4l2_dbg_register *reg)
855 {
856         int ret;
857
858         ret = adv76xx_write_reg(sd, reg->reg, reg->val);
859         if (ret < 0) {
860                 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
861                 adv76xx_inv_register(sd);
862                 return ret;
863         }
864
865         return 0;
866 }
867 #endif
868
869 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
870 {
871         u8 value = io_read(sd, 0x6f);
872
873         return ((value & 0x10) >> 4)
874              | ((value & 0x08) >> 2)
875              | ((value & 0x04) << 0)
876              | ((value & 0x02) << 2);
877 }
878
879 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
880 {
881         u8 value = io_read(sd, 0x6f);
882
883         return value & 1;
884 }
885
886 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
887 {
888         /*  Reads CABLE_DET_A_RAW. For input B support, need to
889          *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
890          */
891         u8 value = io_read(sd, 0x6f);
892
893         return value & 1;
894 }
895
896 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
897 {
898         struct adv76xx_state *state = to_state(sd);
899         const struct adv76xx_chip_info *info = state->info;
900         u16 cable_det = info->read_cable_det(sd);
901
902         return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
903 }
904
905 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
906                 u8 prim_mode,
907                 const struct adv76xx_video_standards *predef_vid_timings,
908                 const struct v4l2_dv_timings *timings)
909 {
910         int i;
911
912         for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
913                 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
914                                 is_digital_input(sd) ? 250000 : 1000000, false))
915                         continue;
916                 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
917                 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
918                                 prim_mode); /* v_freq and prim mode */
919                 return 0;
920         }
921
922         return -1;
923 }
924
925 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
926                 struct v4l2_dv_timings *timings)
927 {
928         struct adv76xx_state *state = to_state(sd);
929         int err;
930
931         v4l2_dbg(1, debug, sd, "%s", __func__);
932
933         if (adv76xx_has_afe(state)) {
934                 /* reset to default values */
935                 io_write(sd, 0x16, 0x43);
936                 io_write(sd, 0x17, 0x5a);
937         }
938         /* disable embedded syncs for auto graphics mode */
939         cp_write_clr_set(sd, 0x81, 0x10, 0x00);
940         cp_write(sd, 0x8f, 0x00);
941         cp_write(sd, 0x90, 0x00);
942         cp_write(sd, 0xa2, 0x00);
943         cp_write(sd, 0xa3, 0x00);
944         cp_write(sd, 0xa4, 0x00);
945         cp_write(sd, 0xa5, 0x00);
946         cp_write(sd, 0xa6, 0x00);
947         cp_write(sd, 0xa7, 0x00);
948         cp_write(sd, 0xab, 0x00);
949         cp_write(sd, 0xac, 0x00);
950
951         if (is_analog_input(sd)) {
952                 err = find_and_set_predefined_video_timings(sd,
953                                 0x01, adv7604_prim_mode_comp, timings);
954                 if (err)
955                         err = find_and_set_predefined_video_timings(sd,
956                                         0x02, adv7604_prim_mode_gr, timings);
957         } else if (is_digital_input(sd)) {
958                 err = find_and_set_predefined_video_timings(sd,
959                                 0x05, adv76xx_prim_mode_hdmi_comp, timings);
960                 if (err)
961                         err = find_and_set_predefined_video_timings(sd,
962                                         0x06, adv76xx_prim_mode_hdmi_gr, timings);
963         } else {
964                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
965                                 __func__, state->selected_input);
966                 err = -1;
967         }
968
969
970         return err;
971 }
972
973 static void configure_custom_video_timings(struct v4l2_subdev *sd,
974                 const struct v4l2_bt_timings *bt)
975 {
976         struct adv76xx_state *state = to_state(sd);
977         u32 width = htotal(bt);
978         u32 height = vtotal(bt);
979         u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
980         u16 cp_start_eav = width - bt->hfrontporch;
981         u16 cp_start_vbi = height - bt->vfrontporch;
982         u16 cp_end_vbi = bt->vsync + bt->vbackporch;
983         u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
984                 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
985         const u8 pll[2] = {
986                 0xc0 | ((width >> 8) & 0x1f),
987                 width & 0xff
988         };
989
990         v4l2_dbg(2, debug, sd, "%s\n", __func__);
991
992         if (is_analog_input(sd)) {
993                 /* auto graphics */
994                 io_write(sd, 0x00, 0x07); /* video std */
995                 io_write(sd, 0x01, 0x02); /* prim mode */
996                 /* enable embedded syncs for auto graphics mode */
997                 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
998
999                 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1000                 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1001                 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1002                 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1003                                         0x16, pll, 2))
1004                         v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1005
1006                 /* active video - horizontal timing */
1007                 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1008                 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1009                                    ((cp_start_eav >> 8) & 0x0f));
1010                 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1011
1012                 /* active video - vertical timing */
1013                 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1014                 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1015                                    ((cp_end_vbi >> 8) & 0xf));
1016                 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1017         } else if (is_digital_input(sd)) {
1018                 /* set default prim_mode/vid_std for HDMI
1019                    according to [REF_03, c. 4.2] */
1020                 io_write(sd, 0x00, 0x02); /* video std */
1021                 io_write(sd, 0x01, 0x06); /* prim mode */
1022         } else {
1023                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1024                                 __func__, state->selected_input);
1025         }
1026
1027         cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1028         cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1029         cp_write(sd, 0xab, (height >> 4) & 0xff);
1030         cp_write(sd, 0xac, (height & 0x0f) << 4);
1031 }
1032
1033 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1034 {
1035         struct adv76xx_state *state = to_state(sd);
1036         u8 offset_buf[4];
1037
1038         if (auto_offset) {
1039                 offset_a = 0x3ff;
1040                 offset_b = 0x3ff;
1041                 offset_c = 0x3ff;
1042         }
1043
1044         v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1045                         __func__, auto_offset ? "Auto" : "Manual",
1046                         offset_a, offset_b, offset_c);
1047
1048         offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1049         offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1050         offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1051         offset_buf[3] = offset_c & 0x0ff;
1052
1053         /* Registers must be written in this order with no i2c access in between */
1054         if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1055                         0x77, offset_buf, 4))
1056                 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1057 }
1058
1059 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1060 {
1061         struct adv76xx_state *state = to_state(sd);
1062         u8 gain_buf[4];
1063         u8 gain_man = 1;
1064         u8 agc_mode_man = 1;
1065
1066         if (auto_gain) {
1067                 gain_man = 0;
1068                 agc_mode_man = 0;
1069                 gain_a = 0x100;
1070                 gain_b = 0x100;
1071                 gain_c = 0x100;
1072         }
1073
1074         v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1075                         __func__, auto_gain ? "Auto" : "Manual",
1076                         gain_a, gain_b, gain_c);
1077
1078         gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1079         gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1080         gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1081         gain_buf[3] = ((gain_c & 0x0ff));
1082
1083         /* Registers must be written in this order with no i2c access in between */
1084         if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1085                              0x73, gain_buf, 4))
1086                 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1087 }
1088
1089 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1090 {
1091         struct adv76xx_state *state = to_state(sd);
1092         bool rgb_output = io_read(sd, 0x02) & 0x02;
1093         bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1094         u8 y = HDMI_COLORSPACE_RGB;
1095
1096         if (hdmi_signal && (io_read(sd, 0x60) & 1))
1097                 y = infoframe_read(sd, 0x01) >> 5;
1098
1099         v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1100                         __func__, state->rgb_quantization_range,
1101                         rgb_output, hdmi_signal);
1102
1103         adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1104         adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1105         io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1106
1107         switch (state->rgb_quantization_range) {
1108         case V4L2_DV_RGB_RANGE_AUTO:
1109                 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1110                         /* Receiving analog RGB signal
1111                          * Set RGB full range (0-255) */
1112                         io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1113                         break;
1114                 }
1115
1116                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1117                         /* Receiving analog YPbPr signal
1118                          * Set automode */
1119                         io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1120                         break;
1121                 }
1122
1123                 if (hdmi_signal) {
1124                         /* Receiving HDMI signal
1125                          * Set automode */
1126                         io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1127                         break;
1128                 }
1129
1130                 /* Receiving DVI-D signal
1131                  * ADV7604 selects RGB limited range regardless of
1132                  * input format (CE/IT) in automatic mode */
1133                 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1134                         /* RGB limited range (16-235) */
1135                         io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1136                 } else {
1137                         /* RGB full range (0-255) */
1138                         io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1139
1140                         if (is_digital_input(sd) && rgb_output) {
1141                                 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1142                         } else {
1143                                 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1144                                 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1145                         }
1146                 }
1147                 break;
1148         case V4L2_DV_RGB_RANGE_LIMITED:
1149                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150                         /* YCrCb limited range (16-235) */
1151                         io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1152                         break;
1153                 }
1154
1155                 if (y != HDMI_COLORSPACE_RGB)
1156                         break;
1157
1158                 /* RGB limited range (16-235) */
1159                 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1160
1161                 break;
1162         case V4L2_DV_RGB_RANGE_FULL:
1163                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1164                         /* YCrCb full range (0-255) */
1165                         io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1166                         break;
1167                 }
1168
1169                 if (y != HDMI_COLORSPACE_RGB)
1170                         break;
1171
1172                 /* RGB full range (0-255) */
1173                 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1174
1175                 if (is_analog_input(sd) || hdmi_signal)
1176                         break;
1177
1178                 /* Adjust gain/offset for DVI-D signals only */
1179                 if (rgb_output) {
1180                         adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1181                 } else {
1182                         adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1183                         adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1184                 }
1185                 break;
1186         }
1187 }
1188
1189 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1190 {
1191         struct v4l2_subdev *sd =
1192                 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1193
1194         struct adv76xx_state *state = to_state(sd);
1195
1196         switch (ctrl->id) {
1197         case V4L2_CID_BRIGHTNESS:
1198                 cp_write(sd, 0x3c, ctrl->val);
1199                 return 0;
1200         case V4L2_CID_CONTRAST:
1201                 cp_write(sd, 0x3a, ctrl->val);
1202                 return 0;
1203         case V4L2_CID_SATURATION:
1204                 cp_write(sd, 0x3b, ctrl->val);
1205                 return 0;
1206         case V4L2_CID_HUE:
1207                 cp_write(sd, 0x3d, ctrl->val);
1208                 return 0;
1209         case  V4L2_CID_DV_RX_RGB_RANGE:
1210                 state->rgb_quantization_range = ctrl->val;
1211                 set_rgb_quantization_range(sd);
1212                 return 0;
1213         case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1214                 if (!adv76xx_has_afe(state))
1215                         return -EINVAL;
1216                 /* Set the analog sampling phase. This is needed to find the
1217                    best sampling phase for analog video: an application or
1218                    driver has to try a number of phases and analyze the picture
1219                    quality before settling on the best performing phase. */
1220                 afe_write(sd, 0xc8, ctrl->val);
1221                 return 0;
1222         case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1223                 /* Use the default blue color for free running mode,
1224                    or supply your own. */
1225                 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1226                 return 0;
1227         case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1228                 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1229                 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1230                 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1231                 return 0;
1232         }
1233         return -EINVAL;
1234 }
1235
1236 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1237 {
1238         struct v4l2_subdev *sd =
1239                 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1240
1241         if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1242                 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1243                 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1244                         ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1245                 return 0;
1246         }
1247         return -EINVAL;
1248 }
1249
1250 /* ----------------------------------------------------------------------- */
1251
1252 static inline bool no_power(struct v4l2_subdev *sd)
1253 {
1254         /* Entire chip or CP powered off */
1255         return io_read(sd, 0x0c) & 0x24;
1256 }
1257
1258 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1259 {
1260         struct adv76xx_state *state = to_state(sd);
1261
1262         return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1263 }
1264
1265 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1266 {
1267         struct adv76xx_state *state = to_state(sd);
1268         const struct adv76xx_chip_info *info = state->info;
1269
1270         return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1271 }
1272
1273 static inline bool is_hdmi(struct v4l2_subdev *sd)
1274 {
1275         return hdmi_read(sd, 0x05) & 0x80;
1276 }
1277
1278 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1279 {
1280         struct adv76xx_state *state = to_state(sd);
1281
1282         /*
1283          * Chips without a AFE don't expose registers for the SSPD, so just assume
1284          * that we have a lock.
1285          */
1286         if (adv76xx_has_afe(state))
1287                 return false;
1288
1289         /* TODO channel 2 */
1290         return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1291 }
1292
1293 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1294 {
1295         /* TODO channel 2 */
1296         return !(cp_read(sd, 0xb1) & 0x80);
1297 }
1298
1299 static inline bool no_signal(struct v4l2_subdev *sd)
1300 {
1301         bool ret;
1302
1303         ret = no_power(sd);
1304
1305         ret |= no_lock_stdi(sd);
1306         ret |= no_lock_sspd(sd);
1307
1308         if (is_digital_input(sd)) {
1309                 ret |= no_lock_tmds(sd);
1310                 ret |= no_signal_tmds(sd);
1311         }
1312
1313         return ret;
1314 }
1315
1316 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1317 {
1318         struct adv76xx_state *state = to_state(sd);
1319
1320         if (!adv76xx_has_afe(state))
1321                 return false;
1322
1323         /* CP has detected a non standard number of lines on the incoming
1324            video compared to what it is configured to receive by s_dv_timings */
1325         return io_read(sd, 0x12) & 0x01;
1326 }
1327
1328 static inline bool in_free_run(struct v4l2_subdev *sd)
1329 {
1330         return cp_read(sd, 0xff) & 0x10;
1331 }
1332
1333 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1334 {
1335         *status = 0;
1336         *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1337         *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1338         if (!in_free_run(sd) && no_lock_cp(sd))
1339                 *status |= is_digital_input(sd) ?
1340                            V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1341
1342         v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1343
1344         return 0;
1345 }
1346
1347 /* ----------------------------------------------------------------------- */
1348
1349 struct stdi_readback {
1350         u16 bl, lcf, lcvs;
1351         u8 hs_pol, vs_pol;
1352         bool interlaced;
1353 };
1354
1355 static int stdi2dv_timings(struct v4l2_subdev *sd,
1356                 struct stdi_readback *stdi,
1357                 struct v4l2_dv_timings *timings)
1358 {
1359         struct adv76xx_state *state = to_state(sd);
1360         u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1361         u32 pix_clk;
1362         int i;
1363
1364         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1365                 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1366
1367                 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1368                                            adv76xx_get_dv_timings_cap(sd, -1),
1369                                            adv76xx_check_dv_timings, NULL))
1370                         continue;
1371                 if (vtotal(bt) != stdi->lcf + 1)
1372                         continue;
1373                 if (bt->vsync != stdi->lcvs)
1374                         continue;
1375
1376                 pix_clk = hfreq * htotal(bt);
1377
1378                 if ((pix_clk < bt->pixelclock + 1000000) &&
1379                     (pix_clk > bt->pixelclock - 1000000)) {
1380                         *timings = v4l2_dv_timings_presets[i];
1381                         return 0;
1382                 }
1383         }
1384
1385         if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1386                         (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1387                         (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1388                         false, timings))
1389                 return 0;
1390         if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1391                         (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1392                         (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1393                         false, state->aspect_ratio, timings))
1394                 return 0;
1395
1396         v4l2_dbg(2, debug, sd,
1397                 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1398                 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1399                 stdi->hs_pol, stdi->vs_pol);
1400         return -1;
1401 }
1402
1403
1404 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1405 {
1406         struct adv76xx_state *state = to_state(sd);
1407         const struct adv76xx_chip_info *info = state->info;
1408         u8 polarity;
1409
1410         if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1411                 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1412                 return -1;
1413         }
1414
1415         /* read STDI */
1416         stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1417         stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1418         stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1419         stdi->interlaced = io_read(sd, 0x12) & 0x10;
1420
1421         if (adv76xx_has_afe(state)) {
1422                 /* read SSPD */
1423                 polarity = cp_read(sd, 0xb5);
1424                 if ((polarity & 0x03) == 0x01) {
1425                         stdi->hs_pol = polarity & 0x10
1426                                      ? (polarity & 0x08 ? '+' : '-') : 'x';
1427                         stdi->vs_pol = polarity & 0x40
1428                                      ? (polarity & 0x20 ? '+' : '-') : 'x';
1429                 } else {
1430                         stdi->hs_pol = 'x';
1431                         stdi->vs_pol = 'x';
1432                 }
1433         } else {
1434                 polarity = hdmi_read(sd, 0x05);
1435                 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1436                 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1437         }
1438
1439         if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1440                 v4l2_dbg(2, debug, sd,
1441                         "%s: signal lost during readout of STDI/SSPD\n", __func__);
1442                 return -1;
1443         }
1444
1445         if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1446                 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1447                 memset(stdi, 0, sizeof(struct stdi_readback));
1448                 return -1;
1449         }
1450
1451         v4l2_dbg(2, debug, sd,
1452                 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1453                 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1454                 stdi->hs_pol, stdi->vs_pol,
1455                 stdi->interlaced ? "interlaced" : "progressive");
1456
1457         return 0;
1458 }
1459
1460 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1461                         struct v4l2_enum_dv_timings *timings)
1462 {
1463         struct adv76xx_state *state = to_state(sd);
1464
1465         if (timings->pad >= state->source_pad)
1466                 return -EINVAL;
1467
1468         return v4l2_enum_dv_timings_cap(timings,
1469                 adv76xx_get_dv_timings_cap(sd, timings->pad),
1470                 adv76xx_check_dv_timings, NULL);
1471 }
1472
1473 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1474                         struct v4l2_dv_timings_cap *cap)
1475 {
1476         struct adv76xx_state *state = to_state(sd);
1477         unsigned int pad = cap->pad;
1478
1479         if (cap->pad >= state->source_pad)
1480                 return -EINVAL;
1481
1482         *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1483         cap->pad = pad;
1484
1485         return 0;
1486 }
1487
1488 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1489    if the format is listed in adv76xx_timings[] */
1490 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1491                 struct v4l2_dv_timings *timings)
1492 {
1493         v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1494                                  is_digital_input(sd) ? 250000 : 1000000,
1495                                  adv76xx_check_dv_timings, NULL);
1496 }
1497
1498 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1499 {
1500         unsigned int freq;
1501         int a, b;
1502
1503         a = hdmi_read(sd, 0x06);
1504         b = hdmi_read(sd, 0x3b);
1505         if (a < 0 || b < 0)
1506                 return 0;
1507         freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1508
1509         if (is_hdmi(sd)) {
1510                 /* adjust for deep color mode */
1511                 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1512
1513                 freq = freq * 8 / bits_per_channel;
1514         }
1515
1516         return freq;
1517 }
1518
1519 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1520 {
1521         int a, b;
1522
1523         a = hdmi_read(sd, 0x51);
1524         b = hdmi_read(sd, 0x52);
1525         if (a < 0 || b < 0)
1526                 return 0;
1527         return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1528 }
1529
1530 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1531                         struct v4l2_dv_timings *timings)
1532 {
1533         struct adv76xx_state *state = to_state(sd);
1534         const struct adv76xx_chip_info *info = state->info;
1535         struct v4l2_bt_timings *bt = &timings->bt;
1536         struct stdi_readback stdi;
1537
1538         if (!timings)
1539                 return -EINVAL;
1540
1541         memset(timings, 0, sizeof(struct v4l2_dv_timings));
1542
1543         if (no_signal(sd)) {
1544                 state->restart_stdi_once = true;
1545                 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1546                 return -ENOLINK;
1547         }
1548
1549         /* read STDI */
1550         if (read_stdi(sd, &stdi)) {
1551                 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1552                 return -ENOLINK;
1553         }
1554         bt->interlaced = stdi.interlaced ?
1555                 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1556
1557         if (is_digital_input(sd)) {
1558                 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1559                 u8 vic = 0;
1560                 u32 w, h;
1561
1562                 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1563                 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1564
1565                 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1566                         vic = infoframe_read(sd, 0x04);
1567
1568                 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1569                     bt->width == w && bt->height == h)
1570                         goto found;
1571
1572                 timings->type = V4L2_DV_BT_656_1120;
1573
1574                 bt->width = w;
1575                 bt->height = h;
1576                 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1577                 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1578                 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1579                 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1580                 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1581                         info->field0_vfrontporch_mask) / 2;
1582                 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1583                 bt->vbackporch = hdmi_read16(sd, 0x32,
1584                         info->field0_vbackporch_mask) / 2;
1585                 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1586                         ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1587                 if (bt->interlaced == V4L2_DV_INTERLACED) {
1588                         bt->height += hdmi_read16(sd, 0x0b,
1589                                 info->field1_height_mask);
1590                         bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1591                                 info->field1_vfrontporch_mask) / 2;
1592                         bt->il_vsync = hdmi_read16(sd, 0x30,
1593                                 info->field1_vsync_mask) / 2;
1594                         bt->il_vbackporch = hdmi_read16(sd, 0x34,
1595                                 info->field1_vbackporch_mask) / 2;
1596                 }
1597                 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1598         } else {
1599                 /* find format
1600                  * Since LCVS values are inaccurate [REF_03, p. 275-276],
1601                  * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1602                  */
1603                 if (!stdi2dv_timings(sd, &stdi, timings))
1604                         goto found;
1605                 stdi.lcvs += 1;
1606                 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1607                 if (!stdi2dv_timings(sd, &stdi, timings))
1608                         goto found;
1609                 stdi.lcvs -= 2;
1610                 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1611                 if (stdi2dv_timings(sd, &stdi, timings)) {
1612                         /*
1613                          * The STDI block may measure wrong values, especially
1614                          * for lcvs and lcf. If the driver can not find any
1615                          * valid timing, the STDI block is restarted to measure
1616                          * the video timings again. The function will return an
1617                          * error, but the restart of STDI will generate a new
1618                          * STDI interrupt and the format detection process will
1619                          * restart.
1620                          */
1621                         if (state->restart_stdi_once) {
1622                                 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1623                                 /* TODO restart STDI for Sync Channel 2 */
1624                                 /* enter one-shot mode */
1625                                 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1626                                 /* trigger STDI restart */
1627                                 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1628                                 /* reset to continuous mode */
1629                                 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1630                                 state->restart_stdi_once = false;
1631                                 return -ENOLINK;
1632                         }
1633                         v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1634                         return -ERANGE;
1635                 }
1636                 state->restart_stdi_once = true;
1637         }
1638 found:
1639
1640         if (no_signal(sd)) {
1641                 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1642                 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1643                 return -ENOLINK;
1644         }
1645
1646         if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1647                         (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1648                 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1649                                 __func__, (u32)bt->pixelclock);
1650                 return -ERANGE;
1651         }
1652
1653         if (debug > 1)
1654                 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1655                                       timings, true);
1656
1657         return 0;
1658 }
1659
1660 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1661                 struct v4l2_dv_timings *timings)
1662 {
1663         struct adv76xx_state *state = to_state(sd);
1664         struct v4l2_bt_timings *bt;
1665         int err;
1666
1667         if (!timings)
1668                 return -EINVAL;
1669
1670         if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1671                 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1672                 return 0;
1673         }
1674
1675         bt = &timings->bt;
1676
1677         if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1678                                    adv76xx_check_dv_timings, NULL))
1679                 return -ERANGE;
1680
1681         adv76xx_fill_optional_dv_timings_fields(sd, timings);
1682
1683         state->timings = *timings;
1684
1685         cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1686
1687         /* Use prim_mode and vid_std when available */
1688         err = configure_predefined_video_timings(sd, timings);
1689         if (err) {
1690                 /* custom settings when the video format
1691                  does not have prim_mode/vid_std */
1692                 configure_custom_video_timings(sd, bt);
1693         }
1694
1695         set_rgb_quantization_range(sd);
1696
1697         if (debug > 1)
1698                 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1699                                       timings, true);
1700         return 0;
1701 }
1702
1703 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1704                 struct v4l2_dv_timings *timings)
1705 {
1706         struct adv76xx_state *state = to_state(sd);
1707
1708         *timings = state->timings;
1709         return 0;
1710 }
1711
1712 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1713 {
1714         hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1715 }
1716
1717 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1718 {
1719         hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1720 }
1721
1722 static void enable_input(struct v4l2_subdev *sd)
1723 {
1724         struct adv76xx_state *state = to_state(sd);
1725
1726         if (is_analog_input(sd)) {
1727                 io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1728         } else if (is_digital_input(sd)) {
1729                 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1730                 state->info->set_termination(sd, true);
1731                 io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1732                 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1733         } else {
1734                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1735                                 __func__, state->selected_input);
1736         }
1737 }
1738
1739 static void disable_input(struct v4l2_subdev *sd)
1740 {
1741         struct adv76xx_state *state = to_state(sd);
1742
1743         hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1744         msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1745         io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1746         state->info->set_termination(sd, false);
1747 }
1748
1749 static void select_input(struct v4l2_subdev *sd)
1750 {
1751         struct adv76xx_state *state = to_state(sd);
1752         const struct adv76xx_chip_info *info = state->info;
1753
1754         if (is_analog_input(sd)) {
1755                 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1756
1757                 afe_write(sd, 0x00, 0x08); /* power up ADC */
1758                 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1759                 afe_write(sd, 0xc8, 0x00); /* phase control */
1760         } else if (is_digital_input(sd)) {
1761                 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1762
1763                 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1764
1765                 if (adv76xx_has_afe(state)) {
1766                         afe_write(sd, 0x00, 0xff); /* power down ADC */
1767                         afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1768                         afe_write(sd, 0xc8, 0x40); /* phase control */
1769                 }
1770
1771                 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1772                 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1773                 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1774         } else {
1775                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1776                                 __func__, state->selected_input);
1777         }
1778 }
1779
1780 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1781                 u32 input, u32 output, u32 config)
1782 {
1783         struct adv76xx_state *state = to_state(sd);
1784
1785         v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1786                         __func__, input, state->selected_input);
1787
1788         if (input == state->selected_input)
1789                 return 0;
1790
1791         if (input > state->info->max_port)
1792                 return -EINVAL;
1793
1794         state->selected_input = input;
1795
1796         disable_input(sd);
1797         select_input(sd);
1798         enable_input(sd);
1799
1800         v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1801
1802         return 0;
1803 }
1804
1805 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1806                                   struct v4l2_subdev_pad_config *cfg,
1807                                   struct v4l2_subdev_mbus_code_enum *code)
1808 {
1809         struct adv76xx_state *state = to_state(sd);
1810
1811         if (code->index >= state->info->nformats)
1812                 return -EINVAL;
1813
1814         code->code = state->info->formats[code->index].code;
1815
1816         return 0;
1817 }
1818
1819 static void adv76xx_fill_format(struct adv76xx_state *state,
1820                                 struct v4l2_mbus_framefmt *format)
1821 {
1822         memset(format, 0, sizeof(*format));
1823
1824         format->width = state->timings.bt.width;
1825         format->height = state->timings.bt.height;
1826         format->field = V4L2_FIELD_NONE;
1827         format->colorspace = V4L2_COLORSPACE_SRGB;
1828
1829         if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1830                 format->colorspace = (state->timings.bt.height <= 576) ?
1831                         V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1832 }
1833
1834 /*
1835  * Compute the op_ch_sel value required to obtain on the bus the component order
1836  * corresponding to the selected format taking into account bus reordering
1837  * applied by the board at the output of the device.
1838  *
1839  * The following table gives the op_ch_value from the format component order
1840  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1841  * adv76xx_bus_order value in row).
1842  *
1843  *           |  GBR(0)  GRB(1)  BGR(2)  RGB(3)  BRG(4)  RBG(5)
1844  * ----------+-------------------------------------------------
1845  * RGB (NOP) |  GBR     GRB     BGR     RGB     BRG     RBG
1846  * GRB (1-2) |  BGR     RGB     GBR     GRB     RBG     BRG
1847  * RBG (2-3) |  GRB     GBR     BRG     RBG     BGR     RGB
1848  * BGR (1-3) |  RBG     BRG     RGB     BGR     GRB     GBR
1849  * BRG (ROR) |  BRG     RBG     GRB     GBR     RGB     BGR
1850  * GBR (ROL) |  RGB     BGR     RBG     BRG     GBR     GRB
1851  */
1852 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1853 {
1854 #define _SEL(a,b,c,d,e,f)       { \
1855         ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1856         ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1857 #define _BUS(x)                 [ADV7604_BUS_ORDER_##x]
1858
1859         static const unsigned int op_ch_sel[6][6] = {
1860                 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1861                 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1862                 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1863                 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1864                 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1865                 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1866         };
1867
1868         return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1869 }
1870
1871 static void adv76xx_setup_format(struct adv76xx_state *state)
1872 {
1873         struct v4l2_subdev *sd = &state->sd;
1874
1875         io_write_clr_set(sd, 0x02, 0x02,
1876                         state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1877         io_write(sd, 0x03, state->format->op_format_sel |
1878                  state->pdata.op_format_mode_sel);
1879         io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1880         io_write_clr_set(sd, 0x05, 0x01,
1881                         state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1882         set_rgb_quantization_range(sd);
1883 }
1884
1885 static int adv76xx_get_format(struct v4l2_subdev *sd,
1886                               struct v4l2_subdev_pad_config *cfg,
1887                               struct v4l2_subdev_format *format)
1888 {
1889         struct adv76xx_state *state = to_state(sd);
1890
1891         if (format->pad != state->source_pad)
1892                 return -EINVAL;
1893
1894         adv76xx_fill_format(state, &format->format);
1895
1896         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1897                 struct v4l2_mbus_framefmt *fmt;
1898
1899                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1900                 format->format.code = fmt->code;
1901         } else {
1902                 format->format.code = state->format->code;
1903         }
1904
1905         return 0;
1906 }
1907
1908 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1909                                  struct v4l2_subdev_pad_config *cfg,
1910                                  struct v4l2_subdev_selection *sel)
1911 {
1912         struct adv76xx_state *state = to_state(sd);
1913
1914         if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1915                 return -EINVAL;
1916         /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1917         if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1918                 return -EINVAL;
1919
1920         sel->r.left     = 0;
1921         sel->r.top      = 0;
1922         sel->r.width    = state->timings.bt.width;
1923         sel->r.height   = state->timings.bt.height;
1924
1925         return 0;
1926 }
1927
1928 static int adv76xx_set_format(struct v4l2_subdev *sd,
1929                               struct v4l2_subdev_pad_config *cfg,
1930                               struct v4l2_subdev_format *format)
1931 {
1932         struct adv76xx_state *state = to_state(sd);
1933         const struct adv76xx_format_info *info;
1934
1935         if (format->pad != state->source_pad)
1936                 return -EINVAL;
1937
1938         info = adv76xx_format_info(state, format->format.code);
1939         if (!info)
1940                 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1941
1942         adv76xx_fill_format(state, &format->format);
1943         format->format.code = info->code;
1944
1945         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1946                 struct v4l2_mbus_framefmt *fmt;
1947
1948                 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1949                 fmt->code = format->format.code;
1950         } else {
1951                 state->format = info;
1952                 adv76xx_setup_format(state);
1953         }
1954
1955         return 0;
1956 }
1957
1958 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1959 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1960 {
1961         struct adv76xx_state *state = to_state(sd);
1962
1963         if ((cec_read(sd, 0x11) & 0x01) == 0) {
1964                 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1965                 return;
1966         }
1967
1968         if (tx_raw_status & 0x02) {
1969                 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1970                          __func__);
1971                 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1972                                   1, 0, 0, 0);
1973                 return;
1974         }
1975         if (tx_raw_status & 0x04) {
1976                 u8 status;
1977                 u8 nack_cnt;
1978                 u8 low_drive_cnt;
1979
1980                 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1981                 /*
1982                  * We set this status bit since this hardware performs
1983                  * retransmissions.
1984                  */
1985                 status = CEC_TX_STATUS_MAX_RETRIES;
1986                 nack_cnt = cec_read(sd, 0x14) & 0xf;
1987                 if (nack_cnt)
1988                         status |= CEC_TX_STATUS_NACK;
1989                 low_drive_cnt = cec_read(sd, 0x14) >> 4;
1990                 if (low_drive_cnt)
1991                         status |= CEC_TX_STATUS_LOW_DRIVE;
1992                 cec_transmit_done(state->cec_adap, status,
1993                                   0, nack_cnt, low_drive_cnt, 0);
1994                 return;
1995         }
1996         if (tx_raw_status & 0x01) {
1997                 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
1998                 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
1999                 return;
2000         }
2001 }
2002
2003 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2004 {
2005         struct adv76xx_state *state = to_state(sd);
2006         u8 cec_irq;
2007
2008         /* cec controller */
2009         cec_irq = io_read(sd, 0x4d) & 0x0f;
2010         if (!cec_irq)
2011                 return;
2012
2013         v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2014         adv76xx_cec_tx_raw_status(sd, cec_irq);
2015         if (cec_irq & 0x08) {
2016                 struct cec_msg msg;
2017
2018                 msg.len = cec_read(sd, 0x25) & 0x1f;
2019                 if (msg.len > 16)
2020                         msg.len = 16;
2021
2022                 if (msg.len) {
2023                         u8 i;
2024
2025                         for (i = 0; i < msg.len; i++)
2026                                 msg.msg[i] = cec_read(sd, i + 0x15);
2027                         cec_write(sd, 0x26, 0x01); /* re-enable rx */
2028                         cec_received_msg(state->cec_adap, &msg);
2029                 }
2030         }
2031
2032         /* note: the bit order is swapped between 0x4d and 0x4e */
2033         cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2034                   ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2035         io_write(sd, 0x4e, cec_irq);
2036
2037         if (handled)
2038                 *handled = true;
2039 }
2040
2041 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2042 {
2043         struct adv76xx_state *state = cec_get_drvdata(adap);
2044         struct v4l2_subdev *sd = &state->sd;
2045
2046         if (!state->cec_enabled_adap && enable) {
2047                 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2048                 cec_write(sd, 0x2c, 0x01);      /* cec soft reset */
2049                 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2050                 /* enabled irqs: */
2051                 /* tx: ready */
2052                 /* tx: arbitration lost */
2053                 /* tx: retry timeout */
2054                 /* rx: ready */
2055                 io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2056                 cec_write(sd, 0x26, 0x01);            /* enable rx */
2057         } else if (state->cec_enabled_adap && !enable) {
2058                 /* disable cec interrupts */
2059                 io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2060                 /* disable address mask 1-3 */
2061                 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2062                 /* power down cec section */
2063                 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2064                 state->cec_valid_addrs = 0;
2065         }
2066         state->cec_enabled_adap = enable;
2067         adv76xx_s_detect_tx_5v_ctrl(sd);
2068         return 0;
2069 }
2070
2071 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2072 {
2073         struct adv76xx_state *state = cec_get_drvdata(adap);
2074         struct v4l2_subdev *sd = &state->sd;
2075         unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2076
2077         if (!state->cec_enabled_adap)
2078                 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2079
2080         if (addr == CEC_LOG_ADDR_INVALID) {
2081                 cec_write_clr_set(sd, 0x27, 0x70, 0);
2082                 state->cec_valid_addrs = 0;
2083                 return 0;
2084         }
2085
2086         for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2087                 bool is_valid = state->cec_valid_addrs & (1 << i);
2088
2089                 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2090                         free_idx = i;
2091                 if (is_valid && state->cec_addr[i] == addr)
2092                         return 0;
2093         }
2094         if (i == ADV76XX_MAX_ADDRS) {
2095                 i = free_idx;
2096                 if (i == ADV76XX_MAX_ADDRS)
2097                         return -ENXIO;
2098         }
2099         state->cec_addr[i] = addr;
2100         state->cec_valid_addrs |= 1 << i;
2101
2102         switch (i) {
2103         case 0:
2104                 /* enable address mask 0 */
2105                 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2106                 /* set address for mask 0 */
2107                 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2108                 break;
2109         case 1:
2110                 /* enable address mask 1 */
2111                 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2112                 /* set address for mask 1 */
2113                 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2114                 break;
2115         case 2:
2116                 /* enable address mask 2 */
2117                 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2118                 /* set address for mask 1 */
2119                 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2120                 break;
2121         }
2122         return 0;
2123 }
2124
2125 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2126                                      u32 signal_free_time, struct cec_msg *msg)
2127 {
2128         struct adv76xx_state *state = cec_get_drvdata(adap);
2129         struct v4l2_subdev *sd = &state->sd;
2130         u8 len = msg->len;
2131         unsigned int i;
2132
2133         /*
2134          * The number of retries is the number of attempts - 1, but retry
2135          * at least once. It's not clear if a value of 0 is allowed, so
2136          * let's do at least one retry.
2137          */
2138         cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2139
2140         if (len > 16) {
2141                 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2142                 return -EINVAL;
2143         }
2144
2145         /* write data */
2146         for (i = 0; i < len; i++)
2147                 cec_write(sd, i, msg->msg[i]);
2148
2149         /* set length (data + header) */
2150         cec_write(sd, 0x10, len);
2151         /* start transmit, enable tx */
2152         cec_write(sd, 0x11, 0x01);
2153         return 0;
2154 }
2155
2156 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2157         .adap_enable = adv76xx_cec_adap_enable,
2158         .adap_log_addr = adv76xx_cec_adap_log_addr,
2159         .adap_transmit = adv76xx_cec_adap_transmit,
2160 };
2161 #endif
2162
2163 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2164 {
2165         struct adv76xx_state *state = to_state(sd);
2166         const struct adv76xx_chip_info *info = state->info;
2167         const u8 irq_reg_0x43 = io_read(sd, 0x43);
2168         const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2169         const u8 irq_reg_0x70 = io_read(sd, 0x70);
2170         u8 fmt_change_digital;
2171         u8 fmt_change;
2172         u8 tx_5v;
2173
2174         if (irq_reg_0x43)
2175                 io_write(sd, 0x44, irq_reg_0x43);
2176         if (irq_reg_0x70)
2177                 io_write(sd, 0x71, irq_reg_0x70);
2178         if (irq_reg_0x6b)
2179                 io_write(sd, 0x6c, irq_reg_0x6b);
2180
2181         v4l2_dbg(2, debug, sd, "%s: ", __func__);
2182
2183         /* format change */
2184         fmt_change = irq_reg_0x43 & 0x98;
2185         fmt_change_digital = is_digital_input(sd)
2186                            ? irq_reg_0x6b & info->fmt_change_digital_mask
2187                            : 0;
2188
2189         if (fmt_change || fmt_change_digital) {
2190                 v4l2_dbg(1, debug, sd,
2191                         "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2192                         __func__, fmt_change, fmt_change_digital);
2193
2194                 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2195
2196                 if (handled)
2197                         *handled = true;
2198         }
2199         /* HDMI/DVI mode */
2200         if (irq_reg_0x6b & 0x01) {
2201                 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2202                         (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2203                 set_rgb_quantization_range(sd);
2204                 if (handled)
2205                         *handled = true;
2206         }
2207
2208 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2209         /* cec */
2210         adv76xx_cec_isr(sd, handled);
2211 #endif
2212
2213         /* tx 5v detect */
2214         tx_5v = irq_reg_0x70 & info->cable_det_mask;
2215         if (tx_5v) {
2216                 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2217                 adv76xx_s_detect_tx_5v_ctrl(sd);
2218                 if (handled)
2219                         *handled = true;
2220         }
2221         return 0;
2222 }
2223
2224 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2225 {
2226         struct adv76xx_state *state = to_state(sd);
2227         u8 *data = NULL;
2228
2229         memset(edid->reserved, 0, sizeof(edid->reserved));
2230
2231         switch (edid->pad) {
2232         case ADV76XX_PAD_HDMI_PORT_A:
2233         case ADV7604_PAD_HDMI_PORT_B:
2234         case ADV7604_PAD_HDMI_PORT_C:
2235         case ADV7604_PAD_HDMI_PORT_D:
2236                 if (state->edid.present & (1 << edid->pad))
2237                         data = state->edid.edid;
2238                 break;
2239         default:
2240                 return -EINVAL;
2241         }
2242
2243         if (edid->start_block == 0 && edid->blocks == 0) {
2244                 edid->blocks = data ? state->edid.blocks : 0;
2245                 return 0;
2246         }
2247
2248         if (!data)
2249                 return -ENODATA;
2250
2251         if (edid->start_block >= state->edid.blocks)
2252                 return -EINVAL;
2253
2254         if (edid->start_block + edid->blocks > state->edid.blocks)
2255                 edid->blocks = state->edid.blocks - edid->start_block;
2256
2257         memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2258
2259         return 0;
2260 }
2261
2262 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2263 {
2264         struct adv76xx_state *state = to_state(sd);
2265         const struct adv76xx_chip_info *info = state->info;
2266         unsigned int spa_loc;
2267         u16 pa;
2268         int err;
2269         int i;
2270
2271         memset(edid->reserved, 0, sizeof(edid->reserved));
2272
2273         if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2274                 return -EINVAL;
2275         if (edid->start_block != 0)
2276                 return -EINVAL;
2277         if (edid->blocks == 0) {
2278                 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2279                 state->edid.present &= ~(1 << edid->pad);
2280                 adv76xx_set_hpd(state, state->edid.present);
2281                 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2282
2283                 /* Fall back to a 16:9 aspect ratio */
2284                 state->aspect_ratio.numerator = 16;
2285                 state->aspect_ratio.denominator = 9;
2286
2287                 if (!state->edid.present) {
2288                         state->edid.blocks = 0;
2289                         cec_phys_addr_invalidate(state->cec_adap);
2290                 }
2291
2292                 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2293                                 __func__, edid->pad, state->edid.present);
2294                 return 0;
2295         }
2296         if (edid->blocks > 2) {
2297                 edid->blocks = 2;
2298                 return -E2BIG;
2299         }
2300         pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2301         err = v4l2_phys_addr_validate(pa, &pa, NULL);
2302         if (err)
2303                 return err;
2304
2305         v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2306                         __func__, edid->pad, state->edid.present);
2307
2308         /* Disable hotplug and I2C access to EDID RAM from DDC port */
2309         cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2310         adv76xx_set_hpd(state, 0);
2311         rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2312
2313         /*
2314          * Return an error if no location of the source physical address
2315          * was found.
2316          */
2317         if (spa_loc == 0)
2318                 return -EINVAL;
2319
2320         switch (edid->pad) {
2321         case ADV76XX_PAD_HDMI_PORT_A:
2322                 state->spa_port_a[0] = edid->edid[spa_loc];
2323                 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2324                 break;
2325         case ADV7604_PAD_HDMI_PORT_B:
2326                 rep_write(sd, 0x70, edid->edid[spa_loc]);
2327                 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2328                 break;
2329         case ADV7604_PAD_HDMI_PORT_C:
2330                 rep_write(sd, 0x72, edid->edid[spa_loc]);
2331                 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2332                 break;
2333         case ADV7604_PAD_HDMI_PORT_D:
2334                 rep_write(sd, 0x74, edid->edid[spa_loc]);
2335                 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2336                 break;
2337         default:
2338                 return -EINVAL;
2339         }
2340
2341         if (info->type == ADV7604) {
2342                 rep_write(sd, 0x76, spa_loc & 0xff);
2343                 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2344         } else {
2345                 /* ADV7612 Software Manual Rev. A, p. 15 */
2346                 rep_write(sd, 0x70, spa_loc & 0xff);
2347                 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2348         }
2349
2350         edid->edid[spa_loc] = state->spa_port_a[0];
2351         edid->edid[spa_loc + 1] = state->spa_port_a[1];
2352
2353         memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2354         state->edid.blocks = edid->blocks;
2355         state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2356                         edid->edid[0x16]);
2357         state->edid.present |= 1 << edid->pad;
2358
2359         err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2360         if (err < 0) {
2361                 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2362                 return err;
2363         }
2364
2365         /* adv76xx calculates the checksums and enables I2C access to internal
2366            EDID RAM from DDC port. */
2367         rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2368
2369         for (i = 0; i < 1000; i++) {
2370                 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2371                         break;
2372                 mdelay(1);
2373         }
2374         if (i == 1000) {
2375                 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2376                 return -EIO;
2377         }
2378         cec_s_phys_addr(state->cec_adap, pa, false);
2379
2380         /* enable hotplug after 100 ms */
2381         schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2382         return 0;
2383 }
2384
2385 /*********** avi info frame CEA-861-E **************/
2386
2387 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2388         { "AVI", 0x01, 0xe0, 0x00 },
2389         { "Audio", 0x02, 0xe3, 0x1c },
2390         { "SDP", 0x04, 0xe6, 0x2a },
2391         { "Vendor", 0x10, 0xec, 0x54 }
2392 };
2393
2394 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2395                                   union hdmi_infoframe *frame)
2396 {
2397         uint8_t buffer[32];
2398         u8 len;
2399         int i;
2400
2401         if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2402                 v4l2_info(sd, "%s infoframe not received\n",
2403                           adv76xx_cri[index].desc);
2404                 return -ENOENT;
2405         }
2406
2407         for (i = 0; i < 3; i++)
2408                 buffer[i] = infoframe_read(sd,
2409                                            adv76xx_cri[index].head_addr + i);
2410
2411         len = buffer[2] + 1;
2412
2413         if (len + 3 > sizeof(buffer)) {
2414                 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2415                          adv76xx_cri[index].desc, len);
2416                 return -ENOENT;
2417         }
2418
2419         for (i = 0; i < len; i++)
2420                 buffer[i + 3] = infoframe_read(sd,
2421                                        adv76xx_cri[index].payload_addr + i);
2422
2423         if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2424                 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2425                          adv76xx_cri[index].desc);
2426                 return -ENOENT;
2427         }
2428         return 0;
2429 }
2430
2431 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2432 {
2433         int i;
2434
2435         if (!is_hdmi(sd)) {
2436                 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2437                 return;
2438         }
2439
2440         for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2441                 union hdmi_infoframe frame;
2442                 struct i2c_client *client = v4l2_get_subdevdata(sd);
2443
2444                 if (adv76xx_read_infoframe(sd, i, &frame))
2445                         return;
2446                 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2447         }
2448 }
2449
2450 static int adv76xx_log_status(struct v4l2_subdev *sd)
2451 {
2452         struct adv76xx_state *state = to_state(sd);
2453         const struct adv76xx_chip_info *info = state->info;
2454         struct v4l2_dv_timings timings;
2455         struct stdi_readback stdi;
2456         u8 reg_io_0x02 = io_read(sd, 0x02);
2457         u8 edid_enabled;
2458         u8 cable_det;
2459
2460         static const char * const csc_coeff_sel_rb[16] = {
2461                 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2462                 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2463                 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2464                 "reserved", "reserved", "reserved", "reserved", "manual"
2465         };
2466         static const char * const input_color_space_txt[16] = {
2467                 "RGB limited range (16-235)", "RGB full range (0-255)",
2468                 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2469                 "xvYCC Bt.601", "xvYCC Bt.709",
2470                 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2471                 "invalid", "invalid", "invalid", "invalid", "invalid",
2472                 "invalid", "invalid", "automatic"
2473         };
2474         static const char * const hdmi_color_space_txt[16] = {
2475                 "RGB limited range (16-235)", "RGB full range (0-255)",
2476                 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2477                 "xvYCC Bt.601", "xvYCC Bt.709",
2478                 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2479                 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2480                 "invalid", "invalid", "invalid"
2481         };
2482         static const char * const rgb_quantization_range_txt[] = {
2483                 "Automatic",
2484                 "RGB limited range (16-235)",
2485                 "RGB full range (0-255)",
2486         };
2487         static const char * const deep_color_mode_txt[4] = {
2488                 "8-bits per channel",
2489                 "10-bits per channel",
2490                 "12-bits per channel",
2491                 "16-bits per channel (not supported)"
2492         };
2493
2494         v4l2_info(sd, "-----Chip status-----\n");
2495         v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2496         edid_enabled = rep_read(sd, info->edid_status_reg);
2497         v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2498                         ((edid_enabled & 0x01) ? "Yes" : "No"),
2499                         ((edid_enabled & 0x02) ? "Yes" : "No"),
2500                         ((edid_enabled & 0x04) ? "Yes" : "No"),
2501                         ((edid_enabled & 0x08) ? "Yes" : "No"));
2502         v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2503                         "enabled" : "disabled");
2504         if (state->cec_enabled_adap) {
2505                 int i;
2506
2507                 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2508                         bool is_valid = state->cec_valid_addrs & (1 << i);
2509
2510                         if (is_valid)
2511                                 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2512                                           state->cec_addr[i]);
2513                 }
2514         }
2515
2516         v4l2_info(sd, "-----Signal status-----\n");
2517         cable_det = info->read_cable_det(sd);
2518         v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2519                         ((cable_det & 0x01) ? "Yes" : "No"),
2520                         ((cable_det & 0x02) ? "Yes" : "No"),
2521                         ((cable_det & 0x04) ? "Yes" : "No"),
2522                         ((cable_det & 0x08) ? "Yes" : "No"));
2523         v4l2_info(sd, "TMDS signal detected: %s\n",
2524                         no_signal_tmds(sd) ? "false" : "true");
2525         v4l2_info(sd, "TMDS signal locked: %s\n",
2526                         no_lock_tmds(sd) ? "false" : "true");
2527         v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2528         v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2529         v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2530         v4l2_info(sd, "CP free run: %s\n",
2531                         (in_free_run(sd)) ? "on" : "off");
2532         v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2533                         io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2534                         (io_read(sd, 0x01) & 0x70) >> 4);
2535
2536         v4l2_info(sd, "-----Video Timings-----\n");
2537         if (read_stdi(sd, &stdi))
2538                 v4l2_info(sd, "STDI: not locked\n");
2539         else
2540                 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2541                                 stdi.lcf, stdi.bl, stdi.lcvs,
2542                                 stdi.interlaced ? "interlaced" : "progressive",
2543                                 stdi.hs_pol, stdi.vs_pol);
2544         if (adv76xx_query_dv_timings(sd, &timings))
2545                 v4l2_info(sd, "No video detected\n");
2546         else
2547                 v4l2_print_dv_timings(sd->name, "Detected format: ",
2548                                       &timings, true);
2549         v4l2_print_dv_timings(sd->name, "Configured format: ",
2550                               &state->timings, true);
2551
2552         if (no_signal(sd))
2553                 return 0;
2554
2555         v4l2_info(sd, "-----Color space-----\n");
2556         v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2557                         rgb_quantization_range_txt[state->rgb_quantization_range]);
2558         v4l2_info(sd, "Input color space: %s\n",
2559                         input_color_space_txt[reg_io_0x02 >> 4]);
2560         v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2561                         (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2562                         (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2563                                 "(16-235)" : "(0-255)",
2564                         (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2565         v4l2_info(sd, "Color space conversion: %s\n",
2566                         csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2567
2568         if (!is_digital_input(sd))
2569                 return 0;
2570
2571         v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2572         v4l2_info(sd, "Digital video port selected: %c\n",
2573                         (hdmi_read(sd, 0x00) & 0x03) + 'A');
2574         v4l2_info(sd, "HDCP encrypted content: %s\n",
2575                         (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2576         v4l2_info(sd, "HDCP keys read: %s%s\n",
2577                         (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2578                         (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2579         if (is_hdmi(sd)) {
2580                 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2581                 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2582                 bool audio_mute = io_read(sd, 0x65) & 0x40;
2583
2584                 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2585                                 audio_pll_locked ? "locked" : "not locked",
2586                                 audio_sample_packet_detect ? "detected" : "not detected",
2587                                 audio_mute ? "muted" : "enabled");
2588                 if (audio_pll_locked && audio_sample_packet_detect) {
2589                         v4l2_info(sd, "Audio format: %s\n",
2590                                         (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2591                 }
2592                 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2593                                 (hdmi_read(sd, 0x5c) << 8) +
2594                                 (hdmi_read(sd, 0x5d) & 0xf0));
2595                 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2596                                 (hdmi_read(sd, 0x5e) << 8) +
2597                                 hdmi_read(sd, 0x5f));
2598                 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2599
2600                 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2601                 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2602
2603                 adv76xx_log_infoframes(sd);
2604         }
2605
2606         return 0;
2607 }
2608
2609 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2610                                    struct v4l2_fh *fh,
2611                                    struct v4l2_event_subscription *sub)
2612 {
2613         switch (sub->type) {
2614         case V4L2_EVENT_SOURCE_CHANGE:
2615                 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2616         case V4L2_EVENT_CTRL:
2617                 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2618         default:
2619                 return -EINVAL;
2620         }
2621 }
2622
2623 static int adv76xx_registered(struct v4l2_subdev *sd)
2624 {
2625         struct adv76xx_state *state = to_state(sd);
2626         struct i2c_client *client = v4l2_get_subdevdata(sd);
2627         int err;
2628
2629         err = cec_register_adapter(state->cec_adap, &client->dev);
2630         if (err)
2631                 cec_delete_adapter(state->cec_adap);
2632         return err;
2633 }
2634
2635 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2636 {
2637         struct adv76xx_state *state = to_state(sd);
2638
2639         cec_unregister_adapter(state->cec_adap);
2640 }
2641
2642 /* ----------------------------------------------------------------------- */
2643
2644 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2645         .s_ctrl = adv76xx_s_ctrl,
2646         .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2647 };
2648
2649 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2650         .log_status = adv76xx_log_status,
2651         .interrupt_service_routine = adv76xx_isr,
2652         .subscribe_event = adv76xx_subscribe_event,
2653         .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2654 #ifdef CONFIG_VIDEO_ADV_DEBUG
2655         .g_register = adv76xx_g_register,
2656         .s_register = adv76xx_s_register,
2657 #endif
2658 };
2659
2660 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2661         .s_routing = adv76xx_s_routing,
2662         .g_input_status = adv76xx_g_input_status,
2663         .s_dv_timings = adv76xx_s_dv_timings,
2664         .g_dv_timings = adv76xx_g_dv_timings,
2665         .query_dv_timings = adv76xx_query_dv_timings,
2666 };
2667
2668 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2669         .enum_mbus_code = adv76xx_enum_mbus_code,
2670         .get_selection = adv76xx_get_selection,
2671         .get_fmt = adv76xx_get_format,
2672         .set_fmt = adv76xx_set_format,
2673         .get_edid = adv76xx_get_edid,
2674         .set_edid = adv76xx_set_edid,
2675         .dv_timings_cap = adv76xx_dv_timings_cap,
2676         .enum_dv_timings = adv76xx_enum_dv_timings,
2677 };
2678
2679 static const struct v4l2_subdev_ops adv76xx_ops = {
2680         .core = &adv76xx_core_ops,
2681         .video = &adv76xx_video_ops,
2682         .pad = &adv76xx_pad_ops,
2683 };
2684
2685 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2686         .registered = adv76xx_registered,
2687         .unregistered = adv76xx_unregistered,
2688 };
2689
2690 /* -------------------------- custom ctrls ---------------------------------- */
2691
2692 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2693         .ops = &adv76xx_ctrl_ops,
2694         .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2695         .name = "Analog Sampling Phase",
2696         .type = V4L2_CTRL_TYPE_INTEGER,
2697         .min = 0,
2698         .max = 0x1f,
2699         .step = 1,
2700         .def = 0,
2701 };
2702
2703 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2704         .ops = &adv76xx_ctrl_ops,
2705         .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2706         .name = "Free Running Color, Manual",
2707         .type = V4L2_CTRL_TYPE_BOOLEAN,
2708         .min = false,
2709         .max = true,
2710         .step = 1,
2711         .def = false,
2712 };
2713
2714 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2715         .ops = &adv76xx_ctrl_ops,
2716         .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2717         .name = "Free Running Color",
2718         .type = V4L2_CTRL_TYPE_INTEGER,
2719         .min = 0x0,
2720         .max = 0xffffff,
2721         .step = 0x1,
2722         .def = 0x0,
2723 };
2724
2725 /* ----------------------------------------------------------------------- */
2726
2727 struct adv76xx_register_map {
2728         const char *name;
2729         u8 default_addr;
2730 };
2731
2732 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2733         [ADV76XX_PAGE_IO] = { "main", 0x4c },
2734         [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2735         [ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2736         [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2737         [ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2738         [ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2739         [ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2740         [ADV76XX_PAGE_REP] = { "rep", 0x32 },
2741         [ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2742         [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2743         [ADV76XX_PAGE_TEST] = { "test", 0x30 },
2744         [ADV76XX_PAGE_CP] = { "cp", 0x22 },
2745         [ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2746 };
2747
2748 static int adv76xx_core_init(struct v4l2_subdev *sd)
2749 {
2750         struct adv76xx_state *state = to_state(sd);
2751         const struct adv76xx_chip_info *info = state->info;
2752         struct adv76xx_platform_data *pdata = &state->pdata;
2753
2754         hdmi_write(sd, 0x48,
2755                 (pdata->disable_pwrdnb ? 0x80 : 0) |
2756                 (pdata->disable_cable_det_rst ? 0x40 : 0));
2757
2758         disable_input(sd);
2759
2760         if (pdata->default_input >= 0 &&
2761             pdata->default_input < state->source_pad) {
2762                 state->selected_input = pdata->default_input;
2763                 select_input(sd);
2764                 enable_input(sd);
2765         }
2766
2767         /* power */
2768         io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2769         io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2770         cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2771
2772         /* video format */
2773         io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2774         io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2775                         pdata->insert_av_codes << 2 |
2776                         pdata->replicate_av_codes << 1);
2777         adv76xx_setup_format(state);
2778
2779         cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2780
2781         /* VS, HS polarities */
2782         io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2783                  pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2784
2785         /* Adjust drive strength */
2786         io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2787                                 pdata->dr_str_clk << 2 |
2788                                 pdata->dr_str_sync);
2789
2790         cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2791         cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2792         cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2793                                       ADI recommended setting [REF_01, c. 2.3.3] */
2794         cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2795                                       ADI recommended setting [REF_01, c. 2.3.3] */
2796         cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2797                                      for digital formats */
2798
2799         /* HDMI audio */
2800         hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2801         hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2802         hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2803
2804         /* TODO from platform data */
2805         afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2806
2807         if (adv76xx_has_afe(state)) {
2808                 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2809                 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2810         }
2811
2812         /* interrupts */
2813         io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2814         io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2815         io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2816         io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2817         info->setup_irqs(sd);
2818
2819         return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2820 }
2821
2822 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2823 {
2824         io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2825 }
2826
2827 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2828 {
2829         io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2830 }
2831
2832 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2833 {
2834         io_write(sd, 0x41, 0xd0); /* disable INT2 */
2835 }
2836
2837 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2838 {
2839         unsigned int i;
2840
2841         for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2842                 if (state->i2c_clients[i])
2843                         i2c_unregister_device(state->i2c_clients[i]);
2844         }
2845 }
2846
2847 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2848                                                unsigned int page)
2849 {
2850         struct i2c_client *client = v4l2_get_subdevdata(sd);
2851         struct adv76xx_state *state = to_state(sd);
2852         struct adv76xx_platform_data *pdata = &state->pdata;
2853         unsigned int io_reg = 0xf2 + page;
2854         struct i2c_client *new_client;
2855
2856         if (pdata && pdata->i2c_addresses[page])
2857                 new_client = i2c_new_dummy(client->adapter,
2858                                            pdata->i2c_addresses[page]);
2859         else
2860                 new_client = i2c_new_secondary_device(client,
2861                                 adv76xx_default_addresses[page].name,
2862                                 adv76xx_default_addresses[page].default_addr);
2863
2864         if (new_client)
2865                 io_write(sd, io_reg, new_client->addr << 1);
2866
2867         return new_client;
2868 }
2869
2870 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2871         /* reset ADI recommended settings for HDMI: */
2872         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2873         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2874         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2875         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2876         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2877         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2878         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2879         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2880         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2881         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2882         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2883         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2884         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2885
2886         /* set ADI recommended settings for digitizer */
2887         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2888         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2889         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2890         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2891         { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2892         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2893
2894         { ADV76XX_REG_SEQ_TERM, 0 },
2895 };
2896
2897 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2898         /* set ADI recommended settings for HDMI: */
2899         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2900         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2901         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2902         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2903         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2904         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2905         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2906         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2907         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2908         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2909         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2910         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2911
2912         /* reset ADI recommended settings for digitizer */
2913         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2914         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2915         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2916
2917         { ADV76XX_REG_SEQ_TERM, 0 },
2918 };
2919
2920 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2921         /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2922         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2923         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2924         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2925         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2926         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2927         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2928         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2929         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2930         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2931         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2932         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2933
2934         { ADV76XX_REG_SEQ_TERM, 0 },
2935 };
2936
2937 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2938         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2939         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2940         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2941         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2942         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2943         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2944         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2945         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2946         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2947         { ADV76XX_REG_SEQ_TERM, 0 },
2948 };
2949
2950 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2951         [ADV7604] = {
2952                 .type = ADV7604,
2953                 .has_afe = true,
2954                 .max_port = ADV7604_PAD_VGA_COMP,
2955                 .num_dv_ports = 4,
2956                 .edid_enable_reg = 0x77,
2957                 .edid_status_reg = 0x7d,
2958                 .lcf_reg = 0xb3,
2959                 .tdms_lock_mask = 0xe0,
2960                 .cable_det_mask = 0x1e,
2961                 .fmt_change_digital_mask = 0xc1,
2962                 .cp_csc = 0xfc,
2963                 .formats = adv7604_formats,
2964                 .nformats = ARRAY_SIZE(adv7604_formats),
2965                 .set_termination = adv7604_set_termination,
2966                 .setup_irqs = adv7604_setup_irqs,
2967                 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2968                 .read_cable_det = adv7604_read_cable_det,
2969                 .recommended_settings = {
2970                     [0] = adv7604_recommended_settings_afe,
2971                     [1] = adv7604_recommended_settings_hdmi,
2972                 },
2973                 .num_recommended_settings = {
2974                     [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2975                     [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2976                 },
2977                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2978                         BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2979                         BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2980                         BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2981                         BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2982                         BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2983                         BIT(ADV7604_PAGE_VDP),
2984                 .linewidth_mask = 0xfff,
2985                 .field0_height_mask = 0xfff,
2986                 .field1_height_mask = 0xfff,
2987                 .hfrontporch_mask = 0x3ff,
2988                 .hsync_mask = 0x3ff,
2989                 .hbackporch_mask = 0x3ff,
2990                 .field0_vfrontporch_mask = 0x1fff,
2991                 .field0_vsync_mask = 0x1fff,
2992                 .field0_vbackporch_mask = 0x1fff,
2993                 .field1_vfrontporch_mask = 0x1fff,
2994                 .field1_vsync_mask = 0x1fff,
2995                 .field1_vbackporch_mask = 0x1fff,
2996         },
2997         [ADV7611] = {
2998                 .type = ADV7611,
2999                 .has_afe = false,
3000                 .max_port = ADV76XX_PAD_HDMI_PORT_A,
3001                 .num_dv_ports = 1,
3002                 .edid_enable_reg = 0x74,
3003                 .edid_status_reg = 0x76,
3004                 .lcf_reg = 0xa3,
3005                 .tdms_lock_mask = 0x43,
3006                 .cable_det_mask = 0x01,
3007                 .fmt_change_digital_mask = 0x03,
3008                 .cp_csc = 0xf4,
3009                 .formats = adv7611_formats,
3010                 .nformats = ARRAY_SIZE(adv7611_formats),
3011                 .set_termination = adv7611_set_termination,
3012                 .setup_irqs = adv7611_setup_irqs,
3013                 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3014                 .read_cable_det = adv7611_read_cable_det,
3015                 .recommended_settings = {
3016                     [1] = adv7611_recommended_settings_hdmi,
3017                 },
3018                 .num_recommended_settings = {
3019                     [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3020                 },
3021                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3022                         BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3023                         BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3024                         BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3025                 .linewidth_mask = 0x1fff,
3026                 .field0_height_mask = 0x1fff,
3027                 .field1_height_mask = 0x1fff,
3028                 .hfrontporch_mask = 0x1fff,
3029                 .hsync_mask = 0x1fff,
3030                 .hbackporch_mask = 0x1fff,
3031                 .field0_vfrontporch_mask = 0x3fff,
3032                 .field0_vsync_mask = 0x3fff,
3033                 .field0_vbackporch_mask = 0x3fff,
3034                 .field1_vfrontporch_mask = 0x3fff,
3035                 .field1_vsync_mask = 0x3fff,
3036                 .field1_vbackporch_mask = 0x3fff,
3037         },
3038         [ADV7612] = {
3039                 .type = ADV7612,
3040                 .has_afe = false,
3041                 .max_port = ADV76XX_PAD_HDMI_PORT_A,    /* B not supported */
3042                 .num_dv_ports = 1,                      /* normally 2 */
3043                 .edid_enable_reg = 0x74,
3044                 .edid_status_reg = 0x76,
3045                 .lcf_reg = 0xa3,
3046                 .tdms_lock_mask = 0x43,
3047                 .cable_det_mask = 0x01,
3048                 .fmt_change_digital_mask = 0x03,
3049                 .cp_csc = 0xf4,
3050                 .formats = adv7612_formats,
3051                 .nformats = ARRAY_SIZE(adv7612_formats),
3052                 .set_termination = adv7611_set_termination,
3053                 .setup_irqs = adv7612_setup_irqs,
3054                 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3055                 .read_cable_det = adv7612_read_cable_det,
3056                 .recommended_settings = {
3057                     [1] = adv7612_recommended_settings_hdmi,
3058                 },
3059                 .num_recommended_settings = {
3060                     [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3061                 },
3062                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3063                         BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3064                         BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3065                         BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3066                 .linewidth_mask = 0x1fff,
3067                 .field0_height_mask = 0x1fff,
3068                 .field1_height_mask = 0x1fff,
3069                 .hfrontporch_mask = 0x1fff,
3070                 .hsync_mask = 0x1fff,
3071                 .hbackporch_mask = 0x1fff,
3072                 .field0_vfrontporch_mask = 0x3fff,
3073                 .field0_vsync_mask = 0x3fff,
3074                 .field0_vbackporch_mask = 0x3fff,
3075                 .field1_vfrontporch_mask = 0x3fff,
3076                 .field1_vsync_mask = 0x3fff,
3077                 .field1_vbackporch_mask = 0x3fff,
3078         },
3079 };
3080
3081 static const struct i2c_device_id adv76xx_i2c_id[] = {
3082         { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3083         { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3084         { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3085         { }
3086 };
3087 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3088
3089 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3090         { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3091         { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3092         { }
3093 };
3094 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3095
3096 static int adv76xx_parse_dt(struct adv76xx_state *state)
3097 {
3098         struct v4l2_fwnode_endpoint bus_cfg;
3099         struct device_node *endpoint;
3100         struct device_node *np;
3101         unsigned int flags;
3102         int ret;
3103         u32 v;
3104
3105         np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3106
3107         /* Parse the endpoint. */
3108         endpoint = of_graph_get_next_endpoint(np, NULL);
3109         if (!endpoint)
3110                 return -EINVAL;
3111
3112         ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3113         of_node_put(endpoint);
3114         if (ret)
3115                 return ret;
3116
3117         if (!of_property_read_u32(np, "default-input", &v))
3118                 state->pdata.default_input = v;
3119         else
3120                 state->pdata.default_input = -1;
3121
3122         flags = bus_cfg.bus.parallel.flags;
3123
3124         if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3125                 state->pdata.inv_hs_pol = 1;
3126
3127         if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3128                 state->pdata.inv_vs_pol = 1;
3129
3130         if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3131                 state->pdata.inv_llc_pol = 1;
3132
3133         if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3134                 state->pdata.insert_av_codes = 1;
3135
3136         /* Disable the interrupt for now as no DT-based board uses it. */
3137         state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3138
3139         /* Hardcode the remaining platform data fields. */
3140         state->pdata.disable_pwrdnb = 0;
3141         state->pdata.disable_cable_det_rst = 0;
3142         state->pdata.blank_data = 1;
3143         state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3144         state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3145         state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3146         state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3147         state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3148
3149         return 0;
3150 }
3151
3152 static const struct regmap_config adv76xx_regmap_cnf[] = {
3153         {
3154                 .name                   = "io",
3155                 .reg_bits               = 8,
3156                 .val_bits               = 8,
3157
3158                 .max_register           = 0xff,
3159                 .cache_type             = REGCACHE_NONE,
3160         },
3161         {
3162                 .name                   = "avlink",
3163                 .reg_bits               = 8,
3164                 .val_bits               = 8,
3165
3166                 .max_register           = 0xff,
3167                 .cache_type             = REGCACHE_NONE,
3168         },
3169         {
3170                 .name                   = "cec",
3171                 .reg_bits               = 8,
3172                 .val_bits               = 8,
3173
3174                 .max_register           = 0xff,
3175                 .cache_type             = REGCACHE_NONE,
3176         },
3177         {
3178                 .name                   = "infoframe",
3179                 .reg_bits               = 8,
3180                 .val_bits               = 8,
3181
3182                 .max_register           = 0xff,
3183                 .cache_type             = REGCACHE_NONE,
3184         },
3185         {
3186                 .name                   = "esdp",
3187                 .reg_bits               = 8,
3188                 .val_bits               = 8,
3189
3190                 .max_register           = 0xff,
3191                 .cache_type             = REGCACHE_NONE,
3192         },
3193         {
3194                 .name                   = "epp",
3195                 .reg_bits               = 8,
3196                 .val_bits               = 8,
3197
3198                 .max_register           = 0xff,
3199                 .cache_type             = REGCACHE_NONE,
3200         },
3201         {
3202                 .name                   = "afe",
3203                 .reg_bits               = 8,
3204                 .val_bits               = 8,
3205
3206                 .max_register           = 0xff,
3207                 .cache_type             = REGCACHE_NONE,
3208         },
3209         {
3210                 .name                   = "rep",
3211                 .reg_bits               = 8,
3212                 .val_bits               = 8,
3213
3214                 .max_register           = 0xff,
3215                 .cache_type             = REGCACHE_NONE,
3216         },
3217         {
3218                 .name                   = "edid",
3219                 .reg_bits               = 8,
3220                 .val_bits               = 8,
3221
3222                 .max_register           = 0xff,
3223                 .cache_type             = REGCACHE_NONE,
3224         },
3225
3226         {
3227                 .name                   = "hdmi",
3228                 .reg_bits               = 8,
3229                 .val_bits               = 8,
3230
3231                 .max_register           = 0xff,
3232                 .cache_type             = REGCACHE_NONE,
3233         },
3234         {
3235                 .name                   = "test",
3236                 .reg_bits               = 8,
3237                 .val_bits               = 8,
3238
3239                 .max_register           = 0xff,
3240                 .cache_type             = REGCACHE_NONE,
3241         },
3242         {
3243                 .name                   = "cp",
3244                 .reg_bits               = 8,
3245                 .val_bits               = 8,
3246
3247                 .max_register           = 0xff,
3248                 .cache_type             = REGCACHE_NONE,
3249         },
3250         {
3251                 .name                   = "vdp",
3252                 .reg_bits               = 8,
3253                 .val_bits               = 8,
3254
3255                 .max_register           = 0xff,
3256                 .cache_type             = REGCACHE_NONE,
3257         },
3258 };
3259
3260 static int configure_regmap(struct adv76xx_state *state, int region)
3261 {
3262         int err;
3263
3264         if (!state->i2c_clients[region])
3265                 return -ENODEV;
3266
3267         state->regmap[region] =
3268                 devm_regmap_init_i2c(state->i2c_clients[region],
3269                                      &adv76xx_regmap_cnf[region]);
3270
3271         if (IS_ERR(state->regmap[region])) {
3272                 err = PTR_ERR(state->regmap[region]);
3273                 v4l_err(state->i2c_clients[region],
3274                         "Error initializing regmap %d with error %d\n",
3275                         region, err);
3276                 return -EINVAL;
3277         }
3278
3279         return 0;
3280 }
3281
3282 static int configure_regmaps(struct adv76xx_state *state)
3283 {
3284         int i, err;
3285
3286         for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3287                 err = configure_regmap(state, i);
3288                 if (err && (err != -ENODEV))
3289                         return err;
3290         }
3291         return 0;
3292 }
3293
3294 static void adv76xx_reset(struct adv76xx_state *state)
3295 {
3296         if (state->reset_gpio) {
3297                 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3298                 gpiod_set_value_cansleep(state->reset_gpio, 0);
3299                 usleep_range(5000, 10000);
3300                 gpiod_set_value_cansleep(state->reset_gpio, 1);
3301                 /* It is recommended to wait 5 ms after the low pulse before */
3302                 /* an I2C write is performed to the ADV76XX. */
3303                 usleep_range(5000, 10000);
3304         }
3305 }
3306
3307 static int adv76xx_probe(struct i2c_client *client,
3308                          const struct i2c_device_id *id)
3309 {
3310         static const struct v4l2_dv_timings cea640x480 =
3311                 V4L2_DV_BT_CEA_640X480P59_94;
3312         struct adv76xx_state *state;
3313         struct v4l2_ctrl_handler *hdl;
3314         struct v4l2_ctrl *ctrl;
3315         struct v4l2_subdev *sd;
3316         unsigned int i;
3317         unsigned int val, val2;
3318         int err;
3319
3320         /* Check if the adapter supports the needed features */
3321         if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3322                 return -EIO;
3323         v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3324                         client->addr << 1);
3325
3326         state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3327         if (!state)
3328                 return -ENOMEM;
3329
3330         state->i2c_clients[ADV76XX_PAGE_IO] = client;
3331
3332         /* initialize variables */
3333         state->restart_stdi_once = true;
3334         state->selected_input = ~0;
3335
3336         if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3337                 const struct of_device_id *oid;
3338
3339                 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3340                 state->info = oid->data;
3341
3342                 err = adv76xx_parse_dt(state);
3343                 if (err < 0) {
3344                         v4l_err(client, "DT parsing error\n");
3345                         return err;
3346                 }
3347         } else if (client->dev.platform_data) {
3348                 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3349
3350                 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3351                 state->pdata = *pdata;
3352         } else {
3353                 v4l_err(client, "No platform data!\n");
3354                 return -ENODEV;
3355         }
3356
3357         /* Request GPIOs. */
3358         for (i = 0; i < state->info->num_dv_ports; ++i) {
3359                 state->hpd_gpio[i] =
3360                         devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3361                                                       GPIOD_OUT_LOW);
3362                 if (IS_ERR(state->hpd_gpio[i]))
3363                         return PTR_ERR(state->hpd_gpio[i]);
3364
3365                 if (state->hpd_gpio[i])
3366                         v4l_info(client, "Handling HPD %u GPIO\n", i);
3367         }
3368         state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3369                                                                 GPIOD_OUT_HIGH);
3370         if (IS_ERR(state->reset_gpio))
3371                 return PTR_ERR(state->reset_gpio);
3372
3373         adv76xx_reset(state);
3374
3375         state->timings = cea640x480;
3376         state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3377
3378         sd = &state->sd;
3379         v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3380         snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3381                 id->name, i2c_adapter_id(client->adapter),
3382                 client->addr);
3383         sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3384         sd->internal_ops = &adv76xx_int_ops;
3385
3386         /* Configure IO Regmap region */
3387         err = configure_regmap(state, ADV76XX_PAGE_IO);
3388
3389         if (err) {
3390                 v4l2_err(sd, "Error configuring IO regmap region\n");
3391                 return -ENODEV;
3392         }
3393
3394         /*
3395          * Verify that the chip is present. On ADV7604 the RD_INFO register only
3396          * identifies the revision, while on ADV7611 it identifies the model as
3397          * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3398          */
3399         switch (state->info->type) {
3400         case ADV7604:
3401                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3402                 if (err) {
3403                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3404                         return -ENODEV;
3405                 }
3406                 if (val != 0x68) {
3407                         v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3408                                         client->addr << 1);
3409                         return -ENODEV;
3410                 }
3411                 break;
3412         case ADV7611:
3413         case ADV7612:
3414                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3415                                 0xea,
3416                                 &val);
3417                 if (err) {
3418                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3419                         return -ENODEV;
3420                 }
3421                 val2 = val << 8;
3422                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3423                             0xeb,
3424                             &val);
3425                 if (err) {
3426                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3427                         return -ENODEV;
3428                 }
3429                 val |= val2;
3430                 if ((state->info->type == ADV7611 && val != 0x2051) ||
3431                         (state->info->type == ADV7612 && val != 0x2041)) {
3432                         v4l2_err(sd, "not an adv761x on address 0x%x\n",
3433                                         client->addr << 1);
3434                         return -ENODEV;
3435                 }
3436                 break;
3437         }
3438
3439         /* control handlers */
3440         hdl = &state->hdl;
3441         v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3442
3443         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3444                         V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3445         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3446                         V4L2_CID_CONTRAST, 0, 255, 1, 128);
3447         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3448                         V4L2_CID_SATURATION, 0, 255, 1, 128);
3449         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3450                         V4L2_CID_HUE, 0, 128, 1, 0);
3451         ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3452                         V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3453                         0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3454         if (ctrl)
3455                 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3456
3457         state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3458                         V4L2_CID_DV_RX_POWER_PRESENT, 0,
3459                         (1 << state->info->num_dv_ports) - 1, 0, 0);
3460         state->rgb_quantization_range_ctrl =
3461                 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3462                         V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3463                         0, V4L2_DV_RGB_RANGE_AUTO);
3464
3465         /* custom controls */
3466         if (adv76xx_has_afe(state))
3467                 state->analog_sampling_phase_ctrl =
3468                         v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3469         state->free_run_color_manual_ctrl =
3470                 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3471         state->free_run_color_ctrl =
3472                 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3473
3474         sd->ctrl_handler = hdl;
3475         if (hdl->error) {
3476                 err = hdl->error;
3477                 goto err_hdl;
3478         }
3479         if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3480                 err = -ENODEV;
3481                 goto err_hdl;
3482         }
3483
3484         for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3485                 if (!(BIT(i) & state->info->page_mask))
3486                         continue;
3487
3488                 state->i2c_clients[i] = adv76xx_dummy_client(sd, i);
3489                 if (!state->i2c_clients[i]) {
3490                         err = -EINVAL;
3491                         v4l2_err(sd, "failed to create i2c client %u\n", i);
3492                         goto err_i2c;
3493                 }
3494         }
3495
3496         INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3497                         adv76xx_delayed_work_enable_hotplug);
3498
3499         state->source_pad = state->info->num_dv_ports
3500                           + (state->info->has_afe ? 2 : 0);
3501         for (i = 0; i < state->source_pad; ++i)
3502                 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3503         state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3504         sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3505
3506         err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3507                                 state->pads);
3508         if (err)
3509                 goto err_work_queues;
3510
3511         /* Configure regmaps */
3512         err = configure_regmaps(state);
3513         if (err)
3514                 goto err_entity;
3515
3516         err = adv76xx_core_init(sd);
3517         if (err)
3518                 goto err_entity;
3519
3520 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3521         state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3522                 state, dev_name(&client->dev),
3523                 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3524         err = PTR_ERR_OR_ZERO(state->cec_adap);
3525         if (err)
3526                 goto err_entity;
3527 #endif
3528
3529         v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3530                         client->addr << 1, client->adapter->name);
3531
3532         err = v4l2_async_register_subdev(sd);
3533         if (err)
3534                 goto err_entity;
3535
3536         return 0;
3537
3538 err_entity:
3539         media_entity_cleanup(&sd->entity);
3540 err_work_queues:
3541         cancel_delayed_work(&state->delayed_work_enable_hotplug);
3542 err_i2c:
3543         adv76xx_unregister_clients(state);
3544 err_hdl:
3545         v4l2_ctrl_handler_free(hdl);
3546         return err;
3547 }
3548
3549 /* ----------------------------------------------------------------------- */
3550
3551 static int adv76xx_remove(struct i2c_client *client)
3552 {
3553         struct v4l2_subdev *sd = i2c_get_clientdata(client);
3554         struct adv76xx_state *state = to_state(sd);
3555
3556         /* disable interrupts */
3557         io_write(sd, 0x40, 0);
3558         io_write(sd, 0x41, 0);
3559         io_write(sd, 0x46, 0);
3560         io_write(sd, 0x6e, 0);
3561         io_write(sd, 0x73, 0);
3562
3563         cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3564         v4l2_async_unregister_subdev(sd);
3565         media_entity_cleanup(&sd->entity);
3566         adv76xx_unregister_clients(to_state(sd));
3567         v4l2_ctrl_handler_free(sd->ctrl_handler);
3568         return 0;
3569 }
3570
3571 /* ----------------------------------------------------------------------- */
3572
3573 static struct i2c_driver adv76xx_driver = {
3574         .driver = {
3575                 .name = "adv7604",
3576                 .of_match_table = of_match_ptr(adv76xx_of_id),
3577         },
3578         .probe = adv76xx_probe,
3579         .remove = adv76xx_remove,
3580         .id_table = adv76xx_i2c_id,
3581 };
3582
3583 module_i2c_driver(adv76xx_driver);