GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / media / dvb-frontends / stv0910.c
1 /*
2  * Driver for the ST STV0910 DVB-S/S2 demodulator.
3  *
4  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
5  *                         Marcus Metzler <mocm@metzlerbros.de>
6  *                         developed for Digital Devices GmbH
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * version 2 only, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/i2c.h>
25 #include <asm/div64.h>
26
27 #include "dvb_math.h"
28 #include "dvb_frontend.h"
29 #include "stv0910.h"
30 #include "stv0910_regs.h"
31
32 #define EXT_CLOCK    30000000
33 #define TUNING_DELAY 200
34 #define BER_SRC_S    0x20
35 #define BER_SRC_S2   0x20
36
37 static LIST_HEAD(stvlist);
38
39 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
40
41 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
42
43 enum dvbs2_mod_cod {
44         DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
45         DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
46         DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
47         DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
48         DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
49         DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
50         DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
51         DVBS2_32APSK_9_10
52 };
53
54 enum fe_stv0910_mod_cod {
55         FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
56         FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
57         FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
58         FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
59         FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
60         FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
61         FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
62         FE_32APSK_910
63 };
64
65 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
66
67 static inline u32 muldiv32(u32 a, u32 b, u32 c)
68 {
69         u64 tmp64;
70
71         tmp64 = (u64)a * (u64)b;
72         do_div(tmp64, c);
73
74         return (u32)tmp64;
75 }
76
77 struct stv_base {
78         struct list_head     stvlist;
79
80         u8                   adr;
81         struct i2c_adapter  *i2c;
82         struct mutex         i2c_lock; /* shared I2C access protect */
83         struct mutex         reg_lock; /* shared register write protect */
84         int                  count;
85
86         u32                  extclk;
87         u32                  mclk;
88 };
89
90 struct stv {
91         struct stv_base     *base;
92         struct dvb_frontend  fe;
93         int                  nr;
94         u16                  regoff;
95         u8                   i2crpt;
96         u8                   tscfgh;
97         u8                   tsgeneral;
98         u8                   tsspeed;
99         u8                   single;
100         unsigned long        tune_time;
101
102         s32                  search_range;
103         u32                  started;
104         u32                  demod_lock_time;
105         enum receive_mode    receive_mode;
106         u32                  demod_timeout;
107         u32                  fec_timeout;
108         u32                  first_time_lock;
109         u8                   demod_bits;
110         u32                  symbol_rate;
111
112         u8                       last_viterbi_rate;
113         enum fe_code_rate        puncture_rate;
114         enum fe_stv0910_mod_cod  mod_cod;
115         enum dvbs2_fectype       fectype;
116         u32                      pilots;
117         enum fe_stv0910_roll_off feroll_off;
118
119         int   is_standard_broadcast;
120         int   is_vcm;
121
122         u32   cur_scrambling_code;
123
124         u32   last_bernumerator;
125         u32   last_berdenominator;
126         u8    berscale;
127
128         u8    vth[6];
129 };
130
131 struct sinit_table {
132         u16  address;
133         u8   data;
134 };
135
136 struct slookup {
137         s16  value;
138         u32  reg_value;
139 };
140
141 static inline int i2c_write(struct i2c_adapter *adap, u8 adr,
142                             u8 *data, int len)
143 {
144         struct i2c_msg msg = {.addr = adr, .flags = 0,
145                               .buf = data, .len = len};
146
147         if (i2c_transfer(adap, &msg, 1) != 1) {
148                 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
149                          adr, (data[0] << 8) | data[1],
150                          (len > 2 ? data[2] : 0));
151                 return -EREMOTEIO;
152         }
153         return 0;
154 }
155
156 static int i2c_write_reg16(struct i2c_adapter *adap, u8 adr, u16 reg, u8 val)
157 {
158         u8 msg[3] = {reg >> 8, reg & 0xff, val};
159
160         return i2c_write(adap, adr, msg, 3);
161 }
162
163 static int write_reg(struct stv *state, u16 reg, u8 val)
164 {
165         return i2c_write_reg16(state->base->i2c, state->base->adr, reg, val);
166 }
167
168 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
169                                   u16 reg, u8 *val, int count)
170 {
171         u8 msg[2] = {reg >> 8, reg & 0xff};
172         struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
173                                    .buf  = msg, .len   = 2},
174                                   {.addr = adr, .flags = I2C_M_RD,
175                                    .buf  = val, .len   = count } };
176
177         if (i2c_transfer(adapter, msgs, 2) != 2) {
178                 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
179                          adr, reg);
180                 return -EREMOTEIO;
181         }
182         return 0;
183 }
184
185 static int read_reg(struct stv *state, u16 reg, u8 *val)
186 {
187         return i2c_read_regs16(state->base->i2c, state->base->adr,
188                                reg, val, 1);
189 }
190
191 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
192 {
193         return i2c_read_regs16(state->base->i2c, state->base->adr,
194                                reg, val, len);
195 }
196
197 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
198 {
199         int status;
200         u8 tmp;
201
202         mutex_lock(&state->base->reg_lock);
203         status = read_reg(state, reg, &tmp);
204         if (!status)
205                 status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
206         mutex_unlock(&state->base->reg_lock);
207         return status;
208 }
209
210 static const struct slookup s1_sn_lookup[] = {
211         {   0,    9242  }, /* C/N=   0dB */
212         {   5,    9105  }, /* C/N= 0.5dB */
213         {  10,    8950  }, /* C/N= 1.0dB */
214         {  15,    8780  }, /* C/N= 1.5dB */
215         {  20,    8566  }, /* C/N= 2.0dB */
216         {  25,    8366  }, /* C/N= 2.5dB */
217         {  30,    8146  }, /* C/N= 3.0dB */
218         {  35,    7908  }, /* C/N= 3.5dB */
219         {  40,    7666  }, /* C/N= 4.0dB */
220         {  45,    7405  }, /* C/N= 4.5dB */
221         {  50,    7136  }, /* C/N= 5.0dB */
222         {  55,    6861  }, /* C/N= 5.5dB */
223         {  60,    6576  }, /* C/N= 6.0dB */
224         {  65,    6330  }, /* C/N= 6.5dB */
225         {  70,    6048  }, /* C/N= 7.0dB */
226         {  75,    5768  }, /* C/N= 7.5dB */
227         {  80,    5492  }, /* C/N= 8.0dB */
228         {  85,    5224  }, /* C/N= 8.5dB */
229         {  90,    4959  }, /* C/N= 9.0dB */
230         {  95,    4709  }, /* C/N= 9.5dB */
231         {  100,   4467  }, /* C/N=10.0dB */
232         {  105,   4236  }, /* C/N=10.5dB */
233         {  110,   4013  }, /* C/N=11.0dB */
234         {  115,   3800  }, /* C/N=11.5dB */
235         {  120,   3598  }, /* C/N=12.0dB */
236         {  125,   3406  }, /* C/N=12.5dB */
237         {  130,   3225  }, /* C/N=13.0dB */
238         {  135,   3052  }, /* C/N=13.5dB */
239         {  140,   2889  }, /* C/N=14.0dB */
240         {  145,   2733  }, /* C/N=14.5dB */
241         {  150,   2587  }, /* C/N=15.0dB */
242         {  160,   2318  }, /* C/N=16.0dB */
243         {  170,   2077  }, /* C/N=17.0dB */
244         {  180,   1862  }, /* C/N=18.0dB */
245         {  190,   1670  }, /* C/N=19.0dB */
246         {  200,   1499  }, /* C/N=20.0dB */
247         {  210,   1347  }, /* C/N=21.0dB */
248         {  220,   1213  }, /* C/N=22.0dB */
249         {  230,   1095  }, /* C/N=23.0dB */
250         {  240,    992  }, /* C/N=24.0dB */
251         {  250,    900  }, /* C/N=25.0dB */
252         {  260,    826  }, /* C/N=26.0dB */
253         {  270,    758  }, /* C/N=27.0dB */
254         {  280,    702  }, /* C/N=28.0dB */
255         {  290,    653  }, /* C/N=29.0dB */
256         {  300,    613  }, /* C/N=30.0dB */
257         {  310,    579  }, /* C/N=31.0dB */
258         {  320,    550  }, /* C/N=32.0dB */
259         {  330,    526  }, /* C/N=33.0dB */
260         {  350,    490  }, /* C/N=33.0dB */
261         {  400,    445  }, /* C/N=40.0dB */
262         {  450,    430  }, /* C/N=45.0dB */
263         {  500,    426  }, /* C/N=50.0dB */
264         {  510,    425  }  /* C/N=51.0dB */
265 };
266
267 static const struct slookup s2_sn_lookup[] = {
268         {  -30,  13950  }, /* C/N=-2.5dB */
269         {  -25,  13580  }, /* C/N=-2.5dB */
270         {  -20,  13150  }, /* C/N=-2.0dB */
271         {  -15,  12760  }, /* C/N=-1.5dB */
272         {  -10,  12345  }, /* C/N=-1.0dB */
273         {   -5,  11900  }, /* C/N=-0.5dB */
274         {    0,  11520  }, /* C/N=   0dB */
275         {    5,  11080  }, /* C/N= 0.5dB */
276         {   10,  10630  }, /* C/N= 1.0dB */
277         {   15,  10210  }, /* C/N= 1.5dB */
278         {   20,   9790  }, /* C/N= 2.0dB */
279         {   25,   9390  }, /* C/N= 2.5dB */
280         {   30,   8970  }, /* C/N= 3.0dB */
281         {   35,   8575  }, /* C/N= 3.5dB */
282         {   40,   8180  }, /* C/N= 4.0dB */
283         {   45,   7800  }, /* C/N= 4.5dB */
284         {   50,   7430  }, /* C/N= 5.0dB */
285         {   55,   7080  }, /* C/N= 5.5dB */
286         {   60,   6720  }, /* C/N= 6.0dB */
287         {   65,   6320  }, /* C/N= 6.5dB */
288         {   70,   6060  }, /* C/N= 7.0dB */
289         {   75,   5760  }, /* C/N= 7.5dB */
290         {   80,   5480  }, /* C/N= 8.0dB */
291         {   85,   5200  }, /* C/N= 8.5dB */
292         {   90,   4930  }, /* C/N= 9.0dB */
293         {   95,   4680  }, /* C/N= 9.5dB */
294         {  100,   4425  }, /* C/N=10.0dB */
295         {  105,   4210  }, /* C/N=10.5dB */
296         {  110,   3980  }, /* C/N=11.0dB */
297         {  115,   3765  }, /* C/N=11.5dB */
298         {  120,   3570  }, /* C/N=12.0dB */
299         {  125,   3315  }, /* C/N=12.5dB */
300         {  130,   3140  }, /* C/N=13.0dB */
301         {  135,   2980  }, /* C/N=13.5dB */
302         {  140,   2820  }, /* C/N=14.0dB */
303         {  145,   2670  }, /* C/N=14.5dB */
304         {  150,   2535  }, /* C/N=15.0dB */
305         {  160,   2270  }, /* C/N=16.0dB */
306         {  170,   2035  }, /* C/N=17.0dB */
307         {  180,   1825  }, /* C/N=18.0dB */
308         {  190,   1650  }, /* C/N=19.0dB */
309         {  200,   1485  }, /* C/N=20.0dB */
310         {  210,   1340  }, /* C/N=21.0dB */
311         {  220,   1212  }, /* C/N=22.0dB */
312         {  230,   1100  }, /* C/N=23.0dB */
313         {  240,   1000  }, /* C/N=24.0dB */
314         {  250,    910  }, /* C/N=25.0dB */
315         {  260,    836  }, /* C/N=26.0dB */
316         {  270,    772  }, /* C/N=27.0dB */
317         {  280,    718  }, /* C/N=28.0dB */
318         {  290,    671  }, /* C/N=29.0dB */
319         {  300,    635  }, /* C/N=30.0dB */
320         {  310,    602  }, /* C/N=31.0dB */
321         {  320,    575  }, /* C/N=32.0dB */
322         {  330,    550  }, /* C/N=33.0dB */
323         {  350,    517  }, /* C/N=35.0dB */
324         {  400,    480  }, /* C/N=40.0dB */
325         {  450,    466  }, /* C/N=45.0dB */
326         {  500,    464  }, /* C/N=50.0dB */
327         {  510,    463  }, /* C/N=51.0dB */
328 };
329
330 static const struct slookup padc_lookup[] = {
331         {    0,  118000 }, /* PADC= +0dBm */
332         { -100,  93600  }, /* PADC= -1dBm */
333         { -200,  74500  }, /* PADC= -2dBm */
334         { -300,  59100  }, /* PADC= -3dBm */
335         { -400,  47000  }, /* PADC= -4dBm */
336         { -500,  37300  }, /* PADC= -5dBm */
337         { -600,  29650  }, /* PADC= -6dBm */
338         { -700,  23520  }, /* PADC= -7dBm */
339         { -900,  14850  }, /* PADC= -9dBm */
340         { -1100, 9380   }, /* PADC=-11dBm */
341         { -1300, 5910   }, /* PADC=-13dBm */
342         { -1500, 3730   }, /* PADC=-15dBm */
343         { -1700, 2354   }, /* PADC=-17dBm */
344         { -1900, 1485   }, /* PADC=-19dBm */
345         { -2000, 1179   }, /* PADC=-20dBm */
346         { -2100, 1000   }, /* PADC=-21dBm */
347 };
348
349 /*********************************************************************
350  * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
351  *********************************************************************/
352 static const u8 s2car_loop[] =  {
353         /*
354          * Modcod  2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
355          * 20MPon 20MPoff 30MPon 30MPoff
356          */
357
358         /* FE_QPSK_14  */
359         0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x2A,  0x1C,  0x3A,  0x3B,
360         /* FE_QPSK_13  */
361         0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x3A,  0x0C,  0x3A,  0x2B,
362         /* FE_QPSK_25  */
363         0x1C,  0x3C,  0x1B,  0x3C,  0x3A,  0x1C,  0x3A,  0x3B,  0x3A,  0x2B,
364         /* FE_QPSK_12  */
365         0x0C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
366         /* FE_QPSK_35  */
367         0x1C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
368         /* FE_QPSK_23  */
369         0x2C,  0x2C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
370         /* FE_QPSK_34  */
371         0x3C,  0x2C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
372         /* FE_QPSK_45  */
373         0x0D,  0x3C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
374         /* FE_QPSK_56  */
375         0x1D,  0x3C,  0x0C,  0x2C,  0x2B,  0x1C,  0x1B,  0x3B,  0x0B,  0x1B,
376         /* FE_QPSK_89  */
377         0x3D,  0x0D,  0x0C,  0x2C,  0x2B,  0x0C,  0x2B,  0x2B,  0x0B,  0x0B,
378         /* FE_QPSK_910 */
379         0x1E,  0x0D,  0x1C,  0x2C,  0x3B,  0x0C,  0x2B,  0x2B,  0x1B,  0x0B,
380         /* FE_8PSK_35  */
381         0x28,  0x09,  0x28,  0x09,  0x28,  0x09,  0x28,  0x08,  0x28,  0x27,
382         /* FE_8PSK_23  */
383         0x19,  0x29,  0x19,  0x29,  0x19,  0x29,  0x38,  0x19,  0x28,  0x09,
384         /* FE_8PSK_34  */
385         0x1A,  0x0B,  0x1A,  0x3A,  0x0A,  0x2A,  0x39,  0x2A,  0x39,  0x1A,
386         /* FE_8PSK_56  */
387         0x2B,  0x2B,  0x1B,  0x1B,  0x0B,  0x1B,  0x1A,  0x0B,  0x1A,  0x1A,
388         /* FE_8PSK_89  */
389         0x0C,  0x0C,  0x3B,  0x3B,  0x1B,  0x1B,  0x2A,  0x0B,  0x2A,  0x2A,
390         /* FE_8PSK_910 */
391         0x0C,  0x1C,  0x0C,  0x3B,  0x2B,  0x1B,  0x3A,  0x0B,  0x2A,  0x2A,
392
393         /**********************************************************************
394          * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
395          **********************************************************************/
396
397         /*
398          * Modcod 2MPon  2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
399          * 20MPoff 30MPon 30MPoff
400          */
401
402         /* FE_16APSK_23  */
403         0x0A,  0x0A,  0x0A,  0x0A,  0x1A,  0x0A,  0x39,  0x0A,  0x29,  0x0A,
404         /* FE_16APSK_34  */
405         0x0A,  0x0A,  0x0A,  0x0A,  0x0B,  0x0A,  0x2A,  0x0A,  0x1A,  0x0A,
406         /* FE_16APSK_45  */
407         0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
408         /* FE_16APSK_56  */
409         0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
410         /* FE_16APSK_89  */
411         0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
412         /* FE_16APSK_910 */
413         0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
414         /* FE_32APSK_34  */
415         0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
416         /* FE_32APSK_45  */
417         0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
418         /* FE_32APSK_56  */
419         0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
420         /* FE_32APSK_89  */
421         0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
422         /* FE_32APSK_910 */
423         0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
424 };
425
426 static u8 get_optim_cloop(struct stv *state,
427                           enum fe_stv0910_mod_cod mod_cod, u32 pilots)
428 {
429         int i = 0;
430
431         if (mod_cod >= FE_32APSK_910)
432                 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
433         else if (mod_cod >= FE_QPSK_14)
434                 i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
435
436         if (state->symbol_rate <= 3000000)
437                 i += 0;
438         else if (state->symbol_rate <=  7000000)
439                 i += 2;
440         else if (state->symbol_rate <= 15000000)
441                 i += 4;
442         else if (state->symbol_rate <= 25000000)
443                 i += 6;
444         else
445                 i += 8;
446
447         if (!pilots)
448                 i += 1;
449
450         return s2car_loop[i];
451 }
452
453 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
454 {
455         int status = 0;
456         u8 symb_freq0;
457         u8 symb_freq1;
458         u8 symb_freq2;
459         u8 symb_freq3;
460         u8 tim_offs0;
461         u8 tim_offs1;
462         u8 tim_offs2;
463         u32 symbol_rate;
464         s32 timing_offset;
465
466         *p_symbol_rate = 0;
467         if (!state->started)
468                 return status;
469
470         read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
471         read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
472         read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
473         read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
474         read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
475         read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
476         read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
477
478         symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
479                 ((u32)symb_freq1 << 8) | (u32)symb_freq0;
480         timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
481                 (u32)tim_offs0;
482
483         if ((timing_offset & (1 << 23)) != 0)
484                 timing_offset |= 0xFF000000; /* Sign extent */
485
486         symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
487         timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
488
489         *p_symbol_rate = symbol_rate + timing_offset;
490
491         return 0;
492 }
493
494 static int get_signal_parameters(struct stv *state)
495 {
496         u8 tmp;
497
498         if (!state->started)
499                 return -EINVAL;
500
501         if (state->receive_mode == RCVMODE_DVBS2) {
502                 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
503                 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
504                 state->pilots = (tmp & 0x01) != 0;
505                 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
506
507         } else if (state->receive_mode == RCVMODE_DVBS) {
508                 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
509                 state->puncture_rate = FEC_NONE;
510                 switch (tmp & 0x1F) {
511                 case 0x0d:
512                         state->puncture_rate = FEC_1_2;
513                         break;
514                 case 0x12:
515                         state->puncture_rate = FEC_2_3;
516                         break;
517                 case 0x15:
518                         state->puncture_rate = FEC_3_4;
519                         break;
520                 case 0x18:
521                         state->puncture_rate = FEC_5_6;
522                         break;
523                 case 0x1a:
524                         state->puncture_rate = FEC_7_8;
525                         break;
526                 }
527                 state->is_vcm = 0;
528                 state->is_standard_broadcast = 1;
529                 state->feroll_off = FE_SAT_35;
530         }
531         return 0;
532 }
533
534 static int tracking_optimization(struct stv *state)
535 {
536         u32 symbol_rate = 0;
537         u8 tmp;
538
539         get_cur_symbol_rate(state, &symbol_rate);
540         read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
541         tmp &= ~0xC0;
542
543         switch (state->receive_mode) {
544         case RCVMODE_DVBS:
545                 tmp |= 0x40;
546                 break;
547         case RCVMODE_DVBS2:
548                 tmp |= 0x80;
549                 break;
550         default:
551                 tmp |= 0xC0;
552                 break;
553         }
554         write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
555
556         if (state->receive_mode == RCVMODE_DVBS2) {
557                 /* Disable Reed-Solomon */
558                 write_shared_reg(state,
559                                  RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
560                                  0x03);
561
562                 if (state->fectype == DVBS2_64K) {
563                         u8 aclc = get_optim_cloop(state, state->mod_cod,
564                                                   state->pilots);
565
566                         if (state->mod_cod <= FE_QPSK_910) {
567                                 write_reg(state, RSTV0910_P2_ACLC2S2Q +
568                                           state->regoff, aclc);
569                         } else if (state->mod_cod <= FE_8PSK_910) {
570                                 write_reg(state, RSTV0910_P2_ACLC2S2Q +
571                                           state->regoff, 0x2a);
572                                 write_reg(state, RSTV0910_P2_ACLC2S28 +
573                                           state->regoff, aclc);
574                         } else if (state->mod_cod <= FE_16APSK_910) {
575                                 write_reg(state, RSTV0910_P2_ACLC2S2Q +
576                                           state->regoff, 0x2a);
577                                 write_reg(state, RSTV0910_P2_ACLC2S216A +
578                                           state->regoff, aclc);
579                         } else if (state->mod_cod <= FE_32APSK_910) {
580                                 write_reg(state, RSTV0910_P2_ACLC2S2Q +
581                                           state->regoff, 0x2a);
582                                 write_reg(state, RSTV0910_P2_ACLC2S232A +
583                                           state->regoff, aclc);
584                         }
585                 }
586         }
587         return 0;
588 }
589
590 static s32 table_lookup(const struct slookup *table,
591                         int table_size, u32 reg_value)
592 {
593         s32 value;
594         int imin = 0;
595         int imax = table_size - 1;
596         int i;
597         s32 reg_diff;
598
599         /* Assumes Table[0].RegValue > Table[imax].RegValue */
600         if (reg_value >= table[0].reg_value) {
601                 value = table[0].value;
602         } else if (reg_value <= table[imax].reg_value) {
603                 value = table[imax].value;
604         } else {
605                 while ((imax - imin) > 1) {
606                         i = (imax + imin) / 2;
607                         if ((table[imin].reg_value >= reg_value) &&
608                             (reg_value >= table[i].reg_value))
609                                 imax = i;
610                         else
611                                 imin = i;
612                 }
613
614                 reg_diff = table[imax].reg_value - table[imin].reg_value;
615                 value = table[imin].value;
616                 if (reg_diff != 0)
617                         value += ((s32)(reg_value - table[imin].reg_value) *
618                                   (s32)(table[imax].value
619                                         - table[imin].value))
620                                         / (reg_diff);
621         }
622
623         return value;
624 }
625
626 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
627 {
628         u8 data0;
629         u8 data1;
630         u16 data;
631         int n_lookup;
632         const struct slookup *lookup;
633
634         *signal_to_noise = 0;
635
636         if (!state->started)
637                 return -EINVAL;
638
639         if (state->receive_mode == RCVMODE_DVBS2) {
640                 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
641                          &data1);
642                 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
643                          &data0);
644                 n_lookup = ARRAY_SIZE(s2_sn_lookup);
645                 lookup = s2_sn_lookup;
646         } else {
647                 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
648                          &data1);
649                 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
650                          &data0);
651                 n_lookup = ARRAY_SIZE(s1_sn_lookup);
652                 lookup = s1_sn_lookup;
653         }
654         data = (((u16)data1) << 8) | (u16)data0;
655         *signal_to_noise = table_lookup(lookup, n_lookup, data);
656         return 0;
657 }
658
659 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
660                                 u32 *berdenominator)
661 {
662         u8 regs[3];
663
664         int status = read_regs(state,
665                                RSTV0910_P2_ERRCNT12 + state->regoff,
666                                regs, 3);
667
668         if (status)
669                 return -EINVAL;
670
671         if ((regs[0] & 0x80) == 0) {
672                 state->last_berdenominator = 1 << ((state->berscale * 2) +
673                                                   10 + 3);
674                 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
675                         ((u32)regs[1] << 8) | regs[2];
676                 if (state->last_bernumerator < 256 && state->berscale < 6) {
677                         state->berscale += 1;
678                         status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
679                                            state->regoff,
680                                            0x20 | state->berscale);
681                 } else if (state->last_bernumerator > 1024 &&
682                            state->berscale > 2) {
683                         state->berscale -= 1;
684                         status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
685                                            state->regoff, 0x20 |
686                                            state->berscale);
687                 }
688         }
689         *bernumerator = state->last_bernumerator;
690         *berdenominator = state->last_berdenominator;
691         return 0;
692 }
693
694 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
695 {
696         static const u32 nbch[][2] = {
697                 {    0,     0}, /* DUMMY_PLF   */
698                 {16200,  3240}, /* QPSK_1_4,   */
699                 {21600,  5400}, /* QPSK_1_3,   */
700                 {25920,  6480}, /* QPSK_2_5,   */
701                 {32400,  7200}, /* QPSK_1_2,   */
702                 {38880,  9720}, /* QPSK_3_5,   */
703                 {43200, 10800}, /* QPSK_2_3,   */
704                 {48600, 11880}, /* QPSK_3_4,   */
705                 {51840, 12600}, /* QPSK_4_5,   */
706                 {54000, 13320}, /* QPSK_5_6,   */
707                 {57600, 14400}, /* QPSK_8_9,   */
708                 {58320, 16000}, /* QPSK_9_10,  */
709                 {43200,  9720}, /* 8PSK_3_5,   */
710                 {48600, 10800}, /* 8PSK_2_3,   */
711                 {51840, 11880}, /* 8PSK_3_4,   */
712                 {54000, 13320}, /* 8PSK_5_6,   */
713                 {57600, 14400}, /* 8PSK_8_9,   */
714                 {58320, 16000}, /* 8PSK_9_10,  */
715                 {43200, 10800}, /* 16APSK_2_3, */
716                 {48600, 11880}, /* 16APSK_3_4, */
717                 {51840, 12600}, /* 16APSK_4_5, */
718                 {54000, 13320}, /* 16APSK_5_6, */
719                 {57600, 14400}, /* 16APSK_8_9, */
720                 {58320, 16000}, /* 16APSK_9_10 */
721                 {48600, 11880}, /* 32APSK_3_4, */
722                 {51840, 12600}, /* 32APSK_4_5, */
723                 {54000, 13320}, /* 32APSK_5_6, */
724                 {57600, 14400}, /* 32APSK_8_9, */
725                 {58320, 16000}, /* 32APSK_9_10 */
726         };
727
728         if (mod_cod >= DVBS2_QPSK_1_4 &&
729             mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
730                 return nbch[mod_cod][fectype];
731         return 64800;
732 }
733
734 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
735                                  u32 *berdenominator)
736 {
737         u8 regs[3];
738
739         int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
740                                regs, 3);
741
742         if (status)
743                 return -EINVAL;
744
745         if ((regs[0] & 0x80) == 0) {
746                 state->last_berdenominator =
747                         dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
748                                    state->fectype) <<
749                         (state->berscale * 2);
750                 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
751                         ((u32)regs[1] << 8) | regs[2];
752                 if (state->last_bernumerator < 256 && state->berscale < 6) {
753                         state->berscale += 1;
754                         write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
755                                   0x20 | state->berscale);
756                 } else if (state->last_bernumerator > 1024 &&
757                            state->berscale > 2) {
758                         state->berscale -= 1;
759                         write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760                                   0x20 | state->berscale);
761                 }
762         }
763         *bernumerator = state->last_bernumerator;
764         *berdenominator = state->last_berdenominator;
765         return status;
766 }
767
768 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
769                               u32 *berdenominator)
770 {
771         *bernumerator = 0;
772         *berdenominator = 1;
773
774         switch (state->receive_mode) {
775         case RCVMODE_DVBS:
776                 return get_bit_error_rate_s(state,
777                                             bernumerator, berdenominator);
778         case RCVMODE_DVBS2:
779                 return get_bit_error_rate_s2(state,
780                                              bernumerator, berdenominator);
781         default:
782                 break;
783         }
784         return 0;
785 }
786
787 static int set_mclock(struct stv *state, u32 master_clock)
788 {
789         u32 idf = 1;
790         u32 odf = 4;
791         u32 quartz = state->base->extclk / 1000000;
792         u32 fphi = master_clock / 1000000;
793         u32 ndiv = (fphi * odf * idf) / quartz;
794         u32 cp = 7;
795         u32 fvco;
796
797         if (ndiv >= 7 && ndiv <= 71)
798                 cp = 7;
799         else if (ndiv >=  72 && ndiv <=  79)
800                 cp = 8;
801         else if (ndiv >=  80 && ndiv <=  87)
802                 cp = 9;
803         else if (ndiv >=  88 && ndiv <=  95)
804                 cp = 10;
805         else if (ndiv >=  96 && ndiv <= 103)
806                 cp = 11;
807         else if (ndiv >= 104 && ndiv <= 111)
808                 cp = 12;
809         else if (ndiv >= 112 && ndiv <= 119)
810                 cp = 13;
811         else if (ndiv >= 120 && ndiv <= 127)
812                 cp = 14;
813         else if (ndiv >= 128 && ndiv <= 135)
814                 cp = 15;
815         else if (ndiv >= 136 && ndiv <= 143)
816                 cp = 16;
817         else if (ndiv >= 144 && ndiv <= 151)
818                 cp = 17;
819         else if (ndiv >= 152 && ndiv <= 159)
820                 cp = 18;
821         else if (ndiv >= 160 && ndiv <= 167)
822                 cp = 19;
823         else if (ndiv >= 168 && ndiv <= 175)
824                 cp = 20;
825         else if (ndiv >= 176 && ndiv <= 183)
826                 cp = 21;
827         else if (ndiv >= 184 && ndiv <= 191)
828                 cp = 22;
829         else if (ndiv >= 192 && ndiv <= 199)
830                 cp = 23;
831         else if (ndiv >= 200 && ndiv <= 207)
832                 cp = 24;
833         else if (ndiv >= 208 && ndiv <= 215)
834                 cp = 25;
835         else if (ndiv >= 216 && ndiv <= 223)
836                 cp = 26;
837         else if (ndiv >= 224 && ndiv <= 225)
838                 cp = 27;
839
840         write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
841         write_reg(state, RSTV0910_NCOARSE2, odf);
842         write_reg(state, RSTV0910_NCOARSE1, ndiv);
843
844         fvco = (quartz * 2 * ndiv) / idf;
845         state->base->mclk = fvco / (2 * odf) * 1000000;
846
847         return 0;
848 }
849
850 static int stop(struct stv *state)
851 {
852         if (state->started) {
853                 u8 tmp;
854
855                 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
856                           state->tscfgh | 0x01);
857                 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
858                 tmp &= ~0x01; /* release reset DVBS2 packet delin */
859                 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
860                 /* Blind optim*/
861                 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
862                 /* Stop the demod */
863                 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
864                 state->started = 0;
865         }
866         state->receive_mode = RCVMODE_NONE;
867         return 0;
868 }
869
870 static int init_search_param(struct stv *state)
871 {
872         u8 tmp;
873
874         read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
875         tmp |= 0x20; /* Filter_en (no effect if SIS=non-MIS */
876         write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
877
878         read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, &tmp);
879         tmp &= ~0x02; /* frame mode = 0 */
880         write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp);
881
882         write_reg(state, RSTV0910_P2_UPLCCST0 + state->regoff, 0xe0);
883         write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0x00);
884
885         read_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, &tmp);
886         tmp &= ~0x01; /* nosync = 0, in case next signal is standard TS */
887         write_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, tmp);
888
889         read_reg(state, RSTV0910_P2_TSCFGL + state->regoff, &tmp);
890         tmp &= ~0x04; /* embindvb = 0 */
891         write_reg(state, RSTV0910_P2_TSCFGL + state->regoff, tmp);
892
893         read_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, &tmp);
894         tmp &= ~0x80; /* syncbyte = 0 */
895         write_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, tmp);
896
897         read_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, &tmp);
898         tmp &= ~0x08; /* token = 0 */
899         write_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, tmp);
900
901         read_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, &tmp);
902         tmp &= ~0x30; /* hysteresis threshold = 0 */
903         write_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, tmp);
904
905         read_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, &tmp);
906         tmp = (tmp & ~0x30) | 0x10; /* isi obs mode = 1, observe min ISI */
907         write_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, tmp);
908
909         return 0;
910 }
911
912 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
913 {
914         switch (rate) {
915         case FEC_1_2:
916                 return write_reg(state,
917                                  RSTV0910_P2_PRVIT + state->regoff, 0x01);
918         case FEC_2_3:
919                 return write_reg(state,
920                                  RSTV0910_P2_PRVIT + state->regoff, 0x02);
921         case FEC_3_4:
922                 return write_reg(state,
923                                  RSTV0910_P2_PRVIT + state->regoff, 0x04);
924         case FEC_5_6:
925                 return write_reg(state,
926                                  RSTV0910_P2_PRVIT + state->regoff, 0x08);
927         case FEC_7_8:
928                 return write_reg(state,
929                                  RSTV0910_P2_PRVIT + state->regoff, 0x20);
930         case FEC_NONE:
931         default:
932                 return write_reg(state,
933                                  RSTV0910_P2_PRVIT + state->regoff, 0x2f);
934         }
935 }
936
937 static int set_vth_default(struct stv *state)
938 {
939         state->vth[0] = 0xd7;
940         state->vth[1] = 0x85;
941         state->vth[2] = 0x58;
942         state->vth[3] = 0x3a;
943         state->vth[4] = 0x34;
944         state->vth[5] = 0x28;
945         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
946         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
947         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
948         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
949         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
950         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
951         return 0;
952 }
953
954 static int set_vth(struct stv *state)
955 {
956         static const struct slookup vthlookup_table[] = {
957                 {250,   8780}, /* C/N= 1.5dB */
958                 {100,   7405}, /* C/N= 4.5dB */
959                 {40,    6330}, /* C/N= 6.5dB */
960                 {12,    5224}, /* C/N= 8.5dB */
961                 {5,     4236}  /* C/N=10.5dB */
962         };
963
964         int i;
965         u8 tmp[2];
966         int status = read_regs(state,
967                                RSTV0910_P2_NNOSDATAT1 + state->regoff,
968                                tmp, 2);
969         u16 reg_value = (tmp[0] << 8) | tmp[1];
970         s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
971                               reg_value);
972
973         for (i = 0; i < 6; i += 1)
974                 if (state->vth[i] > vth)
975                         state->vth[i] = vth;
976
977         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
978         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
979         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
980         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
981         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
982         write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
983         return status;
984 }
985
986 static int start(struct stv *state, struct dtv_frontend_properties *p)
987 {
988         s32 freq;
989         u8  reg_dmdcfgmd;
990         u16 symb;
991         u32 scrambling_code = 1;
992
993         if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
994                 return -EINVAL;
995
996         state->receive_mode = RCVMODE_NONE;
997         state->demod_lock_time = 0;
998
999         /* Demod Stop */
1000         if (state->started)
1001                 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1002
1003         init_search_param(state);
1004
1005         if (p->stream_id != NO_STREAM_ID_FILTER) {
1006                 /*
1007                  * Backwards compatibility to "crazy" API.
1008                  * PRBS X root cannot be 0, so this should always work.
1009                  */
1010                 if (p->stream_id & 0xffffff00)
1011                         scrambling_code = p->stream_id >> 8;
1012                 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
1013                           p->stream_id & 0xff);
1014                 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff,
1015                           0xff);
1016         }
1017
1018         if (scrambling_code != state->cur_scrambling_code) {
1019                 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
1020                           scrambling_code & 0xff);
1021                 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
1022                           (scrambling_code >> 8) & 0xff);
1023                 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
1024                           (scrambling_code >> 16) & 0x0f);
1025                 state->cur_scrambling_code = scrambling_code;
1026         }
1027
1028         if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1029                 state->demod_timeout = 3000;
1030                 state->fec_timeout = 2000;
1031         } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1032                 state->demod_timeout = 2500;
1033                 state->fec_timeout = 1300;
1034         } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1035                 state->demod_timeout = 1000;
1036                 state->fec_timeout = 650;
1037         } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1038                 state->demod_timeout = 700;
1039                 state->fec_timeout = 350;
1040         } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1041                 state->demod_timeout = 400;
1042                 state->fec_timeout = 200;
1043         } else { /* SR >=20Msps */
1044                 state->demod_timeout = 300;
1045                 state->fec_timeout = 200;
1046         }
1047
1048         /* Set the Init Symbol rate */
1049         symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1050         write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1051                   ((symb >> 8) & 0x7F));
1052         write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1053
1054         state->demod_bits |= 0x80;
1055         write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1056
1057         /* FE_STV0910_SetSearchStandard */
1058         read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1059         write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1060                   reg_dmdcfgmd |= 0xC0);
1061
1062         write_shared_reg(state,
1063                          RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1064
1065         /* Disable DSS */
1066         write_reg(state, RSTV0910_P2_FECM  + state->regoff, 0x00);
1067         write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1068
1069         enable_puncture_rate(state, FEC_NONE);
1070
1071         /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1072         write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1073         write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1074         write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1075         write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1076         write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1077         write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1078
1079         write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1080         write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1081         write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1082         write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1083
1084         /*
1085          * Reset CAR3, bug DVBS2->DVBS1 lock
1086          * Note: The bit is only pulsed -> no lock on shared register needed
1087          */
1088         write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1089         write_reg(state, RSTV0910_TSTRES0, 0);
1090
1091         set_vth_default(state);
1092         /* Reset demod */
1093         write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1094
1095         write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1096
1097         if (p->symbol_rate <= 5000000)
1098                 freq = (state->search_range / 2000) + 80;
1099         else
1100                 freq = (state->search_range / 2000) + 1600;
1101         freq = (freq << 16) / (state->base->mclk / 1000);
1102
1103         write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1104                   (freq >> 8) & 0xff);
1105         write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1106         /* CFR Low Setting */
1107         freq = -freq;
1108         write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1109                   (freq >> 8) & 0xff);
1110         write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1111
1112         /* init the demod frequency offset to 0 */
1113         write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1114         write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1115
1116         write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1117         /* Trigger acq */
1118         write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1119
1120         state->demod_lock_time += TUNING_DELAY;
1121         state->started = 1;
1122
1123         return 0;
1124 }
1125
1126 static int init_diseqc(struct stv *state)
1127 {
1128         u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1129         u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1130
1131         /* Disable receiver */
1132         write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1133         write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1134         write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1135         write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1136         return 0;
1137 }
1138
1139 static int probe(struct stv *state)
1140 {
1141         u8 id;
1142
1143         state->receive_mode = RCVMODE_NONE;
1144         state->started = 0;
1145
1146         if (read_reg(state, RSTV0910_MID, &id) < 0)
1147                 return -ENODEV;
1148
1149         if (id != 0x51)
1150                 return -EINVAL;
1151
1152         /* Configure the I2C repeater to off */
1153         write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1154         /* Configure the I2C repeater to off */
1155         write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1156         /* Set the I2C to oversampling ratio */
1157         write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1158
1159         write_reg(state, RSTV0910_OUTCFG,    0x00); /* OUTCFG */
1160         write_reg(state, RSTV0910_PADCFG,    0x05); /* RFAGC Pads Dev = 05 */
1161         write_reg(state, RSTV0910_SYNTCTRL,  0x02); /* SYNTCTRL */
1162         write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1163         write_reg(state, RSTV0910_CFGEXT,    0x02); /* CFGEXT */
1164
1165         if (state->single)
1166                 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1167         else
1168                 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1169
1170         write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1171         write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1172
1173         write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1174         write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1175         write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1176         write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1177
1178         write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1179         write_reg(state, RSTV0910_TSTRES0, 0x00);
1180
1181         write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1182         write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1183
1184         write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1185         write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1186
1187         set_mclock(state, 135000000);
1188
1189         /* TS output */
1190         write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1191         write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1192         write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1193         write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1194
1195         /* Speed = 67.5 MHz */
1196         write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1197
1198         write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1199         write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1200         write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1201         write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1202
1203         /* Speed = 67.5 MHz */
1204         write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1205
1206         /* Reset stream merger */
1207         write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1208         write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1209         write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1210         write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1211
1212         write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1213         write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1214
1215         init_diseqc(state);
1216         return 0;
1217 }
1218
1219 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1220 {
1221         struct stv *state = fe->demodulator_priv;
1222         u8 i2crpt = state->i2crpt & ~0x86;
1223
1224         /*
1225          * mutex_lock note: Concurrent I2C gate bus accesses must be
1226          * prevented (STV0910 = dual demod on a single IC with a single I2C
1227          * gate/bus, and two tuners attached), similar to most (if not all)
1228          * other I2C host interfaces/busses.
1229          *
1230          * enable=1 (open I2C gate) will grab the lock
1231          * enable=0 (close I2C gate) releases the lock
1232          */
1233
1234         if (enable) {
1235                 mutex_lock(&state->base->i2c_lock);
1236                 i2crpt |= 0x80;
1237         } else {
1238                 i2crpt |= 0x02;
1239         }
1240
1241         if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1242                       RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1243                 /* don't hold the I2C bus lock on failure */
1244                 mutex_unlock(&state->base->i2c_lock);
1245                 dev_err(&state->base->i2c->dev,
1246                         "%s() write_reg failure (enable=%d)\n",
1247                         __func__, enable);
1248                 return -EIO;
1249         }
1250
1251         state->i2crpt = i2crpt;
1252
1253         if (!enable)
1254                 mutex_unlock(&state->base->i2c_lock);
1255         return 0;
1256 }
1257
1258 static void release(struct dvb_frontend *fe)
1259 {
1260         struct stv *state = fe->demodulator_priv;
1261
1262         state->base->count--;
1263         if (state->base->count == 0) {
1264                 list_del(&state->base->stvlist);
1265                 kfree(state->base);
1266         }
1267         kfree(state);
1268 }
1269
1270 static int set_parameters(struct dvb_frontend *fe)
1271 {
1272         int stat = 0;
1273         struct stv *state = fe->demodulator_priv;
1274         u32 iffreq;
1275         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1276
1277         stop(state);
1278         if (fe->ops.tuner_ops.set_params)
1279                 fe->ops.tuner_ops.set_params(fe);
1280         if (fe->ops.tuner_ops.get_if_frequency)
1281                 fe->ops.tuner_ops.get_if_frequency(fe, &iffreq);
1282         state->symbol_rate = p->symbol_rate;
1283         stat = start(state, p);
1284         return stat;
1285 }
1286
1287 static int manage_matype_info(struct stv *state)
1288 {
1289         if (!state->started)
1290                 return -EINVAL;
1291         if (state->receive_mode == RCVMODE_DVBS2) {
1292                 u8 bbheader[2];
1293
1294                 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1295                           bbheader, 2);
1296                 state->feroll_off =
1297                         (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1298                 state->is_vcm = (bbheader[0] & 0x10) == 0;
1299                 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1300         } else if (state->receive_mode == RCVMODE_DVBS) {
1301                 state->is_vcm = 0;
1302                 state->is_standard_broadcast = 1;
1303                 state->feroll_off = FE_SAT_35;
1304         }
1305         return 0;
1306 }
1307
1308 static int read_snr(struct dvb_frontend *fe)
1309 {
1310         struct stv *state = fe->demodulator_priv;
1311         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1312         s32 snrval;
1313
1314         if (!get_signal_to_noise(state, &snrval)) {
1315                 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1316                 p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */
1317         } else {
1318                 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int read_ber(struct dvb_frontend *fe)
1325 {
1326         struct stv *state = fe->demodulator_priv;
1327         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1328         u32 n, d;
1329
1330         get_bit_error_rate(state, &n, &d);
1331
1332         p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1333         p->pre_bit_error.stat[0].uvalue = n;
1334         p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1335         p->pre_bit_count.stat[0].uvalue = d;
1336
1337         return 0;
1338 }
1339
1340 static void read_signal_strength(struct dvb_frontend *fe)
1341 {
1342         struct stv *state = fe->demodulator_priv;
1343         struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1344         u8 reg[2];
1345         u16 agc;
1346         s32 padc, power = 0;
1347         int i;
1348
1349         read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1350
1351         agc = (((u32)reg[0]) << 8) | reg[1];
1352
1353         for (i = 0; i < 5; i += 1) {
1354                 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1355                 power += (u32)reg[0] * (u32)reg[0]
1356                         + (u32)reg[1] * (u32)reg[1];
1357                 usleep_range(3000, 4000);
1358         }
1359         power /= 5;
1360
1361         padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1362
1363         p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1364         p->strength.stat[0].svalue = (padc - agc);
1365 }
1366
1367 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1368 {
1369         struct stv *state = fe->demodulator_priv;
1370         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1371         u8 dmd_state = 0;
1372         u8 dstatus  = 0;
1373         enum receive_mode cur_receive_mode = RCVMODE_NONE;
1374         u32 feclock = 0;
1375
1376         *status = 0;
1377
1378         read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1379
1380         if (dmd_state & 0x40) {
1381                 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1382                 if (dstatus & 0x08)
1383                         cur_receive_mode = (dmd_state & 0x20) ?
1384                                 RCVMODE_DVBS : RCVMODE_DVBS2;
1385         }
1386         if (cur_receive_mode == RCVMODE_NONE) {
1387                 set_vth(state);
1388
1389                 /* reset signal statistics */
1390                 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1391                 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1392                 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1393                 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1394
1395                 return 0;
1396         }
1397
1398         *status |= (FE_HAS_SIGNAL
1399                 | FE_HAS_CARRIER
1400                 | FE_HAS_VITERBI
1401                 | FE_HAS_SYNC);
1402
1403         if (state->receive_mode == RCVMODE_NONE) {
1404                 state->receive_mode = cur_receive_mode;
1405                 state->demod_lock_time = jiffies;
1406                 state->first_time_lock = 1;
1407
1408                 get_signal_parameters(state);
1409                 tracking_optimization(state);
1410
1411                 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1412                           state->tscfgh);
1413                 usleep_range(3000, 4000);
1414                 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415                           state->tscfgh | 0x01);
1416                 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1417                           state->tscfgh);
1418         }
1419         if (dmd_state & 0x40) {
1420                 if (state->receive_mode == RCVMODE_DVBS2) {
1421                         u8 pdelstatus;
1422
1423                         read_reg(state,
1424                                  RSTV0910_P2_PDELSTATUS1 + state->regoff,
1425                                  &pdelstatus);
1426                         feclock = (pdelstatus & 0x02) != 0;
1427                 } else {
1428                         u8 vstatus;
1429
1430                         read_reg(state,
1431                                  RSTV0910_P2_VSTATUSVIT + state->regoff,
1432                                  &vstatus);
1433                         feclock = (vstatus & 0x08) != 0;
1434                 }
1435         }
1436
1437         if (feclock) {
1438                 *status |= FE_HAS_LOCK;
1439
1440                 if (state->first_time_lock) {
1441                         u8 tmp;
1442
1443                         state->first_time_lock = 0;
1444
1445                         manage_matype_info(state);
1446
1447                         if (state->receive_mode == RCVMODE_DVBS2) {
1448                                 /*
1449                                  * FSTV0910_P2_MANUALSX_ROLLOFF,
1450                                  * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1451                                  */
1452                                 state->demod_bits &= ~0x84;
1453                                 write_reg(state,
1454                                           RSTV0910_P2_DEMOD + state->regoff,
1455                                           state->demod_bits);
1456                                 read_reg(state,
1457                                          RSTV0910_P2_PDELCTRL2 + state->regoff,
1458                                          &tmp);
1459                                 /* reset DVBS2 packet delinator error counter */
1460                                 tmp |= 0x40;
1461                                 write_reg(state,
1462                                           RSTV0910_P2_PDELCTRL2 + state->regoff,
1463                                           tmp);
1464                                 /* reset DVBS2 packet delinator error counter */
1465                                 tmp &= ~0x40;
1466                                 write_reg(state,
1467                                           RSTV0910_P2_PDELCTRL2 + state->regoff,
1468                                           tmp);
1469
1470                                 state->berscale = 2;
1471                                 state->last_bernumerator = 0;
1472                                 state->last_berdenominator = 1;
1473                                 /* force to PRE BCH Rate */
1474                                 write_reg(state,
1475                                           RSTV0910_P2_ERRCTRL1 + state->regoff,
1476                                           BER_SRC_S2 | state->berscale);
1477                         } else {
1478                                 state->berscale = 2;
1479                                 state->last_bernumerator = 0;
1480                                 state->last_berdenominator = 1;
1481                                 /* force to PRE RS Rate */
1482                                 write_reg(state,
1483                                           RSTV0910_P2_ERRCTRL1 + state->regoff,
1484                                           BER_SRC_S | state->berscale);
1485                         }
1486                         /* Reset the Total packet counter */
1487                         write_reg(state,
1488                                   RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1489                         /*
1490                          * Reset the packet Error counter2 (and Set it to
1491                          * infinit error count mode)
1492                          */
1493                         write_reg(state,
1494                                   RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1495
1496                         set_vth_default(state);
1497                         if (state->receive_mode == RCVMODE_DVBS)
1498                                 enable_puncture_rate(state,
1499                                                      state->puncture_rate);
1500                 }
1501         }
1502
1503         /* read signal statistics */
1504
1505         /* read signal strength */
1506         read_signal_strength(fe);
1507
1508         /* read carrier/noise on FE_HAS_CARRIER */
1509         if (*status & FE_HAS_CARRIER)
1510                 read_snr(fe);
1511         else
1512                 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1513
1514         /* read ber */
1515         if (*status & FE_HAS_VITERBI) {
1516                 read_ber(fe);
1517         } else {
1518                 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1519                 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1520         }
1521
1522         return 0;
1523 }
1524
1525 static int get_frontend(struct dvb_frontend *fe,
1526                         struct dtv_frontend_properties *p)
1527 {
1528         struct stv *state = fe->demodulator_priv;
1529         u8 tmp;
1530
1531         if (state->receive_mode == RCVMODE_DVBS2) {
1532                 u32 mc;
1533                 const enum fe_modulation modcod2mod[0x20] = {
1534                         QPSK, QPSK, QPSK, QPSK,
1535                         QPSK, QPSK, QPSK, QPSK,
1536                         QPSK, QPSK, QPSK, QPSK,
1537                         PSK_8, PSK_8, PSK_8, PSK_8,
1538                         PSK_8, PSK_8, APSK_16, APSK_16,
1539                         APSK_16, APSK_16, APSK_16, APSK_16,
1540                         APSK_32, APSK_32, APSK_32, APSK_32,
1541                         APSK_32,
1542                 };
1543                 const enum fe_code_rate modcod2fec[0x20] = {
1544                         FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1545                         FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1546                         FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1547                         FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1548                         FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1549                         FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1550                         FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1551                         FEC_9_10
1552                 };
1553                 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1554                 mc = ((tmp & 0x7c) >> 2);
1555                 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1556                 p->modulation = modcod2mod[mc];
1557                 p->fec_inner = modcod2fec[mc];
1558         } else if (state->receive_mode == RCVMODE_DVBS) {
1559                 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1560                 switch (tmp & 0x1F) {
1561                 case 0x0d:
1562                         p->fec_inner = FEC_1_2;
1563                         break;
1564                 case 0x12:
1565                         p->fec_inner = FEC_2_3;
1566                         break;
1567                 case 0x15:
1568                         p->fec_inner = FEC_3_4;
1569                         break;
1570                 case 0x18:
1571                         p->fec_inner = FEC_5_6;
1572                         break;
1573                 case 0x1a:
1574                         p->fec_inner = FEC_7_8;
1575                         break;
1576                 default:
1577                         p->fec_inner = FEC_NONE;
1578                         break;
1579                 }
1580                 p->rolloff = ROLLOFF_35;
1581         }
1582
1583         return 0;
1584 }
1585
1586 static int tune(struct dvb_frontend *fe, bool re_tune,
1587                 unsigned int mode_flags,
1588                 unsigned int *delay, enum fe_status *status)
1589 {
1590         struct stv *state = fe->demodulator_priv;
1591         int r;
1592
1593         if (re_tune) {
1594                 r = set_parameters(fe);
1595                 if (r)
1596                         return r;
1597                 state->tune_time = jiffies;
1598         }
1599
1600         r = read_status(fe, status);
1601         if (r)
1602                 return r;
1603
1604         if (*status & FE_HAS_LOCK)
1605                 return 0;
1606         *delay = HZ;
1607
1608         return 0;
1609 }
1610
1611 static int get_algo(struct dvb_frontend *fe)
1612 {
1613         return DVBFE_ALGO_HW;
1614 }
1615
1616 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1617 {
1618         struct stv *state = fe->demodulator_priv;
1619         u16 offs = state->nr ? 0x40 : 0;
1620
1621         switch (tone) {
1622         case SEC_TONE_ON:
1623                 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1624         case SEC_TONE_OFF:
1625                 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1626         default:
1627                 break;
1628         }
1629         return -EINVAL;
1630 }
1631
1632 static int wait_dis(struct stv *state, u8 flag, u8 val)
1633 {
1634         int i;
1635         u8 stat;
1636         u16 offs = state->nr ? 0x40 : 0;
1637
1638         for (i = 0; i < 10; i++) {
1639                 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1640                 if ((stat & flag) == val)
1641                         return 0;
1642                 usleep_range(10000, 11000);
1643         }
1644         return -ETIMEDOUT;
1645 }
1646
1647 static int send_master_cmd(struct dvb_frontend *fe,
1648                            struct dvb_diseqc_master_cmd *cmd)
1649 {
1650         struct stv *state = fe->demodulator_priv;
1651         u16 offs = state->nr ? 0x40 : 0;
1652         int i;
1653
1654         write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1655         for (i = 0; i < cmd->msg_len; i++) {
1656                 wait_dis(state, 0x40, 0x00);
1657                 write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]);
1658         }
1659         write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1660         wait_dis(state, 0x20, 0x20);
1661         return 0;
1662 }
1663
1664 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1665 {
1666         struct stv *state = fe->demodulator_priv;
1667         u16 offs = state->nr ? 0x40 : 0;
1668         u8 value;
1669
1670         if (burst == SEC_MINI_A) {
1671                 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F);
1672                 value = 0x00;
1673         } else {
1674                 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1675                 value = 0xFF;
1676         }
1677         wait_dis(state, 0x40, 0x00);
1678         write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value);
1679         write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1680         wait_dis(state, 0x20, 0x20);
1681
1682         return 0;
1683 }
1684
1685 static int sleep(struct dvb_frontend *fe)
1686 {
1687         struct stv *state = fe->demodulator_priv;
1688
1689         stop(state);
1690         return 0;
1691 }
1692
1693 static const struct dvb_frontend_ops stv0910_ops = {
1694         .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1695         .info = {
1696                 .name                   = "ST STV0910",
1697                 .frequency_min          = 950000,
1698                 .frequency_max          = 2150000,
1699                 .frequency_stepsize     = 0,
1700                 .frequency_tolerance    = 0,
1701                 .symbol_rate_min        = 100000,
1702                 .symbol_rate_max        = 70000000,
1703                 .caps                   = FE_CAN_INVERSION_AUTO |
1704                                           FE_CAN_FEC_AUTO       |
1705                                           FE_CAN_QPSK           |
1706                                           FE_CAN_2G_MODULATION  |
1707                                           FE_CAN_MULTISTREAM
1708         },
1709         .sleep                          = sleep,
1710         .release                        = release,
1711         .i2c_gate_ctrl                  = gate_ctrl,
1712         .set_frontend                   = set_parameters,
1713         .get_frontend_algo              = get_algo,
1714         .get_frontend                   = get_frontend,
1715         .tune                           = tune,
1716         .read_status                    = read_status,
1717         .set_tone                       = set_tone,
1718
1719         .diseqc_send_master_cmd         = send_master_cmd,
1720         .diseqc_send_burst              = send_burst,
1721 };
1722
1723 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1724 {
1725         struct stv_base *p;
1726
1727         list_for_each_entry(p, &stvlist, stvlist)
1728                 if (p->i2c == i2c && p->adr == adr)
1729                         return p;
1730         return NULL;
1731 }
1732
1733 static void stv0910_init_stats(struct stv *state)
1734 {
1735         struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1736
1737         p->strength.len = 1;
1738         p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1739         p->cnr.len = 1;
1740         p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1741         p->pre_bit_error.len = 1;
1742         p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1743         p->pre_bit_count.len = 1;
1744         p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1745 }
1746
1747 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1748                                     struct stv0910_cfg *cfg,
1749                                     int nr)
1750 {
1751         struct stv *state;
1752         struct stv_base *base;
1753
1754         state = kzalloc(sizeof(*state), GFP_KERNEL);
1755         if (!state)
1756                 return NULL;
1757
1758         state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1759         state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1760         state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1761         state->tsspeed = 0x28;
1762         state->nr = nr;
1763         state->regoff = state->nr ? 0 : 0x200;
1764         state->search_range = 16000000;
1765         state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1766         state->receive_mode = RCVMODE_NONE;
1767         state->cur_scrambling_code = (~0U);
1768         state->single = cfg->single ? 1 : 0;
1769
1770         base = match_base(i2c, cfg->adr);
1771         if (base) {
1772                 base->count++;
1773                 state->base = base;
1774         } else {
1775                 base = kzalloc(sizeof(*base), GFP_KERNEL);
1776                 if (!base)
1777                         goto fail;
1778                 base->i2c = i2c;
1779                 base->adr = cfg->adr;
1780                 base->count = 1;
1781                 base->extclk = cfg->clk ? cfg->clk : 30000000;
1782
1783                 mutex_init(&base->i2c_lock);
1784                 mutex_init(&base->reg_lock);
1785                 state->base = base;
1786                 if (probe(state) < 0) {
1787                         dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1788                                  cfg->adr, dev_name(&i2c->dev));
1789                         kfree(base);
1790                         goto fail;
1791                 }
1792                 list_add(&base->stvlist, &stvlist);
1793         }
1794         state->fe.ops = stv0910_ops;
1795         state->fe.demodulator_priv = state;
1796         state->nr = nr;
1797
1798         dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1799                  state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1800
1801         stv0910_init_stats(state);
1802
1803         return &state->fe;
1804
1805 fail:
1806         kfree(state);
1807         return NULL;
1808 }
1809 EXPORT_SYMBOL_GPL(stv0910_attach);
1810
1811 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1812 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1813 MODULE_LICENSE("GPL");