GNU Linux-libre 4.14.324-gnu1
[releases.git] / drivers / media / dvb-frontends / mb86a16.c
1 /*
2         Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4         Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the Free Software
18         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26
27 #include "dvb_frontend.h"
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30
31 static unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33
34 #define ABS(x)          ((x) < 0 ? (-x) : (x))
35
36 struct mb86a16_state {
37         struct i2c_adapter              *i2c_adap;
38         const struct mb86a16_config     *config;
39         struct dvb_frontend             frontend;
40
41         /* tuning parameters */
42         int                             frequency;
43         int                             srate;
44
45         /* Internal stuff */
46         int                             master_clk;
47         int                             deci;
48         int                             csel;
49         int                             rsel;
50 };
51
52 #define MB86A16_ERROR           0
53 #define MB86A16_NOTICE          1
54 #define MB86A16_INFO            2
55 #define MB86A16_DEBUG           3
56
57 #define dprintk(x, y, z, format, arg...) do {                                           \
58         if (z) {                                                                        \
59                 if      ((x > MB86A16_ERROR) && (x > y))                                \
60                         printk(KERN_ERR "%s: " format "\n", __func__, ##arg);           \
61                 else if ((x > MB86A16_NOTICE) && (x > y))                               \
62                         printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);        \
63                 else if ((x > MB86A16_INFO) && (x > y))                                 \
64                         printk(KERN_INFO "%s: " format "\n", __func__, ##arg);          \
65                 else if ((x > MB86A16_DEBUG) && (x > y))                                \
66                         printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);         \
67         } else {                                                                        \
68                 if (x > y)                                                              \
69                         printk(format, ##arg);                                          \
70         }                                                                               \
71 } while (0)
72
73 #define TRACE_IN        dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74 #define TRACE_OUT       dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75
76 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77 {
78         int ret;
79         u8 buf[] = { reg, val };
80
81         struct i2c_msg msg = {
82                 .addr = state->config->demod_address,
83                 .flags = 0,
84                 .buf = buf,
85                 .len = 2
86         };
87
88         dprintk(verbose, MB86A16_DEBUG, 1,
89                 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90                 state->config->demod_address, buf[0], buf[1]);
91
92         ret = i2c_transfer(state->i2c_adap, &msg, 1);
93
94         return (ret != 1) ? -EREMOTEIO : 0;
95 }
96
97 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98 {
99         int ret;
100         u8 b0[] = { reg };
101         u8 b1[] = { 0 };
102
103         struct i2c_msg msg[] = {
104                 {
105                         .addr = state->config->demod_address,
106                         .flags = 0,
107                         .buf = b0,
108                         .len = 1
109                 }, {
110                         .addr = state->config->demod_address,
111                         .flags = I2C_M_RD,
112                         .buf = b1,
113                         .len = 1
114                 }
115         };
116         ret = i2c_transfer(state->i2c_adap, msg, 2);
117         if (ret != 2) {
118                 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
119                         reg, ret);
120
121                 if (ret < 0)
122                         return ret;
123                 return -EREMOTEIO;
124         }
125         *val = b1[0];
126
127         return ret;
128 }
129
130 static int CNTM_set(struct mb86a16_state *state,
131                     unsigned char timint1,
132                     unsigned char timint2,
133                     unsigned char cnext)
134 {
135         unsigned char val;
136
137         val = (timint1 << 4) | (timint2 << 2) | cnext;
138         if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
139                 goto err;
140
141         return 0;
142
143 err:
144         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
145         return -EREMOTEIO;
146 }
147
148 static int smrt_set(struct mb86a16_state *state, int rate)
149 {
150         int tmp ;
151         int m ;
152         unsigned char STOFS0, STOFS1;
153
154         m = 1 << state->deci;
155         tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
156
157         STOFS0 = tmp & 0x0ff;
158         STOFS1 = (tmp & 0xf00) >> 8;
159
160         if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
161                                        (state->csel << 1) |
162                                         state->rsel) < 0)
163                 goto err;
164         if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
165                 goto err;
166         if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
167                 goto err;
168
169         return 0;
170 err:
171         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
172         return -1;
173 }
174
175 static int srst(struct mb86a16_state *state)
176 {
177         if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
178                 goto err;
179
180         return 0;
181 err:
182         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
183         return -EREMOTEIO;
184
185 }
186
187 static int afcex_data_set(struct mb86a16_state *state,
188                           unsigned char AFCEX_L,
189                           unsigned char AFCEX_H)
190 {
191         if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
192                 goto err;
193         if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
194                 goto err;
195
196         return 0;
197 err:
198         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
199
200         return -1;
201 }
202
203 static int afcofs_data_set(struct mb86a16_state *state,
204                            unsigned char AFCEX_L,
205                            unsigned char AFCEX_H)
206 {
207         if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
208                 goto err;
209         if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
210                 goto err;
211
212         return 0;
213 err:
214         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
215         return -EREMOTEIO;
216 }
217
218 static int stlp_set(struct mb86a16_state *state,
219                     unsigned char STRAS,
220                     unsigned char STRBS)
221 {
222         if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
223                 goto err;
224
225         return 0;
226 err:
227         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
228         return -EREMOTEIO;
229 }
230
231 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
232 {
233         if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
234                 goto err;
235         if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
236                 goto err;
237
238         return 0;
239 err:
240         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
241         return -EREMOTEIO;
242 }
243
244 static int initial_set(struct mb86a16_state *state)
245 {
246         if (stlp_set(state, 5, 7))
247                 goto err;
248
249         udelay(100);
250         if (afcex_data_set(state, 0, 0))
251                 goto err;
252
253         udelay(100);
254         if (afcofs_data_set(state, 0, 0))
255                 goto err;
256
257         udelay(100);
258         if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
259                 goto err;
260         if (mb86a16_write(state, 0x2f, 0x21) < 0)
261                 goto err;
262         if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
263                 goto err;
264         if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
265                 goto err;
266         if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
267                 goto err;
268         if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
269                 goto err;
270         if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
271                 goto err;
272         if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
273                 goto err;
274         if (mb86a16_write(state, 0x54, 0xff) < 0)
275                 goto err;
276         if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
277                 goto err;
278
279         return 0;
280
281 err:
282         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
283         return -EREMOTEIO;
284 }
285
286 static int S01T_set(struct mb86a16_state *state,
287                     unsigned char s1t,
288                     unsigned s0t)
289 {
290         if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
291                 goto err;
292
293         return 0;
294 err:
295         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
296         return -EREMOTEIO;
297 }
298
299
300 static int EN_set(struct mb86a16_state *state,
301                   int cren,
302                   int afcen)
303 {
304         unsigned char val;
305
306         val = 0x7a | (cren << 7) | (afcen << 2);
307         if (mb86a16_write(state, 0x49, val) < 0)
308                 goto err;
309
310         return 0;
311 err:
312         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
313         return -EREMOTEIO;
314 }
315
316 static int AFCEXEN_set(struct mb86a16_state *state,
317                        int afcexen,
318                        int smrt)
319 {
320         unsigned char AFCA ;
321
322         if (smrt > 18875)
323                 AFCA = 4;
324         else if (smrt > 9375)
325                 AFCA = 3;
326         else if (smrt > 2250)
327                 AFCA = 2;
328         else
329                 AFCA = 1;
330
331         if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
332                 goto err;
333
334         return 0;
335
336 err:
337         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
338         return -EREMOTEIO;
339 }
340
341 static int DAGC_data_set(struct mb86a16_state *state,
342                          unsigned char DAGCA,
343                          unsigned char DAGCW)
344 {
345         if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
346                 goto err;
347
348         return 0;
349
350 err:
351         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
352         return -EREMOTEIO;
353 }
354
355 static void smrt_info_get(struct mb86a16_state *state, int rate)
356 {
357         if (rate >= 37501) {
358                 state->deci = 0; state->csel = 0; state->rsel = 0;
359         } else if (rate >= 30001) {
360                 state->deci = 0; state->csel = 0; state->rsel = 1;
361         } else if (rate >= 26251) {
362                 state->deci = 0; state->csel = 1; state->rsel = 0;
363         } else if (rate >= 22501) {
364                 state->deci = 0; state->csel = 1; state->rsel = 1;
365         } else if (rate >= 18751) {
366                 state->deci = 1; state->csel = 0; state->rsel = 0;
367         } else if (rate >= 15001) {
368                 state->deci = 1; state->csel = 0; state->rsel = 1;
369         } else if (rate >= 13126) {
370                 state->deci = 1; state->csel = 1; state->rsel = 0;
371         } else if (rate >= 11251) {
372                 state->deci = 1; state->csel = 1; state->rsel = 1;
373         } else if (rate >= 9376) {
374                 state->deci = 2; state->csel = 0; state->rsel = 0;
375         } else if (rate >= 7501) {
376                 state->deci = 2; state->csel = 0; state->rsel = 1;
377         } else if (rate >= 6563) {
378                 state->deci = 2; state->csel = 1; state->rsel = 0;
379         } else if (rate >= 5626) {
380                 state->deci = 2; state->csel = 1; state->rsel = 1;
381         } else if (rate >= 4688) {
382                 state->deci = 3; state->csel = 0; state->rsel = 0;
383         } else if (rate >= 3751) {
384                 state->deci = 3; state->csel = 0; state->rsel = 1;
385         } else if (rate >= 3282) {
386                 state->deci = 3; state->csel = 1; state->rsel = 0;
387         } else if (rate >= 2814) {
388                 state->deci = 3; state->csel = 1; state->rsel = 1;
389         } else if (rate >= 2344) {
390                 state->deci = 4; state->csel = 0; state->rsel = 0;
391         } else if (rate >= 1876) {
392                 state->deci = 4; state->csel = 0; state->rsel = 1;
393         } else if (rate >= 1641) {
394                 state->deci = 4; state->csel = 1; state->rsel = 0;
395         } else if (rate >= 1407) {
396                 state->deci = 4; state->csel = 1; state->rsel = 1;
397         } else if (rate >= 1172) {
398                 state->deci = 5; state->csel = 0; state->rsel = 0;
399         } else if (rate >=  939) {
400                 state->deci = 5; state->csel = 0; state->rsel = 1;
401         } else if (rate >=  821) {
402                 state->deci = 5; state->csel = 1; state->rsel = 0;
403         } else {
404                 state->deci = 5; state->csel = 1; state->rsel = 1;
405         }
406
407         if (state->csel == 0)
408                 state->master_clk = 92000;
409         else
410                 state->master_clk = 61333;
411
412 }
413
414 static int signal_det(struct mb86a16_state *state,
415                       int smrt,
416                       unsigned char *SIG)
417 {
418         int ret;
419         int smrtd;
420         unsigned char S[3];
421         int i;
422
423         if (*SIG > 45) {
424                 if (CNTM_set(state, 2, 1, 2) < 0) {
425                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
426                         return -1;
427                 }
428         } else {
429                 if (CNTM_set(state, 3, 1, 2) < 0) {
430                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
431                         return -1;
432                 }
433         }
434         for (i = 0; i < 3; i++) {
435                 if (i == 0)
436                         smrtd = smrt * 98 / 100;
437                 else if (i == 1)
438                         smrtd = smrt;
439                 else
440                         smrtd = smrt * 102 / 100;
441                 smrt_info_get(state, smrtd);
442                 smrt_set(state, smrtd);
443                 srst(state);
444                 msleep_interruptible(10);
445                 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
446                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
447                         return -EREMOTEIO;
448                 }
449         }
450         if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
451                 ret = 1;
452         else
453                 ret = 0;
454
455         *SIG = S[1];
456
457         if (CNTM_set(state, 0, 1, 2) < 0) {
458                 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
459                 return -1;
460         }
461
462         return ret;
463 }
464
465 static int rf_val_set(struct mb86a16_state *state,
466                       int f,
467                       int smrt,
468                       unsigned char R)
469 {
470         unsigned char C, F, B;
471         int M;
472         unsigned char rf_val[5];
473         int ack = -1;
474
475         if (smrt > 37750)
476                 C = 1;
477         else if (smrt > 18875)
478                 C = 2;
479         else if (smrt > 5500)
480                 C = 3;
481         else
482                 C = 4;
483
484         if (smrt > 30500)
485                 F = 3;
486         else if (smrt > 9375)
487                 F = 1;
488         else if (smrt > 4625)
489                 F = 0;
490         else
491                 F = 2;
492
493         if (f < 1060)
494                 B = 0;
495         else if (f < 1175)
496                 B = 1;
497         else if (f < 1305)
498                 B = 2;
499         else if (f < 1435)
500                 B = 3;
501         else if (f < 1570)
502                 B = 4;
503         else if (f < 1715)
504                 B = 5;
505         else if (f < 1845)
506                 B = 6;
507         else if (f < 1980)
508                 B = 7;
509         else if (f < 2080)
510                 B = 8;
511         else
512                 B = 9;
513
514         M = f * (1 << R) / 2;
515
516         rf_val[0] = 0x01 | (C << 3) | (F << 1);
517         rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
518         rf_val[2] = (M & 0x00ff0) >> 4;
519         rf_val[3] = ((M & 0x0000f) << 4) | B;
520
521         /* Frequency Set */
522         if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
523                 ack = 0;
524         if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
525                 ack = 0;
526         if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
527                 ack = 0;
528         if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
529                 ack = 0;
530         if (mb86a16_write(state, 0x25, 0x01) < 0)
531                 ack = 0;
532         if (ack == 0) {
533                 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
534                 return -EREMOTEIO;
535         }
536
537         return 0;
538 }
539
540 static int afcerr_chk(struct mb86a16_state *state)
541 {
542         unsigned char AFCM_L, AFCM_H ;
543         int AFCM ;
544         int afcm, afcerr ;
545
546         if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
547                 goto err;
548         if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
549                 goto err;
550
551         AFCM = (AFCM_H << 8) + AFCM_L;
552
553         if (AFCM > 2048)
554                 afcm = AFCM - 4096;
555         else
556                 afcm = AFCM;
557         afcerr = afcm * state->master_clk / 8192;
558
559         return afcerr;
560
561 err:
562         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
563         return -EREMOTEIO;
564 }
565
566 static int dagcm_val_get(struct mb86a16_state *state)
567 {
568         int DAGCM;
569         unsigned char DAGCM_H, DAGCM_L;
570
571         if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
572                 goto err;
573         if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
574                 goto err;
575
576         DAGCM = (DAGCM_H << 8) + DAGCM_L;
577
578         return DAGCM;
579
580 err:
581         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
582         return -EREMOTEIO;
583 }
584
585 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
586 {
587         u8 stat, stat2;
588         struct mb86a16_state *state = fe->demodulator_priv;
589
590         *status = 0;
591
592         if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
593                 goto err;
594         if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
595                 goto err;
596         if ((stat > 25) && (stat2 > 25))
597                 *status |= FE_HAS_SIGNAL;
598         if ((stat > 45) && (stat2 > 45))
599                 *status |= FE_HAS_CARRIER;
600
601         if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
602                 goto err;
603
604         if (stat & 0x01)
605                 *status |= FE_HAS_SYNC;
606         if (stat & 0x01)
607                 *status |= FE_HAS_VITERBI;
608
609         if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
610                 goto err;
611
612         if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
613                 *status |= FE_HAS_LOCK;
614
615         return 0;
616
617 err:
618         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
619         return -EREMOTEIO;
620 }
621
622 static int sync_chk(struct mb86a16_state *state,
623                     unsigned char *VIRM)
624 {
625         unsigned char val;
626         int sync;
627
628         if (mb86a16_read(state, 0x0d, &val) != 2)
629                 goto err;
630
631         dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
632         sync = val & 0x01;
633         *VIRM = (val & 0x1c) >> 2;
634
635         return sync;
636 err:
637         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
638         return -EREMOTEIO;
639
640 }
641
642 static int freqerr_chk(struct mb86a16_state *state,
643                        int fTP,
644                        int smrt,
645                        int unit)
646 {
647         unsigned char CRM, AFCML, AFCMH;
648         unsigned char temp1, temp2, temp3;
649         int crm, afcm, AFCM;
650         int crrerr, afcerr;             /* kHz */
651         int frqerr;                     /* MHz */
652         int afcen, afcexen = 0;
653         int R, M, fOSC, fOSC_OFS;
654
655         if (mb86a16_read(state, 0x43, &CRM) != 2)
656                 goto err;
657
658         if (CRM > 127)
659                 crm = CRM - 256;
660         else
661                 crm = CRM;
662
663         crrerr = smrt * crm / 256;
664         if (mb86a16_read(state, 0x49, &temp1) != 2)
665                 goto err;
666
667         afcen = (temp1 & 0x04) >> 2;
668         if (afcen == 0) {
669                 if (mb86a16_read(state, 0x2a, &temp1) != 2)
670                         goto err;
671                 afcexen = (temp1 & 0x20) >> 5;
672         }
673
674         if (afcen == 1) {
675                 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
676                         goto err;
677                 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
678                         goto err;
679         } else if (afcexen == 1) {
680                 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
681                         goto err;
682                 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
683                         goto err;
684         }
685         if ((afcen == 1) || (afcexen == 1)) {
686                 smrt_info_get(state, smrt);
687                 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
688                 if (AFCM > 255)
689                         afcm = AFCM - 512;
690                 else
691                         afcm = AFCM;
692
693                 afcerr = afcm * state->master_clk / 8192;
694         } else
695                 afcerr = 0;
696
697         if (mb86a16_read(state, 0x22, &temp1) != 2)
698                 goto err;
699         if (mb86a16_read(state, 0x23, &temp2) != 2)
700                 goto err;
701         if (mb86a16_read(state, 0x24, &temp3) != 2)
702                 goto err;
703
704         R = (temp1 & 0xe0) >> 5;
705         M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
706         if (R == 0)
707                 fOSC = 2 * M;
708         else
709                 fOSC = M;
710
711         fOSC_OFS = fOSC - fTP;
712
713         if (unit == 0) {        /* MHz */
714                 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
715                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
716                 else
717                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
718         } else {        /* kHz */
719                 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
720         }
721
722         return frqerr;
723 err:
724         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
725         return -EREMOTEIO;
726 }
727
728 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
729 {
730         unsigned char R;
731
732         if (smrt > 9375)
733                 R = 0;
734         else
735                 R = 1;
736
737         return R;
738 }
739
740 static void swp_info_get(struct mb86a16_state *state,
741                          int fOSC_start,
742                          int smrt,
743                          int v, int R,
744                          int swp_ofs,
745                          int *fOSC,
746                          int *afcex_freq,
747                          unsigned char *AFCEX_L,
748                          unsigned char *AFCEX_H)
749 {
750         int AFCEX ;
751         int crnt_swp_freq ;
752
753         crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
754
755         if (R == 0)
756                 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
757         else
758                 *fOSC = (crnt_swp_freq + 500) / 1000;
759
760         if (*fOSC >= crnt_swp_freq)
761                 *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
762         else
763                 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
764
765         AFCEX = *afcex_freq * 8192 / state->master_clk;
766         *AFCEX_L =  AFCEX & 0x00ff;
767         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
768 }
769
770
771 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
772                                int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
773 {
774         int swp_freq ;
775
776         if ((i % 2 == 1) && (v <= vmax)) {
777                 /* positive v (case 1) */
778                 if ((v - 1 == vmin)                             &&
779                     (*(V + 30 + v) >= 0)                        &&
780                     (*(V + 30 + v - 1) >= 0)                    &&
781                     (*(V + 30 + v - 1) > *(V + 30 + v))         &&
782                     (*(V + 30 + v - 1) > SIGMIN)) {
783
784                         swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
785                         *SIG1 = *(V + 30 + v - 1);
786                 } else if ((v == vmax)                          &&
787                            (*(V + 30 + v) >= 0)                 &&
788                            (*(V + 30 + v - 1) >= 0)             &&
789                            (*(V + 30 + v) > *(V + 30 + v - 1))  &&
790                            (*(V + 30 + v) > SIGMIN)) {
791                         /* (case 2) */
792                         swp_freq = fOSC * 1000 + afcex_freq;
793                         *SIG1 = *(V + 30 + v);
794                 } else if ((*(V + 30 + v) > 0)                  &&
795                            (*(V + 30 + v - 1) > 0)              &&
796                            (*(V + 30 + v - 2) > 0)              &&
797                            (*(V + 30 + v - 3) > 0)              &&
798                            (*(V + 30 + v - 1) > *(V + 30 + v))  &&
799                            (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
800                            ((*(V + 30 + v - 1) > SIGMIN)        ||
801                            (*(V + 30 + v - 2) > SIGMIN))) {
802                         /* (case 3) */
803                         if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
804                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
805                                 *SIG1 = *(V + 30 + v - 1);
806                         } else {
807                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
808                                 *SIG1 = *(V + 30 + v - 2);
809                         }
810                 } else if ((v == vmax)                          &&
811                            (*(V + 30 + v) >= 0)                 &&
812                            (*(V + 30 + v - 1) >= 0)             &&
813                            (*(V + 30 + v - 2) >= 0)             &&
814                            (*(V + 30 + v) > *(V + 30 + v - 2))  &&
815                            (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
816                            ((*(V + 30 + v) > SIGMIN)            ||
817                            (*(V + 30 + v - 1) > SIGMIN))) {
818                         /* (case 4) */
819                         if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
820                                 swp_freq = fOSC * 1000 + afcex_freq;
821                                 *SIG1 = *(V + 30 + v);
822                         } else {
823                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
824                                 *SIG1 = *(V + 30 + v - 1);
825                         }
826                 } else  {
827                         swp_freq = -1 ;
828                 }
829         } else if ((i % 2 == 0) && (v >= vmin)) {
830                 /* Negative v (case 1) */
831                 if ((*(V + 30 + v) > 0)                         &&
832                     (*(V + 30 + v + 1) > 0)                     &&
833                     (*(V + 30 + v + 2) > 0)                     &&
834                     (*(V + 30 + v + 1) > *(V + 30 + v))         &&
835                     (*(V + 30 + v + 1) > *(V + 30 + v + 2))     &&
836                     (*(V + 30 + v + 1) > SIGMIN)) {
837
838                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
839                         *SIG1 = *(V + 30 + v + 1);
840                 } else if ((v + 1 == vmax)                      &&
841                            (*(V + 30 + v) >= 0)                 &&
842                            (*(V + 30 + v + 1) >= 0)             &&
843                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
844                            (*(V + 30 + v + 1) > SIGMIN)) {
845                         /* (case 2) */
846                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
847                         *SIG1 = *(V + 30 + v);
848                 } else if ((v == vmin)                          &&
849                            (*(V + 30 + v) > 0)                  &&
850                            (*(V + 30 + v + 1) > 0)              &&
851                            (*(V + 30 + v + 2) > 0)              &&
852                            (*(V + 30 + v) > *(V + 30 + v + 1))  &&
853                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
854                            (*(V + 30 + v) > SIGMIN)) {
855                         /* (case 3) */
856                         swp_freq = fOSC * 1000 + afcex_freq;
857                         *SIG1 = *(V + 30 + v);
858                 } else if ((*(V + 30 + v) >= 0)                 &&
859                            (*(V + 30 + v + 1) >= 0)             &&
860                            (*(V + 30 + v + 2) >= 0)             &&
861                            (*(V + 30 + v + 3) >= 0)             &&
862                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
863                            (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
864                            ((*(V + 30 + v + 1) > SIGMIN)        ||
865                             (*(V + 30 + v + 2) > SIGMIN))) {
866                         /* (case 4) */
867                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
868                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
869                                 *SIG1 = *(V + 30 + v + 1);
870                         } else {
871                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
872                                 *SIG1 = *(V + 30 + v + 2);
873                         }
874                 } else if ((*(V + 30 + v) >= 0)                 &&
875                            (*(V + 30 + v + 1) >= 0)             &&
876                            (*(V + 30 + v + 2) >= 0)             &&
877                            (*(V + 30 + v + 3) >= 0)             &&
878                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
879                            (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
880                            (*(V + 30 + v) > *(V + 30 + v + 3))  &&
881                            (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
882                            ((*(V + 30 + v) > SIGMIN)            ||
883                             (*(V + 30 + v + 1) > SIGMIN))) {
884                         /* (case 5) */
885                         if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
886                                 swp_freq = fOSC * 1000 + afcex_freq;
887                                 *SIG1 = *(V + 30 + v);
888                         } else {
889                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
890                                 *SIG1 = *(V + 30 + v + 1);
891                         }
892                 } else if ((v + 2 == vmin)                      &&
893                            (*(V + 30 + v) >= 0)                 &&
894                            (*(V + 30 + v + 1) >= 0)             &&
895                            (*(V + 30 + v + 2) >= 0)             &&
896                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
897                            (*(V + 30 + v + 2) > *(V + 30 + v))  &&
898                            ((*(V + 30 + v + 1) > SIGMIN)        ||
899                             (*(V + 30 + v + 2) > SIGMIN))) {
900                         /* (case 6) */
901                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
902                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
903                                 *SIG1 = *(V + 30 + v + 1);
904                         } else {
905                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
906                                 *SIG1 = *(V + 30 + v + 2);
907                         }
908                 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
909                         swp_freq = fOSC * 1000;
910                         *SIG1 = *(V + 30 + v);
911                 } else
912                         swp_freq = -1;
913         } else
914                 swp_freq = -1;
915
916         return swp_freq;
917 }
918
919 static void swp_info_get2(struct mb86a16_state *state,
920                           int smrt,
921                           int R,
922                           int swp_freq,
923                           int *afcex_freq,
924                           int *fOSC,
925                           unsigned char *AFCEX_L,
926                           unsigned char *AFCEX_H)
927 {
928         int AFCEX ;
929
930         if (R == 0)
931                 *fOSC = (swp_freq + 1000) / 2000 * 2;
932         else
933                 *fOSC = (swp_freq + 500) / 1000;
934
935         if (*fOSC >= swp_freq)
936                 *afcex_freq = *fOSC * 1000 - swp_freq;
937         else
938                 *afcex_freq = swp_freq - *fOSC * 1000;
939
940         AFCEX = *afcex_freq * 8192 / state->master_clk;
941         *AFCEX_L =  AFCEX & 0x00ff;
942         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
943 }
944
945 static void afcex_info_get(struct mb86a16_state *state,
946                            int afcex_freq,
947                            unsigned char *AFCEX_L,
948                            unsigned char *AFCEX_H)
949 {
950         int AFCEX ;
951
952         AFCEX = afcex_freq * 8192 / state->master_clk;
953         *AFCEX_L =  AFCEX & 0x00ff;
954         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
955 }
956
957 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
958 {
959         /* SLOCK0 = 0 */
960         if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
961                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
962                 return -EREMOTEIO;
963         }
964
965         return 0;
966 }
967
968 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
969 {
970         /* Viterbi Rate, IQ Settings */
971         if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
972                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
973                 return -EREMOTEIO;
974         }
975
976         return 0;
977 }
978
979 static int FEC_srst(struct mb86a16_state *state)
980 {
981         if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
982                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
983                 return -EREMOTEIO;
984         }
985
986         return 0;
987 }
988
989 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
990 {
991         if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
992                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
993                 return -EREMOTEIO;
994         }
995
996         return 0;
997 }
998
999 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1000 {
1001         if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1002                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1003                 return -EREMOTEIO;
1004         }
1005
1006         return 0;
1007 }
1008
1009
1010 static int mb86a16_set_fe(struct mb86a16_state *state)
1011 {
1012         u8 agcval, cnmval;
1013
1014         int i, j;
1015         int fOSC = 0;
1016         int fOSC_start = 0;
1017         int wait_t;
1018         int fcp;
1019         int swp_ofs;
1020         int V[60];
1021         u8 SIG1MIN;
1022
1023         unsigned char CREN, AFCEN, AFCEXEN;
1024         unsigned char SIG1;
1025         unsigned char TIMINT1, TIMINT2, TIMEXT;
1026         unsigned char S0T, S1T;
1027         unsigned char S2T;
1028 /*      unsigned char S2T, S3T; */
1029         unsigned char S4T, S5T;
1030         unsigned char AFCEX_L, AFCEX_H;
1031         unsigned char R;
1032         unsigned char VIRM;
1033         unsigned char ETH, VIA;
1034         unsigned char junk;
1035
1036         int loop;
1037         int ftemp;
1038         int v, vmax, vmin;
1039         int vmax_his, vmin_his;
1040         int swp_freq, prev_swp_freq[20];
1041         int prev_freq_num;
1042         int signal_dupl;
1043         int afcex_freq;
1044         int signal;
1045         int afcerr;
1046         int temp_freq, delta_freq;
1047         int dagcm[4];
1048         int smrt_d;
1049 /*      int freq_err; */
1050         int n;
1051         int ret = -1;
1052         int sync;
1053
1054         dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1055
1056         fcp = 3000;
1057         swp_ofs = state->srate / 4;
1058
1059         for (i = 0; i < 60; i++)
1060                 V[i] = -1;
1061
1062         for (i = 0; i < 20; i++)
1063                 prev_swp_freq[i] = 0;
1064
1065         SIG1MIN = 25;
1066
1067         for (n = 0; ((n < 3) && (ret == -1)); n++) {
1068                 SEQ_set(state, 0);
1069                 iq_vt_set(state, 0);
1070
1071                 CREN = 0;
1072                 AFCEN = 0;
1073                 AFCEXEN = 1;
1074                 TIMINT1 = 0;
1075                 TIMINT2 = 1;
1076                 TIMEXT = 2;
1077                 S1T = 0;
1078                 S0T = 0;
1079
1080                 if (initial_set(state) < 0) {
1081                         dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1082                         return -1;
1083                 }
1084                 if (DAGC_data_set(state, 3, 2) < 0) {
1085                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1086                         return -1;
1087                 }
1088                 if (EN_set(state, CREN, AFCEN) < 0) {
1089                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1090                         return -1; /* (0, 0) */
1091                 }
1092                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1093                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1094                         return -1; /* (1, smrt) = (1, symbolrate) */
1095                 }
1096                 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1097                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1098                         return -1; /* (0, 1, 2) */
1099                 }
1100                 if (S01T_set(state, S1T, S0T) < 0) {
1101                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1102                         return -1; /* (0, 0) */
1103                 }
1104                 smrt_info_get(state, state->srate);
1105                 if (smrt_set(state, state->srate) < 0) {
1106                         dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1107                         return -1;
1108                 }
1109
1110                 R = vco_dev_get(state, state->srate);
1111                 if (R == 1)
1112                         fOSC_start = state->frequency;
1113
1114                 else if (R == 0) {
1115                         if (state->frequency % 2 == 0) {
1116                                 fOSC_start = state->frequency;
1117                         } else {
1118                                 fOSC_start = state->frequency + 1;
1119                                 if (fOSC_start > 2150)
1120                                         fOSC_start = state->frequency - 1;
1121                         }
1122                 }
1123                 loop = 1;
1124                 ftemp = fOSC_start * 1000;
1125                 vmax = 0 ;
1126                 while (loop == 1) {
1127                         ftemp = ftemp + swp_ofs;
1128                         vmax++;
1129
1130                         /* Upper bound */
1131                         if (ftemp > 2150000) {
1132                                 loop = 0;
1133                                 vmax--;
1134                         } else {
1135                                 if ((ftemp == 2150000) ||
1136                                     (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1137                                         loop = 0;
1138                         }
1139                 }
1140
1141                 loop = 1;
1142                 ftemp = fOSC_start * 1000;
1143                 vmin = 0 ;
1144                 while (loop == 1) {
1145                         ftemp = ftemp - swp_ofs;
1146                         vmin--;
1147
1148                         /* Lower bound */
1149                         if (ftemp < 950000) {
1150                                 loop = 0;
1151                                 vmin++;
1152                         } else {
1153                                 if ((ftemp == 950000) ||
1154                                     (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1155                                         loop = 0;
1156                         }
1157                 }
1158
1159                 wait_t = (8000 + state->srate / 2) / state->srate;
1160                 if (wait_t == 0)
1161                         wait_t = 1;
1162
1163                 i = 0;
1164                 j = 0;
1165                 prev_freq_num = 0;
1166                 loop = 1;
1167                 signal = 0;
1168                 vmax_his = 0;
1169                 vmin_his = 0;
1170                 v = 0;
1171
1172                 while (loop == 1) {
1173                         swp_info_get(state, fOSC_start, state->srate,
1174                                      v, R, swp_ofs, &fOSC,
1175                                      &afcex_freq, &AFCEX_L, &AFCEX_H);
1176
1177                         udelay(100);
1178                         if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1179                                 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1180                                 return -1;
1181                         }
1182                         udelay(100);
1183                         if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1184                                 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1185                                 return -1;
1186                         }
1187                         if (srst(state) < 0) {
1188                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1189                                 return -1;
1190                         }
1191                         msleep_interruptible(wait_t);
1192
1193                         if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1194                                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1195                                 return -1;
1196                         }
1197                         V[30 + v] = SIG1 ;
1198                         swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1199                                                       SIG1MIN, fOSC, afcex_freq,
1200                                                       swp_ofs, &SIG1);  /* changed */
1201
1202                         signal_dupl = 0;
1203                         for (j = 0; j < prev_freq_num; j++) {
1204                                 if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1205                                         signal_dupl = 1;
1206                                         dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1207                                 }
1208                         }
1209                         if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1210                                 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1211                                 prev_swp_freq[prev_freq_num] = swp_freq;
1212                                 prev_freq_num++;
1213                                 swp_info_get2(state, state->srate, R, swp_freq,
1214                                               &afcex_freq, &fOSC,
1215                                               &AFCEX_L, &AFCEX_H);
1216
1217                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1218                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1219                                         return -1;
1220                                 }
1221                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1222                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1223                                         return -1;
1224                                 }
1225                                 signal = signal_det(state, state->srate, &SIG1);
1226                                 if (signal == 1) {
1227                                         dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1228                                         loop = 0;
1229                                 } else {
1230                                         dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1231                                         smrt_info_get(state, state->srate);
1232                                         if (smrt_set(state, state->srate) < 0) {
1233                                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1234                                                 return -1;
1235                                         }
1236                                 }
1237                         }
1238                         if (v > vmax)
1239                                 vmax_his = 1 ;
1240                         if (v < vmin)
1241                                 vmin_his = 1 ;
1242                         i++;
1243
1244                         if ((i % 2 == 1) && (vmax_his == 1))
1245                                 i++;
1246                         if ((i % 2 == 0) && (vmin_his == 1))
1247                                 i++;
1248
1249                         if (i % 2 == 1)
1250                                 v = (i + 1) / 2;
1251                         else
1252                                 v = -i / 2;
1253
1254                         if ((vmax_his == 1) && (vmin_his == 1))
1255                                 loop = 0 ;
1256                 }
1257
1258                 if (signal == 1) {
1259                         dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1260                         S1T = 7 ;
1261                         S0T = 1 ;
1262                         CREN = 0 ;
1263                         AFCEN = 1 ;
1264                         AFCEXEN = 0 ;
1265
1266                         if (S01T_set(state, S1T, S0T) < 0) {
1267                                 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1268                                 return -1;
1269                         }
1270                         smrt_info_get(state, state->srate);
1271                         if (smrt_set(state, state->srate) < 0) {
1272                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1273                                 return -1;
1274                         }
1275                         if (EN_set(state, CREN, AFCEN) < 0) {
1276                                 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1277                                 return -1;
1278                         }
1279                         if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1280                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1281                                 return -1;
1282                         }
1283                         afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1284                         if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1285                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1286                                 return -1;
1287                         }
1288                         if (srst(state) < 0) {
1289                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1290                                 return -1;
1291                         }
1292                         /* delay 4~200 */
1293                         wait_t = 200000 / state->master_clk + 200000 / state->srate;
1294                         msleep(wait_t);
1295                         afcerr = afcerr_chk(state);
1296                         if (afcerr == -1)
1297                                 return -1;
1298
1299                         swp_freq = fOSC * 1000 + afcerr ;
1300                         AFCEXEN = 1 ;
1301                         if (state->srate >= 1500)
1302                                 smrt_d = state->srate / 3;
1303                         else
1304                                 smrt_d = state->srate / 2;
1305                         smrt_info_get(state, smrt_d);
1306                         if (smrt_set(state, smrt_d) < 0) {
1307                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1308                                 return -1;
1309                         }
1310                         if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1311                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1312                                 return -1;
1313                         }
1314                         R = vco_dev_get(state, smrt_d);
1315                         if (DAGC_data_set(state, 2, 0) < 0) {
1316                                 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1317                                 return -1;
1318                         }
1319                         for (i = 0; i < 3; i++) {
1320                                 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1321                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1322                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1323                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1324                                         return -1;
1325                                 }
1326                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1327                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1328                                         return -1;
1329                                 }
1330                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1331                                 msleep(wait_t);
1332                                 dagcm[i] = dagcm_val_get(state);
1333                         }
1334                         if ((dagcm[0] > dagcm[1]) &&
1335                             (dagcm[0] > dagcm[2]) &&
1336                             (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1337
1338                                 temp_freq = swp_freq - 2 * state->srate / 8;
1339                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1340                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1341                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1342                                         return -1;
1343                                 }
1344                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1345                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1346                                         return -1;
1347                                 }
1348                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1349                                 msleep(wait_t);
1350                                 dagcm[3] = dagcm_val_get(state);
1351                                 if (dagcm[3] > dagcm[1])
1352                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1353                                 else
1354                                         delta_freq = 0;
1355                         } else if ((dagcm[2] > dagcm[1]) &&
1356                                    (dagcm[2] > dagcm[0]) &&
1357                                    (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1358
1359                                 temp_freq = swp_freq + 2 * state->srate / 8;
1360                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1361                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1362                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1363                                         return -1;
1364                                 }
1365                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1366                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1367                                         return -1;
1368                                 }
1369                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1370                                 msleep(wait_t);
1371                                 dagcm[3] = dagcm_val_get(state);
1372                                 if (dagcm[3] > dagcm[1])
1373                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1374                                 else
1375                                         delta_freq = 0 ;
1376
1377                         } else {
1378                                 delta_freq = 0 ;
1379                         }
1380                         dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1381                         swp_freq += delta_freq;
1382                         dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1383                         if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1384                                 dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1385                         } else {
1386
1387                                 S1T = 0;
1388                                 S0T = 3;
1389                                 CREN = 1;
1390                                 AFCEN = 0;
1391                                 AFCEXEN = 1;
1392
1393                                 if (S01T_set(state, S1T, S0T) < 0) {
1394                                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1395                                         return -1;
1396                                 }
1397                                 if (DAGC_data_set(state, 0, 0) < 0) {
1398                                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1399                                         return -1;
1400                                 }
1401                                 R = vco_dev_get(state, state->srate);
1402                                 smrt_info_get(state, state->srate);
1403                                 if (smrt_set(state, state->srate) < 0) {
1404                                         dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1405                                         return -1;
1406                                 }
1407                                 if (EN_set(state, CREN, AFCEN) < 0) {
1408                                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1409                                         return -1;
1410                                 }
1411                                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1412                                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1413                                         return -1;
1414                                 }
1415                                 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1416                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1417                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1418                                         return -1;
1419                                 }
1420                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1421                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1422                                         return -1;
1423                                 }
1424                                 if (srst(state) < 0) {
1425                                         dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1426                                         return -1;
1427                                 }
1428                                 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1429                                 if (wait_t == 0)
1430                                         wait_t = 1;
1431                                 msleep_interruptible(wait_t);
1432                                 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1433                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1434                                         return -EREMOTEIO;
1435                                 }
1436
1437                                 if (SIG1 > 110) {
1438                                         S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1439                                         wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1440                                 } else if (SIG1 > 105) {
1441                                         S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1442                                         wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1443                                 } else if (SIG1 > 85) {
1444                                         S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1445                                         wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1446                                 } else if (SIG1 > 65) {
1447                                         S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1448                                         wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1449                                 } else {
1450                                         S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1451                                         wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1452                                 }
1453                                 wait_t *= 2; /* FOS */
1454                                 S2T_set(state, S2T);
1455                                 S45T_set(state, S4T, S5T);
1456                                 Vi_set(state, ETH, VIA);
1457                                 srst(state);
1458                                 msleep_interruptible(wait_t);
1459                                 sync = sync_chk(state, &VIRM);
1460                                 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1461                                 if (VIRM) {
1462                                         if (VIRM == 4) {
1463                                                 /* 5/6 */
1464                                                 if (SIG1 > 110)
1465                                                         wait_t = (786432 + state->srate / 2) / state->srate;
1466                                                 else
1467                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1468                                                 if (state->srate < 5000)
1469                                                         /* FIXME ! , should be a long wait ! */
1470                                                         msleep_interruptible(wait_t);
1471                                                 else
1472                                                         msleep_interruptible(wait_t);
1473
1474                                                 if (sync_chk(state, &junk) == 0) {
1475                                                         iq_vt_set(state, 1);
1476                                                         FEC_srst(state);
1477                                                 }
1478                                         }
1479                                         /* 1/2, 2/3, 3/4, 7/8 */
1480                                         if (SIG1 > 110)
1481                                                 wait_t = (786432 + state->srate / 2) / state->srate;
1482                                         else
1483                                                 wait_t = (1572864 + state->srate / 2) / state->srate;
1484                                         msleep_interruptible(wait_t);
1485                                         SEQ_set(state, 1);
1486                                 } else {
1487                                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1488                                         SEQ_set(state, 1);
1489                                         ret = -1;
1490                                 }
1491                         }
1492                 } else {
1493                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1494                         ret = -1;
1495                 }
1496
1497                 sync = sync_chk(state, &junk);
1498                 if (sync) {
1499                         dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1500                         freqerr_chk(state, state->frequency, state->srate, 1);
1501                         ret = 0;
1502                         break;
1503                 }
1504         }
1505
1506         mb86a16_read(state, 0x15, &agcval);
1507         mb86a16_read(state, 0x26, &cnmval);
1508         dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1509
1510         return ret;
1511 }
1512
1513 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1514                                    struct dvb_diseqc_master_cmd *cmd)
1515 {
1516         struct mb86a16_state *state = fe->demodulator_priv;
1517         int i;
1518         u8 regs;
1519
1520         if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1521                 goto err;
1522         if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1523                 goto err;
1524         if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1525                 goto err;
1526
1527         regs = 0x18;
1528
1529         if (cmd->msg_len > 5 || cmd->msg_len < 4)
1530                 return -EINVAL;
1531
1532         for (i = 0; i < cmd->msg_len; i++) {
1533                 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1534                         goto err;
1535
1536                 regs++;
1537         }
1538         i += 0x90;
1539
1540         msleep_interruptible(10);
1541
1542         if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1543                 goto err;
1544         if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1545                 goto err;
1546
1547         return 0;
1548
1549 err:
1550         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1551         return -EREMOTEIO;
1552 }
1553
1554 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1555                                      enum fe_sec_mini_cmd burst)
1556 {
1557         struct mb86a16_state *state = fe->demodulator_priv;
1558
1559         switch (burst) {
1560         case SEC_MINI_A:
1561                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1562                                                        MB86A16_DCC1_TBEN  |
1563                                                        MB86A16_DCC1_TBO) < 0)
1564                         goto err;
1565                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1566                         goto err;
1567                 break;
1568         case SEC_MINI_B:
1569                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1570                                                        MB86A16_DCC1_TBEN) < 0)
1571                         goto err;
1572                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1573                         goto err;
1574                 break;
1575         }
1576
1577         return 0;
1578 err:
1579         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1580         return -EREMOTEIO;
1581 }
1582
1583 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1584 {
1585         struct mb86a16_state *state = fe->demodulator_priv;
1586
1587         switch (tone) {
1588         case SEC_TONE_ON:
1589                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1590                         goto err;
1591                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1592                                                        MB86A16_DCC1_CTOE) < 0)
1593
1594                         goto err;
1595                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1596                         goto err;
1597                 break;
1598         case SEC_TONE_OFF:
1599                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1600                         goto err;
1601                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1602                         goto err;
1603                 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1604                         goto err;
1605                 break;
1606         default:
1607                 return -EINVAL;
1608         }
1609         return 0;
1610
1611 err:
1612         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1613         return -EREMOTEIO;
1614 }
1615
1616 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1617 {
1618         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1619         struct mb86a16_state *state = fe->demodulator_priv;
1620
1621         state->frequency = p->frequency / 1000;
1622         state->srate = p->symbol_rate / 1000;
1623
1624         if (!mb86a16_set_fe(state)) {
1625                 dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1626                 return DVBFE_ALGO_SEARCH_SUCCESS;
1627         }
1628
1629         dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1630         return DVBFE_ALGO_SEARCH_FAILED;
1631 }
1632
1633 static void mb86a16_release(struct dvb_frontend *fe)
1634 {
1635         struct mb86a16_state *state = fe->demodulator_priv;
1636         kfree(state);
1637 }
1638
1639 static int mb86a16_init(struct dvb_frontend *fe)
1640 {
1641         return 0;
1642 }
1643
1644 static int mb86a16_sleep(struct dvb_frontend *fe)
1645 {
1646         return 0;
1647 }
1648
1649 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1650 {
1651         u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1652         u32 timer;
1653
1654         struct mb86a16_state *state = fe->demodulator_priv;
1655
1656         *ber = 0;
1657         if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1658                 goto err;
1659         if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1660                 goto err;
1661         if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1662                 goto err;
1663         if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1664                 goto err;
1665         if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1666                 goto err;
1667         /* BER monitor invalid when BER_EN = 0  */
1668         if (ber_mon & 0x04) {
1669                 /* coarse, fast calculation     */
1670                 *ber = ber_tab & 0x1f;
1671                 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1672                 if (ber_mon & 0x01) {
1673                         /*
1674                          * BER_SEL = 1, The monitored BER is the estimated
1675                          * value with a Reed-Solomon decoder error amount at
1676                          * the deinterleaver output.
1677                          * monitored BER is expressed as a 20 bit output in total
1678                          */
1679                         ber_rst = ber_mon >> 3;
1680                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1681                         if (ber_rst == 0)
1682                                 timer =  12500000;
1683                         if (ber_rst == 1)
1684                                 timer =  25000000;
1685                         if (ber_rst == 2)
1686                                 timer =  50000000;
1687                         if (ber_rst == 3)
1688                                 timer = 100000000;
1689
1690                         *ber /= timer;
1691                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1692                 } else {
1693                         /*
1694                          * BER_SEL = 0, The monitored BER is the estimated
1695                          * value with a Viterbi decoder error amount at the
1696                          * QPSK demodulator output.
1697                          * monitored BER is expressed as a 24 bit output in total
1698                          */
1699                         ber_tim = ber_mon >> 1;
1700                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1701                         if (ber_tim == 0)
1702                                 timer = 16;
1703                         if (ber_tim == 1)
1704                                 timer = 24;
1705
1706                         *ber /= 2 ^ timer;
1707                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1708                 }
1709         }
1710         return 0;
1711 err:
1712         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1713         return -EREMOTEIO;
1714 }
1715
1716 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1717 {
1718         u8 agcm = 0;
1719         struct mb86a16_state *state = fe->demodulator_priv;
1720
1721         *strength = 0;
1722         if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1723                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1724                 return -EREMOTEIO;
1725         }
1726
1727         *strength = ((0xff - agcm) * 100) / 256;
1728         dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1729         *strength = (0xffff - 0xff) + agcm;
1730
1731         return 0;
1732 }
1733
1734 struct cnr {
1735         u8 cn_reg;
1736         u8 cn_val;
1737 };
1738
1739 static const struct cnr cnr_tab[] = {
1740         {  35,  2 },
1741         {  40,  3 },
1742         {  50,  4 },
1743         {  60,  5 },
1744         {  70,  6 },
1745         {  80,  7 },
1746         {  92,  8 },
1747         { 103,  9 },
1748         { 115, 10 },
1749         { 138, 12 },
1750         { 162, 15 },
1751         { 180, 18 },
1752         { 185, 19 },
1753         { 189, 20 },
1754         { 195, 22 },
1755         { 199, 24 },
1756         { 201, 25 },
1757         { 202, 26 },
1758         { 203, 27 },
1759         { 205, 28 },
1760         { 208, 30 }
1761 };
1762
1763 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1764 {
1765         struct mb86a16_state *state = fe->demodulator_priv;
1766         int i = 0;
1767         int low_tide = 2, high_tide = 30, q_level;
1768         u8  cn;
1769
1770         *snr = 0;
1771         if (mb86a16_read(state, 0x26, &cn) != 2) {
1772                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1773                 return -EREMOTEIO;
1774         }
1775
1776         for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1777                 if (cn < cnr_tab[i].cn_reg) {
1778                         *snr = cnr_tab[i].cn_val;
1779                         break;
1780                 }
1781         }
1782         q_level = (*snr * 100) / (high_tide - low_tide);
1783         dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1784         *snr = (0xffff - 0xff) + *snr;
1785
1786         return 0;
1787 }
1788
1789 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1790 {
1791         u8 dist;
1792         struct mb86a16_state *state = fe->demodulator_priv;
1793
1794         if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1795                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1796                 return -EREMOTEIO;
1797         }
1798         *ucblocks = dist;
1799
1800         return 0;
1801 }
1802
1803 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1804 {
1805         return DVBFE_ALGO_CUSTOM;
1806 }
1807
1808 static const struct dvb_frontend_ops mb86a16_ops = {
1809         .delsys = { SYS_DVBS },
1810         .info = {
1811                 .name                   = "Fujitsu MB86A16 DVB-S",
1812                 .frequency_min          = 950000,
1813                 .frequency_max          = 2150000,
1814                 .frequency_stepsize     = 3000,
1815                 .frequency_tolerance    = 0,
1816                 .symbol_rate_min        = 1000000,
1817                 .symbol_rate_max        = 45000000,
1818                 .symbol_rate_tolerance  = 500,
1819                 .caps                   = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1820                                           FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1821                                           FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1822                                           FE_CAN_FEC_AUTO
1823         },
1824         .release                        = mb86a16_release,
1825
1826         .get_frontend_algo              = mb86a16_frontend_algo,
1827         .search                         = mb86a16_search,
1828         .init                           = mb86a16_init,
1829         .sleep                          = mb86a16_sleep,
1830         .read_status                    = mb86a16_read_status,
1831
1832         .read_ber                       = mb86a16_read_ber,
1833         .read_signal_strength           = mb86a16_read_signal_strength,
1834         .read_snr                       = mb86a16_read_snr,
1835         .read_ucblocks                  = mb86a16_read_ucblocks,
1836
1837         .diseqc_send_master_cmd         = mb86a16_send_diseqc_msg,
1838         .diseqc_send_burst              = mb86a16_send_diseqc_burst,
1839         .set_tone                       = mb86a16_set_tone,
1840 };
1841
1842 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1843                                     struct i2c_adapter *i2c_adap)
1844 {
1845         u8 dev_id = 0;
1846         struct mb86a16_state *state = NULL;
1847
1848         state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1849         if (state == NULL)
1850                 goto error;
1851
1852         state->config = config;
1853         state->i2c_adap = i2c_adap;
1854
1855         mb86a16_read(state, 0x7f, &dev_id);
1856         if (dev_id != 0xfe)
1857                 goto error;
1858
1859         memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1860         state->frontend.demodulator_priv = state;
1861         state->frontend.ops.set_voltage = state->config->set_voltage;
1862
1863         return &state->frontend;
1864 error:
1865         kfree(state);
1866         return NULL;
1867 }
1868 EXPORT_SYMBOL(mb86a16_attach);
1869 MODULE_LICENSE("GPL");
1870 MODULE_AUTHOR("Manu Abraham");