GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / media / cec / cec-pin.c
1 /*
2  * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
3  *
4  * This program is free software; you may redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
9  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
10  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
11  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
12  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
13  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
14  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
15  * SOFTWARE.
16  */
17
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/sched/types.h>
21
22 #include <media/cec-pin.h>
23
24 /* All timings are in microseconds */
25
26 /* start bit timings */
27 #define CEC_TIM_START_BIT_LOW           3700
28 #define CEC_TIM_START_BIT_LOW_MIN       3500
29 #define CEC_TIM_START_BIT_LOW_MAX       3900
30 #define CEC_TIM_START_BIT_TOTAL         4500
31 #define CEC_TIM_START_BIT_TOTAL_MIN     4300
32 #define CEC_TIM_START_BIT_TOTAL_MAX     4700
33
34 /* data bit timings */
35 #define CEC_TIM_DATA_BIT_0_LOW          1500
36 #define CEC_TIM_DATA_BIT_0_LOW_MIN      1300
37 #define CEC_TIM_DATA_BIT_0_LOW_MAX      1700
38 #define CEC_TIM_DATA_BIT_1_LOW          600
39 #define CEC_TIM_DATA_BIT_1_LOW_MIN      400
40 #define CEC_TIM_DATA_BIT_1_LOW_MAX      800
41 #define CEC_TIM_DATA_BIT_TOTAL          2400
42 #define CEC_TIM_DATA_BIT_TOTAL_MIN      2050
43 #define CEC_TIM_DATA_BIT_TOTAL_MAX      2750
44 /* earliest safe time to sample the bit state */
45 #define CEC_TIM_DATA_BIT_SAMPLE         850
46 /* earliest time the bit is back to 1 (T7 + 50) */
47 #define CEC_TIM_DATA_BIT_HIGH           1750
48
49 /* when idle, sample once per millisecond */
50 #define CEC_TIM_IDLE_SAMPLE             1000
51 /* when processing the start bit, sample twice per millisecond */
52 #define CEC_TIM_START_BIT_SAMPLE        500
53 /* when polling for a state change, sample once every 50 micoseconds */
54 #define CEC_TIM_SAMPLE                  50
55
56 #define CEC_TIM_LOW_DRIVE_ERROR         (1.5 * CEC_TIM_DATA_BIT_TOTAL)
57
58 struct cec_state {
59         const char * const name;
60         unsigned int usecs;
61 };
62
63 static const struct cec_state states[CEC_PIN_STATES] = {
64         { "Off",                   0 },
65         { "Idle",                  CEC_TIM_IDLE_SAMPLE },
66         { "Tx Wait",               CEC_TIM_SAMPLE },
67         { "Tx Wait for High",      CEC_TIM_IDLE_SAMPLE },
68         { "Tx Start Bit Low",      CEC_TIM_START_BIT_LOW },
69         { "Tx Start Bit High",     CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
70         { "Tx Data 0 Low",         CEC_TIM_DATA_BIT_0_LOW },
71         { "Tx Data 0 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
72         { "Tx Data 1 Low",         CEC_TIM_DATA_BIT_1_LOW },
73         { "Tx Data 1 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
74         { "Tx Data 1 Pre Sample",  CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
75         { "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
76         { "Rx Start Bit Low",      CEC_TIM_SAMPLE },
77         { "Rx Start Bit High",     CEC_TIM_SAMPLE },
78         { "Rx Data Sample",        CEC_TIM_DATA_BIT_SAMPLE },
79         { "Rx Data Post Sample",   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
80         { "Rx Data High",          CEC_TIM_SAMPLE },
81         { "Rx Ack Low",            CEC_TIM_DATA_BIT_0_LOW },
82         { "Rx Ack Low Post",       CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
83         { "Rx Ack High Post",      CEC_TIM_DATA_BIT_HIGH },
84         { "Rx Ack Finish",         CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
85         { "Rx Low Drive",          CEC_TIM_LOW_DRIVE_ERROR },
86         { "Rx Irq",                0 },
87 };
88
89 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
90 {
91         if (!force && v == pin->adap->cec_pin_is_high)
92                 return;
93
94         pin->adap->cec_pin_is_high = v;
95         if (atomic_read(&pin->work_pin_events) < CEC_NUM_PIN_EVENTS) {
96                 pin->work_pin_is_high[pin->work_pin_events_wr] = v;
97                 pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
98                 pin->work_pin_events_wr =
99                         (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
100                 atomic_inc(&pin->work_pin_events);
101         }
102         wake_up_interruptible(&pin->kthread_waitq);
103 }
104
105 static bool cec_pin_read(struct cec_pin *pin)
106 {
107         bool v = pin->ops->read(pin->adap);
108
109         cec_pin_update(pin, v, false);
110         return v;
111 }
112
113 static void cec_pin_low(struct cec_pin *pin)
114 {
115         pin->ops->low(pin->adap);
116         cec_pin_update(pin, false, false);
117 }
118
119 static bool cec_pin_high(struct cec_pin *pin)
120 {
121         pin->ops->high(pin->adap);
122         return cec_pin_read(pin);
123 }
124
125 static void cec_pin_to_idle(struct cec_pin *pin)
126 {
127         /*
128          * Reset all status fields, release the bus and
129          * go to idle state.
130          */
131         pin->rx_bit = pin->tx_bit = 0;
132         pin->rx_msg.len = 0;
133         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
134         pin->state = CEC_ST_IDLE;
135         pin->ts = 0;
136 }
137
138 /*
139  * Handle Transmit-related states
140  *
141  * Basic state changes when transmitting:
142  *
143  * Idle -> Tx Wait (waiting for the end of signal free time) ->
144  *      Tx Start Bit Low -> Tx Start Bit High ->
145  *
146  *   Regular data bits + EOM:
147  *      Tx Data 0 Low -> Tx Data 0 High ->
148  *   or:
149  *      Tx Data 1 Low -> Tx Data 1 High ->
150  *
151  *   First 4 data bits or Ack bit:
152  *      Tx Data 0 Low -> Tx Data 0 High ->
153  *   or:
154  *      Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
155  *              Tx Data 1 Post Sample ->
156  *
157  *   After the last Ack go to Idle.
158  *
159  * If it detects a Low Drive condition then:
160  *      Tx Wait For High -> Idle
161  *
162  * If it loses arbitration, then it switches to state Rx Data Post Sample.
163  */
164 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
165 {
166         bool v;
167         bool is_ack_bit, ack;
168
169         switch (pin->state) {
170         case CEC_ST_TX_WAIT_FOR_HIGH:
171                 if (cec_pin_read(pin))
172                         cec_pin_to_idle(pin);
173                 break;
174
175         case CEC_ST_TX_START_BIT_LOW:
176                 pin->state = CEC_ST_TX_START_BIT_HIGH;
177                 /* Generate start bit */
178                 cec_pin_high(pin);
179                 break;
180
181         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
182                 /* If the read value is 1, then all is OK */
183                 if (!cec_pin_read(pin)) {
184                         /*
185                          * It's 0, so someone detected an error and pulled the
186                          * line low for 1.5 times the nominal bit period.
187                          */
188                         pin->tx_msg.len = 0;
189                         pin->work_tx_ts = ts;
190                         pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
191                         pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
192                         wake_up_interruptible(&pin->kthread_waitq);
193                         break;
194                 }
195                 if (pin->tx_nacked) {
196                         cec_pin_to_idle(pin);
197                         pin->tx_msg.len = 0;
198                         pin->work_tx_ts = ts;
199                         pin->work_tx_status = CEC_TX_STATUS_NACK;
200                         wake_up_interruptible(&pin->kthread_waitq);
201                         break;
202                 }
203                 /* fall through */
204         case CEC_ST_TX_DATA_BIT_0_HIGH:
205         case CEC_ST_TX_DATA_BIT_1_HIGH:
206                 pin->tx_bit++;
207                 /* fall through */
208         case CEC_ST_TX_START_BIT_HIGH:
209                 if (pin->tx_bit / 10 >= pin->tx_msg.len) {
210                         cec_pin_to_idle(pin);
211                         pin->tx_msg.len = 0;
212                         pin->work_tx_ts = ts;
213                         pin->work_tx_status = CEC_TX_STATUS_OK;
214                         wake_up_interruptible(&pin->kthread_waitq);
215                         break;
216                 }
217
218                 switch (pin->tx_bit % 10) {
219                 default:
220                         v = pin->tx_msg.msg[pin->tx_bit / 10] &
221                                 (1 << (7 - (pin->tx_bit % 10)));
222                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
223                                 CEC_ST_TX_DATA_BIT_0_LOW;
224                         break;
225                 case 8:
226                         v = pin->tx_bit / 10 == pin->tx_msg.len - 1;
227                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
228                                 CEC_ST_TX_DATA_BIT_0_LOW;
229                         break;
230                 case 9:
231                         pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
232                         break;
233                 }
234                 cec_pin_low(pin);
235                 break;
236
237         case CEC_ST_TX_DATA_BIT_0_LOW:
238         case CEC_ST_TX_DATA_BIT_1_LOW:
239                 v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
240                 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
241                         CEC_ST_TX_DATA_BIT_0_HIGH;
242                 is_ack_bit = pin->tx_bit % 10 == 9;
243                 if (v && (pin->tx_bit < 4 || is_ack_bit))
244                         pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
245                 cec_pin_high(pin);
246                 break;
247
248         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
249                 /* Read the CEC value at the sample time */
250                 v = cec_pin_read(pin);
251                 is_ack_bit = pin->tx_bit % 10 == 9;
252                 /*
253                  * If v == 0 and we're within the first 4 bits
254                  * of the initiator, then someone else started
255                  * transmitting and we lost the arbitration
256                  * (i.e. the logical address of the other
257                  * transmitter has more leading 0 bits in the
258                  * initiator).
259                  */
260                 if (!v && !is_ack_bit) {
261                         pin->tx_msg.len = 0;
262                         pin->work_tx_ts = ts;
263                         pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
264                         wake_up_interruptible(&pin->kthread_waitq);
265                         pin->rx_bit = pin->tx_bit;
266                         pin->tx_bit = 0;
267                         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
268                         pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
269                         pin->rx_msg.msg[0] &= ~(1 << (7 - pin->rx_bit));
270                         pin->rx_msg.len = 0;
271                         pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
272                         pin->rx_bit++;
273                         break;
274                 }
275                 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
276                 if (!is_ack_bit)
277                         break;
278                 /* Was the message ACKed? */
279                 ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
280                 if (!ack) {
281                         /*
282                          * Note: the CEC spec is ambiguous regarding
283                          * what action to take when a NACK appears
284                          * before the last byte of the payload was
285                          * transmitted: either stop transmitting
286                          * immediately, or wait until the last byte
287                          * was transmitted.
288                          *
289                          * Most CEC implementations appear to stop
290                          * immediately, and that's what we do here
291                          * as well.
292                          */
293                         pin->tx_nacked = true;
294                 }
295                 break;
296
297         default:
298                 break;
299         }
300 }
301
302 /*
303  * Handle Receive-related states
304  *
305  * Basic state changes when receiving:
306  *
307  *      Rx Start Bit Low -> Rx Start Bit High ->
308  *   Regular data bits + EOM:
309  *      Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
310  *   Ack bit 0:
311  *      Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
312  *   Ack bit 1:
313  *      Rx Ack High Post -> Rx Data High ->
314  *   Ack bit 0 && EOM:
315  *      Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
316  */
317 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
318 {
319         s32 delta;
320         bool v;
321         bool ack;
322         bool bcast, for_us;
323         u8 dest;
324
325         switch (pin->state) {
326         /* Receive states */
327         case CEC_ST_RX_START_BIT_LOW:
328                 v = cec_pin_read(pin);
329                 if (!v)
330                         break;
331                 pin->state = CEC_ST_RX_START_BIT_HIGH;
332                 delta = ktime_us_delta(ts, pin->ts);
333                 pin->ts = ts;
334                 /* Start bit low is too short, go back to idle */
335                 if (delta < CEC_TIM_START_BIT_LOW_MIN -
336                             CEC_TIM_IDLE_SAMPLE) {
337                         cec_pin_to_idle(pin);
338                 }
339                 break;
340
341         case CEC_ST_RX_START_BIT_HIGH:
342                 v = cec_pin_read(pin);
343                 delta = ktime_us_delta(ts, pin->ts);
344                 if (v && delta > CEC_TIM_START_BIT_TOTAL_MAX -
345                                  CEC_TIM_START_BIT_LOW_MIN) {
346                         cec_pin_to_idle(pin);
347                         break;
348                 }
349                 if (v)
350                         break;
351                 pin->state = CEC_ST_RX_DATA_SAMPLE;
352                 pin->ts = ts;
353                 pin->rx_eom = false;
354                 break;
355
356         case CEC_ST_RX_DATA_SAMPLE:
357                 v = cec_pin_read(pin);
358                 pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
359                 switch (pin->rx_bit % 10) {
360                 default:
361                         if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
362                                 pin->rx_msg.msg[pin->rx_bit / 10] |=
363                                         v << (7 - (pin->rx_bit % 10));
364                         break;
365                 case 8:
366                         pin->rx_eom = v;
367                         pin->rx_msg.len = pin->rx_bit / 10 + 1;
368                         break;
369                 case 9:
370                         break;
371                 }
372                 pin->rx_bit++;
373                 break;
374
375         case CEC_ST_RX_DATA_POST_SAMPLE:
376                 pin->state = CEC_ST_RX_DATA_HIGH;
377                 break;
378
379         case CEC_ST_RX_DATA_HIGH:
380                 v = cec_pin_read(pin);
381                 delta = ktime_us_delta(ts, pin->ts);
382                 if (v && delta > CEC_TIM_DATA_BIT_TOTAL_MAX) {
383                         cec_pin_to_idle(pin);
384                         break;
385                 }
386                 if (v)
387                         break;
388                 /*
389                  * Go to low drive state when the total bit time is
390                  * too short.
391                  */
392                 if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
393                         cec_pin_low(pin);
394                         pin->state = CEC_ST_LOW_DRIVE;
395                         break;
396                 }
397                 pin->ts = ts;
398                 if (pin->rx_bit % 10 != 9) {
399                         pin->state = CEC_ST_RX_DATA_SAMPLE;
400                         break;
401                 }
402
403                 dest = cec_msg_destination(&pin->rx_msg);
404                 bcast = dest == CEC_LOG_ADDR_BROADCAST;
405                 /* for_us == broadcast or directed to us */
406                 for_us = bcast || (pin->la_mask & (1 << dest));
407                 /* ACK bit value */
408                 ack = bcast ? 1 : !for_us;
409
410                 if (ack) {
411                         /* No need to write to the bus, just wait */
412                         pin->state = CEC_ST_RX_ACK_HIGH_POST;
413                         break;
414                 }
415                 cec_pin_low(pin);
416                 pin->state = CEC_ST_RX_ACK_LOW;
417                 break;
418
419         case CEC_ST_RX_ACK_LOW:
420                 cec_pin_high(pin);
421                 pin->state = CEC_ST_RX_ACK_LOW_POST;
422                 break;
423
424         case CEC_ST_RX_ACK_LOW_POST:
425         case CEC_ST_RX_ACK_HIGH_POST:
426                 v = cec_pin_read(pin);
427                 if (v && pin->rx_eom) {
428                         pin->work_rx_msg = pin->rx_msg;
429                         pin->work_rx_msg.rx_ts = ts;
430                         wake_up_interruptible(&pin->kthread_waitq);
431                         pin->ts = ts;
432                         pin->state = CEC_ST_RX_ACK_FINISH;
433                         break;
434                 }
435                 pin->rx_bit++;
436                 pin->state = CEC_ST_RX_DATA_HIGH;
437                 break;
438
439         case CEC_ST_RX_ACK_FINISH:
440                 cec_pin_to_idle(pin);
441                 break;
442
443         default:
444                 break;
445         }
446 }
447
448 /*
449  * Main timer function
450  *
451  */
452 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
453 {
454         struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
455         struct cec_adapter *adap = pin->adap;
456         ktime_t ts;
457         s32 delta;
458
459         ts = ktime_get();
460         if (pin->timer_ts) {
461                 delta = ktime_us_delta(ts, pin->timer_ts);
462                 pin->timer_cnt++;
463                 if (delta > 100 && pin->state != CEC_ST_IDLE) {
464                         /* Keep track of timer overruns */
465                         pin->timer_sum_overrun += delta;
466                         pin->timer_100ms_overruns++;
467                         if (delta > 300)
468                                 pin->timer_300ms_overruns++;
469                         if (delta > pin->timer_max_overrun)
470                                 pin->timer_max_overrun = delta;
471                 }
472         }
473         if (adap->monitor_pin_cnt)
474                 cec_pin_read(pin);
475
476         if (pin->wait_usecs) {
477                 /*
478                  * If we are monitoring the pin, then we have to
479                  * sample at regular intervals.
480                  */
481                 if (pin->wait_usecs > 150) {
482                         pin->wait_usecs -= 100;
483                         pin->timer_ts = ktime_add_us(ts, 100);
484                         hrtimer_forward_now(timer, 100000);
485                         return HRTIMER_RESTART;
486                 }
487                 if (pin->wait_usecs > 100) {
488                         pin->wait_usecs /= 2;
489                         pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
490                         hrtimer_forward_now(timer, pin->wait_usecs * 1000);
491                         return HRTIMER_RESTART;
492                 }
493                 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
494                 hrtimer_forward_now(timer, pin->wait_usecs * 1000);
495                 pin->wait_usecs = 0;
496                 return HRTIMER_RESTART;
497         }
498
499         switch (pin->state) {
500         /* Transmit states */
501         case CEC_ST_TX_WAIT_FOR_HIGH:
502         case CEC_ST_TX_START_BIT_LOW:
503         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
504         case CEC_ST_TX_DATA_BIT_0_HIGH:
505         case CEC_ST_TX_DATA_BIT_1_HIGH:
506         case CEC_ST_TX_START_BIT_HIGH:
507         case CEC_ST_TX_DATA_BIT_0_LOW:
508         case CEC_ST_TX_DATA_BIT_1_LOW:
509         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
510                 cec_pin_tx_states(pin, ts);
511                 break;
512
513         /* Receive states */
514         case CEC_ST_RX_START_BIT_LOW:
515         case CEC_ST_RX_START_BIT_HIGH:
516         case CEC_ST_RX_DATA_SAMPLE:
517         case CEC_ST_RX_DATA_POST_SAMPLE:
518         case CEC_ST_RX_DATA_HIGH:
519         case CEC_ST_RX_ACK_LOW:
520         case CEC_ST_RX_ACK_LOW_POST:
521         case CEC_ST_RX_ACK_HIGH_POST:
522         case CEC_ST_RX_ACK_FINISH:
523                 cec_pin_rx_states(pin, ts);
524                 break;
525
526         case CEC_ST_IDLE:
527         case CEC_ST_TX_WAIT:
528                 if (!cec_pin_high(pin)) {
529                         /* Start bit, switch to receive state */
530                         pin->ts = ts;
531                         pin->state = CEC_ST_RX_START_BIT_LOW;
532                         /*
533                          * If a transmit is pending, then that transmit should
534                          * use a signal free time of no more than
535                          * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will
536                          * have a new initiator due to the receive that is now
537                          * starting.
538                          */
539                         if (pin->tx_msg.len && pin->tx_signal_free_time >
540                             CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
541                                 pin->tx_signal_free_time =
542                                         CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
543                         break;
544                 }
545                 if (pin->ts == 0)
546                         pin->ts = ts;
547                 if (pin->tx_msg.len) {
548                         /*
549                          * Check if the bus has been free for long enough
550                          * so we can kick off the pending transmit.
551                          */
552                         delta = ktime_us_delta(ts, pin->ts);
553                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
554                             pin->tx_signal_free_time) {
555                                 pin->tx_nacked = false;
556                                 pin->state = CEC_ST_TX_START_BIT_LOW;
557                                 /* Generate start bit */
558                                 cec_pin_low(pin);
559                                 break;
560                         }
561                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
562                             pin->tx_signal_free_time - 1)
563                                 pin->state = CEC_ST_TX_WAIT;
564                         break;
565                 }
566                 if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
567                     pin->enable_irq_failed || adap->is_configuring ||
568                     adap->is_configured || adap->monitor_all_cnt)
569                         break;
570                 /* Switch to interrupt mode */
571                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
572                 pin->state = CEC_ST_RX_IRQ;
573                 wake_up_interruptible(&pin->kthread_waitq);
574                 return HRTIMER_NORESTART;
575
576         case CEC_ST_LOW_DRIVE:
577                 cec_pin_to_idle(pin);
578                 break;
579
580         default:
581                 break;
582         }
583         if (!adap->monitor_pin_cnt || states[pin->state].usecs <= 150) {
584                 pin->wait_usecs = 0;
585                 pin->timer_ts = ktime_add_us(ts, states[pin->state].usecs);
586                 hrtimer_forward_now(timer, states[pin->state].usecs * 1000);
587                 return HRTIMER_RESTART;
588         }
589         pin->wait_usecs = states[pin->state].usecs - 100;
590         pin->timer_ts = ktime_add_us(ts, 100);
591         hrtimer_forward_now(timer, 100000);
592         return HRTIMER_RESTART;
593 }
594
595 static int cec_pin_thread_func(void *_adap)
596 {
597         struct cec_adapter *adap = _adap;
598         struct cec_pin *pin = adap->pin;
599
600         for (;;) {
601                 wait_event_interruptible(pin->kthread_waitq,
602                         kthread_should_stop() ||
603                         pin->work_rx_msg.len ||
604                         pin->work_tx_status ||
605                         atomic_read(&pin->work_irq_change) ||
606                         atomic_read(&pin->work_pin_events));
607
608                 if (pin->work_rx_msg.len) {
609                         cec_received_msg_ts(adap, &pin->work_rx_msg,
610                                             pin->work_rx_msg.rx_ts);
611                         pin->work_rx_msg.len = 0;
612                 }
613                 if (pin->work_tx_status) {
614                         unsigned int tx_status = pin->work_tx_status;
615
616                         pin->work_tx_status = 0;
617                         cec_transmit_attempt_done_ts(adap, tx_status,
618                                                      pin->work_tx_ts);
619                 }
620
621                 while (atomic_read(&pin->work_pin_events)) {
622                         unsigned int idx = pin->work_pin_events_rd;
623
624                         cec_queue_pin_cec_event(adap,
625                                                 pin->work_pin_is_high[idx],
626                                                 pin->work_pin_ts[idx]);
627                         pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
628                         atomic_dec(&pin->work_pin_events);
629                 }
630
631                 switch (atomic_xchg(&pin->work_irq_change,
632                                     CEC_PIN_IRQ_UNCHANGED)) {
633                 case CEC_PIN_IRQ_DISABLE:
634                         pin->ops->disable_irq(adap);
635                         cec_pin_high(pin);
636                         cec_pin_to_idle(pin);
637                         hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
638                         break;
639                 case CEC_PIN_IRQ_ENABLE:
640                         pin->enable_irq_failed = !pin->ops->enable_irq(adap);
641                         if (pin->enable_irq_failed) {
642                                 cec_pin_to_idle(pin);
643                                 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
644                         }
645                         break;
646                 default:
647                         break;
648                 }
649
650                 if (kthread_should_stop())
651                         break;
652         }
653         return 0;
654 }
655
656 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
657 {
658         struct cec_pin *pin = adap->pin;
659
660         pin->enabled = enable;
661         if (enable) {
662                 atomic_set(&pin->work_pin_events, 0);
663                 pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
664                 cec_pin_read(pin);
665                 cec_pin_to_idle(pin);
666                 pin->tx_msg.len = 0;
667                 pin->timer_ts = 0;
668                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
669                 pin->kthread = kthread_run(cec_pin_thread_func, adap,
670                                            "cec-pin");
671                 if (IS_ERR(pin->kthread)) {
672                         pr_err("cec-pin: kernel_thread() failed\n");
673                         return PTR_ERR(pin->kthread);
674                 }
675                 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
676         } else {
677                 if (pin->ops->disable_irq)
678                         pin->ops->disable_irq(adap);
679                 hrtimer_cancel(&pin->timer);
680                 kthread_stop(pin->kthread);
681                 cec_pin_read(pin);
682                 cec_pin_to_idle(pin);
683                 pin->state = CEC_ST_OFF;
684         }
685         return 0;
686 }
687
688 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
689 {
690         struct cec_pin *pin = adap->pin;
691
692         if (log_addr == CEC_LOG_ADDR_INVALID)
693                 pin->la_mask = 0;
694         else
695                 pin->la_mask |= (1 << log_addr);
696         return 0;
697 }
698
699 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
700                                       u32 signal_free_time, struct cec_msg *msg)
701 {
702         struct cec_pin *pin = adap->pin;
703
704         /*
705          * If a receive is in progress, then this transmit should use
706          * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
707          * since when it starts transmitting it will have a new initiator.
708          */
709         if (pin->state != CEC_ST_IDLE &&
710             signal_free_time > CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
711                 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
712
713         pin->tx_signal_free_time = signal_free_time;
714         pin->tx_msg = *msg;
715         pin->work_tx_status = 0;
716         pin->tx_bit = 0;
717         if (pin->state == CEC_ST_RX_IRQ) {
718                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
719                 pin->ops->disable_irq(adap);
720                 cec_pin_high(pin);
721                 cec_pin_to_idle(pin);
722                 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
723         }
724         return 0;
725 }
726
727 static void cec_pin_adap_status(struct cec_adapter *adap,
728                                        struct seq_file *file)
729 {
730         struct cec_pin *pin = adap->pin;
731
732         seq_printf(file, "state:   %s\n", states[pin->state].name);
733         seq_printf(file, "tx_bit:  %d\n", pin->tx_bit);
734         seq_printf(file, "rx_bit:  %d\n", pin->rx_bit);
735         seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
736         seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
737         if (pin->timer_100ms_overruns) {
738                 seq_printf(file, "timer overruns > 100ms: %u of %u\n",
739                            pin->timer_100ms_overruns, pin->timer_cnt);
740                 seq_printf(file, "timer overruns > 300ms: %u of %u\n",
741                            pin->timer_300ms_overruns, pin->timer_cnt);
742                 seq_printf(file, "max timer overrun: %u usecs\n",
743                            pin->timer_max_overrun);
744                 seq_printf(file, "avg timer overrun: %u usecs\n",
745                            pin->timer_sum_overrun / pin->timer_100ms_overruns);
746         }
747         pin->timer_cnt = 0;
748         pin->timer_100ms_overruns = 0;
749         pin->timer_300ms_overruns = 0;
750         pin->timer_max_overrun = 0;
751         pin->timer_sum_overrun = 0;
752         if (pin->ops->status)
753                 pin->ops->status(adap, file);
754 }
755
756 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
757                                                   bool enable)
758 {
759         struct cec_pin *pin = adap->pin;
760
761         pin->monitor_all = enable;
762         return 0;
763 }
764
765 static void cec_pin_adap_free(struct cec_adapter *adap)
766 {
767         struct cec_pin *pin = adap->pin;
768
769         if (pin->ops->free)
770                 pin->ops->free(adap);
771         adap->pin = NULL;
772         kfree(pin);
773 }
774
775 void cec_pin_changed(struct cec_adapter *adap, bool value)
776 {
777         struct cec_pin *pin = adap->pin;
778
779         cec_pin_update(pin, value, false);
780         if (!value && (adap->is_configuring || adap->is_configured ||
781                        adap->monitor_all_cnt))
782                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
783 }
784 EXPORT_SYMBOL_GPL(cec_pin_changed);
785
786 static const struct cec_adap_ops cec_pin_adap_ops = {
787         .adap_enable = cec_pin_adap_enable,
788         .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
789         .adap_log_addr = cec_pin_adap_log_addr,
790         .adap_transmit = cec_pin_adap_transmit,
791         .adap_status = cec_pin_adap_status,
792         .adap_free = cec_pin_adap_free,
793 };
794
795 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
796                                         void *priv, const char *name, u32 caps)
797 {
798         struct cec_adapter *adap;
799         struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
800
801         if (pin == NULL)
802                 return ERR_PTR(-ENOMEM);
803         pin->ops = pin_ops;
804         hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
805         pin->timer.function = cec_pin_timer;
806         init_waitqueue_head(&pin->kthread_waitq);
807
808         adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
809                             caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
810                             CEC_MAX_LOG_ADDRS);
811
812         if (PTR_ERR_OR_ZERO(adap)) {
813                 kfree(pin);
814                 return adap;
815         }
816
817         adap->pin = pin;
818         pin->adap = adap;
819         cec_pin_update(pin, cec_pin_high(pin), true);
820         return adap;
821 }
822 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);