GNU Linux-libre 4.19.242-gnu1
[releases.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82         return &conf->stripe_hashtbl[hash];
83 }
84
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92         spin_lock_irq(conf->hash_locks + hash);
93         spin_lock(&conf->device_lock);
94 }
95
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98         spin_unlock(&conf->device_lock);
99         spin_unlock_irq(conf->hash_locks + hash);
100 }
101
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104         int i;
105         spin_lock_irq(conf->hash_locks);
106         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108         spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113         int i;
114         spin_unlock(&conf->device_lock);
115         for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116                 spin_unlock(conf->hash_locks + i);
117         spin_unlock_irq(conf->hash_locks);
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123         if (sh->ddf_layout)
124                 /* ddf always start from first device */
125                 return 0;
126         /* md starts just after Q block */
127         if (sh->qd_idx == sh->disks - 1)
128                 return 0;
129         else
130                 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134         disk++;
135         return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144                              int *count, int syndrome_disks)
145 {
146         int slot = *count;
147
148         if (sh->ddf_layout)
149                 (*count)++;
150         if (idx == sh->pd_idx)
151                 return syndrome_disks;
152         if (idx == sh->qd_idx)
153                 return syndrome_disks + 1;
154         if (!sh->ddf_layout)
155                 (*count)++;
156         return slot;
157 }
158
159 static void print_raid5_conf (struct r5conf *conf);
160
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163         return sh->check_state || sh->reconstruct_state ||
164                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170         return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171                 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172                !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177         struct r5conf *conf = sh->raid_conf;
178         struct r5worker_group *group;
179         int thread_cnt;
180         int i, cpu = sh->cpu;
181
182         if (!cpu_online(cpu)) {
183                 cpu = cpumask_any(cpu_online_mask);
184                 sh->cpu = cpu;
185         }
186
187         if (list_empty(&sh->lru)) {
188                 struct r5worker_group *group;
189                 group = conf->worker_groups + cpu_to_group(cpu);
190                 if (stripe_is_lowprio(sh))
191                         list_add_tail(&sh->lru, &group->loprio_list);
192                 else
193                         list_add_tail(&sh->lru, &group->handle_list);
194                 group->stripes_cnt++;
195                 sh->group = group;
196         }
197
198         if (conf->worker_cnt_per_group == 0) {
199                 md_wakeup_thread(conf->mddev->thread);
200                 return;
201         }
202
203         group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205         group->workers[0].working = true;
206         /* at least one worker should run to avoid race */
207         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210         /* wakeup more workers */
211         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212                 if (group->workers[i].working == false) {
213                         group->workers[i].working = true;
214                         queue_work_on(sh->cpu, raid5_wq,
215                                       &group->workers[i].work);
216                         thread_cnt--;
217                 }
218         }
219 }
220
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222                               struct list_head *temp_inactive_list)
223 {
224         int i;
225         int injournal = 0;      /* number of date pages with R5_InJournal */
226
227         BUG_ON(!list_empty(&sh->lru));
228         BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230         if (r5c_is_writeback(conf->log))
231                 for (i = sh->disks; i--; )
232                         if (test_bit(R5_InJournal, &sh->dev[i].flags))
233                                 injournal++;
234         /*
235          * In the following cases, the stripe cannot be released to cached
236          * lists. Therefore, we make the stripe write out and set
237          * STRIPE_HANDLE:
238          *   1. when quiesce in r5c write back;
239          *   2. when resync is requested fot the stripe.
240          */
241         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242             (conf->quiesce && r5c_is_writeback(conf->log) &&
243              !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244                 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245                         r5c_make_stripe_write_out(sh);
246                 set_bit(STRIPE_HANDLE, &sh->state);
247         }
248
249         if (test_bit(STRIPE_HANDLE, &sh->state)) {
250                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252                         list_add_tail(&sh->lru, &conf->delayed_list);
253                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254                            sh->bm_seq - conf->seq_write > 0)
255                         list_add_tail(&sh->lru, &conf->bitmap_list);
256                 else {
257                         clear_bit(STRIPE_DELAYED, &sh->state);
258                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
259                         if (conf->worker_cnt_per_group == 0) {
260                                 if (stripe_is_lowprio(sh))
261                                         list_add_tail(&sh->lru,
262                                                         &conf->loprio_list);
263                                 else
264                                         list_add_tail(&sh->lru,
265                                                         &conf->handle_list);
266                         } else {
267                                 raid5_wakeup_stripe_thread(sh);
268                                 return;
269                         }
270                 }
271                 md_wakeup_thread(conf->mddev->thread);
272         } else {
273                 BUG_ON(stripe_operations_active(sh));
274                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275                         if (atomic_dec_return(&conf->preread_active_stripes)
276                             < IO_THRESHOLD)
277                                 md_wakeup_thread(conf->mddev->thread);
278                 atomic_dec(&conf->active_stripes);
279                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280                         if (!r5c_is_writeback(conf->log))
281                                 list_add_tail(&sh->lru, temp_inactive_list);
282                         else {
283                                 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284                                 if (injournal == 0)
285                                         list_add_tail(&sh->lru, temp_inactive_list);
286                                 else if (injournal == conf->raid_disks - conf->max_degraded) {
287                                         /* full stripe */
288                                         if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289                                                 atomic_inc(&conf->r5c_cached_full_stripes);
290                                         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291                                                 atomic_dec(&conf->r5c_cached_partial_stripes);
292                                         list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293                                         r5c_check_cached_full_stripe(conf);
294                                 } else
295                                         /*
296                                          * STRIPE_R5C_PARTIAL_STRIPE is set in
297                                          * r5c_try_caching_write(). No need to
298                                          * set it again.
299                                          */
300                                         list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301                         }
302                 }
303         }
304 }
305
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307                              struct list_head *temp_inactive_list)
308 {
309         if (atomic_dec_and_test(&sh->count))
310                 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321                                          struct list_head *temp_inactive_list,
322                                          int hash)
323 {
324         int size;
325         bool do_wakeup = false;
326         unsigned long flags;
327
328         if (hash == NR_STRIPE_HASH_LOCKS) {
329                 size = NR_STRIPE_HASH_LOCKS;
330                 hash = NR_STRIPE_HASH_LOCKS - 1;
331         } else
332                 size = 1;
333         while (size) {
334                 struct list_head *list = &temp_inactive_list[size - 1];
335
336                 /*
337                  * We don't hold any lock here yet, raid5_get_active_stripe() might
338                  * remove stripes from the list
339                  */
340                 if (!list_empty_careful(list)) {
341                         spin_lock_irqsave(conf->hash_locks + hash, flags);
342                         if (list_empty(conf->inactive_list + hash) &&
343                             !list_empty(list))
344                                 atomic_dec(&conf->empty_inactive_list_nr);
345                         list_splice_tail_init(list, conf->inactive_list + hash);
346                         do_wakeup = true;
347                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348                 }
349                 size--;
350                 hash--;
351         }
352
353         if (do_wakeup) {
354                 wake_up(&conf->wait_for_stripe);
355                 if (atomic_read(&conf->active_stripes) == 0)
356                         wake_up(&conf->wait_for_quiescent);
357                 if (conf->retry_read_aligned)
358                         md_wakeup_thread(conf->mddev->thread);
359         }
360 }
361
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364                                struct list_head *temp_inactive_list)
365 {
366         struct stripe_head *sh, *t;
367         int count = 0;
368         struct llist_node *head;
369
370         head = llist_del_all(&conf->released_stripes);
371         head = llist_reverse_order(head);
372         llist_for_each_entry_safe(sh, t, head, release_list) {
373                 int hash;
374
375                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376                 smp_mb();
377                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378                 /*
379                  * Don't worry the bit is set here, because if the bit is set
380                  * again, the count is always > 1. This is true for
381                  * STRIPE_ON_UNPLUG_LIST bit too.
382                  */
383                 hash = sh->hash_lock_index;
384                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385                 count++;
386         }
387
388         return count;
389 }
390
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393         struct r5conf *conf = sh->raid_conf;
394         unsigned long flags;
395         struct list_head list;
396         int hash;
397         bool wakeup;
398
399         /* Avoid release_list until the last reference.
400          */
401         if (atomic_add_unless(&sh->count, -1, 1))
402                 return;
403
404         if (unlikely(!conf->mddev->thread) ||
405                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406                 goto slow_path;
407         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408         if (wakeup)
409                 md_wakeup_thread(conf->mddev->thread);
410         return;
411 slow_path:
412         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413         if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414                 INIT_LIST_HEAD(&list);
415                 hash = sh->hash_lock_index;
416                 do_release_stripe(conf, sh, &list);
417                 spin_unlock_irqrestore(&conf->device_lock, flags);
418                 release_inactive_stripe_list(conf, &list, hash);
419         }
420 }
421
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424         pr_debug("remove_hash(), stripe %llu\n",
425                 (unsigned long long)sh->sector);
426
427         hlist_del_init(&sh->hash);
428 }
429
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432         struct hlist_head *hp = stripe_hash(conf, sh->sector);
433
434         pr_debug("insert_hash(), stripe %llu\n",
435                 (unsigned long long)sh->sector);
436
437         hlist_add_head(&sh->hash, hp);
438 }
439
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443         struct stripe_head *sh = NULL;
444         struct list_head *first;
445
446         if (list_empty(conf->inactive_list + hash))
447                 goto out;
448         first = (conf->inactive_list + hash)->next;
449         sh = list_entry(first, struct stripe_head, lru);
450         list_del_init(first);
451         remove_hash(sh);
452         atomic_inc(&conf->active_stripes);
453         BUG_ON(hash != sh->hash_lock_index);
454         if (list_empty(conf->inactive_list + hash))
455                 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457         return sh;
458 }
459
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462         struct page *p;
463         int i;
464         int num = sh->raid_conf->pool_size;
465
466         for (i = 0; i < num ; i++) {
467                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468                 p = sh->dev[i].page;
469                 if (!p)
470                         continue;
471                 sh->dev[i].page = NULL;
472                 put_page(p);
473         }
474 }
475
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478         int i;
479         int num = sh->raid_conf->pool_size;
480
481         for (i = 0; i < num; i++) {
482                 struct page *page;
483
484                 if (!(page = alloc_page(gfp))) {
485                         return 1;
486                 }
487                 sh->dev[i].page = page;
488                 sh->dev[i].orig_page = page;
489         }
490
491         return 0;
492 }
493
494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
495                             struct stripe_head *sh);
496
497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
498 {
499         struct r5conf *conf = sh->raid_conf;
500         int i, seq;
501
502         BUG_ON(atomic_read(&sh->count) != 0);
503         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
504         BUG_ON(stripe_operations_active(sh));
505         BUG_ON(sh->batch_head);
506
507         pr_debug("init_stripe called, stripe %llu\n",
508                 (unsigned long long)sector);
509 retry:
510         seq = read_seqcount_begin(&conf->gen_lock);
511         sh->generation = conf->generation - previous;
512         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
513         sh->sector = sector;
514         stripe_set_idx(sector, conf, previous, sh);
515         sh->state = 0;
516
517         for (i = sh->disks; i--; ) {
518                 struct r5dev *dev = &sh->dev[i];
519
520                 if (dev->toread || dev->read || dev->towrite || dev->written ||
521                     test_bit(R5_LOCKED, &dev->flags)) {
522                         pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523                                (unsigned long long)sh->sector, i, dev->toread,
524                                dev->read, dev->towrite, dev->written,
525                                test_bit(R5_LOCKED, &dev->flags));
526                         WARN_ON(1);
527                 }
528                 dev->flags = 0;
529                 dev->sector = raid5_compute_blocknr(sh, i, previous);
530         }
531         if (read_seqcount_retry(&conf->gen_lock, seq))
532                 goto retry;
533         sh->overwrite_disks = 0;
534         insert_hash(conf, sh);
535         sh->cpu = smp_processor_id();
536         set_bit(STRIPE_BATCH_READY, &sh->state);
537 }
538
539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
540                                          short generation)
541 {
542         struct stripe_head *sh;
543
544         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
545         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
546                 if (sh->sector == sector && sh->generation == generation)
547                         return sh;
548         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
549         return NULL;
550 }
551
552 /*
553  * Need to check if array has failed when deciding whether to:
554  *  - start an array
555  *  - remove non-faulty devices
556  *  - add a spare
557  *  - allow a reshape
558  * This determination is simple when no reshape is happening.
559  * However if there is a reshape, we need to carefully check
560  * both the before and after sections.
561  * This is because some failed devices may only affect one
562  * of the two sections, and some non-in_sync devices may
563  * be insync in the section most affected by failed devices.
564  */
565 int raid5_calc_degraded(struct r5conf *conf)
566 {
567         int degraded, degraded2;
568         int i;
569
570         rcu_read_lock();
571         degraded = 0;
572         for (i = 0; i < conf->previous_raid_disks; i++) {
573                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
574                 if (rdev && test_bit(Faulty, &rdev->flags))
575                         rdev = rcu_dereference(conf->disks[i].replacement);
576                 if (!rdev || test_bit(Faulty, &rdev->flags))
577                         degraded++;
578                 else if (test_bit(In_sync, &rdev->flags))
579                         ;
580                 else
581                         /* not in-sync or faulty.
582                          * If the reshape increases the number of devices,
583                          * this is being recovered by the reshape, so
584                          * this 'previous' section is not in_sync.
585                          * If the number of devices is being reduced however,
586                          * the device can only be part of the array if
587                          * we are reverting a reshape, so this section will
588                          * be in-sync.
589                          */
590                         if (conf->raid_disks >= conf->previous_raid_disks)
591                                 degraded++;
592         }
593         rcu_read_unlock();
594         if (conf->raid_disks == conf->previous_raid_disks)
595                 return degraded;
596         rcu_read_lock();
597         degraded2 = 0;
598         for (i = 0; i < conf->raid_disks; i++) {
599                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
600                 if (rdev && test_bit(Faulty, &rdev->flags))
601                         rdev = rcu_dereference(conf->disks[i].replacement);
602                 if (!rdev || test_bit(Faulty, &rdev->flags))
603                         degraded2++;
604                 else if (test_bit(In_sync, &rdev->flags))
605                         ;
606                 else
607                         /* not in-sync or faulty.
608                          * If reshape increases the number of devices, this
609                          * section has already been recovered, else it
610                          * almost certainly hasn't.
611                          */
612                         if (conf->raid_disks <= conf->previous_raid_disks)
613                                 degraded2++;
614         }
615         rcu_read_unlock();
616         if (degraded2 > degraded)
617                 return degraded2;
618         return degraded;
619 }
620
621 static int has_failed(struct r5conf *conf)
622 {
623         int degraded;
624
625         if (conf->mddev->reshape_position == MaxSector)
626                 return conf->mddev->degraded > conf->max_degraded;
627
628         degraded = raid5_calc_degraded(conf);
629         if (degraded > conf->max_degraded)
630                 return 1;
631         return 0;
632 }
633
634 struct stripe_head *
635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636                         int previous, int noblock, int noquiesce)
637 {
638         struct stripe_head *sh;
639         int hash = stripe_hash_locks_hash(sector);
640         int inc_empty_inactive_list_flag;
641
642         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
643
644         spin_lock_irq(conf->hash_locks + hash);
645
646         do {
647                 wait_event_lock_irq(conf->wait_for_quiescent,
648                                     conf->quiesce == 0 || noquiesce,
649                                     *(conf->hash_locks + hash));
650                 sh = __find_stripe(conf, sector, conf->generation - previous);
651                 if (!sh) {
652                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
653                                 sh = get_free_stripe(conf, hash);
654                                 if (!sh && !test_bit(R5_DID_ALLOC,
655                                                      &conf->cache_state))
656                                         set_bit(R5_ALLOC_MORE,
657                                                 &conf->cache_state);
658                         }
659                         if (noblock && sh == NULL)
660                                 break;
661
662                         r5c_check_stripe_cache_usage(conf);
663                         if (!sh) {
664                                 set_bit(R5_INACTIVE_BLOCKED,
665                                         &conf->cache_state);
666                                 r5l_wake_reclaim(conf->log, 0);
667                                 wait_event_lock_irq(
668                                         conf->wait_for_stripe,
669                                         !list_empty(conf->inactive_list + hash) &&
670                                         (atomic_read(&conf->active_stripes)
671                                          < (conf->max_nr_stripes * 3 / 4)
672                                          || !test_bit(R5_INACTIVE_BLOCKED,
673                                                       &conf->cache_state)),
674                                         *(conf->hash_locks + hash));
675                                 clear_bit(R5_INACTIVE_BLOCKED,
676                                           &conf->cache_state);
677                         } else {
678                                 init_stripe(sh, sector, previous);
679                                 atomic_inc(&sh->count);
680                         }
681                 } else if (!atomic_inc_not_zero(&sh->count)) {
682                         spin_lock(&conf->device_lock);
683                         if (!atomic_read(&sh->count)) {
684                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
685                                         atomic_inc(&conf->active_stripes);
686                                 BUG_ON(list_empty(&sh->lru) &&
687                                        !test_bit(STRIPE_EXPANDING, &sh->state));
688                                 inc_empty_inactive_list_flag = 0;
689                                 if (!list_empty(conf->inactive_list + hash))
690                                         inc_empty_inactive_list_flag = 1;
691                                 list_del_init(&sh->lru);
692                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693                                         atomic_inc(&conf->empty_inactive_list_nr);
694                                 if (sh->group) {
695                                         sh->group->stripes_cnt--;
696                                         sh->group = NULL;
697                                 }
698                         }
699                         atomic_inc(&sh->count);
700                         spin_unlock(&conf->device_lock);
701                 }
702         } while (sh == NULL);
703
704         spin_unlock_irq(conf->hash_locks + hash);
705         return sh;
706 }
707
708 static bool is_full_stripe_write(struct stripe_head *sh)
709 {
710         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
712 }
713
714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
715 {
716         if (sh1 > sh2) {
717                 spin_lock_irq(&sh2->stripe_lock);
718                 spin_lock_nested(&sh1->stripe_lock, 1);
719         } else {
720                 spin_lock_irq(&sh1->stripe_lock);
721                 spin_lock_nested(&sh2->stripe_lock, 1);
722         }
723 }
724
725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
726 {
727         spin_unlock(&sh1->stripe_lock);
728         spin_unlock_irq(&sh2->stripe_lock);
729 }
730
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head *sh)
733 {
734         struct r5conf *conf = sh->raid_conf;
735
736         if (raid5_has_log(conf) || raid5_has_ppl(conf))
737                 return false;
738         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
739                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
740                 is_full_stripe_write(sh);
741 }
742
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
745 {
746         struct stripe_head *head;
747         sector_t head_sector, tmp_sec;
748         int hash;
749         int dd_idx;
750         int inc_empty_inactive_list_flag;
751
752         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753         tmp_sec = sh->sector;
754         if (!sector_div(tmp_sec, conf->chunk_sectors))
755                 return;
756         head_sector = sh->sector - STRIPE_SECTORS;
757
758         hash = stripe_hash_locks_hash(head_sector);
759         spin_lock_irq(conf->hash_locks + hash);
760         head = __find_stripe(conf, head_sector, conf->generation);
761         if (head && !atomic_inc_not_zero(&head->count)) {
762                 spin_lock(&conf->device_lock);
763                 if (!atomic_read(&head->count)) {
764                         if (!test_bit(STRIPE_HANDLE, &head->state))
765                                 atomic_inc(&conf->active_stripes);
766                         BUG_ON(list_empty(&head->lru) &&
767                                !test_bit(STRIPE_EXPANDING, &head->state));
768                         inc_empty_inactive_list_flag = 0;
769                         if (!list_empty(conf->inactive_list + hash))
770                                 inc_empty_inactive_list_flag = 1;
771                         list_del_init(&head->lru);
772                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773                                 atomic_inc(&conf->empty_inactive_list_nr);
774                         if (head->group) {
775                                 head->group->stripes_cnt--;
776                                 head->group = NULL;
777                         }
778                 }
779                 atomic_inc(&head->count);
780                 spin_unlock(&conf->device_lock);
781         }
782         spin_unlock_irq(conf->hash_locks + hash);
783
784         if (!head)
785                 return;
786         if (!stripe_can_batch(head))
787                 goto out;
788
789         lock_two_stripes(head, sh);
790         /* clear_batch_ready clear the flag */
791         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792                 goto unlock_out;
793
794         if (sh->batch_head)
795                 goto unlock_out;
796
797         dd_idx = 0;
798         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799                 dd_idx++;
800         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
801             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
802                 goto unlock_out;
803
804         if (head->batch_head) {
805                 spin_lock(&head->batch_head->batch_lock);
806                 /* This batch list is already running */
807                 if (!stripe_can_batch(head)) {
808                         spin_unlock(&head->batch_head->batch_lock);
809                         goto unlock_out;
810                 }
811                 /*
812                  * We must assign batch_head of this stripe within the
813                  * batch_lock, otherwise clear_batch_ready of batch head
814                  * stripe could clear BATCH_READY bit of this stripe and
815                  * this stripe->batch_head doesn't get assigned, which
816                  * could confuse clear_batch_ready for this stripe
817                  */
818                 sh->batch_head = head->batch_head;
819
820                 /*
821                  * at this point, head's BATCH_READY could be cleared, but we
822                  * can still add the stripe to batch list
823                  */
824                 list_add(&sh->batch_list, &head->batch_list);
825                 spin_unlock(&head->batch_head->batch_lock);
826         } else {
827                 head->batch_head = head;
828                 sh->batch_head = head->batch_head;
829                 spin_lock(&head->batch_lock);
830                 list_add_tail(&sh->batch_list, &head->batch_list);
831                 spin_unlock(&head->batch_lock);
832         }
833
834         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
835                 if (atomic_dec_return(&conf->preread_active_stripes)
836                     < IO_THRESHOLD)
837                         md_wakeup_thread(conf->mddev->thread);
838
839         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
840                 int seq = sh->bm_seq;
841                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
842                     sh->batch_head->bm_seq > seq)
843                         seq = sh->batch_head->bm_seq;
844                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
845                 sh->batch_head->bm_seq = seq;
846         }
847
848         atomic_inc(&sh->count);
849 unlock_out:
850         unlock_two_stripes(head, sh);
851 out:
852         raid5_release_stripe(head);
853 }
854
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856  * in this stripe_head.
857  */
858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
859 {
860         sector_t progress = conf->reshape_progress;
861         /* Need a memory barrier to make sure we see the value
862          * of conf->generation, or ->data_offset that was set before
863          * reshape_progress was updated.
864          */
865         smp_rmb();
866         if (progress == MaxSector)
867                 return 0;
868         if (sh->generation == conf->generation - 1)
869                 return 0;
870         /* We are in a reshape, and this is a new-generation stripe,
871          * so use new_data_offset.
872          */
873         return 1;
874 }
875
876 static void dispatch_bio_list(struct bio_list *tmp)
877 {
878         struct bio *bio;
879
880         while ((bio = bio_list_pop(tmp)))
881                 generic_make_request(bio);
882 }
883
884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
885 {
886         const struct r5pending_data *da = list_entry(a,
887                                 struct r5pending_data, sibling);
888         const struct r5pending_data *db = list_entry(b,
889                                 struct r5pending_data, sibling);
890         if (da->sector > db->sector)
891                 return 1;
892         if (da->sector < db->sector)
893                 return -1;
894         return 0;
895 }
896
897 static void dispatch_defer_bios(struct r5conf *conf, int target,
898                                 struct bio_list *list)
899 {
900         struct r5pending_data *data;
901         struct list_head *first, *next = NULL;
902         int cnt = 0;
903
904         if (conf->pending_data_cnt == 0)
905                 return;
906
907         list_sort(NULL, &conf->pending_list, cmp_stripe);
908
909         first = conf->pending_list.next;
910
911         /* temporarily move the head */
912         if (conf->next_pending_data)
913                 list_move_tail(&conf->pending_list,
914                                 &conf->next_pending_data->sibling);
915
916         while (!list_empty(&conf->pending_list)) {
917                 data = list_first_entry(&conf->pending_list,
918                         struct r5pending_data, sibling);
919                 if (&data->sibling == first)
920                         first = data->sibling.next;
921                 next = data->sibling.next;
922
923                 bio_list_merge(list, &data->bios);
924                 list_move(&data->sibling, &conf->free_list);
925                 cnt++;
926                 if (cnt >= target)
927                         break;
928         }
929         conf->pending_data_cnt -= cnt;
930         BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
931
932         if (next != &conf->pending_list)
933                 conf->next_pending_data = list_entry(next,
934                                 struct r5pending_data, sibling);
935         else
936                 conf->next_pending_data = NULL;
937         /* list isn't empty */
938         if (first != &conf->pending_list)
939                 list_move_tail(&conf->pending_list, first);
940 }
941
942 static void flush_deferred_bios(struct r5conf *conf)
943 {
944         struct bio_list tmp = BIO_EMPTY_LIST;
945
946         if (conf->pending_data_cnt == 0)
947                 return;
948
949         spin_lock(&conf->pending_bios_lock);
950         dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
951         BUG_ON(conf->pending_data_cnt != 0);
952         spin_unlock(&conf->pending_bios_lock);
953
954         dispatch_bio_list(&tmp);
955 }
956
957 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
958                                 struct bio_list *bios)
959 {
960         struct bio_list tmp = BIO_EMPTY_LIST;
961         struct r5pending_data *ent;
962
963         spin_lock(&conf->pending_bios_lock);
964         ent = list_first_entry(&conf->free_list, struct r5pending_data,
965                                                         sibling);
966         list_move_tail(&ent->sibling, &conf->pending_list);
967         ent->sector = sector;
968         bio_list_init(&ent->bios);
969         bio_list_merge(&ent->bios, bios);
970         conf->pending_data_cnt++;
971         if (conf->pending_data_cnt >= PENDING_IO_MAX)
972                 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
973
974         spin_unlock(&conf->pending_bios_lock);
975
976         dispatch_bio_list(&tmp);
977 }
978
979 static void
980 raid5_end_read_request(struct bio *bi);
981 static void
982 raid5_end_write_request(struct bio *bi);
983
984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
985 {
986         struct r5conf *conf = sh->raid_conf;
987         int i, disks = sh->disks;
988         struct stripe_head *head_sh = sh;
989         struct bio_list pending_bios = BIO_EMPTY_LIST;
990         bool should_defer;
991
992         might_sleep();
993
994         if (log_stripe(sh, s) == 0)
995                 return;
996
997         should_defer = conf->batch_bio_dispatch && conf->group_cnt;
998
999         for (i = disks; i--; ) {
1000                 int op, op_flags = 0;
1001                 int replace_only = 0;
1002                 struct bio *bi, *rbi;
1003                 struct md_rdev *rdev, *rrdev = NULL;
1004
1005                 sh = head_sh;
1006                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007                         op = REQ_OP_WRITE;
1008                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009                                 op_flags = REQ_FUA;
1010                         if (test_bit(R5_Discard, &sh->dev[i].flags))
1011                                 op = REQ_OP_DISCARD;
1012                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013                         op = REQ_OP_READ;
1014                 else if (test_and_clear_bit(R5_WantReplace,
1015                                             &sh->dev[i].flags)) {
1016                         op = REQ_OP_WRITE;
1017                         replace_only = 1;
1018                 } else
1019                         continue;
1020                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021                         op_flags |= REQ_SYNC;
1022
1023 again:
1024                 bi = &sh->dev[i].req;
1025                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026
1027                 rcu_read_lock();
1028                 rrdev = rcu_dereference(conf->disks[i].replacement);
1029                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030                 rdev = rcu_dereference(conf->disks[i].rdev);
1031                 if (!rdev) {
1032                         rdev = rrdev;
1033                         rrdev = NULL;
1034                 }
1035                 if (op_is_write(op)) {
1036                         if (replace_only)
1037                                 rdev = NULL;
1038                         if (rdev == rrdev)
1039                                 /* We raced and saw duplicates */
1040                                 rrdev = NULL;
1041                 } else {
1042                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043                                 rdev = rrdev;
1044                         rrdev = NULL;
1045                 }
1046
1047                 if (rdev && test_bit(Faulty, &rdev->flags))
1048                         rdev = NULL;
1049                 if (rdev)
1050                         atomic_inc(&rdev->nr_pending);
1051                 if (rrdev && test_bit(Faulty, &rrdev->flags))
1052                         rrdev = NULL;
1053                 if (rrdev)
1054                         atomic_inc(&rrdev->nr_pending);
1055                 rcu_read_unlock();
1056
1057                 /* We have already checked bad blocks for reads.  Now
1058                  * need to check for writes.  We never accept write errors
1059                  * on the replacement, so we don't to check rrdev.
1060                  */
1061                 while (op_is_write(op) && rdev &&
1062                        test_bit(WriteErrorSeen, &rdev->flags)) {
1063                         sector_t first_bad;
1064                         int bad_sectors;
1065                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066                                               &first_bad, &bad_sectors);
1067                         if (!bad)
1068                                 break;
1069
1070                         if (bad < 0) {
1071                                 set_bit(BlockedBadBlocks, &rdev->flags);
1072                                 if (!conf->mddev->external &&
1073                                     conf->mddev->sb_flags) {
1074                                         /* It is very unlikely, but we might
1075                                          * still need to write out the
1076                                          * bad block log - better give it
1077                                          * a chance*/
1078                                         md_check_recovery(conf->mddev);
1079                                 }
1080                                 /*
1081                                  * Because md_wait_for_blocked_rdev
1082                                  * will dec nr_pending, we must
1083                                  * increment it first.
1084                                  */
1085                                 atomic_inc(&rdev->nr_pending);
1086                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
1087                         } else {
1088                                 /* Acknowledged bad block - skip the write */
1089                                 rdev_dec_pending(rdev, conf->mddev);
1090                                 rdev = NULL;
1091                         }
1092                 }
1093
1094                 if (rdev) {
1095                         if (s->syncing || s->expanding || s->expanded
1096                             || s->replacing)
1097                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098
1099                         set_bit(STRIPE_IO_STARTED, &sh->state);
1100
1101                         bio_set_dev(bi, rdev->bdev);
1102                         bio_set_op_attrs(bi, op, op_flags);
1103                         bi->bi_end_io = op_is_write(op)
1104                                 ? raid5_end_write_request
1105                                 : raid5_end_read_request;
1106                         bi->bi_private = sh;
1107
1108                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109                                 __func__, (unsigned long long)sh->sector,
1110                                 bi->bi_opf, i);
1111                         atomic_inc(&sh->count);
1112                         if (sh != head_sh)
1113                                 atomic_inc(&head_sh->count);
1114                         if (use_new_offset(conf, sh))
1115                                 bi->bi_iter.bi_sector = (sh->sector
1116                                                  + rdev->new_data_offset);
1117                         else
1118                                 bi->bi_iter.bi_sector = (sh->sector
1119                                                  + rdev->data_offset);
1120                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121                                 bi->bi_opf |= REQ_NOMERGE;
1122
1123                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125
1126                         if (!op_is_write(op) &&
1127                             test_bit(R5_InJournal, &sh->dev[i].flags))
1128                                 /*
1129                                  * issuing read for a page in journal, this
1130                                  * must be preparing for prexor in rmw; read
1131                                  * the data into orig_page
1132                                  */
1133                                 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134                         else
1135                                 sh->dev[i].vec.bv_page = sh->dev[i].page;
1136                         bi->bi_vcnt = 1;
1137                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138                         bi->bi_io_vec[0].bv_offset = 0;
1139                         bi->bi_iter.bi_size = STRIPE_SIZE;
1140                         bi->bi_write_hint = sh->dev[i].write_hint;
1141                         if (!rrdev)
1142                                 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143                         /*
1144                          * If this is discard request, set bi_vcnt 0. We don't
1145                          * want to confuse SCSI because SCSI will replace payload
1146                          */
1147                         if (op == REQ_OP_DISCARD)
1148                                 bi->bi_vcnt = 0;
1149                         if (rrdev)
1150                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151
1152                         if (conf->mddev->gendisk)
1153                                 trace_block_bio_remap(bi->bi_disk->queue,
1154                                                       bi, disk_devt(conf->mddev->gendisk),
1155                                                       sh->dev[i].sector);
1156                         if (should_defer && op_is_write(op))
1157                                 bio_list_add(&pending_bios, bi);
1158                         else
1159                                 generic_make_request(bi);
1160                 }
1161                 if (rrdev) {
1162                         if (s->syncing || s->expanding || s->expanded
1163                             || s->replacing)
1164                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166                         set_bit(STRIPE_IO_STARTED, &sh->state);
1167
1168                         bio_set_dev(rbi, rrdev->bdev);
1169                         bio_set_op_attrs(rbi, op, op_flags);
1170                         BUG_ON(!op_is_write(op));
1171                         rbi->bi_end_io = raid5_end_write_request;
1172                         rbi->bi_private = sh;
1173
1174                         pr_debug("%s: for %llu schedule op %d on "
1175                                  "replacement disc %d\n",
1176                                 __func__, (unsigned long long)sh->sector,
1177                                 rbi->bi_opf, i);
1178                         atomic_inc(&sh->count);
1179                         if (sh != head_sh)
1180                                 atomic_inc(&head_sh->count);
1181                         if (use_new_offset(conf, sh))
1182                                 rbi->bi_iter.bi_sector = (sh->sector
1183                                                   + rrdev->new_data_offset);
1184                         else
1185                                 rbi->bi_iter.bi_sector = (sh->sector
1186                                                   + rrdev->data_offset);
1187                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190                         rbi->bi_vcnt = 1;
1191                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192                         rbi->bi_io_vec[0].bv_offset = 0;
1193                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1194                         rbi->bi_write_hint = sh->dev[i].write_hint;
1195                         sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196                         /*
1197                          * If this is discard request, set bi_vcnt 0. We don't
1198                          * want to confuse SCSI because SCSI will replace payload
1199                          */
1200                         if (op == REQ_OP_DISCARD)
1201                                 rbi->bi_vcnt = 0;
1202                         if (conf->mddev->gendisk)
1203                                 trace_block_bio_remap(rbi->bi_disk->queue,
1204                                                       rbi, disk_devt(conf->mddev->gendisk),
1205                                                       sh->dev[i].sector);
1206                         if (should_defer && op_is_write(op))
1207                                 bio_list_add(&pending_bios, rbi);
1208                         else
1209                                 generic_make_request(rbi);
1210                 }
1211                 if (!rdev && !rrdev) {
1212                         if (op_is_write(op))
1213                                 set_bit(STRIPE_DEGRADED, &sh->state);
1214                         pr_debug("skip op %d on disc %d for sector %llu\n",
1215                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1216                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217                         set_bit(STRIPE_HANDLE, &sh->state);
1218                 }
1219
1220                 if (!head_sh->batch_head)
1221                         continue;
1222                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223                                       batch_list);
1224                 if (sh != head_sh)
1225                         goto again;
1226         }
1227
1228         if (should_defer && !bio_list_empty(&pending_bios))
1229                 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230 }
1231
1232 static struct dma_async_tx_descriptor *
1233 async_copy_data(int frombio, struct bio *bio, struct page **page,
1234         sector_t sector, struct dma_async_tx_descriptor *tx,
1235         struct stripe_head *sh, int no_skipcopy)
1236 {
1237         struct bio_vec bvl;
1238         struct bvec_iter iter;
1239         struct page *bio_page;
1240         int page_offset;
1241         struct async_submit_ctl submit;
1242         enum async_tx_flags flags = 0;
1243
1244         if (bio->bi_iter.bi_sector >= sector)
1245                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246         else
1247                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248
1249         if (frombio)
1250                 flags |= ASYNC_TX_FENCE;
1251         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252
1253         bio_for_each_segment(bvl, bio, iter) {
1254                 int len = bvl.bv_len;
1255                 int clen;
1256                 int b_offset = 0;
1257
1258                 if (page_offset < 0) {
1259                         b_offset = -page_offset;
1260                         page_offset += b_offset;
1261                         len -= b_offset;
1262                 }
1263
1264                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1265                         clen = STRIPE_SIZE - page_offset;
1266                 else
1267                         clen = len;
1268
1269                 if (clen > 0) {
1270                         b_offset += bvl.bv_offset;
1271                         bio_page = bvl.bv_page;
1272                         if (frombio) {
1273                                 if (sh->raid_conf->skip_copy &&
1274                                     b_offset == 0 && page_offset == 0 &&
1275                                     clen == STRIPE_SIZE &&
1276                                     !no_skipcopy)
1277                                         *page = bio_page;
1278                                 else
1279                                         tx = async_memcpy(*page, bio_page, page_offset,
1280                                                   b_offset, clen, &submit);
1281                         } else
1282                                 tx = async_memcpy(bio_page, *page, b_offset,
1283                                                   page_offset, clen, &submit);
1284                 }
1285                 /* chain the operations */
1286                 submit.depend_tx = tx;
1287
1288                 if (clen < len) /* hit end of page */
1289                         break;
1290                 page_offset +=  len;
1291         }
1292
1293         return tx;
1294 }
1295
1296 static void ops_complete_biofill(void *stripe_head_ref)
1297 {
1298         struct stripe_head *sh = stripe_head_ref;
1299         int i;
1300
1301         pr_debug("%s: stripe %llu\n", __func__,
1302                 (unsigned long long)sh->sector);
1303
1304         /* clear completed biofills */
1305         for (i = sh->disks; i--; ) {
1306                 struct r5dev *dev = &sh->dev[i];
1307
1308                 /* acknowledge completion of a biofill operation */
1309                 /* and check if we need to reply to a read request,
1310                  * new R5_Wantfill requests are held off until
1311                  * !STRIPE_BIOFILL_RUN
1312                  */
1313                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314                         struct bio *rbi, *rbi2;
1315
1316                         BUG_ON(!dev->read);
1317                         rbi = dev->read;
1318                         dev->read = NULL;
1319                         while (rbi && rbi->bi_iter.bi_sector <
1320                                 dev->sector + STRIPE_SECTORS) {
1321                                 rbi2 = r5_next_bio(rbi, dev->sector);
1322                                 bio_endio(rbi);
1323                                 rbi = rbi2;
1324                         }
1325                 }
1326         }
1327         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328
1329         set_bit(STRIPE_HANDLE, &sh->state);
1330         raid5_release_stripe(sh);
1331 }
1332
1333 static void ops_run_biofill(struct stripe_head *sh)
1334 {
1335         struct dma_async_tx_descriptor *tx = NULL;
1336         struct async_submit_ctl submit;
1337         int i;
1338
1339         BUG_ON(sh->batch_head);
1340         pr_debug("%s: stripe %llu\n", __func__,
1341                 (unsigned long long)sh->sector);
1342
1343         for (i = sh->disks; i--; ) {
1344                 struct r5dev *dev = &sh->dev[i];
1345                 if (test_bit(R5_Wantfill, &dev->flags)) {
1346                         struct bio *rbi;
1347                         spin_lock_irq(&sh->stripe_lock);
1348                         dev->read = rbi = dev->toread;
1349                         dev->toread = NULL;
1350                         spin_unlock_irq(&sh->stripe_lock);
1351                         while (rbi && rbi->bi_iter.bi_sector <
1352                                 dev->sector + STRIPE_SECTORS) {
1353                                 tx = async_copy_data(0, rbi, &dev->page,
1354                                                      dev->sector, tx, sh, 0);
1355                                 rbi = r5_next_bio(rbi, dev->sector);
1356                         }
1357                 }
1358         }
1359
1360         atomic_inc(&sh->count);
1361         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362         async_trigger_callback(&submit);
1363 }
1364
1365 static void mark_target_uptodate(struct stripe_head *sh, int target)
1366 {
1367         struct r5dev *tgt;
1368
1369         if (target < 0)
1370                 return;
1371
1372         tgt = &sh->dev[target];
1373         set_bit(R5_UPTODATE, &tgt->flags);
1374         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375         clear_bit(R5_Wantcompute, &tgt->flags);
1376 }
1377
1378 static void ops_complete_compute(void *stripe_head_ref)
1379 {
1380         struct stripe_head *sh = stripe_head_ref;
1381
1382         pr_debug("%s: stripe %llu\n", __func__,
1383                 (unsigned long long)sh->sector);
1384
1385         /* mark the computed target(s) as uptodate */
1386         mark_target_uptodate(sh, sh->ops.target);
1387         mark_target_uptodate(sh, sh->ops.target2);
1388
1389         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390         if (sh->check_state == check_state_compute_run)
1391                 sh->check_state = check_state_compute_result;
1392         set_bit(STRIPE_HANDLE, &sh->state);
1393         raid5_release_stripe(sh);
1394 }
1395
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398                                  struct raid5_percpu *percpu, int i)
1399 {
1400         void *addr;
1401
1402         addr = flex_array_get(percpu->scribble, i);
1403         return addr + sizeof(struct page *) * (sh->disks + 2);
1404 }
1405
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408 {
1409         void *addr;
1410
1411         addr = flex_array_get(percpu->scribble, i);
1412         return addr;
1413 }
1414
1415 static struct dma_async_tx_descriptor *
1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417 {
1418         int disks = sh->disks;
1419         struct page **xor_srcs = to_addr_page(percpu, 0);
1420         int target = sh->ops.target;
1421         struct r5dev *tgt = &sh->dev[target];
1422         struct page *xor_dest = tgt->page;
1423         int count = 0;
1424         struct dma_async_tx_descriptor *tx;
1425         struct async_submit_ctl submit;
1426         int i;
1427
1428         BUG_ON(sh->batch_head);
1429
1430         pr_debug("%s: stripe %llu block: %d\n",
1431                 __func__, (unsigned long long)sh->sector, target);
1432         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433
1434         for (i = disks; i--; )
1435                 if (i != target)
1436                         xor_srcs[count++] = sh->dev[i].page;
1437
1438         atomic_inc(&sh->count);
1439
1440         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442         if (unlikely(count == 1))
1443                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444         else
1445                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446
1447         return tx;
1448 }
1449
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451  * @srcs - (struct page *) array of size sh->disks
1452  * @sh - stripe_head to parse
1453  *
1454  * Populates srcs in proper layout order for the stripe and returns the
1455  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1456  * destination buffer is recorded in srcs[count] and the Q destination
1457  * is recorded in srcs[count+1]].
1458  */
1459 static int set_syndrome_sources(struct page **srcs,
1460                                 struct stripe_head *sh,
1461                                 int srctype)
1462 {
1463         int disks = sh->disks;
1464         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465         int d0_idx = raid6_d0(sh);
1466         int count;
1467         int i;
1468
1469         for (i = 0; i < disks; i++)
1470                 srcs[i] = NULL;
1471
1472         count = 0;
1473         i = d0_idx;
1474         do {
1475                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476                 struct r5dev *dev = &sh->dev[i];
1477
1478                 if (i == sh->qd_idx || i == sh->pd_idx ||
1479                     (srctype == SYNDROME_SRC_ALL) ||
1480                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481                      (test_bit(R5_Wantdrain, &dev->flags) ||
1482                       test_bit(R5_InJournal, &dev->flags))) ||
1483                     (srctype == SYNDROME_SRC_WRITTEN &&
1484                      (dev->written ||
1485                       test_bit(R5_InJournal, &dev->flags)))) {
1486                         if (test_bit(R5_InJournal, &dev->flags))
1487                                 srcs[slot] = sh->dev[i].orig_page;
1488                         else
1489                                 srcs[slot] = sh->dev[i].page;
1490                 }
1491                 i = raid6_next_disk(i, disks);
1492         } while (i != d0_idx);
1493
1494         return syndrome_disks;
1495 }
1496
1497 static struct dma_async_tx_descriptor *
1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499 {
1500         int disks = sh->disks;
1501         struct page **blocks = to_addr_page(percpu, 0);
1502         int target;
1503         int qd_idx = sh->qd_idx;
1504         struct dma_async_tx_descriptor *tx;
1505         struct async_submit_ctl submit;
1506         struct r5dev *tgt;
1507         struct page *dest;
1508         int i;
1509         int count;
1510
1511         BUG_ON(sh->batch_head);
1512         if (sh->ops.target < 0)
1513                 target = sh->ops.target2;
1514         else if (sh->ops.target2 < 0)
1515                 target = sh->ops.target;
1516         else
1517                 /* we should only have one valid target */
1518                 BUG();
1519         BUG_ON(target < 0);
1520         pr_debug("%s: stripe %llu block: %d\n",
1521                 __func__, (unsigned long long)sh->sector, target);
1522
1523         tgt = &sh->dev[target];
1524         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525         dest = tgt->page;
1526
1527         atomic_inc(&sh->count);
1528
1529         if (target == qd_idx) {
1530                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531                 blocks[count] = NULL; /* regenerating p is not necessary */
1532                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534                                   ops_complete_compute, sh,
1535                                   to_addr_conv(sh, percpu, 0));
1536                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537         } else {
1538                 /* Compute any data- or p-drive using XOR */
1539                 count = 0;
1540                 for (i = disks; i-- ; ) {
1541                         if (i == target || i == qd_idx)
1542                                 continue;
1543                         blocks[count++] = sh->dev[i].page;
1544                 }
1545
1546                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547                                   NULL, ops_complete_compute, sh,
1548                                   to_addr_conv(sh, percpu, 0));
1549                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550         }
1551
1552         return tx;
1553 }
1554
1555 static struct dma_async_tx_descriptor *
1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558         int i, count, disks = sh->disks;
1559         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560         int d0_idx = raid6_d0(sh);
1561         int faila = -1, failb = -1;
1562         int target = sh->ops.target;
1563         int target2 = sh->ops.target2;
1564         struct r5dev *tgt = &sh->dev[target];
1565         struct r5dev *tgt2 = &sh->dev[target2];
1566         struct dma_async_tx_descriptor *tx;
1567         struct page **blocks = to_addr_page(percpu, 0);
1568         struct async_submit_ctl submit;
1569
1570         BUG_ON(sh->batch_head);
1571         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572                  __func__, (unsigned long long)sh->sector, target, target2);
1573         BUG_ON(target < 0 || target2 < 0);
1574         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576
1577         /* we need to open-code set_syndrome_sources to handle the
1578          * slot number conversion for 'faila' and 'failb'
1579          */
1580         for (i = 0; i < disks ; i++)
1581                 blocks[i] = NULL;
1582         count = 0;
1583         i = d0_idx;
1584         do {
1585                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586
1587                 blocks[slot] = sh->dev[i].page;
1588
1589                 if (i == target)
1590                         faila = slot;
1591                 if (i == target2)
1592                         failb = slot;
1593                 i = raid6_next_disk(i, disks);
1594         } while (i != d0_idx);
1595
1596         BUG_ON(faila == failb);
1597         if (failb < faila)
1598                 swap(faila, failb);
1599         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600                  __func__, (unsigned long long)sh->sector, faila, failb);
1601
1602         atomic_inc(&sh->count);
1603
1604         if (failb == syndrome_disks+1) {
1605                 /* Q disk is one of the missing disks */
1606                 if (faila == syndrome_disks) {
1607                         /* Missing P+Q, just recompute */
1608                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609                                           ops_complete_compute, sh,
1610                                           to_addr_conv(sh, percpu, 0));
1611                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612                                                   STRIPE_SIZE, &submit);
1613                 } else {
1614                         struct page *dest;
1615                         int data_target;
1616                         int qd_idx = sh->qd_idx;
1617
1618                         /* Missing D+Q: recompute D from P, then recompute Q */
1619                         if (target == qd_idx)
1620                                 data_target = target2;
1621                         else
1622                                 data_target = target;
1623
1624                         count = 0;
1625                         for (i = disks; i-- ; ) {
1626                                 if (i == data_target || i == qd_idx)
1627                                         continue;
1628                                 blocks[count++] = sh->dev[i].page;
1629                         }
1630                         dest = sh->dev[data_target].page;
1631                         init_async_submit(&submit,
1632                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633                                           NULL, NULL, NULL,
1634                                           to_addr_conv(sh, percpu, 0));
1635                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636                                        &submit);
1637
1638                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640                                           ops_complete_compute, sh,
1641                                           to_addr_conv(sh, percpu, 0));
1642                         return async_gen_syndrome(blocks, 0, count+2,
1643                                                   STRIPE_SIZE, &submit);
1644                 }
1645         } else {
1646                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647                                   ops_complete_compute, sh,
1648                                   to_addr_conv(sh, percpu, 0));
1649                 if (failb == syndrome_disks) {
1650                         /* We're missing D+P. */
1651                         return async_raid6_datap_recov(syndrome_disks+2,
1652                                                        STRIPE_SIZE, faila,
1653                                                        blocks, &submit);
1654                 } else {
1655                         /* We're missing D+D. */
1656                         return async_raid6_2data_recov(syndrome_disks+2,
1657                                                        STRIPE_SIZE, faila, failb,
1658                                                        blocks, &submit);
1659                 }
1660         }
1661 }
1662
1663 static void ops_complete_prexor(void *stripe_head_ref)
1664 {
1665         struct stripe_head *sh = stripe_head_ref;
1666
1667         pr_debug("%s: stripe %llu\n", __func__,
1668                 (unsigned long long)sh->sector);
1669
1670         if (r5c_is_writeback(sh->raid_conf->log))
1671                 /*
1672                  * raid5-cache write back uses orig_page during prexor.
1673                  * After prexor, it is time to free orig_page
1674                  */
1675                 r5c_release_extra_page(sh);
1676 }
1677
1678 static struct dma_async_tx_descriptor *
1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680                 struct dma_async_tx_descriptor *tx)
1681 {
1682         int disks = sh->disks;
1683         struct page **xor_srcs = to_addr_page(percpu, 0);
1684         int count = 0, pd_idx = sh->pd_idx, i;
1685         struct async_submit_ctl submit;
1686
1687         /* existing parity data subtracted */
1688         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689
1690         BUG_ON(sh->batch_head);
1691         pr_debug("%s: stripe %llu\n", __func__,
1692                 (unsigned long long)sh->sector);
1693
1694         for (i = disks; i--; ) {
1695                 struct r5dev *dev = &sh->dev[i];
1696                 /* Only process blocks that are known to be uptodate */
1697                 if (test_bit(R5_InJournal, &dev->flags))
1698                         xor_srcs[count++] = dev->orig_page;
1699                 else if (test_bit(R5_Wantdrain, &dev->flags))
1700                         xor_srcs[count++] = dev->page;
1701         }
1702
1703         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706
1707         return tx;
1708 }
1709
1710 static struct dma_async_tx_descriptor *
1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712                 struct dma_async_tx_descriptor *tx)
1713 {
1714         struct page **blocks = to_addr_page(percpu, 0);
1715         int count;
1716         struct async_submit_ctl submit;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722
1723         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1726
1727         return tx;
1728 }
1729
1730 static struct dma_async_tx_descriptor *
1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732 {
1733         struct r5conf *conf = sh->raid_conf;
1734         int disks = sh->disks;
1735         int i;
1736         struct stripe_head *head_sh = sh;
1737
1738         pr_debug("%s: stripe %llu\n", __func__,
1739                 (unsigned long long)sh->sector);
1740
1741         for (i = disks; i--; ) {
1742                 struct r5dev *dev;
1743                 struct bio *chosen;
1744
1745                 sh = head_sh;
1746                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747                         struct bio *wbi;
1748
1749 again:
1750                         dev = &sh->dev[i];
1751                         /*
1752                          * clear R5_InJournal, so when rewriting a page in
1753                          * journal, it is not skipped by r5l_log_stripe()
1754                          */
1755                         clear_bit(R5_InJournal, &dev->flags);
1756                         spin_lock_irq(&sh->stripe_lock);
1757                         chosen = dev->towrite;
1758                         dev->towrite = NULL;
1759                         sh->overwrite_disks = 0;
1760                         BUG_ON(dev->written);
1761                         wbi = dev->written = chosen;
1762                         spin_unlock_irq(&sh->stripe_lock);
1763                         WARN_ON(dev->page != dev->orig_page);
1764
1765                         while (wbi && wbi->bi_iter.bi_sector <
1766                                 dev->sector + STRIPE_SECTORS) {
1767                                 if (wbi->bi_opf & REQ_FUA)
1768                                         set_bit(R5_WantFUA, &dev->flags);
1769                                 if (wbi->bi_opf & REQ_SYNC)
1770                                         set_bit(R5_SyncIO, &dev->flags);
1771                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1772                                         set_bit(R5_Discard, &dev->flags);
1773                                 else {
1774                                         tx = async_copy_data(1, wbi, &dev->page,
1775                                                              dev->sector, tx, sh,
1776                                                              r5c_is_writeback(conf->log));
1777                                         if (dev->page != dev->orig_page &&
1778                                             !r5c_is_writeback(conf->log)) {
1779                                                 set_bit(R5_SkipCopy, &dev->flags);
1780                                                 clear_bit(R5_UPTODATE, &dev->flags);
1781                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1782                                         }
1783                                 }
1784                                 wbi = r5_next_bio(wbi, dev->sector);
1785                         }
1786
1787                         if (head_sh->batch_head) {
1788                                 sh = list_first_entry(&sh->batch_list,
1789                                                       struct stripe_head,
1790                                                       batch_list);
1791                                 if (sh == head_sh)
1792                                         continue;
1793                                 goto again;
1794                         }
1795                 }
1796         }
1797
1798         return tx;
1799 }
1800
1801 static void ops_complete_reconstruct(void *stripe_head_ref)
1802 {
1803         struct stripe_head *sh = stripe_head_ref;
1804         int disks = sh->disks;
1805         int pd_idx = sh->pd_idx;
1806         int qd_idx = sh->qd_idx;
1807         int i;
1808         bool fua = false, sync = false, discard = false;
1809
1810         pr_debug("%s: stripe %llu\n", __func__,
1811                 (unsigned long long)sh->sector);
1812
1813         for (i = disks; i--; ) {
1814                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817         }
1818
1819         for (i = disks; i--; ) {
1820                 struct r5dev *dev = &sh->dev[i];
1821
1822                 if (dev->written || i == pd_idx || i == qd_idx) {
1823                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824                                 set_bit(R5_UPTODATE, &dev->flags);
1825                                 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826                                         set_bit(R5_Expanded, &dev->flags);
1827                         }
1828                         if (fua)
1829                                 set_bit(R5_WantFUA, &dev->flags);
1830                         if (sync)
1831                                 set_bit(R5_SyncIO, &dev->flags);
1832                 }
1833         }
1834
1835         if (sh->reconstruct_state == reconstruct_state_drain_run)
1836                 sh->reconstruct_state = reconstruct_state_drain_result;
1837         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839         else {
1840                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841                 sh->reconstruct_state = reconstruct_state_result;
1842         }
1843
1844         set_bit(STRIPE_HANDLE, &sh->state);
1845         raid5_release_stripe(sh);
1846 }
1847
1848 static void
1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850                      struct dma_async_tx_descriptor *tx)
1851 {
1852         int disks = sh->disks;
1853         struct page **xor_srcs;
1854         struct async_submit_ctl submit;
1855         int count, pd_idx = sh->pd_idx, i;
1856         struct page *xor_dest;
1857         int prexor = 0;
1858         unsigned long flags;
1859         int j = 0;
1860         struct stripe_head *head_sh = sh;
1861         int last_stripe;
1862
1863         pr_debug("%s: stripe %llu\n", __func__,
1864                 (unsigned long long)sh->sector);
1865
1866         for (i = 0; i < sh->disks; i++) {
1867                 if (pd_idx == i)
1868                         continue;
1869                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870                         break;
1871         }
1872         if (i >= sh->disks) {
1873                 atomic_inc(&sh->count);
1874                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875                 ops_complete_reconstruct(sh);
1876                 return;
1877         }
1878 again:
1879         count = 0;
1880         xor_srcs = to_addr_page(percpu, j);
1881         /* check if prexor is active which means only process blocks
1882          * that are part of a read-modify-write (written)
1883          */
1884         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885                 prexor = 1;
1886                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887                 for (i = disks; i--; ) {
1888                         struct r5dev *dev = &sh->dev[i];
1889                         if (head_sh->dev[i].written ||
1890                             test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891                                 xor_srcs[count++] = dev->page;
1892                 }
1893         } else {
1894                 xor_dest = sh->dev[pd_idx].page;
1895                 for (i = disks; i--; ) {
1896                         struct r5dev *dev = &sh->dev[i];
1897                         if (i != pd_idx)
1898                                 xor_srcs[count++] = dev->page;
1899                 }
1900         }
1901
1902         /* 1/ if we prexor'd then the dest is reused as a source
1903          * 2/ if we did not prexor then we are redoing the parity
1904          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905          * for the synchronous xor case
1906          */
1907         last_stripe = !head_sh->batch_head ||
1908                 list_first_entry(&sh->batch_list,
1909                                  struct stripe_head, batch_list) == head_sh;
1910         if (last_stripe) {
1911                 flags = ASYNC_TX_ACK |
1912                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914                 atomic_inc(&head_sh->count);
1915                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916                                   to_addr_conv(sh, percpu, j));
1917         } else {
1918                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919                 init_async_submit(&submit, flags, tx, NULL, NULL,
1920                                   to_addr_conv(sh, percpu, j));
1921         }
1922
1923         if (unlikely(count == 1))
1924                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925         else
1926                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927         if (!last_stripe) {
1928                 j++;
1929                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930                                       batch_list);
1931                 goto again;
1932         }
1933 }
1934
1935 static void
1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937                      struct dma_async_tx_descriptor *tx)
1938 {
1939         struct async_submit_ctl submit;
1940         struct page **blocks;
1941         int count, i, j = 0;
1942         struct stripe_head *head_sh = sh;
1943         int last_stripe;
1944         int synflags;
1945         unsigned long txflags;
1946
1947         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
1949         for (i = 0; i < sh->disks; i++) {
1950                 if (sh->pd_idx == i || sh->qd_idx == i)
1951                         continue;
1952                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953                         break;
1954         }
1955         if (i >= sh->disks) {
1956                 atomic_inc(&sh->count);
1957                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959                 ops_complete_reconstruct(sh);
1960                 return;
1961         }
1962
1963 again:
1964         blocks = to_addr_page(percpu, j);
1965
1966         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967                 synflags = SYNDROME_SRC_WRITTEN;
1968                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969         } else {
1970                 synflags = SYNDROME_SRC_ALL;
1971                 txflags = ASYNC_TX_ACK;
1972         }
1973
1974         count = set_syndrome_sources(blocks, sh, synflags);
1975         last_stripe = !head_sh->batch_head ||
1976                 list_first_entry(&sh->batch_list,
1977                                  struct stripe_head, batch_list) == head_sh;
1978
1979         if (last_stripe) {
1980                 atomic_inc(&head_sh->count);
1981                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982                                   head_sh, to_addr_conv(sh, percpu, j));
1983         } else
1984                 init_async_submit(&submit, 0, tx, NULL, NULL,
1985                                   to_addr_conv(sh, percpu, j));
1986         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1987         if (!last_stripe) {
1988                 j++;
1989                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990                                       batch_list);
1991                 goto again;
1992         }
1993 }
1994
1995 static void ops_complete_check(void *stripe_head_ref)
1996 {
1997         struct stripe_head *sh = stripe_head_ref;
1998
1999         pr_debug("%s: stripe %llu\n", __func__,
2000                 (unsigned long long)sh->sector);
2001
2002         sh->check_state = check_state_check_result;
2003         set_bit(STRIPE_HANDLE, &sh->state);
2004         raid5_release_stripe(sh);
2005 }
2006
2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008 {
2009         int disks = sh->disks;
2010         int pd_idx = sh->pd_idx;
2011         int qd_idx = sh->qd_idx;
2012         struct page *xor_dest;
2013         struct page **xor_srcs = to_addr_page(percpu, 0);
2014         struct dma_async_tx_descriptor *tx;
2015         struct async_submit_ctl submit;
2016         int count;
2017         int i;
2018
2019         pr_debug("%s: stripe %llu\n", __func__,
2020                 (unsigned long long)sh->sector);
2021
2022         BUG_ON(sh->batch_head);
2023         count = 0;
2024         xor_dest = sh->dev[pd_idx].page;
2025         xor_srcs[count++] = xor_dest;
2026         for (i = disks; i--; ) {
2027                 if (i == pd_idx || i == qd_idx)
2028                         continue;
2029                 xor_srcs[count++] = sh->dev[i].page;
2030         }
2031
2032         init_async_submit(&submit, 0, NULL, NULL, NULL,
2033                           to_addr_conv(sh, percpu, 0));
2034         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035                            &sh->ops.zero_sum_result, &submit);
2036
2037         atomic_inc(&sh->count);
2038         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039         tx = async_trigger_callback(&submit);
2040 }
2041
2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043 {
2044         struct page **srcs = to_addr_page(percpu, 0);
2045         struct async_submit_ctl submit;
2046         int count;
2047
2048         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049                 (unsigned long long)sh->sector, checkp);
2050
2051         BUG_ON(sh->batch_head);
2052         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053         if (!checkp)
2054                 srcs[count] = NULL;
2055
2056         atomic_inc(&sh->count);
2057         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058                           sh, to_addr_conv(sh, percpu, 0));
2059         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061 }
2062
2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064 {
2065         int overlap_clear = 0, i, disks = sh->disks;
2066         struct dma_async_tx_descriptor *tx = NULL;
2067         struct r5conf *conf = sh->raid_conf;
2068         int level = conf->level;
2069         struct raid5_percpu *percpu;
2070         unsigned long cpu;
2071
2072         cpu = get_cpu();
2073         percpu = per_cpu_ptr(conf->percpu, cpu);
2074         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075                 ops_run_biofill(sh);
2076                 overlap_clear++;
2077         }
2078
2079         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080                 if (level < 6)
2081                         tx = ops_run_compute5(sh, percpu);
2082                 else {
2083                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084                                 tx = ops_run_compute6_1(sh, percpu);
2085                         else
2086                                 tx = ops_run_compute6_2(sh, percpu);
2087                 }
2088                 /* terminate the chain if reconstruct is not set to be run */
2089                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090                         async_tx_ack(tx);
2091         }
2092
2093         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094                 if (level < 6)
2095                         tx = ops_run_prexor5(sh, percpu, tx);
2096                 else
2097                         tx = ops_run_prexor6(sh, percpu, tx);
2098         }
2099
2100         if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101                 tx = ops_run_partial_parity(sh, percpu, tx);
2102
2103         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104                 tx = ops_run_biodrain(sh, tx);
2105                 overlap_clear++;
2106         }
2107
2108         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109                 if (level < 6)
2110                         ops_run_reconstruct5(sh, percpu, tx);
2111                 else
2112                         ops_run_reconstruct6(sh, percpu, tx);
2113         }
2114
2115         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116                 if (sh->check_state == check_state_run)
2117                         ops_run_check_p(sh, percpu);
2118                 else if (sh->check_state == check_state_run_q)
2119                         ops_run_check_pq(sh, percpu, 0);
2120                 else if (sh->check_state == check_state_run_pq)
2121                         ops_run_check_pq(sh, percpu, 1);
2122                 else
2123                         BUG();
2124         }
2125
2126         if (overlap_clear && !sh->batch_head)
2127                 for (i = disks; i--; ) {
2128                         struct r5dev *dev = &sh->dev[i];
2129                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130                                 wake_up(&sh->raid_conf->wait_for_overlap);
2131                 }
2132         put_cpu();
2133 }
2134
2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136 {
2137         if (sh->ppl_page)
2138                 __free_page(sh->ppl_page);
2139         kmem_cache_free(sc, sh);
2140 }
2141
2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143         int disks, struct r5conf *conf)
2144 {
2145         struct stripe_head *sh;
2146         int i;
2147
2148         sh = kmem_cache_zalloc(sc, gfp);
2149         if (sh) {
2150                 spin_lock_init(&sh->stripe_lock);
2151                 spin_lock_init(&sh->batch_lock);
2152                 INIT_LIST_HEAD(&sh->batch_list);
2153                 INIT_LIST_HEAD(&sh->lru);
2154                 INIT_LIST_HEAD(&sh->r5c);
2155                 INIT_LIST_HEAD(&sh->log_list);
2156                 atomic_set(&sh->count, 1);
2157                 sh->raid_conf = conf;
2158                 sh->log_start = MaxSector;
2159                 for (i = 0; i < disks; i++) {
2160                         struct r5dev *dev = &sh->dev[i];
2161
2162                         bio_init(&dev->req, &dev->vec, 1);
2163                         bio_init(&dev->rreq, &dev->rvec, 1);
2164                 }
2165
2166                 if (raid5_has_ppl(conf)) {
2167                         sh->ppl_page = alloc_page(gfp);
2168                         if (!sh->ppl_page) {
2169                                 free_stripe(sc, sh);
2170                                 sh = NULL;
2171                         }
2172                 }
2173         }
2174         return sh;
2175 }
2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177 {
2178         struct stripe_head *sh;
2179
2180         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181         if (!sh)
2182                 return 0;
2183
2184         if (grow_buffers(sh, gfp)) {
2185                 shrink_buffers(sh);
2186                 free_stripe(conf->slab_cache, sh);
2187                 return 0;
2188         }
2189         sh->hash_lock_index =
2190                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191         /* we just created an active stripe so... */
2192         atomic_inc(&conf->active_stripes);
2193
2194         raid5_release_stripe(sh);
2195         conf->max_nr_stripes++;
2196         return 1;
2197 }
2198
2199 static int grow_stripes(struct r5conf *conf, int num)
2200 {
2201         struct kmem_cache *sc;
2202         size_t namelen = sizeof(conf->cache_name[0]);
2203         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204
2205         if (conf->mddev->gendisk)
2206                 snprintf(conf->cache_name[0], namelen,
2207                         "raid%d-%s", conf->level, mdname(conf->mddev));
2208         else
2209                 snprintf(conf->cache_name[0], namelen,
2210                         "raid%d-%p", conf->level, conf->mddev);
2211         snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212
2213         conf->active_name = 0;
2214         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216                                0, 0, NULL);
2217         if (!sc)
2218                 return 1;
2219         conf->slab_cache = sc;
2220         conf->pool_size = devs;
2221         while (num--)
2222                 if (!grow_one_stripe(conf, GFP_KERNEL))
2223                         return 1;
2224
2225         return 0;
2226 }
2227
2228 /**
2229  * scribble_len - return the required size of the scribble region
2230  * @num - total number of disks in the array
2231  *
2232  * The size must be enough to contain:
2233  * 1/ a struct page pointer for each device in the array +2
2234  * 2/ room to convert each entry in (1) to its corresponding dma
2235  *    (dma_map_page()) or page (page_address()) address.
2236  *
2237  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238  * calculate over all devices (not just the data blocks), using zeros in place
2239  * of the P and Q blocks.
2240  */
2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242 {
2243         struct flex_array *ret;
2244         size_t len;
2245
2246         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247         ret = flex_array_alloc(len, cnt, flags);
2248         if (!ret)
2249                 return NULL;
2250         /* always prealloc all elements, so no locking is required */
2251         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252                 flex_array_free(ret);
2253                 return NULL;
2254         }
2255         return ret;
2256 }
2257
2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259 {
2260         unsigned long cpu;
2261         int err = 0;
2262
2263         /*
2264          * Never shrink. And mddev_suspend() could deadlock if this is called
2265          * from raid5d. In that case, scribble_disks and scribble_sectors
2266          * should equal to new_disks and new_sectors
2267          */
2268         if (conf->scribble_disks >= new_disks &&
2269             conf->scribble_sectors >= new_sectors)
2270                 return 0;
2271         mddev_suspend(conf->mddev);
2272         get_online_cpus();
2273         for_each_present_cpu(cpu) {
2274                 struct raid5_percpu *percpu;
2275                 struct flex_array *scribble;
2276
2277                 percpu = per_cpu_ptr(conf->percpu, cpu);
2278                 scribble = scribble_alloc(new_disks,
2279                                           new_sectors / STRIPE_SECTORS,
2280                                           GFP_NOIO);
2281
2282                 if (scribble) {
2283                         flex_array_free(percpu->scribble);
2284                         percpu->scribble = scribble;
2285                 } else {
2286                         err = -ENOMEM;
2287                         break;
2288                 }
2289         }
2290         put_online_cpus();
2291         mddev_resume(conf->mddev);
2292         if (!err) {
2293                 conf->scribble_disks = new_disks;
2294                 conf->scribble_sectors = new_sectors;
2295         }
2296         return err;
2297 }
2298
2299 static int resize_stripes(struct r5conf *conf, int newsize)
2300 {
2301         /* Make all the stripes able to hold 'newsize' devices.
2302          * New slots in each stripe get 'page' set to a new page.
2303          *
2304          * This happens in stages:
2305          * 1/ create a new kmem_cache and allocate the required number of
2306          *    stripe_heads.
2307          * 2/ gather all the old stripe_heads and transfer the pages across
2308          *    to the new stripe_heads.  This will have the side effect of
2309          *    freezing the array as once all stripe_heads have been collected,
2310          *    no IO will be possible.  Old stripe heads are freed once their
2311          *    pages have been transferred over, and the old kmem_cache is
2312          *    freed when all stripes are done.
2313          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2314          *    we simple return a failure status - no need to clean anything up.
2315          * 4/ allocate new pages for the new slots in the new stripe_heads.
2316          *    If this fails, we don't bother trying the shrink the
2317          *    stripe_heads down again, we just leave them as they are.
2318          *    As each stripe_head is processed the new one is released into
2319          *    active service.
2320          *
2321          * Once step2 is started, we cannot afford to wait for a write,
2322          * so we use GFP_NOIO allocations.
2323          */
2324         struct stripe_head *osh, *nsh;
2325         LIST_HEAD(newstripes);
2326         struct disk_info *ndisks;
2327         int err = 0;
2328         struct kmem_cache *sc;
2329         int i;
2330         int hash, cnt;
2331
2332         md_allow_write(conf->mddev);
2333
2334         /* Step 1 */
2335         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337                                0, 0, NULL);
2338         if (!sc)
2339                 return -ENOMEM;
2340
2341         /* Need to ensure auto-resizing doesn't interfere */
2342         mutex_lock(&conf->cache_size_mutex);
2343
2344         for (i = conf->max_nr_stripes; i; i--) {
2345                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346                 if (!nsh)
2347                         break;
2348
2349                 list_add(&nsh->lru, &newstripes);
2350         }
2351         if (i) {
2352                 /* didn't get enough, give up */
2353                 while (!list_empty(&newstripes)) {
2354                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355                         list_del(&nsh->lru);
2356                         free_stripe(sc, nsh);
2357                 }
2358                 kmem_cache_destroy(sc);
2359                 mutex_unlock(&conf->cache_size_mutex);
2360                 return -ENOMEM;
2361         }
2362         /* Step 2 - Must use GFP_NOIO now.
2363          * OK, we have enough stripes, start collecting inactive
2364          * stripes and copying them over
2365          */
2366         hash = 0;
2367         cnt = 0;
2368         list_for_each_entry(nsh, &newstripes, lru) {
2369                 lock_device_hash_lock(conf, hash);
2370                 wait_event_cmd(conf->wait_for_stripe,
2371                                     !list_empty(conf->inactive_list + hash),
2372                                     unlock_device_hash_lock(conf, hash),
2373                                     lock_device_hash_lock(conf, hash));
2374                 osh = get_free_stripe(conf, hash);
2375                 unlock_device_hash_lock(conf, hash);
2376
2377                 for(i=0; i<conf->pool_size; i++) {
2378                         nsh->dev[i].page = osh->dev[i].page;
2379                         nsh->dev[i].orig_page = osh->dev[i].page;
2380                 }
2381                 nsh->hash_lock_index = hash;
2382                 free_stripe(conf->slab_cache, osh);
2383                 cnt++;
2384                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386                         hash++;
2387                         cnt = 0;
2388                 }
2389         }
2390         kmem_cache_destroy(conf->slab_cache);
2391
2392         /* Step 3.
2393          * At this point, we are holding all the stripes so the array
2394          * is completely stalled, so now is a good time to resize
2395          * conf->disks and the scribble region
2396          */
2397         ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398         if (ndisks) {
2399                 for (i = 0; i < conf->pool_size; i++)
2400                         ndisks[i] = conf->disks[i];
2401
2402                 for (i = conf->pool_size; i < newsize; i++) {
2403                         ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404                         if (!ndisks[i].extra_page)
2405                                 err = -ENOMEM;
2406                 }
2407
2408                 if (err) {
2409                         for (i = conf->pool_size; i < newsize; i++)
2410                                 if (ndisks[i].extra_page)
2411                                         put_page(ndisks[i].extra_page);
2412                         kfree(ndisks);
2413                 } else {
2414                         kfree(conf->disks);
2415                         conf->disks = ndisks;
2416                 }
2417         } else
2418                 err = -ENOMEM;
2419
2420         conf->slab_cache = sc;
2421         conf->active_name = 1-conf->active_name;
2422
2423         /* Step 4, return new stripes to service */
2424         while(!list_empty(&newstripes)) {
2425                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2426                 list_del_init(&nsh->lru);
2427
2428                 for (i=conf->raid_disks; i < newsize; i++)
2429                         if (nsh->dev[i].page == NULL) {
2430                                 struct page *p = alloc_page(GFP_NOIO);
2431                                 nsh->dev[i].page = p;
2432                                 nsh->dev[i].orig_page = p;
2433                                 if (!p)
2434                                         err = -ENOMEM;
2435                         }
2436                 raid5_release_stripe(nsh);
2437         }
2438         /* critical section pass, GFP_NOIO no longer needed */
2439
2440         if (!err)
2441                 conf->pool_size = newsize;
2442         mutex_unlock(&conf->cache_size_mutex);
2443
2444         return err;
2445 }
2446
2447 static int drop_one_stripe(struct r5conf *conf)
2448 {
2449         struct stripe_head *sh;
2450         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451
2452         spin_lock_irq(conf->hash_locks + hash);
2453         sh = get_free_stripe(conf, hash);
2454         spin_unlock_irq(conf->hash_locks + hash);
2455         if (!sh)
2456                 return 0;
2457         BUG_ON(atomic_read(&sh->count));
2458         shrink_buffers(sh);
2459         free_stripe(conf->slab_cache, sh);
2460         atomic_dec(&conf->active_stripes);
2461         conf->max_nr_stripes--;
2462         return 1;
2463 }
2464
2465 static void shrink_stripes(struct r5conf *conf)
2466 {
2467         while (conf->max_nr_stripes &&
2468                drop_one_stripe(conf))
2469                 ;
2470
2471         kmem_cache_destroy(conf->slab_cache);
2472         conf->slab_cache = NULL;
2473 }
2474
2475 static void raid5_end_read_request(struct bio * bi)
2476 {
2477         struct stripe_head *sh = bi->bi_private;
2478         struct r5conf *conf = sh->raid_conf;
2479         int disks = sh->disks, i;
2480         char b[BDEVNAME_SIZE];
2481         struct md_rdev *rdev = NULL;
2482         sector_t s;
2483
2484         for (i=0 ; i<disks; i++)
2485                 if (bi == &sh->dev[i].req)
2486                         break;
2487
2488         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490                 bi->bi_status);
2491         if (i == disks) {
2492                 bio_reset(bi);
2493                 BUG();
2494                 return;
2495         }
2496         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497                 /* If replacement finished while this request was outstanding,
2498                  * 'replacement' might be NULL already.
2499                  * In that case it moved down to 'rdev'.
2500                  * rdev is not removed until all requests are finished.
2501                  */
2502                 rdev = conf->disks[i].replacement;
2503         if (!rdev)
2504                 rdev = conf->disks[i].rdev;
2505
2506         if (use_new_offset(conf, sh))
2507                 s = sh->sector + rdev->new_data_offset;
2508         else
2509                 s = sh->sector + rdev->data_offset;
2510         if (!bi->bi_status) {
2511                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513                         /* Note that this cannot happen on a
2514                          * replacement device.  We just fail those on
2515                          * any error
2516                          */
2517                         pr_info_ratelimited(
2518                                 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519                                 mdname(conf->mddev), STRIPE_SECTORS,
2520                                 (unsigned long long)s,
2521                                 bdevname(rdev->bdev, b));
2522                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2524                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527
2528                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529                         /*
2530                          * end read for a page in journal, this
2531                          * must be preparing for prexor in rmw
2532                          */
2533                         set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534
2535                 if (atomic_read(&rdev->read_errors))
2536                         atomic_set(&rdev->read_errors, 0);
2537         } else {
2538                 const char *bdn = bdevname(rdev->bdev, b);
2539                 int retry = 0;
2540                 int set_bad = 0;
2541
2542                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543                 if (!(bi->bi_status == BLK_STS_PROTECTION))
2544                         atomic_inc(&rdev->read_errors);
2545                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2546                         pr_warn_ratelimited(
2547                                 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2548                                 mdname(conf->mddev),
2549                                 (unsigned long long)s,
2550                                 bdn);
2551                 else if (conf->mddev->degraded >= conf->max_degraded) {
2552                         set_bad = 1;
2553                         pr_warn_ratelimited(
2554                                 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2555                                 mdname(conf->mddev),
2556                                 (unsigned long long)s,
2557                                 bdn);
2558                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2559                         /* Oh, no!!! */
2560                         set_bad = 1;
2561                         pr_warn_ratelimited(
2562                                 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2563                                 mdname(conf->mddev),
2564                                 (unsigned long long)s,
2565                                 bdn);
2566                 } else if (atomic_read(&rdev->read_errors)
2567                          > conf->max_nr_stripes)
2568                         pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2569                                mdname(conf->mddev), bdn);
2570                 else
2571                         retry = 1;
2572                 if (set_bad && test_bit(In_sync, &rdev->flags)
2573                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2574                         retry = 1;
2575                 if (retry)
2576                         if (sh->qd_idx >= 0 && sh->pd_idx == i)
2577                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2578                         else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2579                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2580                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2581                         } else
2582                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2583                 else {
2584                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2585                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2586                         if (!(set_bad
2587                               && test_bit(In_sync, &rdev->flags)
2588                               && rdev_set_badblocks(
2589                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2590                                 md_error(conf->mddev, rdev);
2591                 }
2592         }
2593         rdev_dec_pending(rdev, conf->mddev);
2594         bio_reset(bi);
2595         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2596         set_bit(STRIPE_HANDLE, &sh->state);
2597         raid5_release_stripe(sh);
2598 }
2599
2600 static void raid5_end_write_request(struct bio *bi)
2601 {
2602         struct stripe_head *sh = bi->bi_private;
2603         struct r5conf *conf = sh->raid_conf;
2604         int disks = sh->disks, i;
2605         struct md_rdev *uninitialized_var(rdev);
2606         sector_t first_bad;
2607         int bad_sectors;
2608         int replacement = 0;
2609
2610         for (i = 0 ; i < disks; i++) {
2611                 if (bi == &sh->dev[i].req) {
2612                         rdev = conf->disks[i].rdev;
2613                         break;
2614                 }
2615                 if (bi == &sh->dev[i].rreq) {
2616                         rdev = conf->disks[i].replacement;
2617                         if (rdev)
2618                                 replacement = 1;
2619                         else
2620                                 /* rdev was removed and 'replacement'
2621                                  * replaced it.  rdev is not removed
2622                                  * until all requests are finished.
2623                                  */
2624                                 rdev = conf->disks[i].rdev;
2625                         break;
2626                 }
2627         }
2628         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2629                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2630                 bi->bi_status);
2631         if (i == disks) {
2632                 bio_reset(bi);
2633                 BUG();
2634                 return;
2635         }
2636
2637         if (replacement) {
2638                 if (bi->bi_status)
2639                         md_error(conf->mddev, rdev);
2640                 else if (is_badblock(rdev, sh->sector,
2641                                      STRIPE_SECTORS,
2642                                      &first_bad, &bad_sectors))
2643                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2644         } else {
2645                 if (bi->bi_status) {
2646                         set_bit(STRIPE_DEGRADED, &sh->state);
2647                         set_bit(WriteErrorSeen, &rdev->flags);
2648                         set_bit(R5_WriteError, &sh->dev[i].flags);
2649                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2650                                 set_bit(MD_RECOVERY_NEEDED,
2651                                         &rdev->mddev->recovery);
2652                 } else if (is_badblock(rdev, sh->sector,
2653                                        STRIPE_SECTORS,
2654                                        &first_bad, &bad_sectors)) {
2655                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2656                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2657                                 /* That was a successful write so make
2658                                  * sure it looks like we already did
2659                                  * a re-write.
2660                                  */
2661                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2662                 }
2663         }
2664         rdev_dec_pending(rdev, conf->mddev);
2665
2666         if (sh->batch_head && bi->bi_status && !replacement)
2667                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2668
2669         bio_reset(bi);
2670         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2671                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2672         set_bit(STRIPE_HANDLE, &sh->state);
2673         raid5_release_stripe(sh);
2674
2675         if (sh->batch_head && sh != sh->batch_head)
2676                 raid5_release_stripe(sh->batch_head);
2677 }
2678
2679 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2680 {
2681         char b[BDEVNAME_SIZE];
2682         struct r5conf *conf = mddev->private;
2683         unsigned long flags;
2684         pr_debug("raid456: error called\n");
2685
2686         spin_lock_irqsave(&conf->device_lock, flags);
2687         set_bit(Faulty, &rdev->flags);
2688         clear_bit(In_sync, &rdev->flags);
2689         mddev->degraded = raid5_calc_degraded(conf);
2690         spin_unlock_irqrestore(&conf->device_lock, flags);
2691         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2692
2693         set_bit(Blocked, &rdev->flags);
2694         set_mask_bits(&mddev->sb_flags, 0,
2695                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2696         pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2697                 "md/raid:%s: Operation continuing on %d devices.\n",
2698                 mdname(mddev),
2699                 bdevname(rdev->bdev, b),
2700                 mdname(mddev),
2701                 conf->raid_disks - mddev->degraded);
2702         r5c_update_on_rdev_error(mddev, rdev);
2703 }
2704
2705 /*
2706  * Input: a 'big' sector number,
2707  * Output: index of the data and parity disk, and the sector # in them.
2708  */
2709 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2710                               int previous, int *dd_idx,
2711                               struct stripe_head *sh)
2712 {
2713         sector_t stripe, stripe2;
2714         sector_t chunk_number;
2715         unsigned int chunk_offset;
2716         int pd_idx, qd_idx;
2717         int ddf_layout = 0;
2718         sector_t new_sector;
2719         int algorithm = previous ? conf->prev_algo
2720                                  : conf->algorithm;
2721         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2722                                          : conf->chunk_sectors;
2723         int raid_disks = previous ? conf->previous_raid_disks
2724                                   : conf->raid_disks;
2725         int data_disks = raid_disks - conf->max_degraded;
2726
2727         /* First compute the information on this sector */
2728
2729         /*
2730          * Compute the chunk number and the sector offset inside the chunk
2731          */
2732         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2733         chunk_number = r_sector;
2734
2735         /*
2736          * Compute the stripe number
2737          */
2738         stripe = chunk_number;
2739         *dd_idx = sector_div(stripe, data_disks);
2740         stripe2 = stripe;
2741         /*
2742          * Select the parity disk based on the user selected algorithm.
2743          */
2744         pd_idx = qd_idx = -1;
2745         switch(conf->level) {
2746         case 4:
2747                 pd_idx = data_disks;
2748                 break;
2749         case 5:
2750                 switch (algorithm) {
2751                 case ALGORITHM_LEFT_ASYMMETRIC:
2752                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2753                         if (*dd_idx >= pd_idx)
2754                                 (*dd_idx)++;
2755                         break;
2756                 case ALGORITHM_RIGHT_ASYMMETRIC:
2757                         pd_idx = sector_div(stripe2, raid_disks);
2758                         if (*dd_idx >= pd_idx)
2759                                 (*dd_idx)++;
2760                         break;
2761                 case ALGORITHM_LEFT_SYMMETRIC:
2762                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2763                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2764                         break;
2765                 case ALGORITHM_RIGHT_SYMMETRIC:
2766                         pd_idx = sector_div(stripe2, raid_disks);
2767                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2768                         break;
2769                 case ALGORITHM_PARITY_0:
2770                         pd_idx = 0;
2771                         (*dd_idx)++;
2772                         break;
2773                 case ALGORITHM_PARITY_N:
2774                         pd_idx = data_disks;
2775                         break;
2776                 default:
2777                         BUG();
2778                 }
2779                 break;
2780         case 6:
2781
2782                 switch (algorithm) {
2783                 case ALGORITHM_LEFT_ASYMMETRIC:
2784                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2785                         qd_idx = pd_idx + 1;
2786                         if (pd_idx == raid_disks-1) {
2787                                 (*dd_idx)++;    /* Q D D D P */
2788                                 qd_idx = 0;
2789                         } else if (*dd_idx >= pd_idx)
2790                                 (*dd_idx) += 2; /* D D P Q D */
2791                         break;
2792                 case ALGORITHM_RIGHT_ASYMMETRIC:
2793                         pd_idx = sector_div(stripe2, raid_disks);
2794                         qd_idx = pd_idx + 1;
2795                         if (pd_idx == raid_disks-1) {
2796                                 (*dd_idx)++;    /* Q D D D P */
2797                                 qd_idx = 0;
2798                         } else if (*dd_idx >= pd_idx)
2799                                 (*dd_idx) += 2; /* D D P Q D */
2800                         break;
2801                 case ALGORITHM_LEFT_SYMMETRIC:
2802                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2803                         qd_idx = (pd_idx + 1) % raid_disks;
2804                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805                         break;
2806                 case ALGORITHM_RIGHT_SYMMETRIC:
2807                         pd_idx = sector_div(stripe2, raid_disks);
2808                         qd_idx = (pd_idx + 1) % raid_disks;
2809                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2810                         break;
2811
2812                 case ALGORITHM_PARITY_0:
2813                         pd_idx = 0;
2814                         qd_idx = 1;
2815                         (*dd_idx) += 2;
2816                         break;
2817                 case ALGORITHM_PARITY_N:
2818                         pd_idx = data_disks;
2819                         qd_idx = data_disks + 1;
2820                         break;
2821
2822                 case ALGORITHM_ROTATING_ZERO_RESTART:
2823                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2824                          * of blocks for computing Q is different.
2825                          */
2826                         pd_idx = sector_div(stripe2, raid_disks);
2827                         qd_idx = pd_idx + 1;
2828                         if (pd_idx == raid_disks-1) {
2829                                 (*dd_idx)++;    /* Q D D D P */
2830                                 qd_idx = 0;
2831                         } else if (*dd_idx >= pd_idx)
2832                                 (*dd_idx) += 2; /* D D P Q D */
2833                         ddf_layout = 1;
2834                         break;
2835
2836                 case ALGORITHM_ROTATING_N_RESTART:
2837                         /* Same a left_asymmetric, by first stripe is
2838                          * D D D P Q  rather than
2839                          * Q D D D P
2840                          */
2841                         stripe2 += 1;
2842                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2843                         qd_idx = pd_idx + 1;
2844                         if (pd_idx == raid_disks-1) {
2845                                 (*dd_idx)++;    /* Q D D D P */
2846                                 qd_idx = 0;
2847                         } else if (*dd_idx >= pd_idx)
2848                                 (*dd_idx) += 2; /* D D P Q D */
2849                         ddf_layout = 1;
2850                         break;
2851
2852                 case ALGORITHM_ROTATING_N_CONTINUE:
2853                         /* Same as left_symmetric but Q is before P */
2854                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2855                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2856                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2857                         ddf_layout = 1;
2858                         break;
2859
2860                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2861                         /* RAID5 left_asymmetric, with Q on last device */
2862                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2863                         if (*dd_idx >= pd_idx)
2864                                 (*dd_idx)++;
2865                         qd_idx = raid_disks - 1;
2866                         break;
2867
2868                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2869                         pd_idx = sector_div(stripe2, raid_disks-1);
2870                         if (*dd_idx >= pd_idx)
2871                                 (*dd_idx)++;
2872                         qd_idx = raid_disks - 1;
2873                         break;
2874
2875                 case ALGORITHM_LEFT_SYMMETRIC_6:
2876                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2877                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878                         qd_idx = raid_disks - 1;
2879                         break;
2880
2881                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2882                         pd_idx = sector_div(stripe2, raid_disks-1);
2883                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2884                         qd_idx = raid_disks - 1;
2885                         break;
2886
2887                 case ALGORITHM_PARITY_0_6:
2888                         pd_idx = 0;
2889                         (*dd_idx)++;
2890                         qd_idx = raid_disks - 1;
2891                         break;
2892
2893                 default:
2894                         BUG();
2895                 }
2896                 break;
2897         }
2898
2899         if (sh) {
2900                 sh->pd_idx = pd_idx;
2901                 sh->qd_idx = qd_idx;
2902                 sh->ddf_layout = ddf_layout;
2903         }
2904         /*
2905          * Finally, compute the new sector number
2906          */
2907         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2908         return new_sector;
2909 }
2910
2911 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2912 {
2913         struct r5conf *conf = sh->raid_conf;
2914         int raid_disks = sh->disks;
2915         int data_disks = raid_disks - conf->max_degraded;
2916         sector_t new_sector = sh->sector, check;
2917         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2918                                          : conf->chunk_sectors;
2919         int algorithm = previous ? conf->prev_algo
2920                                  : conf->algorithm;
2921         sector_t stripe;
2922         int chunk_offset;
2923         sector_t chunk_number;
2924         int dummy1, dd_idx = i;
2925         sector_t r_sector;
2926         struct stripe_head sh2;
2927
2928         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2929         stripe = new_sector;
2930
2931         if (i == sh->pd_idx)
2932                 return 0;
2933         switch(conf->level) {
2934         case 4: break;
2935         case 5:
2936                 switch (algorithm) {
2937                 case ALGORITHM_LEFT_ASYMMETRIC:
2938                 case ALGORITHM_RIGHT_ASYMMETRIC:
2939                         if (i > sh->pd_idx)
2940                                 i--;
2941                         break;
2942                 case ALGORITHM_LEFT_SYMMETRIC:
2943                 case ALGORITHM_RIGHT_SYMMETRIC:
2944                         if (i < sh->pd_idx)
2945                                 i += raid_disks;
2946                         i -= (sh->pd_idx + 1);
2947                         break;
2948                 case ALGORITHM_PARITY_0:
2949                         i -= 1;
2950                         break;
2951                 case ALGORITHM_PARITY_N:
2952                         break;
2953                 default:
2954                         BUG();
2955                 }
2956                 break;
2957         case 6:
2958                 if (i == sh->qd_idx)
2959                         return 0; /* It is the Q disk */
2960                 switch (algorithm) {
2961                 case ALGORITHM_LEFT_ASYMMETRIC:
2962                 case ALGORITHM_RIGHT_ASYMMETRIC:
2963                 case ALGORITHM_ROTATING_ZERO_RESTART:
2964                 case ALGORITHM_ROTATING_N_RESTART:
2965                         if (sh->pd_idx == raid_disks-1)
2966                                 i--;    /* Q D D D P */
2967                         else if (i > sh->pd_idx)
2968                                 i -= 2; /* D D P Q D */
2969                         break;
2970                 case ALGORITHM_LEFT_SYMMETRIC:
2971                 case ALGORITHM_RIGHT_SYMMETRIC:
2972                         if (sh->pd_idx == raid_disks-1)
2973                                 i--; /* Q D D D P */
2974                         else {
2975                                 /* D D P Q D */
2976                                 if (i < sh->pd_idx)
2977                                         i += raid_disks;
2978                                 i -= (sh->pd_idx + 2);
2979                         }
2980                         break;
2981                 case ALGORITHM_PARITY_0:
2982                         i -= 2;
2983                         break;
2984                 case ALGORITHM_PARITY_N:
2985                         break;
2986                 case ALGORITHM_ROTATING_N_CONTINUE:
2987                         /* Like left_symmetric, but P is before Q */
2988                         if (sh->pd_idx == 0)
2989                                 i--;    /* P D D D Q */
2990                         else {
2991                                 /* D D Q P D */
2992                                 if (i < sh->pd_idx)
2993                                         i += raid_disks;
2994                                 i -= (sh->pd_idx + 1);
2995                         }
2996                         break;
2997                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2998                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2999                         if (i > sh->pd_idx)
3000                                 i--;
3001                         break;
3002                 case ALGORITHM_LEFT_SYMMETRIC_6:
3003                 case ALGORITHM_RIGHT_SYMMETRIC_6:
3004                         if (i < sh->pd_idx)
3005                                 i += data_disks + 1;
3006                         i -= (sh->pd_idx + 1);
3007                         break;
3008                 case ALGORITHM_PARITY_0_6:
3009                         i -= 1;
3010                         break;
3011                 default:
3012                         BUG();
3013                 }
3014                 break;
3015         }
3016
3017         chunk_number = stripe * data_disks + i;
3018         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3019
3020         check = raid5_compute_sector(conf, r_sector,
3021                                      previous, &dummy1, &sh2);
3022         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3023                 || sh2.qd_idx != sh->qd_idx) {
3024                 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3025                         mdname(conf->mddev));
3026                 return 0;
3027         }
3028         return r_sector;
3029 }
3030
3031 /*
3032  * There are cases where we want handle_stripe_dirtying() and
3033  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3034  *
3035  * This function checks whether we want to delay the towrite. Specifically,
3036  * we delay the towrite when:
3037  *
3038  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3039  *      stripe has data in journal (for other devices).
3040  *
3041  *      In this case, when reading data for the non-overwrite dev, it is
3042  *      necessary to handle complex rmw of write back cache (prexor with
3043  *      orig_page, and xor with page). To keep read path simple, we would
3044  *      like to flush data in journal to RAID disks first, so complex rmw
3045  *      is handled in the write patch (handle_stripe_dirtying).
3046  *
3047  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3048  *
3049  *      It is important to be able to flush all stripes in raid5-cache.
3050  *      Therefore, we need reserve some space on the journal device for
3051  *      these flushes. If flush operation includes pending writes to the
3052  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3053  *      for the flush out. If we exclude these pending writes from flush
3054  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3055  *      Therefore, excluding pending writes in these cases enables more
3056  *      efficient use of the journal device.
3057  *
3058  *      Note: To make sure the stripe makes progress, we only delay
3059  *      towrite for stripes with data already in journal (injournal > 0).
3060  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3061  *      no_space_stripes list.
3062  *
3063  *   3. during journal failure
3064  *      In journal failure, we try to flush all cached data to raid disks
3065  *      based on data in stripe cache. The array is read-only to upper
3066  *      layers, so we would skip all pending writes.
3067  *
3068  */
3069 static inline bool delay_towrite(struct r5conf *conf,
3070                                  struct r5dev *dev,
3071                                  struct stripe_head_state *s)
3072 {
3073         /* case 1 above */
3074         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3075             !test_bit(R5_Insync, &dev->flags) && s->injournal)
3076                 return true;
3077         /* case 2 above */
3078         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3079             s->injournal > 0)
3080                 return true;
3081         /* case 3 above */
3082         if (s->log_failed && s->injournal)
3083                 return true;
3084         return false;
3085 }
3086
3087 static void
3088 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3089                          int rcw, int expand)
3090 {
3091         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3092         struct r5conf *conf = sh->raid_conf;
3093         int level = conf->level;
3094
3095         if (rcw) {
3096                 /*
3097                  * In some cases, handle_stripe_dirtying initially decided to
3098                  * run rmw and allocates extra page for prexor. However, rcw is
3099                  * cheaper later on. We need to free the extra page now,
3100                  * because we won't be able to do that in ops_complete_prexor().
3101                  */
3102                 r5c_release_extra_page(sh);
3103
3104                 for (i = disks; i--; ) {
3105                         struct r5dev *dev = &sh->dev[i];
3106
3107                         if (dev->towrite && !delay_towrite(conf, dev, s)) {
3108                                 set_bit(R5_LOCKED, &dev->flags);
3109                                 set_bit(R5_Wantdrain, &dev->flags);
3110                                 if (!expand)
3111                                         clear_bit(R5_UPTODATE, &dev->flags);
3112                                 s->locked++;
3113                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3114                                 set_bit(R5_LOCKED, &dev->flags);
3115                                 s->locked++;
3116                         }
3117                 }
3118                 /* if we are not expanding this is a proper write request, and
3119                  * there will be bios with new data to be drained into the
3120                  * stripe cache
3121                  */
3122                 if (!expand) {
3123                         if (!s->locked)
3124                                 /* False alarm, nothing to do */
3125                                 return;
3126                         sh->reconstruct_state = reconstruct_state_drain_run;
3127                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3128                 } else
3129                         sh->reconstruct_state = reconstruct_state_run;
3130
3131                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3132
3133                 if (s->locked + conf->max_degraded == disks)
3134                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3135                                 atomic_inc(&conf->pending_full_writes);
3136         } else {
3137                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3138                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3139                 BUG_ON(level == 6 &&
3140                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3141                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3142
3143                 for (i = disks; i--; ) {
3144                         struct r5dev *dev = &sh->dev[i];
3145                         if (i == pd_idx || i == qd_idx)
3146                                 continue;
3147
3148                         if (dev->towrite &&
3149                             (test_bit(R5_UPTODATE, &dev->flags) ||
3150                              test_bit(R5_Wantcompute, &dev->flags))) {
3151                                 set_bit(R5_Wantdrain, &dev->flags);
3152                                 set_bit(R5_LOCKED, &dev->flags);
3153                                 clear_bit(R5_UPTODATE, &dev->flags);
3154                                 s->locked++;
3155                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3156                                 set_bit(R5_LOCKED, &dev->flags);
3157                                 s->locked++;
3158                         }
3159                 }
3160                 if (!s->locked)
3161                         /* False alarm - nothing to do */
3162                         return;
3163                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3164                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3165                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3166                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3167         }
3168
3169         /* keep the parity disk(s) locked while asynchronous operations
3170          * are in flight
3171          */
3172         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3173         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3174         s->locked++;
3175
3176         if (level == 6) {
3177                 int qd_idx = sh->qd_idx;
3178                 struct r5dev *dev = &sh->dev[qd_idx];
3179
3180                 set_bit(R5_LOCKED, &dev->flags);
3181                 clear_bit(R5_UPTODATE, &dev->flags);
3182                 s->locked++;
3183         }
3184
3185         if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3186             test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3187             !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3188             test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3189                 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3190
3191         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3192                 __func__, (unsigned long long)sh->sector,
3193                 s->locked, s->ops_request);
3194 }
3195
3196 /*
3197  * Each stripe/dev can have one or more bion attached.
3198  * toread/towrite point to the first in a chain.
3199  * The bi_next chain must be in order.
3200  */
3201 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3202                           int forwrite, int previous)
3203 {
3204         struct bio **bip;
3205         struct r5conf *conf = sh->raid_conf;
3206         int firstwrite=0;
3207
3208         pr_debug("adding bi b#%llu to stripe s#%llu\n",
3209                 (unsigned long long)bi->bi_iter.bi_sector,
3210                 (unsigned long long)sh->sector);
3211
3212         spin_lock_irq(&sh->stripe_lock);
3213         sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3214         /* Don't allow new IO added to stripes in batch list */
3215         if (sh->batch_head)
3216                 goto overlap;
3217         if (forwrite) {
3218                 bip = &sh->dev[dd_idx].towrite;
3219                 if (*bip == NULL)
3220                         firstwrite = 1;
3221         } else
3222                 bip = &sh->dev[dd_idx].toread;
3223         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3224                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3225                         goto overlap;
3226                 bip = & (*bip)->bi_next;
3227         }
3228         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3229                 goto overlap;
3230
3231         if (forwrite && raid5_has_ppl(conf)) {
3232                 /*
3233                  * With PPL only writes to consecutive data chunks within a
3234                  * stripe are allowed because for a single stripe_head we can
3235                  * only have one PPL entry at a time, which describes one data
3236                  * range. Not really an overlap, but wait_for_overlap can be
3237                  * used to handle this.
3238                  */
3239                 sector_t sector;
3240                 sector_t first = 0;
3241                 sector_t last = 0;
3242                 int count = 0;
3243                 int i;
3244
3245                 for (i = 0; i < sh->disks; i++) {
3246                         if (i != sh->pd_idx &&
3247                             (i == dd_idx || sh->dev[i].towrite)) {
3248                                 sector = sh->dev[i].sector;
3249                                 if (count == 0 || sector < first)
3250                                         first = sector;
3251                                 if (sector > last)
3252                                         last = sector;
3253                                 count++;
3254                         }
3255                 }
3256
3257                 if (first + conf->chunk_sectors * (count - 1) != last)
3258                         goto overlap;
3259         }
3260
3261         if (!forwrite || previous)
3262                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3263
3264         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3265         if (*bip)
3266                 bi->bi_next = *bip;
3267         *bip = bi;
3268         bio_inc_remaining(bi);
3269         md_write_inc(conf->mddev, bi);
3270
3271         if (forwrite) {
3272                 /* check if page is covered */
3273                 sector_t sector = sh->dev[dd_idx].sector;
3274                 for (bi=sh->dev[dd_idx].towrite;
3275                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3276                              bi && bi->bi_iter.bi_sector <= sector;
3277                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3278                         if (bio_end_sector(bi) >= sector)
3279                                 sector = bio_end_sector(bi);
3280                 }
3281                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3282                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3283                                 sh->overwrite_disks++;
3284         }
3285
3286         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3287                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3288                 (unsigned long long)sh->sector, dd_idx);
3289
3290         if (conf->mddev->bitmap && firstwrite) {
3291                 /* Cannot hold spinlock over bitmap_startwrite,
3292                  * but must ensure this isn't added to a batch until
3293                  * we have added to the bitmap and set bm_seq.
3294                  * So set STRIPE_BITMAP_PENDING to prevent
3295                  * batching.
3296                  * If multiple add_stripe_bio() calls race here they
3297                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3298                  * to complete "bitmap_startwrite" gets to set
3299                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3300                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3301                  * any more.
3302                  */
3303                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3304                 spin_unlock_irq(&sh->stripe_lock);
3305                 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3306                                      STRIPE_SECTORS, 0);
3307                 spin_lock_irq(&sh->stripe_lock);
3308                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3309                 if (!sh->batch_head) {
3310                         sh->bm_seq = conf->seq_flush+1;
3311                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3312                 }
3313         }
3314         spin_unlock_irq(&sh->stripe_lock);
3315
3316         if (stripe_can_batch(sh))
3317                 stripe_add_to_batch_list(conf, sh);
3318         return 1;
3319
3320  overlap:
3321         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3322         spin_unlock_irq(&sh->stripe_lock);
3323         return 0;
3324 }
3325
3326 static void end_reshape(struct r5conf *conf);
3327
3328 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3329                             struct stripe_head *sh)
3330 {
3331         int sectors_per_chunk =
3332                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3333         int dd_idx;
3334         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3335         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3336
3337         raid5_compute_sector(conf,
3338                              stripe * (disks - conf->max_degraded)
3339                              *sectors_per_chunk + chunk_offset,
3340                              previous,
3341                              &dd_idx, sh);
3342 }
3343
3344 static void
3345 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3346                      struct stripe_head_state *s, int disks)
3347 {
3348         int i;
3349         BUG_ON(sh->batch_head);
3350         for (i = disks; i--; ) {
3351                 struct bio *bi;
3352                 int bitmap_end = 0;
3353
3354                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3355                         struct md_rdev *rdev;
3356                         rcu_read_lock();
3357                         rdev = rcu_dereference(conf->disks[i].rdev);
3358                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3359                             !test_bit(Faulty, &rdev->flags))
3360                                 atomic_inc(&rdev->nr_pending);
3361                         else
3362                                 rdev = NULL;
3363                         rcu_read_unlock();
3364                         if (rdev) {
3365                                 if (!rdev_set_badblocks(
3366                                             rdev,
3367                                             sh->sector,
3368                                             STRIPE_SECTORS, 0))
3369                                         md_error(conf->mddev, rdev);
3370                                 rdev_dec_pending(rdev, conf->mddev);
3371                         }
3372                 }
3373                 spin_lock_irq(&sh->stripe_lock);
3374                 /* fail all writes first */
3375                 bi = sh->dev[i].towrite;
3376                 sh->dev[i].towrite = NULL;
3377                 sh->overwrite_disks = 0;
3378                 spin_unlock_irq(&sh->stripe_lock);
3379                 if (bi)
3380                         bitmap_end = 1;
3381
3382                 log_stripe_write_finished(sh);
3383
3384                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3385                         wake_up(&conf->wait_for_overlap);
3386
3387                 while (bi && bi->bi_iter.bi_sector <
3388                         sh->dev[i].sector + STRIPE_SECTORS) {
3389                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3390
3391                         md_write_end(conf->mddev);
3392                         bio_io_error(bi);
3393                         bi = nextbi;
3394                 }
3395                 if (bitmap_end)
3396                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3397                                            STRIPE_SECTORS, 0, 0);
3398                 bitmap_end = 0;
3399                 /* and fail all 'written' */
3400                 bi = sh->dev[i].written;
3401                 sh->dev[i].written = NULL;
3402                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3403                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3404                         sh->dev[i].page = sh->dev[i].orig_page;
3405                 }
3406
3407                 if (bi) bitmap_end = 1;
3408                 while (bi && bi->bi_iter.bi_sector <
3409                        sh->dev[i].sector + STRIPE_SECTORS) {
3410                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3411
3412                         md_write_end(conf->mddev);
3413                         bio_io_error(bi);
3414                         bi = bi2;
3415                 }
3416
3417                 /* fail any reads if this device is non-operational and
3418                  * the data has not reached the cache yet.
3419                  */
3420                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3421                     s->failed > conf->max_degraded &&
3422                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3423                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3424                         spin_lock_irq(&sh->stripe_lock);
3425                         bi = sh->dev[i].toread;
3426                         sh->dev[i].toread = NULL;
3427                         spin_unlock_irq(&sh->stripe_lock);
3428                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3429                                 wake_up(&conf->wait_for_overlap);
3430                         if (bi)
3431                                 s->to_read--;
3432                         while (bi && bi->bi_iter.bi_sector <
3433                                sh->dev[i].sector + STRIPE_SECTORS) {
3434                                 struct bio *nextbi =
3435                                         r5_next_bio(bi, sh->dev[i].sector);
3436
3437                                 bio_io_error(bi);
3438                                 bi = nextbi;
3439                         }
3440                 }
3441                 if (bitmap_end)
3442                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3443                                            STRIPE_SECTORS, 0, 0);
3444                 /* If we were in the middle of a write the parity block might
3445                  * still be locked - so just clear all R5_LOCKED flags
3446                  */
3447                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3448         }
3449         s->to_write = 0;
3450         s->written = 0;
3451
3452         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3453                 if (atomic_dec_and_test(&conf->pending_full_writes))
3454                         md_wakeup_thread(conf->mddev->thread);
3455 }
3456
3457 static void
3458 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3459                    struct stripe_head_state *s)
3460 {
3461         int abort = 0;
3462         int i;
3463
3464         BUG_ON(sh->batch_head);
3465         clear_bit(STRIPE_SYNCING, &sh->state);
3466         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3467                 wake_up(&conf->wait_for_overlap);
3468         s->syncing = 0;
3469         s->replacing = 0;
3470         /* There is nothing more to do for sync/check/repair.
3471          * Don't even need to abort as that is handled elsewhere
3472          * if needed, and not always wanted e.g. if there is a known
3473          * bad block here.
3474          * For recover/replace we need to record a bad block on all
3475          * non-sync devices, or abort the recovery
3476          */
3477         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3478                 /* During recovery devices cannot be removed, so
3479                  * locking and refcounting of rdevs is not needed
3480                  */
3481                 rcu_read_lock();
3482                 for (i = 0; i < conf->raid_disks; i++) {
3483                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3484                         if (rdev
3485                             && !test_bit(Faulty, &rdev->flags)
3486                             && !test_bit(In_sync, &rdev->flags)
3487                             && !rdev_set_badblocks(rdev, sh->sector,
3488                                                    STRIPE_SECTORS, 0))
3489                                 abort = 1;
3490                         rdev = rcu_dereference(conf->disks[i].replacement);
3491                         if (rdev
3492                             && !test_bit(Faulty, &rdev->flags)
3493                             && !test_bit(In_sync, &rdev->flags)
3494                             && !rdev_set_badblocks(rdev, sh->sector,
3495                                                    STRIPE_SECTORS, 0))
3496                                 abort = 1;
3497                 }
3498                 rcu_read_unlock();
3499                 if (abort)
3500                         conf->recovery_disabled =
3501                                 conf->mddev->recovery_disabled;
3502         }
3503         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3504 }
3505
3506 static int want_replace(struct stripe_head *sh, int disk_idx)
3507 {
3508         struct md_rdev *rdev;
3509         int rv = 0;
3510
3511         rcu_read_lock();
3512         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3513         if (rdev
3514             && !test_bit(Faulty, &rdev->flags)
3515             && !test_bit(In_sync, &rdev->flags)
3516             && (rdev->recovery_offset <= sh->sector
3517                 || rdev->mddev->recovery_cp <= sh->sector))
3518                 rv = 1;
3519         rcu_read_unlock();
3520         return rv;
3521 }
3522
3523 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3524                            int disk_idx, int disks)
3525 {
3526         struct r5dev *dev = &sh->dev[disk_idx];
3527         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3528                                   &sh->dev[s->failed_num[1]] };
3529         int i;
3530
3531
3532         if (test_bit(R5_LOCKED, &dev->flags) ||
3533             test_bit(R5_UPTODATE, &dev->flags))
3534                 /* No point reading this as we already have it or have
3535                  * decided to get it.
3536                  */
3537                 return 0;
3538
3539         if (dev->toread ||
3540             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3541                 /* We need this block to directly satisfy a request */
3542                 return 1;
3543
3544         if (s->syncing || s->expanding ||
3545             (s->replacing && want_replace(sh, disk_idx)))
3546                 /* When syncing, or expanding we read everything.
3547                  * When replacing, we need the replaced block.
3548                  */
3549                 return 1;
3550
3551         if ((s->failed >= 1 && fdev[0]->toread) ||
3552             (s->failed >= 2 && fdev[1]->toread))
3553                 /* If we want to read from a failed device, then
3554                  * we need to actually read every other device.
3555                  */
3556                 return 1;
3557
3558         /* Sometimes neither read-modify-write nor reconstruct-write
3559          * cycles can work.  In those cases we read every block we
3560          * can.  Then the parity-update is certain to have enough to
3561          * work with.
3562          * This can only be a problem when we need to write something,
3563          * and some device has failed.  If either of those tests
3564          * fail we need look no further.
3565          */
3566         if (!s->failed || !s->to_write)
3567                 return 0;
3568
3569         if (test_bit(R5_Insync, &dev->flags) &&
3570             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3571                 /* Pre-reads at not permitted until after short delay
3572                  * to gather multiple requests.  However if this
3573                  * device is no Insync, the block could only be computed
3574                  * and there is no need to delay that.
3575                  */
3576                 return 0;
3577
3578         for (i = 0; i < s->failed && i < 2; i++) {
3579                 if (fdev[i]->towrite &&
3580                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3581                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3582                         /* If we have a partial write to a failed
3583                          * device, then we will need to reconstruct
3584                          * the content of that device, so all other
3585                          * devices must be read.
3586                          */
3587                         return 1;
3588         }
3589
3590         /* If we are forced to do a reconstruct-write, either because
3591          * the current RAID6 implementation only supports that, or
3592          * because parity cannot be trusted and we are currently
3593          * recovering it, there is extra need to be careful.
3594          * If one of the devices that we would need to read, because
3595          * it is not being overwritten (and maybe not written at all)
3596          * is missing/faulty, then we need to read everything we can.
3597          */
3598         if (sh->raid_conf->level != 6 &&
3599             sh->raid_conf->rmw_level != PARITY_DISABLE_RMW &&
3600             sh->sector < sh->raid_conf->mddev->recovery_cp)
3601                 /* reconstruct-write isn't being forced */
3602                 return 0;
3603         for (i = 0; i < s->failed && i < 2; i++) {
3604                 if (s->failed_num[i] != sh->pd_idx &&
3605                     s->failed_num[i] != sh->qd_idx &&
3606                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3607                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3608                         return 1;
3609         }
3610
3611         return 0;
3612 }
3613
3614 /* fetch_block - checks the given member device to see if its data needs
3615  * to be read or computed to satisfy a request.
3616  *
3617  * Returns 1 when no more member devices need to be checked, otherwise returns
3618  * 0 to tell the loop in handle_stripe_fill to continue
3619  */
3620 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3621                        int disk_idx, int disks)
3622 {
3623         struct r5dev *dev = &sh->dev[disk_idx];
3624
3625         /* is the data in this block needed, and can we get it? */
3626         if (need_this_block(sh, s, disk_idx, disks)) {
3627                 /* we would like to get this block, possibly by computing it,
3628                  * otherwise read it if the backing disk is insync
3629                  */
3630                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3631                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3632                 BUG_ON(sh->batch_head);
3633
3634                 /*
3635                  * In the raid6 case if the only non-uptodate disk is P
3636                  * then we already trusted P to compute the other failed
3637                  * drives. It is safe to compute rather than re-read P.
3638                  * In other cases we only compute blocks from failed
3639                  * devices, otherwise check/repair might fail to detect
3640                  * a real inconsistency.
3641                  */
3642
3643                 if ((s->uptodate == disks - 1) &&
3644                     ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3645                     (s->failed && (disk_idx == s->failed_num[0] ||
3646                                    disk_idx == s->failed_num[1])))) {
3647                         /* have disk failed, and we're requested to fetch it;
3648                          * do compute it
3649                          */
3650                         pr_debug("Computing stripe %llu block %d\n",
3651                                (unsigned long long)sh->sector, disk_idx);
3652                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3653                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3654                         set_bit(R5_Wantcompute, &dev->flags);
3655                         sh->ops.target = disk_idx;
3656                         sh->ops.target2 = -1; /* no 2nd target */
3657                         s->req_compute = 1;
3658                         /* Careful: from this point on 'uptodate' is in the eye
3659                          * of raid_run_ops which services 'compute' operations
3660                          * before writes. R5_Wantcompute flags a block that will
3661                          * be R5_UPTODATE by the time it is needed for a
3662                          * subsequent operation.
3663                          */
3664                         s->uptodate++;
3665                         return 1;
3666                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3667                         /* Computing 2-failure is *very* expensive; only
3668                          * do it if failed >= 2
3669                          */
3670                         int other;
3671                         for (other = disks; other--; ) {
3672                                 if (other == disk_idx)
3673                                         continue;
3674                                 if (!test_bit(R5_UPTODATE,
3675                                       &sh->dev[other].flags))
3676                                         break;
3677                         }
3678                         BUG_ON(other < 0);
3679                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3680                                (unsigned long long)sh->sector,
3681                                disk_idx, other);
3682                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3683                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3684                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3685                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3686                         sh->ops.target = disk_idx;
3687                         sh->ops.target2 = other;
3688                         s->uptodate += 2;
3689                         s->req_compute = 1;
3690                         return 1;
3691                 } else if (test_bit(R5_Insync, &dev->flags)) {
3692                         set_bit(R5_LOCKED, &dev->flags);
3693                         set_bit(R5_Wantread, &dev->flags);
3694                         s->locked++;
3695                         pr_debug("Reading block %d (sync=%d)\n",
3696                                 disk_idx, s->syncing);
3697                 }
3698         }
3699
3700         return 0;
3701 }
3702
3703 /**
3704  * handle_stripe_fill - read or compute data to satisfy pending requests.
3705  */
3706 static void handle_stripe_fill(struct stripe_head *sh,
3707                                struct stripe_head_state *s,
3708                                int disks)
3709 {
3710         int i;
3711
3712         /* look for blocks to read/compute, skip this if a compute
3713          * is already in flight, or if the stripe contents are in the
3714          * midst of changing due to a write
3715          */
3716         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3717             !sh->reconstruct_state) {
3718
3719                 /*
3720                  * For degraded stripe with data in journal, do not handle
3721                  * read requests yet, instead, flush the stripe to raid
3722                  * disks first, this avoids handling complex rmw of write
3723                  * back cache (prexor with orig_page, and then xor with
3724                  * page) in the read path
3725                  */
3726                 if (s->injournal && s->failed) {
3727                         if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3728                                 r5c_make_stripe_write_out(sh);
3729                         goto out;
3730                 }
3731
3732                 for (i = disks; i--; )
3733                         if (fetch_block(sh, s, i, disks))
3734                                 break;
3735         }
3736 out:
3737         set_bit(STRIPE_HANDLE, &sh->state);
3738 }
3739
3740 static void break_stripe_batch_list(struct stripe_head *head_sh,
3741                                     unsigned long handle_flags);
3742 /* handle_stripe_clean_event
3743  * any written block on an uptodate or failed drive can be returned.
3744  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3745  * never LOCKED, so we don't need to test 'failed' directly.
3746  */
3747 static void handle_stripe_clean_event(struct r5conf *conf,
3748         struct stripe_head *sh, int disks)
3749 {
3750         int i;
3751         struct r5dev *dev;
3752         int discard_pending = 0;
3753         struct stripe_head *head_sh = sh;
3754         bool do_endio = false;
3755
3756         for (i = disks; i--; )
3757                 if (sh->dev[i].written) {
3758                         dev = &sh->dev[i];
3759                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3760                             (test_bit(R5_UPTODATE, &dev->flags) ||
3761                              test_bit(R5_Discard, &dev->flags) ||
3762                              test_bit(R5_SkipCopy, &dev->flags))) {
3763                                 /* We can return any write requests */
3764                                 struct bio *wbi, *wbi2;
3765                                 pr_debug("Return write for disc %d\n", i);
3766                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3767                                         clear_bit(R5_UPTODATE, &dev->flags);
3768                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3769                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3770                                 }
3771                                 do_endio = true;
3772
3773 returnbi:
3774                                 dev->page = dev->orig_page;
3775                                 wbi = dev->written;
3776                                 dev->written = NULL;
3777                                 while (wbi && wbi->bi_iter.bi_sector <
3778                                         dev->sector + STRIPE_SECTORS) {
3779                                         wbi2 = r5_next_bio(wbi, dev->sector);
3780                                         md_write_end(conf->mddev);
3781                                         bio_endio(wbi);
3782                                         wbi = wbi2;
3783                                 }
3784                                 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3785                                                    STRIPE_SECTORS,
3786                                                    !test_bit(STRIPE_DEGRADED, &sh->state),
3787                                                    0);
3788                                 if (head_sh->batch_head) {
3789                                         sh = list_first_entry(&sh->batch_list,
3790                                                               struct stripe_head,
3791                                                               batch_list);
3792                                         if (sh != head_sh) {
3793                                                 dev = &sh->dev[i];
3794                                                 goto returnbi;
3795                                         }
3796                                 }
3797                                 sh = head_sh;
3798                                 dev = &sh->dev[i];
3799                         } else if (test_bit(R5_Discard, &dev->flags))
3800                                 discard_pending = 1;
3801                 }
3802
3803         log_stripe_write_finished(sh);
3804
3805         if (!discard_pending &&
3806             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3807                 int hash;
3808                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3809                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3810                 if (sh->qd_idx >= 0) {
3811                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3812                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3813                 }
3814                 /* now that discard is done we can proceed with any sync */
3815                 clear_bit(STRIPE_DISCARD, &sh->state);
3816                 /*
3817                  * SCSI discard will change some bio fields and the stripe has
3818                  * no updated data, so remove it from hash list and the stripe
3819                  * will be reinitialized
3820                  */
3821 unhash:
3822                 hash = sh->hash_lock_index;
3823                 spin_lock_irq(conf->hash_locks + hash);
3824                 remove_hash(sh);
3825                 spin_unlock_irq(conf->hash_locks + hash);
3826                 if (head_sh->batch_head) {
3827                         sh = list_first_entry(&sh->batch_list,
3828                                               struct stripe_head, batch_list);
3829                         if (sh != head_sh)
3830                                         goto unhash;
3831                 }
3832                 sh = head_sh;
3833
3834                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3835                         set_bit(STRIPE_HANDLE, &sh->state);
3836
3837         }
3838
3839         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3840                 if (atomic_dec_and_test(&conf->pending_full_writes))
3841                         md_wakeup_thread(conf->mddev->thread);
3842
3843         if (head_sh->batch_head && do_endio)
3844                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3845 }
3846
3847 /*
3848  * For RMW in write back cache, we need extra page in prexor to store the
3849  * old data. This page is stored in dev->orig_page.
3850  *
3851  * This function checks whether we have data for prexor. The exact logic
3852  * is:
3853  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3854  */
3855 static inline bool uptodate_for_rmw(struct r5dev *dev)
3856 {
3857         return (test_bit(R5_UPTODATE, &dev->flags)) &&
3858                 (!test_bit(R5_InJournal, &dev->flags) ||
3859                  test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3860 }
3861
3862 static int handle_stripe_dirtying(struct r5conf *conf,
3863                                   struct stripe_head *sh,
3864                                   struct stripe_head_state *s,
3865                                   int disks)
3866 {
3867         int rmw = 0, rcw = 0, i;
3868         sector_t recovery_cp = conf->mddev->recovery_cp;
3869
3870         /* Check whether resync is now happening or should start.
3871          * If yes, then the array is dirty (after unclean shutdown or
3872          * initial creation), so parity in some stripes might be inconsistent.
3873          * In this case, we need to always do reconstruct-write, to ensure
3874          * that in case of drive failure or read-error correction, we
3875          * generate correct data from the parity.
3876          */
3877         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3878             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3879              s->failed == 0)) {
3880                 /* Calculate the real rcw later - for now make it
3881                  * look like rcw is cheaper
3882                  */
3883                 rcw = 1; rmw = 2;
3884                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3885                          conf->rmw_level, (unsigned long long)recovery_cp,
3886                          (unsigned long long)sh->sector);
3887         } else for (i = disks; i--; ) {
3888                 /* would I have to read this buffer for read_modify_write */
3889                 struct r5dev *dev = &sh->dev[i];
3890                 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3891                      i == sh->pd_idx || i == sh->qd_idx ||
3892                      test_bit(R5_InJournal, &dev->flags)) &&
3893                     !test_bit(R5_LOCKED, &dev->flags) &&
3894                     !(uptodate_for_rmw(dev) ||
3895                       test_bit(R5_Wantcompute, &dev->flags))) {
3896                         if (test_bit(R5_Insync, &dev->flags))
3897                                 rmw++;
3898                         else
3899                                 rmw += 2*disks;  /* cannot read it */
3900                 }
3901                 /* Would I have to read this buffer for reconstruct_write */
3902                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3903                     i != sh->pd_idx && i != sh->qd_idx &&
3904                     !test_bit(R5_LOCKED, &dev->flags) &&
3905                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3906                       test_bit(R5_Wantcompute, &dev->flags))) {
3907                         if (test_bit(R5_Insync, &dev->flags))
3908                                 rcw++;
3909                         else
3910                                 rcw += 2*disks;
3911                 }
3912         }
3913
3914         pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3915                  (unsigned long long)sh->sector, sh->state, rmw, rcw);
3916         set_bit(STRIPE_HANDLE, &sh->state);
3917         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3918                 /* prefer read-modify-write, but need to get some data */
3919                 if (conf->mddev->queue)
3920                         blk_add_trace_msg(conf->mddev->queue,
3921                                           "raid5 rmw %llu %d",
3922                                           (unsigned long long)sh->sector, rmw);
3923                 for (i = disks; i--; ) {
3924                         struct r5dev *dev = &sh->dev[i];
3925                         if (test_bit(R5_InJournal, &dev->flags) &&
3926                             dev->page == dev->orig_page &&
3927                             !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3928                                 /* alloc page for prexor */
3929                                 struct page *p = alloc_page(GFP_NOIO);
3930
3931                                 if (p) {
3932                                         dev->orig_page = p;
3933                                         continue;
3934                                 }
3935
3936                                 /*
3937                                  * alloc_page() failed, try use
3938                                  * disk_info->extra_page
3939                                  */
3940                                 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3941                                                       &conf->cache_state)) {
3942                                         r5c_use_extra_page(sh);
3943                                         break;
3944                                 }
3945
3946                                 /* extra_page in use, add to delayed_list */
3947                                 set_bit(STRIPE_DELAYED, &sh->state);
3948                                 s->waiting_extra_page = 1;
3949                                 return -EAGAIN;
3950                         }
3951                 }
3952
3953                 for (i = disks; i--; ) {
3954                         struct r5dev *dev = &sh->dev[i];
3955                         if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3956                              i == sh->pd_idx || i == sh->qd_idx ||
3957                              test_bit(R5_InJournal, &dev->flags)) &&
3958                             !test_bit(R5_LOCKED, &dev->flags) &&
3959                             !(uptodate_for_rmw(dev) ||
3960                               test_bit(R5_Wantcompute, &dev->flags)) &&
3961                             test_bit(R5_Insync, &dev->flags)) {
3962                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3963                                              &sh->state)) {
3964                                         pr_debug("Read_old block %d for r-m-w\n",
3965                                                  i);
3966                                         set_bit(R5_LOCKED, &dev->flags);
3967                                         set_bit(R5_Wantread, &dev->flags);
3968                                         s->locked++;
3969                                 } else {
3970                                         set_bit(STRIPE_DELAYED, &sh->state);
3971                                         set_bit(STRIPE_HANDLE, &sh->state);
3972                                 }
3973                         }
3974                 }
3975         }
3976         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3977                 /* want reconstruct write, but need to get some data */
3978                 int qread =0;
3979                 rcw = 0;
3980                 for (i = disks; i--; ) {
3981                         struct r5dev *dev = &sh->dev[i];
3982                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3983                             i != sh->pd_idx && i != sh->qd_idx &&
3984                             !test_bit(R5_LOCKED, &dev->flags) &&
3985                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3986                               test_bit(R5_Wantcompute, &dev->flags))) {
3987                                 rcw++;
3988                                 if (test_bit(R5_Insync, &dev->flags) &&
3989                                     test_bit(STRIPE_PREREAD_ACTIVE,
3990                                              &sh->state)) {
3991                                         pr_debug("Read_old block "
3992                                                 "%d for Reconstruct\n", i);
3993                                         set_bit(R5_LOCKED, &dev->flags);
3994                                         set_bit(R5_Wantread, &dev->flags);
3995                                         s->locked++;
3996                                         qread++;
3997                                 } else {
3998                                         set_bit(STRIPE_DELAYED, &sh->state);
3999                                         set_bit(STRIPE_HANDLE, &sh->state);
4000                                 }
4001                         }
4002                 }
4003                 if (rcw && conf->mddev->queue)
4004                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4005                                           (unsigned long long)sh->sector,
4006                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4007         }
4008
4009         if (rcw > disks && rmw > disks &&
4010             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4011                 set_bit(STRIPE_DELAYED, &sh->state);
4012
4013         /* now if nothing is locked, and if we have enough data,
4014          * we can start a write request
4015          */
4016         /* since handle_stripe can be called at any time we need to handle the
4017          * case where a compute block operation has been submitted and then a
4018          * subsequent call wants to start a write request.  raid_run_ops only
4019          * handles the case where compute block and reconstruct are requested
4020          * simultaneously.  If this is not the case then new writes need to be
4021          * held off until the compute completes.
4022          */
4023         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4024             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4025              !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4026                 schedule_reconstruction(sh, s, rcw == 0, 0);
4027         return 0;
4028 }
4029
4030 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4031                                 struct stripe_head_state *s, int disks)
4032 {
4033         struct r5dev *dev = NULL;
4034
4035         BUG_ON(sh->batch_head);
4036         set_bit(STRIPE_HANDLE, &sh->state);
4037
4038         switch (sh->check_state) {
4039         case check_state_idle:
4040                 /* start a new check operation if there are no failures */
4041                 if (s->failed == 0) {
4042                         BUG_ON(s->uptodate != disks);
4043                         sh->check_state = check_state_run;
4044                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4045                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4046                         s->uptodate--;
4047                         break;
4048                 }
4049                 dev = &sh->dev[s->failed_num[0]];
4050                 /* fall through */
4051         case check_state_compute_result:
4052                 sh->check_state = check_state_idle;
4053                 if (!dev)
4054                         dev = &sh->dev[sh->pd_idx];
4055
4056                 /* check that a write has not made the stripe insync */
4057                 if (test_bit(STRIPE_INSYNC, &sh->state))
4058                         break;
4059
4060                 /* either failed parity check, or recovery is happening */
4061                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4062                 BUG_ON(s->uptodate != disks);
4063
4064                 set_bit(R5_LOCKED, &dev->flags);
4065                 s->locked++;
4066                 set_bit(R5_Wantwrite, &dev->flags);
4067
4068                 clear_bit(STRIPE_DEGRADED, &sh->state);
4069                 set_bit(STRIPE_INSYNC, &sh->state);
4070                 break;
4071         case check_state_run:
4072                 break; /* we will be called again upon completion */
4073         case check_state_check_result:
4074                 sh->check_state = check_state_idle;
4075
4076                 /* if a failure occurred during the check operation, leave
4077                  * STRIPE_INSYNC not set and let the stripe be handled again
4078                  */
4079                 if (s->failed)
4080                         break;
4081
4082                 /* handle a successful check operation, if parity is correct
4083                  * we are done.  Otherwise update the mismatch count and repair
4084                  * parity if !MD_RECOVERY_CHECK
4085                  */
4086                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4087                         /* parity is correct (on disc,
4088                          * not in buffer any more)
4089                          */
4090                         set_bit(STRIPE_INSYNC, &sh->state);
4091                 else {
4092                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4093                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4094                                 /* don't try to repair!! */
4095                                 set_bit(STRIPE_INSYNC, &sh->state);
4096                                 pr_warn_ratelimited("%s: mismatch sector in range "
4097                                                     "%llu-%llu\n", mdname(conf->mddev),
4098                                                     (unsigned long long) sh->sector,
4099                                                     (unsigned long long) sh->sector +
4100                                                     STRIPE_SECTORS);
4101                         } else {
4102                                 sh->check_state = check_state_compute_run;
4103                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4104                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4105                                 set_bit(R5_Wantcompute,
4106                                         &sh->dev[sh->pd_idx].flags);
4107                                 sh->ops.target = sh->pd_idx;
4108                                 sh->ops.target2 = -1;
4109                                 s->uptodate++;
4110                         }
4111                 }
4112                 break;
4113         case check_state_compute_run:
4114                 break;
4115         default:
4116                 pr_err("%s: unknown check_state: %d sector: %llu\n",
4117                        __func__, sh->check_state,
4118                        (unsigned long long) sh->sector);
4119                 BUG();
4120         }
4121 }
4122
4123 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4124                                   struct stripe_head_state *s,
4125                                   int disks)
4126 {
4127         int pd_idx = sh->pd_idx;
4128         int qd_idx = sh->qd_idx;
4129         struct r5dev *dev;
4130
4131         BUG_ON(sh->batch_head);
4132         set_bit(STRIPE_HANDLE, &sh->state);
4133
4134         BUG_ON(s->failed > 2);
4135
4136         /* Want to check and possibly repair P and Q.
4137          * However there could be one 'failed' device, in which
4138          * case we can only check one of them, possibly using the
4139          * other to generate missing data
4140          */
4141
4142         switch (sh->check_state) {
4143         case check_state_idle:
4144                 /* start a new check operation if there are < 2 failures */
4145                 if (s->failed == s->q_failed) {
4146                         /* The only possible failed device holds Q, so it
4147                          * makes sense to check P (If anything else were failed,
4148                          * we would have used P to recreate it).
4149                          */
4150                         sh->check_state = check_state_run;
4151                 }
4152                 if (!s->q_failed && s->failed < 2) {
4153                         /* Q is not failed, and we didn't use it to generate
4154                          * anything, so it makes sense to check it
4155                          */
4156                         if (sh->check_state == check_state_run)
4157                                 sh->check_state = check_state_run_pq;
4158                         else
4159                                 sh->check_state = check_state_run_q;
4160                 }
4161
4162                 /* discard potentially stale zero_sum_result */
4163                 sh->ops.zero_sum_result = 0;
4164
4165                 if (sh->check_state == check_state_run) {
4166                         /* async_xor_zero_sum destroys the contents of P */
4167                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4168                         s->uptodate--;
4169                 }
4170                 if (sh->check_state >= check_state_run &&
4171                     sh->check_state <= check_state_run_pq) {
4172                         /* async_syndrome_zero_sum preserves P and Q, so
4173                          * no need to mark them !uptodate here
4174                          */
4175                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4176                         break;
4177                 }
4178
4179                 /* we have 2-disk failure */
4180                 BUG_ON(s->failed != 2);
4181                 /* fall through */
4182         case check_state_compute_result:
4183                 sh->check_state = check_state_idle;
4184
4185                 /* check that a write has not made the stripe insync */
4186                 if (test_bit(STRIPE_INSYNC, &sh->state))
4187                         break;
4188
4189                 /* now write out any block on a failed drive,
4190                  * or P or Q if they were recomputed
4191                  */
4192                 dev = NULL;
4193                 if (s->failed == 2) {
4194                         dev = &sh->dev[s->failed_num[1]];
4195                         s->locked++;
4196                         set_bit(R5_LOCKED, &dev->flags);
4197                         set_bit(R5_Wantwrite, &dev->flags);
4198                 }
4199                 if (s->failed >= 1) {
4200                         dev = &sh->dev[s->failed_num[0]];
4201                         s->locked++;
4202                         set_bit(R5_LOCKED, &dev->flags);
4203                         set_bit(R5_Wantwrite, &dev->flags);
4204                 }
4205                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4206                         dev = &sh->dev[pd_idx];
4207                         s->locked++;
4208                         set_bit(R5_LOCKED, &dev->flags);
4209                         set_bit(R5_Wantwrite, &dev->flags);
4210                 }
4211                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4212                         dev = &sh->dev[qd_idx];
4213                         s->locked++;
4214                         set_bit(R5_LOCKED, &dev->flags);
4215                         set_bit(R5_Wantwrite, &dev->flags);
4216                 }
4217                 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4218                               "%s: disk%td not up to date\n",
4219                               mdname(conf->mddev),
4220                               dev - (struct r5dev *) &sh->dev)) {
4221                         clear_bit(R5_LOCKED, &dev->flags);
4222                         clear_bit(R5_Wantwrite, &dev->flags);
4223                         s->locked--;
4224                 }
4225                 clear_bit(STRIPE_DEGRADED, &sh->state);
4226
4227                 set_bit(STRIPE_INSYNC, &sh->state);
4228                 break;
4229         case check_state_run:
4230         case check_state_run_q:
4231         case check_state_run_pq:
4232                 break; /* we will be called again upon completion */
4233         case check_state_check_result:
4234                 sh->check_state = check_state_idle;
4235
4236                 /* handle a successful check operation, if parity is correct
4237                  * we are done.  Otherwise update the mismatch count and repair
4238                  * parity if !MD_RECOVERY_CHECK
4239                  */
4240                 if (sh->ops.zero_sum_result == 0) {
4241                         /* both parities are correct */
4242                         if (!s->failed)
4243                                 set_bit(STRIPE_INSYNC, &sh->state);
4244                         else {
4245                                 /* in contrast to the raid5 case we can validate
4246                                  * parity, but still have a failure to write
4247                                  * back
4248                                  */
4249                                 sh->check_state = check_state_compute_result;
4250                                 /* Returning at this point means that we may go
4251                                  * off and bring p and/or q uptodate again so
4252                                  * we make sure to check zero_sum_result again
4253                                  * to verify if p or q need writeback
4254                                  */
4255                         }
4256                 } else {
4257                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4258                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4259                                 /* don't try to repair!! */
4260                                 set_bit(STRIPE_INSYNC, &sh->state);
4261                                 pr_warn_ratelimited("%s: mismatch sector in range "
4262                                                     "%llu-%llu\n", mdname(conf->mddev),
4263                                                     (unsigned long long) sh->sector,
4264                                                     (unsigned long long) sh->sector +
4265                                                     STRIPE_SECTORS);
4266                         } else {
4267                                 int *target = &sh->ops.target;
4268
4269                                 sh->ops.target = -1;
4270                                 sh->ops.target2 = -1;
4271                                 sh->check_state = check_state_compute_run;
4272                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4273                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4274                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4275                                         set_bit(R5_Wantcompute,
4276                                                 &sh->dev[pd_idx].flags);
4277                                         *target = pd_idx;
4278                                         target = &sh->ops.target2;
4279                                         s->uptodate++;
4280                                 }
4281                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4282                                         set_bit(R5_Wantcompute,
4283                                                 &sh->dev[qd_idx].flags);
4284                                         *target = qd_idx;
4285                                         s->uptodate++;
4286                                 }
4287                         }
4288                 }
4289                 break;
4290         case check_state_compute_run:
4291                 break;
4292         default:
4293                 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4294                         __func__, sh->check_state,
4295                         (unsigned long long) sh->sector);
4296                 BUG();
4297         }
4298 }
4299
4300 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4301 {
4302         int i;
4303
4304         /* We have read all the blocks in this stripe and now we need to
4305          * copy some of them into a target stripe for expand.
4306          */
4307         struct dma_async_tx_descriptor *tx = NULL;
4308         BUG_ON(sh->batch_head);
4309         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4310         for (i = 0; i < sh->disks; i++)
4311                 if (i != sh->pd_idx && i != sh->qd_idx) {
4312                         int dd_idx, j;
4313                         struct stripe_head *sh2;
4314                         struct async_submit_ctl submit;
4315
4316                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
4317                         sector_t s = raid5_compute_sector(conf, bn, 0,
4318                                                           &dd_idx, NULL);
4319                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4320                         if (sh2 == NULL)
4321                                 /* so far only the early blocks of this stripe
4322                                  * have been requested.  When later blocks
4323                                  * get requested, we will try again
4324                                  */
4325                                 continue;
4326                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4327                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4328                                 /* must have already done this block */
4329                                 raid5_release_stripe(sh2);
4330                                 continue;
4331                         }
4332
4333                         /* place all the copies on one channel */
4334                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4335                         tx = async_memcpy(sh2->dev[dd_idx].page,
4336                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
4337                                           &submit);
4338
4339                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4340                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4341                         for (j = 0; j < conf->raid_disks; j++)
4342                                 if (j != sh2->pd_idx &&
4343                                     j != sh2->qd_idx &&
4344                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4345                                         break;
4346                         if (j == conf->raid_disks) {
4347                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4348                                 set_bit(STRIPE_HANDLE, &sh2->state);
4349                         }
4350                         raid5_release_stripe(sh2);
4351
4352                 }
4353         /* done submitting copies, wait for them to complete */
4354         async_tx_quiesce(&tx);
4355 }
4356
4357 /*
4358  * handle_stripe - do things to a stripe.
4359  *
4360  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4361  * state of various bits to see what needs to be done.
4362  * Possible results:
4363  *    return some read requests which now have data
4364  *    return some write requests which are safely on storage
4365  *    schedule a read on some buffers
4366  *    schedule a write of some buffers
4367  *    return confirmation of parity correctness
4368  *
4369  */
4370
4371 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4372 {
4373         struct r5conf *conf = sh->raid_conf;
4374         int disks = sh->disks;
4375         struct r5dev *dev;
4376         int i;
4377         int do_recovery = 0;
4378
4379         memset(s, 0, sizeof(*s));
4380
4381         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4382         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4383         s->failed_num[0] = -1;
4384         s->failed_num[1] = -1;
4385         s->log_failed = r5l_log_disk_error(conf);
4386
4387         /* Now to look around and see what can be done */
4388         rcu_read_lock();
4389         for (i=disks; i--; ) {
4390                 struct md_rdev *rdev;
4391                 sector_t first_bad;
4392                 int bad_sectors;
4393                 int is_bad = 0;
4394
4395                 dev = &sh->dev[i];
4396
4397                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4398                          i, dev->flags,
4399                          dev->toread, dev->towrite, dev->written);
4400                 /* maybe we can reply to a read
4401                  *
4402                  * new wantfill requests are only permitted while
4403                  * ops_complete_biofill is guaranteed to be inactive
4404                  */
4405                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4406                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4407                         set_bit(R5_Wantfill, &dev->flags);
4408
4409                 /* now count some things */
4410                 if (test_bit(R5_LOCKED, &dev->flags))
4411                         s->locked++;
4412                 if (test_bit(R5_UPTODATE, &dev->flags))
4413                         s->uptodate++;
4414                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4415                         s->compute++;
4416                         BUG_ON(s->compute > 2);
4417                 }
4418
4419                 if (test_bit(R5_Wantfill, &dev->flags))
4420                         s->to_fill++;
4421                 else if (dev->toread)
4422                         s->to_read++;
4423                 if (dev->towrite) {
4424                         s->to_write++;
4425                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4426                                 s->non_overwrite++;
4427                 }
4428                 if (dev->written)
4429                         s->written++;
4430                 /* Prefer to use the replacement for reads, but only
4431                  * if it is recovered enough and has no bad blocks.
4432                  */
4433                 rdev = rcu_dereference(conf->disks[i].replacement);
4434                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4435                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4436                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4437                                  &first_bad, &bad_sectors))
4438                         set_bit(R5_ReadRepl, &dev->flags);
4439                 else {
4440                         if (rdev && !test_bit(Faulty, &rdev->flags))
4441                                 set_bit(R5_NeedReplace, &dev->flags);
4442                         else
4443                                 clear_bit(R5_NeedReplace, &dev->flags);
4444                         rdev = rcu_dereference(conf->disks[i].rdev);
4445                         clear_bit(R5_ReadRepl, &dev->flags);
4446                 }
4447                 if (rdev && test_bit(Faulty, &rdev->flags))
4448                         rdev = NULL;
4449                 if (rdev) {
4450                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4451                                              &first_bad, &bad_sectors);
4452                         if (s->blocked_rdev == NULL
4453                             && (test_bit(Blocked, &rdev->flags)
4454                                 || is_bad < 0)) {
4455                                 if (is_bad < 0)
4456                                         set_bit(BlockedBadBlocks,
4457                                                 &rdev->flags);
4458                                 s->blocked_rdev = rdev;
4459                                 atomic_inc(&rdev->nr_pending);
4460                         }
4461                 }
4462                 clear_bit(R5_Insync, &dev->flags);
4463                 if (!rdev)
4464                         /* Not in-sync */;
4465                 else if (is_bad) {
4466                         /* also not in-sync */
4467                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4468                             test_bit(R5_UPTODATE, &dev->flags)) {
4469                                 /* treat as in-sync, but with a read error
4470                                  * which we can now try to correct
4471                                  */
4472                                 set_bit(R5_Insync, &dev->flags);
4473                                 set_bit(R5_ReadError, &dev->flags);
4474                         }
4475                 } else if (test_bit(In_sync, &rdev->flags))
4476                         set_bit(R5_Insync, &dev->flags);
4477                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4478                         /* in sync if before recovery_offset */
4479                         set_bit(R5_Insync, &dev->flags);
4480                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4481                          test_bit(R5_Expanded, &dev->flags))
4482                         /* If we've reshaped into here, we assume it is Insync.
4483                          * We will shortly update recovery_offset to make
4484                          * it official.
4485                          */
4486                         set_bit(R5_Insync, &dev->flags);
4487
4488                 if (test_bit(R5_WriteError, &dev->flags)) {
4489                         /* This flag does not apply to '.replacement'
4490                          * only to .rdev, so make sure to check that*/
4491                         struct md_rdev *rdev2 = rcu_dereference(
4492                                 conf->disks[i].rdev);
4493                         if (rdev2 == rdev)
4494                                 clear_bit(R5_Insync, &dev->flags);
4495                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4496                                 s->handle_bad_blocks = 1;
4497                                 atomic_inc(&rdev2->nr_pending);
4498                         } else
4499                                 clear_bit(R5_WriteError, &dev->flags);
4500                 }
4501                 if (test_bit(R5_MadeGood, &dev->flags)) {
4502                         /* This flag does not apply to '.replacement'
4503                          * only to .rdev, so make sure to check that*/
4504                         struct md_rdev *rdev2 = rcu_dereference(
4505                                 conf->disks[i].rdev);
4506                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4507                                 s->handle_bad_blocks = 1;
4508                                 atomic_inc(&rdev2->nr_pending);
4509                         } else
4510                                 clear_bit(R5_MadeGood, &dev->flags);
4511                 }
4512                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4513                         struct md_rdev *rdev2 = rcu_dereference(
4514                                 conf->disks[i].replacement);
4515                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4516                                 s->handle_bad_blocks = 1;
4517                                 atomic_inc(&rdev2->nr_pending);
4518                         } else
4519                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4520                 }
4521                 if (!test_bit(R5_Insync, &dev->flags)) {
4522                         /* The ReadError flag will just be confusing now */
4523                         clear_bit(R5_ReadError, &dev->flags);
4524                         clear_bit(R5_ReWrite, &dev->flags);
4525                 }
4526                 if (test_bit(R5_ReadError, &dev->flags))
4527                         clear_bit(R5_Insync, &dev->flags);
4528                 if (!test_bit(R5_Insync, &dev->flags)) {
4529                         if (s->failed < 2)
4530                                 s->failed_num[s->failed] = i;
4531                         s->failed++;
4532                         if (rdev && !test_bit(Faulty, &rdev->flags))
4533                                 do_recovery = 1;
4534                         else if (!rdev) {
4535                                 rdev = rcu_dereference(
4536                                     conf->disks[i].replacement);
4537                                 if (rdev && !test_bit(Faulty, &rdev->flags))
4538                                         do_recovery = 1;
4539                         }
4540                 }
4541
4542                 if (test_bit(R5_InJournal, &dev->flags))
4543                         s->injournal++;
4544                 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4545                         s->just_cached++;
4546         }
4547         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4548                 /* If there is a failed device being replaced,
4549                  *     we must be recovering.
4550                  * else if we are after recovery_cp, we must be syncing
4551                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4552                  * else we can only be replacing
4553                  * sync and recovery both need to read all devices, and so
4554                  * use the same flag.
4555                  */
4556                 if (do_recovery ||
4557                     sh->sector >= conf->mddev->recovery_cp ||
4558                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4559                         s->syncing = 1;
4560                 else
4561                         s->replacing = 1;
4562         }
4563         rcu_read_unlock();
4564 }
4565
4566 static int clear_batch_ready(struct stripe_head *sh)
4567 {
4568         /* Return '1' if this is a member of batch, or
4569          * '0' if it is a lone stripe or a head which can now be
4570          * handled.
4571          */
4572         struct stripe_head *tmp;
4573         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4574                 return (sh->batch_head && sh->batch_head != sh);
4575         spin_lock(&sh->stripe_lock);
4576         if (!sh->batch_head) {
4577                 spin_unlock(&sh->stripe_lock);
4578                 return 0;
4579         }
4580
4581         /*
4582          * this stripe could be added to a batch list before we check
4583          * BATCH_READY, skips it
4584          */
4585         if (sh->batch_head != sh) {
4586                 spin_unlock(&sh->stripe_lock);
4587                 return 1;
4588         }
4589         spin_lock(&sh->batch_lock);
4590         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4591                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4592         spin_unlock(&sh->batch_lock);
4593         spin_unlock(&sh->stripe_lock);
4594
4595         /*
4596          * BATCH_READY is cleared, no new stripes can be added.
4597          * batch_list can be accessed without lock
4598          */
4599         return 0;
4600 }
4601
4602 static void break_stripe_batch_list(struct stripe_head *head_sh,
4603                                     unsigned long handle_flags)
4604 {
4605         struct stripe_head *sh, *next;
4606         int i;
4607         int do_wakeup = 0;
4608
4609         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4610
4611                 list_del_init(&sh->batch_list);
4612
4613                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4614                                           (1 << STRIPE_SYNCING) |
4615                                           (1 << STRIPE_REPLACED) |
4616                                           (1 << STRIPE_DELAYED) |
4617                                           (1 << STRIPE_BIT_DELAY) |
4618                                           (1 << STRIPE_FULL_WRITE) |
4619                                           (1 << STRIPE_BIOFILL_RUN) |
4620                                           (1 << STRIPE_COMPUTE_RUN)  |
4621                                           (1 << STRIPE_OPS_REQ_PENDING) |
4622                                           (1 << STRIPE_DISCARD) |
4623                                           (1 << STRIPE_BATCH_READY) |
4624                                           (1 << STRIPE_BATCH_ERR) |
4625                                           (1 << STRIPE_BITMAP_PENDING)),
4626                         "stripe state: %lx\n", sh->state);
4627                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4628                                               (1 << STRIPE_REPLACED)),
4629                         "head stripe state: %lx\n", head_sh->state);
4630
4631                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4632                                             (1 << STRIPE_PREREAD_ACTIVE) |
4633                                             (1 << STRIPE_DEGRADED) |
4634                                             (1 << STRIPE_ON_UNPLUG_LIST)),
4635                               head_sh->state & (1 << STRIPE_INSYNC));
4636
4637                 sh->check_state = head_sh->check_state;
4638                 sh->reconstruct_state = head_sh->reconstruct_state;
4639                 spin_lock_irq(&sh->stripe_lock);
4640                 sh->batch_head = NULL;
4641                 spin_unlock_irq(&sh->stripe_lock);
4642                 for (i = 0; i < sh->disks; i++) {
4643                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4644                                 do_wakeup = 1;
4645                         sh->dev[i].flags = head_sh->dev[i].flags &
4646                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4647                 }
4648                 if (handle_flags == 0 ||
4649                     sh->state & handle_flags)
4650                         set_bit(STRIPE_HANDLE, &sh->state);
4651                 raid5_release_stripe(sh);
4652         }
4653         spin_lock_irq(&head_sh->stripe_lock);
4654         head_sh->batch_head = NULL;
4655         spin_unlock_irq(&head_sh->stripe_lock);
4656         for (i = 0; i < head_sh->disks; i++)
4657                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4658                         do_wakeup = 1;
4659         if (head_sh->state & handle_flags)
4660                 set_bit(STRIPE_HANDLE, &head_sh->state);
4661
4662         if (do_wakeup)
4663                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4664 }
4665
4666 static void handle_stripe(struct stripe_head *sh)
4667 {
4668         struct stripe_head_state s;
4669         struct r5conf *conf = sh->raid_conf;
4670         int i;
4671         int prexor;
4672         int disks = sh->disks;
4673         struct r5dev *pdev, *qdev;
4674
4675         clear_bit(STRIPE_HANDLE, &sh->state);
4676         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4677                 /* already being handled, ensure it gets handled
4678                  * again when current action finishes */
4679                 set_bit(STRIPE_HANDLE, &sh->state);
4680                 return;
4681         }
4682
4683         if (clear_batch_ready(sh) ) {
4684                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4685                 return;
4686         }
4687
4688         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4689                 break_stripe_batch_list(sh, 0);
4690
4691         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4692                 spin_lock(&sh->stripe_lock);
4693                 /*
4694                  * Cannot process 'sync' concurrently with 'discard'.
4695                  * Flush data in r5cache before 'sync'.
4696                  */
4697                 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4698                     !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4699                     !test_bit(STRIPE_DISCARD, &sh->state) &&
4700                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4701                         set_bit(STRIPE_SYNCING, &sh->state);
4702                         clear_bit(STRIPE_INSYNC, &sh->state);
4703                         clear_bit(STRIPE_REPLACED, &sh->state);
4704                 }
4705                 spin_unlock(&sh->stripe_lock);
4706         }
4707         clear_bit(STRIPE_DELAYED, &sh->state);
4708
4709         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4710                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4711                (unsigned long long)sh->sector, sh->state,
4712                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4713                sh->check_state, sh->reconstruct_state);
4714
4715         analyse_stripe(sh, &s);
4716
4717         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4718                 goto finish;
4719
4720         if (s.handle_bad_blocks ||
4721             test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4722                 set_bit(STRIPE_HANDLE, &sh->state);
4723                 goto finish;
4724         }
4725
4726         if (unlikely(s.blocked_rdev)) {
4727                 if (s.syncing || s.expanding || s.expanded ||
4728                     s.replacing || s.to_write || s.written) {
4729                         set_bit(STRIPE_HANDLE, &sh->state);
4730                         goto finish;
4731                 }
4732                 /* There is nothing for the blocked_rdev to block */
4733                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4734                 s.blocked_rdev = NULL;
4735         }
4736
4737         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4738                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4739                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4740         }
4741
4742         pr_debug("locked=%d uptodate=%d to_read=%d"
4743                " to_write=%d failed=%d failed_num=%d,%d\n",
4744                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4745                s.failed_num[0], s.failed_num[1]);
4746         /*
4747          * check if the array has lost more than max_degraded devices and,
4748          * if so, some requests might need to be failed.
4749          *
4750          * When journal device failed (log_failed), we will only process
4751          * the stripe if there is data need write to raid disks
4752          */
4753         if (s.failed > conf->max_degraded ||
4754             (s.log_failed && s.injournal == 0)) {
4755                 sh->check_state = 0;
4756                 sh->reconstruct_state = 0;
4757                 break_stripe_batch_list(sh, 0);
4758                 if (s.to_read+s.to_write+s.written)
4759                         handle_failed_stripe(conf, sh, &s, disks);
4760                 if (s.syncing + s.replacing)
4761                         handle_failed_sync(conf, sh, &s);
4762         }
4763
4764         /* Now we check to see if any write operations have recently
4765          * completed
4766          */
4767         prexor = 0;
4768         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4769                 prexor = 1;
4770         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4771             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4772                 sh->reconstruct_state = reconstruct_state_idle;
4773
4774                 /* All the 'written' buffers and the parity block are ready to
4775                  * be written back to disk
4776                  */
4777                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4778                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4779                 BUG_ON(sh->qd_idx >= 0 &&
4780                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4781                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4782                 for (i = disks; i--; ) {
4783                         struct r5dev *dev = &sh->dev[i];
4784                         if (test_bit(R5_LOCKED, &dev->flags) &&
4785                                 (i == sh->pd_idx || i == sh->qd_idx ||
4786                                  dev->written || test_bit(R5_InJournal,
4787                                                           &dev->flags))) {
4788                                 pr_debug("Writing block %d\n", i);
4789                                 set_bit(R5_Wantwrite, &dev->flags);
4790                                 if (prexor)
4791                                         continue;
4792                                 if (s.failed > 1)
4793                                         continue;
4794                                 if (!test_bit(R5_Insync, &dev->flags) ||
4795                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4796                                      s.failed == 0))
4797                                         set_bit(STRIPE_INSYNC, &sh->state);
4798                         }
4799                 }
4800                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4801                         s.dec_preread_active = 1;
4802         }
4803
4804         /*
4805          * might be able to return some write requests if the parity blocks
4806          * are safe, or on a failed drive
4807          */
4808         pdev = &sh->dev[sh->pd_idx];
4809         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4810                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4811         qdev = &sh->dev[sh->qd_idx];
4812         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4813                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4814                 || conf->level < 6;
4815
4816         if (s.written &&
4817             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4818                              && !test_bit(R5_LOCKED, &pdev->flags)
4819                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4820                                  test_bit(R5_Discard, &pdev->flags))))) &&
4821             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4822                              && !test_bit(R5_LOCKED, &qdev->flags)
4823                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4824                                  test_bit(R5_Discard, &qdev->flags))))))
4825                 handle_stripe_clean_event(conf, sh, disks);
4826
4827         if (s.just_cached)
4828                 r5c_handle_cached_data_endio(conf, sh, disks);
4829         log_stripe_write_finished(sh);
4830
4831         /* Now we might consider reading some blocks, either to check/generate
4832          * parity, or to satisfy requests
4833          * or to load a block that is being partially written.
4834          */
4835         if (s.to_read || s.non_overwrite
4836             || (s.to_write && s.failed)
4837             || (s.syncing && (s.uptodate + s.compute < disks))
4838             || s.replacing
4839             || s.expanding)
4840                 handle_stripe_fill(sh, &s, disks);
4841
4842         /*
4843          * When the stripe finishes full journal write cycle (write to journal
4844          * and raid disk), this is the clean up procedure so it is ready for
4845          * next operation.
4846          */
4847         r5c_finish_stripe_write_out(conf, sh, &s);
4848
4849         /*
4850          * Now to consider new write requests, cache write back and what else,
4851          * if anything should be read.  We do not handle new writes when:
4852          * 1/ A 'write' operation (copy+xor) is already in flight.
4853          * 2/ A 'check' operation is in flight, as it may clobber the parity
4854          *    block.
4855          * 3/ A r5c cache log write is in flight.
4856          */
4857
4858         if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4859                 if (!r5c_is_writeback(conf->log)) {
4860                         if (s.to_write)
4861                                 handle_stripe_dirtying(conf, sh, &s, disks);
4862                 } else { /* write back cache */
4863                         int ret = 0;
4864
4865                         /* First, try handle writes in caching phase */
4866                         if (s.to_write)
4867                                 ret = r5c_try_caching_write(conf, sh, &s,
4868                                                             disks);
4869                         /*
4870                          * If caching phase failed: ret == -EAGAIN
4871                          *    OR
4872                          * stripe under reclaim: !caching && injournal
4873                          *
4874                          * fall back to handle_stripe_dirtying()
4875                          */
4876                         if (ret == -EAGAIN ||
4877                             /* stripe under reclaim: !caching && injournal */
4878                             (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4879                              s.injournal > 0)) {
4880                                 ret = handle_stripe_dirtying(conf, sh, &s,
4881                                                              disks);
4882                                 if (ret == -EAGAIN)
4883                                         goto finish;
4884                         }
4885                 }
4886         }
4887
4888         /* maybe we need to check and possibly fix the parity for this stripe
4889          * Any reads will already have been scheduled, so we just see if enough
4890          * data is available.  The parity check is held off while parity
4891          * dependent operations are in flight.
4892          */
4893         if (sh->check_state ||
4894             (s.syncing && s.locked == 0 &&
4895              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4896              !test_bit(STRIPE_INSYNC, &sh->state))) {
4897                 if (conf->level == 6)
4898                         handle_parity_checks6(conf, sh, &s, disks);
4899                 else
4900                         handle_parity_checks5(conf, sh, &s, disks);
4901         }
4902
4903         if ((s.replacing || s.syncing) && s.locked == 0
4904             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4905             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4906                 /* Write out to replacement devices where possible */
4907                 for (i = 0; i < conf->raid_disks; i++)
4908                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4909                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4910                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4911                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4912                                 s.locked++;
4913                         }
4914                 if (s.replacing)
4915                         set_bit(STRIPE_INSYNC, &sh->state);
4916                 set_bit(STRIPE_REPLACED, &sh->state);
4917         }
4918         if ((s.syncing || s.replacing) && s.locked == 0 &&
4919             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4920             test_bit(STRIPE_INSYNC, &sh->state)) {
4921                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4922                 clear_bit(STRIPE_SYNCING, &sh->state);
4923                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4924                         wake_up(&conf->wait_for_overlap);
4925         }
4926
4927         /* If the failed drives are just a ReadError, then we might need
4928          * to progress the repair/check process
4929          */
4930         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4931                 for (i = 0; i < s.failed; i++) {
4932                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4933                         if (test_bit(R5_ReadError, &dev->flags)
4934                             && !test_bit(R5_LOCKED, &dev->flags)
4935                             && test_bit(R5_UPTODATE, &dev->flags)
4936                                 ) {
4937                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4938                                         set_bit(R5_Wantwrite, &dev->flags);
4939                                         set_bit(R5_ReWrite, &dev->flags);
4940                                         set_bit(R5_LOCKED, &dev->flags);
4941                                         s.locked++;
4942                                 } else {
4943                                         /* let's read it back */
4944                                         set_bit(R5_Wantread, &dev->flags);
4945                                         set_bit(R5_LOCKED, &dev->flags);
4946                                         s.locked++;
4947                                 }
4948                         }
4949                 }
4950
4951         /* Finish reconstruct operations initiated by the expansion process */
4952         if (sh->reconstruct_state == reconstruct_state_result) {
4953                 struct stripe_head *sh_src
4954                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4955                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4956                         /* sh cannot be written until sh_src has been read.
4957                          * so arrange for sh to be delayed a little
4958                          */
4959                         set_bit(STRIPE_DELAYED, &sh->state);
4960                         set_bit(STRIPE_HANDLE, &sh->state);
4961                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4962                                               &sh_src->state))
4963                                 atomic_inc(&conf->preread_active_stripes);
4964                         raid5_release_stripe(sh_src);
4965                         goto finish;
4966                 }
4967                 if (sh_src)
4968                         raid5_release_stripe(sh_src);
4969
4970                 sh->reconstruct_state = reconstruct_state_idle;
4971                 clear_bit(STRIPE_EXPANDING, &sh->state);
4972                 for (i = conf->raid_disks; i--; ) {
4973                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4974                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4975                         s.locked++;
4976                 }
4977         }
4978
4979         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4980             !sh->reconstruct_state) {
4981                 /* Need to write out all blocks after computing parity */
4982                 sh->disks = conf->raid_disks;
4983                 stripe_set_idx(sh->sector, conf, 0, sh);
4984                 schedule_reconstruction(sh, &s, 1, 1);
4985         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4986                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4987                 atomic_dec(&conf->reshape_stripes);
4988                 wake_up(&conf->wait_for_overlap);
4989                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4990         }
4991
4992         if (s.expanding && s.locked == 0 &&
4993             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4994                 handle_stripe_expansion(conf, sh);
4995
4996 finish:
4997         /* wait for this device to become unblocked */
4998         if (unlikely(s.blocked_rdev)) {
4999                 if (conf->mddev->external)
5000                         md_wait_for_blocked_rdev(s.blocked_rdev,
5001                                                  conf->mddev);
5002                 else
5003                         /* Internal metadata will immediately
5004                          * be written by raid5d, so we don't
5005                          * need to wait here.
5006                          */
5007                         rdev_dec_pending(s.blocked_rdev,
5008                                          conf->mddev);
5009         }
5010
5011         if (s.handle_bad_blocks)
5012                 for (i = disks; i--; ) {
5013                         struct md_rdev *rdev;
5014                         struct r5dev *dev = &sh->dev[i];
5015                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5016                                 /* We own a safe reference to the rdev */
5017                                 rdev = conf->disks[i].rdev;
5018                                 if (!rdev_set_badblocks(rdev, sh->sector,
5019                                                         STRIPE_SECTORS, 0))
5020                                         md_error(conf->mddev, rdev);
5021                                 rdev_dec_pending(rdev, conf->mddev);
5022                         }
5023                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5024                                 rdev = conf->disks[i].rdev;
5025                                 rdev_clear_badblocks(rdev, sh->sector,
5026                                                      STRIPE_SECTORS, 0);
5027                                 rdev_dec_pending(rdev, conf->mddev);
5028                         }
5029                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5030                                 rdev = conf->disks[i].replacement;
5031                                 if (!rdev)
5032                                         /* rdev have been moved down */
5033                                         rdev = conf->disks[i].rdev;
5034                                 rdev_clear_badblocks(rdev, sh->sector,
5035                                                      STRIPE_SECTORS, 0);
5036                                 rdev_dec_pending(rdev, conf->mddev);
5037                         }
5038                 }
5039
5040         if (s.ops_request)
5041                 raid_run_ops(sh, s.ops_request);
5042
5043         ops_run_io(sh, &s);
5044
5045         if (s.dec_preread_active) {
5046                 /* We delay this until after ops_run_io so that if make_request
5047                  * is waiting on a flush, it won't continue until the writes
5048                  * have actually been submitted.
5049                  */
5050                 atomic_dec(&conf->preread_active_stripes);
5051                 if (atomic_read(&conf->preread_active_stripes) <
5052                     IO_THRESHOLD)
5053                         md_wakeup_thread(conf->mddev->thread);
5054         }
5055
5056         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5057 }
5058
5059 static void raid5_activate_delayed(struct r5conf *conf)
5060 {
5061         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5062                 while (!list_empty(&conf->delayed_list)) {
5063                         struct list_head *l = conf->delayed_list.next;
5064                         struct stripe_head *sh;
5065                         sh = list_entry(l, struct stripe_head, lru);
5066                         list_del_init(l);
5067                         clear_bit(STRIPE_DELAYED, &sh->state);
5068                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5069                                 atomic_inc(&conf->preread_active_stripes);
5070                         list_add_tail(&sh->lru, &conf->hold_list);
5071                         raid5_wakeup_stripe_thread(sh);
5072                 }
5073         }
5074 }
5075
5076 static void activate_bit_delay(struct r5conf *conf,
5077         struct list_head *temp_inactive_list)
5078 {
5079         /* device_lock is held */
5080         struct list_head head;
5081         list_add(&head, &conf->bitmap_list);
5082         list_del_init(&conf->bitmap_list);
5083         while (!list_empty(&head)) {
5084                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5085                 int hash;
5086                 list_del_init(&sh->lru);
5087                 atomic_inc(&sh->count);
5088                 hash = sh->hash_lock_index;
5089                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5090         }
5091 }
5092
5093 static int raid5_congested(struct mddev *mddev, int bits)
5094 {
5095         struct r5conf *conf = mddev->private;
5096
5097         /* No difference between reads and writes.  Just check
5098          * how busy the stripe_cache is
5099          */
5100
5101         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5102                 return 1;
5103
5104         /* Also checks whether there is pressure on r5cache log space */
5105         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5106                 return 1;
5107         if (conf->quiesce)
5108                 return 1;
5109         if (atomic_read(&conf->empty_inactive_list_nr))
5110                 return 1;
5111
5112         return 0;
5113 }
5114
5115 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5116 {
5117         struct r5conf *conf = mddev->private;
5118         sector_t sector = bio->bi_iter.bi_sector;
5119         unsigned int chunk_sectors;
5120         unsigned int bio_sectors = bio_sectors(bio);
5121
5122         WARN_ON_ONCE(bio->bi_partno);
5123
5124         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5125         return  chunk_sectors >=
5126                 ((sector & (chunk_sectors - 1)) + bio_sectors);
5127 }
5128
5129 /*
5130  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5131  *  later sampled by raid5d.
5132  */
5133 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5134 {
5135         unsigned long flags;
5136
5137         spin_lock_irqsave(&conf->device_lock, flags);
5138
5139         bi->bi_next = conf->retry_read_aligned_list;
5140         conf->retry_read_aligned_list = bi;
5141
5142         spin_unlock_irqrestore(&conf->device_lock, flags);
5143         md_wakeup_thread(conf->mddev->thread);
5144 }
5145
5146 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5147                                          unsigned int *offset)
5148 {
5149         struct bio *bi;
5150
5151         bi = conf->retry_read_aligned;
5152         if (bi) {
5153                 *offset = conf->retry_read_offset;
5154                 conf->retry_read_aligned = NULL;
5155                 return bi;
5156         }
5157         bi = conf->retry_read_aligned_list;
5158         if(bi) {
5159                 conf->retry_read_aligned_list = bi->bi_next;
5160                 bi->bi_next = NULL;
5161                 *offset = 0;
5162         }
5163
5164         return bi;
5165 }
5166
5167 /*
5168  *  The "raid5_align_endio" should check if the read succeeded and if it
5169  *  did, call bio_endio on the original bio (having bio_put the new bio
5170  *  first).
5171  *  If the read failed..
5172  */
5173 static void raid5_align_endio(struct bio *bi)
5174 {
5175         struct bio* raid_bi  = bi->bi_private;
5176         struct mddev *mddev;
5177         struct r5conf *conf;
5178         struct md_rdev *rdev;
5179         blk_status_t error = bi->bi_status;
5180
5181         bio_put(bi);
5182
5183         rdev = (void*)raid_bi->bi_next;
5184         raid_bi->bi_next = NULL;
5185         mddev = rdev->mddev;
5186         conf = mddev->private;
5187
5188         rdev_dec_pending(rdev, conf->mddev);
5189
5190         if (!error) {
5191                 bio_endio(raid_bi);
5192                 if (atomic_dec_and_test(&conf->active_aligned_reads))
5193                         wake_up(&conf->wait_for_quiescent);
5194                 return;
5195         }
5196
5197         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5198
5199         add_bio_to_retry(raid_bi, conf);
5200 }
5201
5202 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5203 {
5204         struct r5conf *conf = mddev->private;
5205         int dd_idx;
5206         struct bio* align_bi;
5207         struct md_rdev *rdev;
5208         sector_t end_sector;
5209
5210         if (!in_chunk_boundary(mddev, raid_bio)) {
5211                 pr_debug("%s: non aligned\n", __func__);
5212                 return 0;
5213         }
5214         /*
5215          * use bio_clone_fast to make a copy of the bio
5216          */
5217         align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5218         if (!align_bi)
5219                 return 0;
5220         /*
5221          *   set bi_end_io to a new function, and set bi_private to the
5222          *     original bio.
5223          */
5224         align_bi->bi_end_io  = raid5_align_endio;
5225         align_bi->bi_private = raid_bio;
5226         /*
5227          *      compute position
5228          */
5229         align_bi->bi_iter.bi_sector =
5230                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5231                                      0, &dd_idx, NULL);
5232
5233         end_sector = bio_end_sector(align_bi);
5234         rcu_read_lock();
5235         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5236         if (!rdev || test_bit(Faulty, &rdev->flags) ||
5237             rdev->recovery_offset < end_sector) {
5238                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5239                 if (rdev &&
5240                     (test_bit(Faulty, &rdev->flags) ||
5241                     !(test_bit(In_sync, &rdev->flags) ||
5242                       rdev->recovery_offset >= end_sector)))
5243                         rdev = NULL;
5244         }
5245
5246         if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5247                 rcu_read_unlock();
5248                 bio_put(align_bi);
5249                 return 0;
5250         }
5251
5252         if (rdev) {
5253                 sector_t first_bad;
5254                 int bad_sectors;
5255
5256                 atomic_inc(&rdev->nr_pending);
5257                 rcu_read_unlock();
5258                 raid_bio->bi_next = (void*)rdev;
5259                 bio_set_dev(align_bi, rdev->bdev);
5260                 bio_clear_flag(align_bi, BIO_SEG_VALID);
5261
5262                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5263                                 bio_sectors(align_bi),
5264                                 &first_bad, &bad_sectors)) {
5265                         bio_put(align_bi);
5266                         rdev_dec_pending(rdev, mddev);
5267                         return 0;
5268                 }
5269
5270                 /* No reshape active, so we can trust rdev->data_offset */
5271                 align_bi->bi_iter.bi_sector += rdev->data_offset;
5272
5273                 spin_lock_irq(&conf->device_lock);
5274                 wait_event_lock_irq(conf->wait_for_quiescent,
5275                                     conf->quiesce == 0,
5276                                     conf->device_lock);
5277                 atomic_inc(&conf->active_aligned_reads);
5278                 spin_unlock_irq(&conf->device_lock);
5279
5280                 if (mddev->gendisk)
5281                         trace_block_bio_remap(align_bi->bi_disk->queue,
5282                                               align_bi, disk_devt(mddev->gendisk),
5283                                               raid_bio->bi_iter.bi_sector);
5284                 generic_make_request(align_bi);
5285                 return 1;
5286         } else {
5287                 rcu_read_unlock();
5288                 bio_put(align_bi);
5289                 return 0;
5290         }
5291 }
5292
5293 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5294 {
5295         struct bio *split;
5296         sector_t sector = raid_bio->bi_iter.bi_sector;
5297         unsigned chunk_sects = mddev->chunk_sectors;
5298         unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5299
5300         if (sectors < bio_sectors(raid_bio)) {
5301                 struct r5conf *conf = mddev->private;
5302                 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5303                 bio_chain(split, raid_bio);
5304                 generic_make_request(raid_bio);
5305                 raid_bio = split;
5306         }
5307
5308         if (!raid5_read_one_chunk(mddev, raid_bio))
5309                 return raid_bio;
5310
5311         return NULL;
5312 }
5313
5314 /* __get_priority_stripe - get the next stripe to process
5315  *
5316  * Full stripe writes are allowed to pass preread active stripes up until
5317  * the bypass_threshold is exceeded.  In general the bypass_count
5318  * increments when the handle_list is handled before the hold_list; however, it
5319  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5320  * stripe with in flight i/o.  The bypass_count will be reset when the
5321  * head of the hold_list has changed, i.e. the head was promoted to the
5322  * handle_list.
5323  */
5324 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5325 {
5326         struct stripe_head *sh, *tmp;
5327         struct list_head *handle_list = NULL;
5328         struct r5worker_group *wg;
5329         bool second_try = !r5c_is_writeback(conf->log) &&
5330                 !r5l_log_disk_error(conf);
5331         bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5332                 r5l_log_disk_error(conf);
5333
5334 again:
5335         wg = NULL;
5336         sh = NULL;
5337         if (conf->worker_cnt_per_group == 0) {
5338                 handle_list = try_loprio ? &conf->loprio_list :
5339                                         &conf->handle_list;
5340         } else if (group != ANY_GROUP) {
5341                 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5342                                 &conf->worker_groups[group].handle_list;
5343                 wg = &conf->worker_groups[group];
5344         } else {
5345                 int i;
5346                 for (i = 0; i < conf->group_cnt; i++) {
5347                         handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5348                                 &conf->worker_groups[i].handle_list;
5349                         wg = &conf->worker_groups[i];
5350                         if (!list_empty(handle_list))
5351                                 break;
5352                 }
5353         }
5354
5355         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5356                   __func__,
5357                   list_empty(handle_list) ? "empty" : "busy",
5358                   list_empty(&conf->hold_list) ? "empty" : "busy",
5359                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
5360
5361         if (!list_empty(handle_list)) {
5362                 sh = list_entry(handle_list->next, typeof(*sh), lru);
5363
5364                 if (list_empty(&conf->hold_list))
5365                         conf->bypass_count = 0;
5366                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5367                         if (conf->hold_list.next == conf->last_hold)
5368                                 conf->bypass_count++;
5369                         else {
5370                                 conf->last_hold = conf->hold_list.next;
5371                                 conf->bypass_count -= conf->bypass_threshold;
5372                                 if (conf->bypass_count < 0)
5373                                         conf->bypass_count = 0;
5374                         }
5375                 }
5376         } else if (!list_empty(&conf->hold_list) &&
5377                    ((conf->bypass_threshold &&
5378                      conf->bypass_count > conf->bypass_threshold) ||
5379                     atomic_read(&conf->pending_full_writes) == 0)) {
5380
5381                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
5382                         if (conf->worker_cnt_per_group == 0 ||
5383                             group == ANY_GROUP ||
5384                             !cpu_online(tmp->cpu) ||
5385                             cpu_to_group(tmp->cpu) == group) {
5386                                 sh = tmp;
5387                                 break;
5388                         }
5389                 }
5390
5391                 if (sh) {
5392                         conf->bypass_count -= conf->bypass_threshold;
5393                         if (conf->bypass_count < 0)
5394                                 conf->bypass_count = 0;
5395                 }
5396                 wg = NULL;
5397         }
5398
5399         if (!sh) {
5400                 if (second_try)
5401                         return NULL;
5402                 second_try = true;
5403                 try_loprio = !try_loprio;
5404                 goto again;
5405         }
5406
5407         if (wg) {
5408                 wg->stripes_cnt--;
5409                 sh->group = NULL;
5410         }
5411         list_del_init(&sh->lru);
5412         BUG_ON(atomic_inc_return(&sh->count) != 1);
5413         return sh;
5414 }
5415
5416 struct raid5_plug_cb {
5417         struct blk_plug_cb      cb;
5418         struct list_head        list;
5419         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5420 };
5421
5422 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5423 {
5424         struct raid5_plug_cb *cb = container_of(
5425                 blk_cb, struct raid5_plug_cb, cb);
5426         struct stripe_head *sh;
5427         struct mddev *mddev = cb->cb.data;
5428         struct r5conf *conf = mddev->private;
5429         int cnt = 0;
5430         int hash;
5431
5432         if (cb->list.next && !list_empty(&cb->list)) {
5433                 spin_lock_irq(&conf->device_lock);
5434                 while (!list_empty(&cb->list)) {
5435                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5436                         list_del_init(&sh->lru);
5437                         /*
5438                          * avoid race release_stripe_plug() sees
5439                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5440                          * is still in our list
5441                          */
5442                         smp_mb__before_atomic();
5443                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5444                         /*
5445                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5446                          * case, the count is always > 1 here
5447                          */
5448                         hash = sh->hash_lock_index;
5449                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5450                         cnt++;
5451                 }
5452                 spin_unlock_irq(&conf->device_lock);
5453         }
5454         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5455                                      NR_STRIPE_HASH_LOCKS);
5456         if (mddev->queue)
5457                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5458         kfree(cb);
5459 }
5460
5461 static void release_stripe_plug(struct mddev *mddev,
5462                                 struct stripe_head *sh)
5463 {
5464         struct blk_plug_cb *blk_cb = blk_check_plugged(
5465                 raid5_unplug, mddev,
5466                 sizeof(struct raid5_plug_cb));
5467         struct raid5_plug_cb *cb;
5468
5469         if (!blk_cb) {
5470                 raid5_release_stripe(sh);
5471                 return;
5472         }
5473
5474         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5475
5476         if (cb->list.next == NULL) {
5477                 int i;
5478                 INIT_LIST_HEAD(&cb->list);
5479                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5480                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5481         }
5482
5483         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5484                 list_add_tail(&sh->lru, &cb->list);
5485         else
5486                 raid5_release_stripe(sh);
5487 }
5488
5489 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5490 {
5491         struct r5conf *conf = mddev->private;
5492         sector_t logical_sector, last_sector;
5493         struct stripe_head *sh;
5494         int stripe_sectors;
5495
5496         if (mddev->reshape_position != MaxSector)
5497                 /* Skip discard while reshape is happening */
5498                 return;
5499
5500         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5501         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5502
5503         bi->bi_next = NULL;
5504
5505         stripe_sectors = conf->chunk_sectors *
5506                 (conf->raid_disks - conf->max_degraded);
5507         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5508                                                stripe_sectors);
5509         sector_div(last_sector, stripe_sectors);
5510
5511         logical_sector *= conf->chunk_sectors;
5512         last_sector *= conf->chunk_sectors;
5513
5514         for (; logical_sector < last_sector;
5515              logical_sector += STRIPE_SECTORS) {
5516                 DEFINE_WAIT(w);
5517                 int d;
5518         again:
5519                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5520                 prepare_to_wait(&conf->wait_for_overlap, &w,
5521                                 TASK_UNINTERRUPTIBLE);
5522                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5523                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5524                         raid5_release_stripe(sh);
5525                         schedule();
5526                         goto again;
5527                 }
5528                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5529                 spin_lock_irq(&sh->stripe_lock);
5530                 for (d = 0; d < conf->raid_disks; d++) {
5531                         if (d == sh->pd_idx || d == sh->qd_idx)
5532                                 continue;
5533                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5534                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5535                                 spin_unlock_irq(&sh->stripe_lock);
5536                                 raid5_release_stripe(sh);
5537                                 schedule();
5538                                 goto again;
5539                         }
5540                 }
5541                 set_bit(STRIPE_DISCARD, &sh->state);
5542                 finish_wait(&conf->wait_for_overlap, &w);
5543                 sh->overwrite_disks = 0;
5544                 for (d = 0; d < conf->raid_disks; d++) {
5545                         if (d == sh->pd_idx || d == sh->qd_idx)
5546                                 continue;
5547                         sh->dev[d].towrite = bi;
5548                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5549                         bio_inc_remaining(bi);
5550                         md_write_inc(mddev, bi);
5551                         sh->overwrite_disks++;
5552                 }
5553                 spin_unlock_irq(&sh->stripe_lock);
5554                 if (conf->mddev->bitmap) {
5555                         for (d = 0;
5556                              d < conf->raid_disks - conf->max_degraded;
5557                              d++)
5558                                 md_bitmap_startwrite(mddev->bitmap,
5559                                                      sh->sector,
5560                                                      STRIPE_SECTORS,
5561                                                      0);
5562                         sh->bm_seq = conf->seq_flush + 1;
5563                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5564                 }
5565
5566                 set_bit(STRIPE_HANDLE, &sh->state);
5567                 clear_bit(STRIPE_DELAYED, &sh->state);
5568                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5569                         atomic_inc(&conf->preread_active_stripes);
5570                 release_stripe_plug(mddev, sh);
5571         }
5572
5573         bio_endio(bi);
5574 }
5575
5576 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5577 {
5578         struct r5conf *conf = mddev->private;
5579         int dd_idx;
5580         sector_t new_sector;
5581         sector_t logical_sector, last_sector;
5582         struct stripe_head *sh;
5583         const int rw = bio_data_dir(bi);
5584         DEFINE_WAIT(w);
5585         bool do_prepare;
5586         bool do_flush = false;
5587
5588         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5589                 int ret = log_handle_flush_request(conf, bi);
5590
5591                 if (ret == 0)
5592                         return true;
5593                 if (ret == -ENODEV) {
5594                         if (md_flush_request(mddev, bi))
5595                                 return true;
5596                 }
5597                 /* ret == -EAGAIN, fallback */
5598                 /*
5599                  * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5600                  * we need to flush journal device
5601                  */
5602                 do_flush = bi->bi_opf & REQ_PREFLUSH;
5603         }
5604
5605         if (!md_write_start(mddev, bi))
5606                 return false;
5607         /*
5608          * If array is degraded, better not do chunk aligned read because
5609          * later we might have to read it again in order to reconstruct
5610          * data on failed drives.
5611          */
5612         if (rw == READ && mddev->degraded == 0 &&
5613             mddev->reshape_position == MaxSector) {
5614                 bi = chunk_aligned_read(mddev, bi);
5615                 if (!bi)
5616                         return true;
5617         }
5618
5619         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5620                 make_discard_request(mddev, bi);
5621                 md_write_end(mddev);
5622                 return true;
5623         }
5624
5625         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5626         last_sector = bio_end_sector(bi);
5627         bi->bi_next = NULL;
5628
5629         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5630         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5631                 int previous;
5632                 int seq;
5633
5634                 do_prepare = false;
5635         retry:
5636                 seq = read_seqcount_begin(&conf->gen_lock);
5637                 previous = 0;
5638                 if (do_prepare)
5639                         prepare_to_wait(&conf->wait_for_overlap, &w,
5640                                 TASK_UNINTERRUPTIBLE);
5641                 if (unlikely(conf->reshape_progress != MaxSector)) {
5642                         /* spinlock is needed as reshape_progress may be
5643                          * 64bit on a 32bit platform, and so it might be
5644                          * possible to see a half-updated value
5645                          * Of course reshape_progress could change after
5646                          * the lock is dropped, so once we get a reference
5647                          * to the stripe that we think it is, we will have
5648                          * to check again.
5649                          */
5650                         spin_lock_irq(&conf->device_lock);
5651                         if (mddev->reshape_backwards
5652                             ? logical_sector < conf->reshape_progress
5653                             : logical_sector >= conf->reshape_progress) {
5654                                 previous = 1;
5655                         } else {
5656                                 if (mddev->reshape_backwards
5657                                     ? logical_sector < conf->reshape_safe
5658                                     : logical_sector >= conf->reshape_safe) {
5659                                         spin_unlock_irq(&conf->device_lock);
5660                                         schedule();
5661                                         do_prepare = true;
5662                                         goto retry;
5663                                 }
5664                         }
5665                         spin_unlock_irq(&conf->device_lock);
5666                 }
5667
5668                 new_sector = raid5_compute_sector(conf, logical_sector,
5669                                                   previous,
5670                                                   &dd_idx, NULL);
5671                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5672                         (unsigned long long)new_sector,
5673                         (unsigned long long)logical_sector);
5674
5675                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5676                                        (bi->bi_opf & REQ_RAHEAD), 0);
5677                 if (sh) {
5678                         if (unlikely(previous)) {
5679                                 /* expansion might have moved on while waiting for a
5680                                  * stripe, so we must do the range check again.
5681                                  * Expansion could still move past after this
5682                                  * test, but as we are holding a reference to
5683                                  * 'sh', we know that if that happens,
5684                                  *  STRIPE_EXPANDING will get set and the expansion
5685                                  * won't proceed until we finish with the stripe.
5686                                  */
5687                                 int must_retry = 0;
5688                                 spin_lock_irq(&conf->device_lock);
5689                                 if (mddev->reshape_backwards
5690                                     ? logical_sector >= conf->reshape_progress
5691                                     : logical_sector < conf->reshape_progress)
5692                                         /* mismatch, need to try again */
5693                                         must_retry = 1;
5694                                 spin_unlock_irq(&conf->device_lock);
5695                                 if (must_retry) {
5696                                         raid5_release_stripe(sh);
5697                                         schedule();
5698                                         do_prepare = true;
5699                                         goto retry;
5700                                 }
5701                         }
5702                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5703                                 /* Might have got the wrong stripe_head
5704                                  * by accident
5705                                  */
5706                                 raid5_release_stripe(sh);
5707                                 goto retry;
5708                         }
5709
5710                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5711                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5712                                 /* Stripe is busy expanding or
5713                                  * add failed due to overlap.  Flush everything
5714                                  * and wait a while
5715                                  */
5716                                 md_wakeup_thread(mddev->thread);
5717                                 raid5_release_stripe(sh);
5718                                 schedule();
5719                                 do_prepare = true;
5720                                 goto retry;
5721                         }
5722                         if (do_flush) {
5723                                 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724                                 /* we only need flush for one stripe */
5725                                 do_flush = false;
5726                         }
5727
5728                         if (!sh->batch_head || sh == sh->batch_head)
5729                                 set_bit(STRIPE_HANDLE, &sh->state);
5730                         clear_bit(STRIPE_DELAYED, &sh->state);
5731                         if ((!sh->batch_head || sh == sh->batch_head) &&
5732                             (bi->bi_opf & REQ_SYNC) &&
5733                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5734                                 atomic_inc(&conf->preread_active_stripes);
5735                         release_stripe_plug(mddev, sh);
5736                 } else {
5737                         /* cannot get stripe for read-ahead, just give-up */
5738                         bi->bi_status = BLK_STS_IOERR;
5739                         break;
5740                 }
5741         }
5742         finish_wait(&conf->wait_for_overlap, &w);
5743
5744         if (rw == WRITE)
5745                 md_write_end(mddev);
5746         bio_endio(bi);
5747         return true;
5748 }
5749
5750 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5751
5752 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5753 {
5754         /* reshaping is quite different to recovery/resync so it is
5755          * handled quite separately ... here.
5756          *
5757          * On each call to sync_request, we gather one chunk worth of
5758          * destination stripes and flag them as expanding.
5759          * Then we find all the source stripes and request reads.
5760          * As the reads complete, handle_stripe will copy the data
5761          * into the destination stripe and release that stripe.
5762          */
5763         struct r5conf *conf = mddev->private;
5764         struct stripe_head *sh;
5765         struct md_rdev *rdev;
5766         sector_t first_sector, last_sector;
5767         int raid_disks = conf->previous_raid_disks;
5768         int data_disks = raid_disks - conf->max_degraded;
5769         int new_data_disks = conf->raid_disks - conf->max_degraded;
5770         int i;
5771         int dd_idx;
5772         sector_t writepos, readpos, safepos;
5773         sector_t stripe_addr;
5774         int reshape_sectors;
5775         struct list_head stripes;
5776         sector_t retn;
5777
5778         if (sector_nr == 0) {
5779                 /* If restarting in the middle, skip the initial sectors */
5780                 if (mddev->reshape_backwards &&
5781                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5782                         sector_nr = raid5_size(mddev, 0, 0)
5783                                 - conf->reshape_progress;
5784                 } else if (mddev->reshape_backwards &&
5785                            conf->reshape_progress == MaxSector) {
5786                         /* shouldn't happen, but just in case, finish up.*/
5787                         sector_nr = MaxSector;
5788                 } else if (!mddev->reshape_backwards &&
5789                            conf->reshape_progress > 0)
5790                         sector_nr = conf->reshape_progress;
5791                 sector_div(sector_nr, new_data_disks);
5792                 if (sector_nr) {
5793                         mddev->curr_resync_completed = sector_nr;
5794                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5795                         *skipped = 1;
5796                         retn = sector_nr;
5797                         goto finish;
5798                 }
5799         }
5800
5801         /* We need to process a full chunk at a time.
5802          * If old and new chunk sizes differ, we need to process the
5803          * largest of these
5804          */
5805
5806         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5807
5808         /* We update the metadata at least every 10 seconds, or when
5809          * the data about to be copied would over-write the source of
5810          * the data at the front of the range.  i.e. one new_stripe
5811          * along from reshape_progress new_maps to after where
5812          * reshape_safe old_maps to
5813          */
5814         writepos = conf->reshape_progress;
5815         sector_div(writepos, new_data_disks);
5816         readpos = conf->reshape_progress;
5817         sector_div(readpos, data_disks);
5818         safepos = conf->reshape_safe;
5819         sector_div(safepos, data_disks);
5820         if (mddev->reshape_backwards) {
5821                 BUG_ON(writepos < reshape_sectors);
5822                 writepos -= reshape_sectors;
5823                 readpos += reshape_sectors;
5824                 safepos += reshape_sectors;
5825         } else {
5826                 writepos += reshape_sectors;
5827                 /* readpos and safepos are worst-case calculations.
5828                  * A negative number is overly pessimistic, and causes
5829                  * obvious problems for unsigned storage.  So clip to 0.
5830                  */
5831                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5832                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5833         }
5834
5835         /* Having calculated the 'writepos' possibly use it
5836          * to set 'stripe_addr' which is where we will write to.
5837          */
5838         if (mddev->reshape_backwards) {
5839                 BUG_ON(conf->reshape_progress == 0);
5840                 stripe_addr = writepos;
5841                 BUG_ON((mddev->dev_sectors &
5842                         ~((sector_t)reshape_sectors - 1))
5843                        - reshape_sectors - stripe_addr
5844                        != sector_nr);
5845         } else {
5846                 BUG_ON(writepos != sector_nr + reshape_sectors);
5847                 stripe_addr = sector_nr;
5848         }
5849
5850         /* 'writepos' is the most advanced device address we might write.
5851          * 'readpos' is the least advanced device address we might read.
5852          * 'safepos' is the least address recorded in the metadata as having
5853          *     been reshaped.
5854          * If there is a min_offset_diff, these are adjusted either by
5855          * increasing the safepos/readpos if diff is negative, or
5856          * increasing writepos if diff is positive.
5857          * If 'readpos' is then behind 'writepos', there is no way that we can
5858          * ensure safety in the face of a crash - that must be done by userspace
5859          * making a backup of the data.  So in that case there is no particular
5860          * rush to update metadata.
5861          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5862          * update the metadata to advance 'safepos' to match 'readpos' so that
5863          * we can be safe in the event of a crash.
5864          * So we insist on updating metadata if safepos is behind writepos and
5865          * readpos is beyond writepos.
5866          * In any case, update the metadata every 10 seconds.
5867          * Maybe that number should be configurable, but I'm not sure it is
5868          * worth it.... maybe it could be a multiple of safemode_delay???
5869          */
5870         if (conf->min_offset_diff < 0) {
5871                 safepos += -conf->min_offset_diff;
5872                 readpos += -conf->min_offset_diff;
5873         } else
5874                 writepos += conf->min_offset_diff;
5875
5876         if ((mddev->reshape_backwards
5877              ? (safepos > writepos && readpos < writepos)
5878              : (safepos < writepos && readpos > writepos)) ||
5879             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5880                 /* Cannot proceed until we've updated the superblock... */
5881                 wait_event(conf->wait_for_overlap,
5882                            atomic_read(&conf->reshape_stripes)==0
5883                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5884                 if (atomic_read(&conf->reshape_stripes) != 0)
5885                         return 0;
5886                 mddev->reshape_position = conf->reshape_progress;
5887                 mddev->curr_resync_completed = sector_nr;
5888                 if (!mddev->reshape_backwards)
5889                         /* Can update recovery_offset */
5890                         rdev_for_each(rdev, mddev)
5891                                 if (rdev->raid_disk >= 0 &&
5892                                     !test_bit(Journal, &rdev->flags) &&
5893                                     !test_bit(In_sync, &rdev->flags) &&
5894                                     rdev->recovery_offset < sector_nr)
5895                                         rdev->recovery_offset = sector_nr;
5896
5897                 conf->reshape_checkpoint = jiffies;
5898                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5899                 md_wakeup_thread(mddev->thread);
5900                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5901                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5902                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5903                         return 0;
5904                 spin_lock_irq(&conf->device_lock);
5905                 conf->reshape_safe = mddev->reshape_position;
5906                 spin_unlock_irq(&conf->device_lock);
5907                 wake_up(&conf->wait_for_overlap);
5908                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5909         }
5910
5911         INIT_LIST_HEAD(&stripes);
5912         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5913                 int j;
5914                 int skipped_disk = 0;
5915                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5916                 set_bit(STRIPE_EXPANDING, &sh->state);
5917                 atomic_inc(&conf->reshape_stripes);
5918                 /* If any of this stripe is beyond the end of the old
5919                  * array, then we need to zero those blocks
5920                  */
5921                 for (j=sh->disks; j--;) {
5922                         sector_t s;
5923                         if (j == sh->pd_idx)
5924                                 continue;
5925                         if (conf->level == 6 &&
5926                             j == sh->qd_idx)
5927                                 continue;
5928                         s = raid5_compute_blocknr(sh, j, 0);
5929                         if (s < raid5_size(mddev, 0, 0)) {
5930                                 skipped_disk = 1;
5931                                 continue;
5932                         }
5933                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5934                         set_bit(R5_Expanded, &sh->dev[j].flags);
5935                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5936                 }
5937                 if (!skipped_disk) {
5938                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5939                         set_bit(STRIPE_HANDLE, &sh->state);
5940                 }
5941                 list_add(&sh->lru, &stripes);
5942         }
5943         spin_lock_irq(&conf->device_lock);
5944         if (mddev->reshape_backwards)
5945                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5946         else
5947                 conf->reshape_progress += reshape_sectors * new_data_disks;
5948         spin_unlock_irq(&conf->device_lock);
5949         /* Ok, those stripe are ready. We can start scheduling
5950          * reads on the source stripes.
5951          * The source stripes are determined by mapping the first and last
5952          * block on the destination stripes.
5953          */
5954         first_sector =
5955                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5956                                      1, &dd_idx, NULL);
5957         last_sector =
5958                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5959                                             * new_data_disks - 1),
5960                                      1, &dd_idx, NULL);
5961         if (last_sector >= mddev->dev_sectors)
5962                 last_sector = mddev->dev_sectors - 1;
5963         while (first_sector <= last_sector) {
5964                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5965                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5966                 set_bit(STRIPE_HANDLE, &sh->state);
5967                 raid5_release_stripe(sh);
5968                 first_sector += STRIPE_SECTORS;
5969         }
5970         /* Now that the sources are clearly marked, we can release
5971          * the destination stripes
5972          */
5973         while (!list_empty(&stripes)) {
5974                 sh = list_entry(stripes.next, struct stripe_head, lru);
5975                 list_del_init(&sh->lru);
5976                 raid5_release_stripe(sh);
5977         }
5978         /* If this takes us to the resync_max point where we have to pause,
5979          * then we need to write out the superblock.
5980          */
5981         sector_nr += reshape_sectors;
5982         retn = reshape_sectors;
5983 finish:
5984         if (mddev->curr_resync_completed > mddev->resync_max ||
5985             (sector_nr - mddev->curr_resync_completed) * 2
5986             >= mddev->resync_max - mddev->curr_resync_completed) {
5987                 /* Cannot proceed until we've updated the superblock... */
5988                 wait_event(conf->wait_for_overlap,
5989                            atomic_read(&conf->reshape_stripes) == 0
5990                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5991                 if (atomic_read(&conf->reshape_stripes) != 0)
5992                         goto ret;
5993                 mddev->reshape_position = conf->reshape_progress;
5994                 mddev->curr_resync_completed = sector_nr;
5995                 if (!mddev->reshape_backwards)
5996                         /* Can update recovery_offset */
5997                         rdev_for_each(rdev, mddev)
5998                                 if (rdev->raid_disk >= 0 &&
5999                                     !test_bit(Journal, &rdev->flags) &&
6000                                     !test_bit(In_sync, &rdev->flags) &&
6001                                     rdev->recovery_offset < sector_nr)
6002                                         rdev->recovery_offset = sector_nr;
6003                 conf->reshape_checkpoint = jiffies;
6004                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6005                 md_wakeup_thread(mddev->thread);
6006                 wait_event(mddev->sb_wait,
6007                            !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6008                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6009                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6010                         goto ret;
6011                 spin_lock_irq(&conf->device_lock);
6012                 conf->reshape_safe = mddev->reshape_position;
6013                 spin_unlock_irq(&conf->device_lock);
6014                 wake_up(&conf->wait_for_overlap);
6015                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6016         }
6017 ret:
6018         return retn;
6019 }
6020
6021 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6022                                           int *skipped)
6023 {
6024         struct r5conf *conf = mddev->private;
6025         struct stripe_head *sh;
6026         sector_t max_sector = mddev->dev_sectors;
6027         sector_t sync_blocks;
6028         int still_degraded = 0;
6029         int i;
6030
6031         if (sector_nr >= max_sector) {
6032                 /* just being told to finish up .. nothing much to do */
6033
6034                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6035                         end_reshape(conf);
6036                         return 0;
6037                 }
6038
6039                 if (mddev->curr_resync < max_sector) /* aborted */
6040                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6041                                            &sync_blocks, 1);
6042                 else /* completed sync */
6043                         conf->fullsync = 0;
6044                 md_bitmap_close_sync(mddev->bitmap);
6045
6046                 return 0;
6047         }
6048
6049         /* Allow raid5_quiesce to complete */
6050         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6051
6052         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6053                 return reshape_request(mddev, sector_nr, skipped);
6054
6055         /* No need to check resync_max as we never do more than one
6056          * stripe, and as resync_max will always be on a chunk boundary,
6057          * if the check in md_do_sync didn't fire, there is no chance
6058          * of overstepping resync_max here
6059          */
6060
6061         /* if there is too many failed drives and we are trying
6062          * to resync, then assert that we are finished, because there is
6063          * nothing we can do.
6064          */
6065         if (mddev->degraded >= conf->max_degraded &&
6066             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6067                 sector_t rv = mddev->dev_sectors - sector_nr;
6068                 *skipped = 1;
6069                 return rv;
6070         }
6071         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6072             !conf->fullsync &&
6073             !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6074             sync_blocks >= STRIPE_SECTORS) {
6075                 /* we can skip this block, and probably more */
6076                 sync_blocks /= STRIPE_SECTORS;
6077                 *skipped = 1;
6078                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6079         }
6080
6081         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6082
6083         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6084         if (sh == NULL) {
6085                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6086                 /* make sure we don't swamp the stripe cache if someone else
6087                  * is trying to get access
6088                  */
6089                 schedule_timeout_uninterruptible(1);
6090         }
6091         /* Need to check if array will still be degraded after recovery/resync
6092          * Note in case of > 1 drive failures it's possible we're rebuilding
6093          * one drive while leaving another faulty drive in array.
6094          */
6095         rcu_read_lock();
6096         for (i = 0; i < conf->raid_disks; i++) {
6097                 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6098
6099                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6100                         still_degraded = 1;
6101         }
6102         rcu_read_unlock();
6103
6104         md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6105
6106         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6107         set_bit(STRIPE_HANDLE, &sh->state);
6108
6109         raid5_release_stripe(sh);
6110
6111         return STRIPE_SECTORS;
6112 }
6113
6114 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6115                                unsigned int offset)
6116 {
6117         /* We may not be able to submit a whole bio at once as there
6118          * may not be enough stripe_heads available.
6119          * We cannot pre-allocate enough stripe_heads as we may need
6120          * more than exist in the cache (if we allow ever large chunks).
6121          * So we do one stripe head at a time and record in
6122          * ->bi_hw_segments how many have been done.
6123          *
6124          * We *know* that this entire raid_bio is in one chunk, so
6125          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6126          */
6127         struct stripe_head *sh;
6128         int dd_idx;
6129         sector_t sector, logical_sector, last_sector;
6130         int scnt = 0;
6131         int handled = 0;
6132
6133         logical_sector = raid_bio->bi_iter.bi_sector &
6134                 ~((sector_t)STRIPE_SECTORS-1);
6135         sector = raid5_compute_sector(conf, logical_sector,
6136                                       0, &dd_idx, NULL);
6137         last_sector = bio_end_sector(raid_bio);
6138
6139         for (; logical_sector < last_sector;
6140              logical_sector += STRIPE_SECTORS,
6141                      sector += STRIPE_SECTORS,
6142                      scnt++) {
6143
6144                 if (scnt < offset)
6145                         /* already done this stripe */
6146                         continue;
6147
6148                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6149
6150                 if (!sh) {
6151                         /* failed to get a stripe - must wait */
6152                         conf->retry_read_aligned = raid_bio;
6153                         conf->retry_read_offset = scnt;
6154                         return handled;
6155                 }
6156
6157                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6158                         raid5_release_stripe(sh);
6159                         conf->retry_read_aligned = raid_bio;
6160                         conf->retry_read_offset = scnt;
6161                         return handled;
6162                 }
6163
6164                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6165                 handle_stripe(sh);
6166                 raid5_release_stripe(sh);
6167                 handled++;
6168         }
6169
6170         bio_endio(raid_bio);
6171
6172         if (atomic_dec_and_test(&conf->active_aligned_reads))
6173                 wake_up(&conf->wait_for_quiescent);
6174         return handled;
6175 }
6176
6177 static int handle_active_stripes(struct r5conf *conf, int group,
6178                                  struct r5worker *worker,
6179                                  struct list_head *temp_inactive_list)
6180 {
6181         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6182         int i, batch_size = 0, hash;
6183         bool release_inactive = false;
6184
6185         while (batch_size < MAX_STRIPE_BATCH &&
6186                         (sh = __get_priority_stripe(conf, group)) != NULL)
6187                 batch[batch_size++] = sh;
6188
6189         if (batch_size == 0) {
6190                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6191                         if (!list_empty(temp_inactive_list + i))
6192                                 break;
6193                 if (i == NR_STRIPE_HASH_LOCKS) {
6194                         spin_unlock_irq(&conf->device_lock);
6195                         log_flush_stripe_to_raid(conf);
6196                         spin_lock_irq(&conf->device_lock);
6197                         return batch_size;
6198                 }
6199                 release_inactive = true;
6200         }
6201         spin_unlock_irq(&conf->device_lock);
6202
6203         release_inactive_stripe_list(conf, temp_inactive_list,
6204                                      NR_STRIPE_HASH_LOCKS);
6205
6206         r5l_flush_stripe_to_raid(conf->log);
6207         if (release_inactive) {
6208                 spin_lock_irq(&conf->device_lock);
6209                 return 0;
6210         }
6211
6212         for (i = 0; i < batch_size; i++)
6213                 handle_stripe(batch[i]);
6214         log_write_stripe_run(conf);
6215
6216         cond_resched();
6217
6218         spin_lock_irq(&conf->device_lock);
6219         for (i = 0; i < batch_size; i++) {
6220                 hash = batch[i]->hash_lock_index;
6221                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6222         }
6223         return batch_size;
6224 }
6225
6226 static void raid5_do_work(struct work_struct *work)
6227 {
6228         struct r5worker *worker = container_of(work, struct r5worker, work);
6229         struct r5worker_group *group = worker->group;
6230         struct r5conf *conf = group->conf;
6231         struct mddev *mddev = conf->mddev;
6232         int group_id = group - conf->worker_groups;
6233         int handled;
6234         struct blk_plug plug;
6235
6236         pr_debug("+++ raid5worker active\n");
6237
6238         blk_start_plug(&plug);
6239         handled = 0;
6240         spin_lock_irq(&conf->device_lock);
6241         while (1) {
6242                 int batch_size, released;
6243
6244                 released = release_stripe_list(conf, worker->temp_inactive_list);
6245
6246                 batch_size = handle_active_stripes(conf, group_id, worker,
6247                                                    worker->temp_inactive_list);
6248                 worker->working = false;
6249                 if (!batch_size && !released)
6250                         break;
6251                 handled += batch_size;
6252                 wait_event_lock_irq(mddev->sb_wait,
6253                         !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6254                         conf->device_lock);
6255         }
6256         pr_debug("%d stripes handled\n", handled);
6257
6258         spin_unlock_irq(&conf->device_lock);
6259
6260         flush_deferred_bios(conf);
6261
6262         r5l_flush_stripe_to_raid(conf->log);
6263
6264         async_tx_issue_pending_all();
6265         blk_finish_plug(&plug);
6266
6267         pr_debug("--- raid5worker inactive\n");
6268 }
6269
6270 /*
6271  * This is our raid5 kernel thread.
6272  *
6273  * We scan the hash table for stripes which can be handled now.
6274  * During the scan, completed stripes are saved for us by the interrupt
6275  * handler, so that they will not have to wait for our next wakeup.
6276  */
6277 static void raid5d(struct md_thread *thread)
6278 {
6279         struct mddev *mddev = thread->mddev;
6280         struct r5conf *conf = mddev->private;
6281         int handled;
6282         struct blk_plug plug;
6283
6284         pr_debug("+++ raid5d active\n");
6285
6286         md_check_recovery(mddev);
6287
6288         blk_start_plug(&plug);
6289         handled = 0;
6290         spin_lock_irq(&conf->device_lock);
6291         while (1) {
6292                 struct bio *bio;
6293                 int batch_size, released;
6294                 unsigned int offset;
6295
6296                 released = release_stripe_list(conf, conf->temp_inactive_list);
6297                 if (released)
6298                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
6299
6300                 if (
6301                     !list_empty(&conf->bitmap_list)) {
6302                         /* Now is a good time to flush some bitmap updates */
6303                         conf->seq_flush++;
6304                         spin_unlock_irq(&conf->device_lock);
6305                         md_bitmap_unplug(mddev->bitmap);
6306                         spin_lock_irq(&conf->device_lock);
6307                         conf->seq_write = conf->seq_flush;
6308                         activate_bit_delay(conf, conf->temp_inactive_list);
6309                 }
6310                 raid5_activate_delayed(conf);
6311
6312                 while ((bio = remove_bio_from_retry(conf, &offset))) {
6313                         int ok;
6314                         spin_unlock_irq(&conf->device_lock);
6315                         ok = retry_aligned_read(conf, bio, offset);
6316                         spin_lock_irq(&conf->device_lock);
6317                         if (!ok)
6318                                 break;
6319                         handled++;
6320                 }
6321
6322                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6323                                                    conf->temp_inactive_list);
6324                 if (!batch_size && !released)
6325                         break;
6326                 handled += batch_size;
6327
6328                 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6329                         spin_unlock_irq(&conf->device_lock);
6330                         md_check_recovery(mddev);
6331                         spin_lock_irq(&conf->device_lock);
6332                 }
6333         }
6334         pr_debug("%d stripes handled\n", handled);
6335
6336         spin_unlock_irq(&conf->device_lock);
6337         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6338             mutex_trylock(&conf->cache_size_mutex)) {
6339                 grow_one_stripe(conf, __GFP_NOWARN);
6340                 /* Set flag even if allocation failed.  This helps
6341                  * slow down allocation requests when mem is short
6342                  */
6343                 set_bit(R5_DID_ALLOC, &conf->cache_state);
6344                 mutex_unlock(&conf->cache_size_mutex);
6345         }
6346
6347         flush_deferred_bios(conf);
6348
6349         r5l_flush_stripe_to_raid(conf->log);
6350
6351         async_tx_issue_pending_all();
6352         blk_finish_plug(&plug);
6353
6354         pr_debug("--- raid5d inactive\n");
6355 }
6356
6357 static ssize_t
6358 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6359 {
6360         struct r5conf *conf;
6361         int ret = 0;
6362         spin_lock(&mddev->lock);
6363         conf = mddev->private;
6364         if (conf)
6365                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6366         spin_unlock(&mddev->lock);
6367         return ret;
6368 }
6369
6370 int
6371 raid5_set_cache_size(struct mddev *mddev, int size)
6372 {
6373         int result = 0;
6374         struct r5conf *conf = mddev->private;
6375
6376         if (size <= 16 || size > 32768)
6377                 return -EINVAL;
6378
6379         conf->min_nr_stripes = size;
6380         mutex_lock(&conf->cache_size_mutex);
6381         while (size < conf->max_nr_stripes &&
6382                drop_one_stripe(conf))
6383                 ;
6384         mutex_unlock(&conf->cache_size_mutex);
6385
6386         md_allow_write(mddev);
6387
6388         mutex_lock(&conf->cache_size_mutex);
6389         while (size > conf->max_nr_stripes)
6390                 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6391                         conf->min_nr_stripes = conf->max_nr_stripes;
6392                         result = -ENOMEM;
6393                         break;
6394                 }
6395         mutex_unlock(&conf->cache_size_mutex);
6396
6397         return result;
6398 }
6399 EXPORT_SYMBOL(raid5_set_cache_size);
6400
6401 static ssize_t
6402 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6403 {
6404         struct r5conf *conf;
6405         unsigned long new;
6406         int err;
6407
6408         if (len >= PAGE_SIZE)
6409                 return -EINVAL;
6410         if (kstrtoul(page, 10, &new))
6411                 return -EINVAL;
6412         err = mddev_lock(mddev);
6413         if (err)
6414                 return err;
6415         conf = mddev->private;
6416         if (!conf)
6417                 err = -ENODEV;
6418         else
6419                 err = raid5_set_cache_size(mddev, new);
6420         mddev_unlock(mddev);
6421
6422         return err ?: len;
6423 }
6424
6425 static struct md_sysfs_entry
6426 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6427                                 raid5_show_stripe_cache_size,
6428                                 raid5_store_stripe_cache_size);
6429
6430 static ssize_t
6431 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6432 {
6433         struct r5conf *conf = mddev->private;
6434         if (conf)
6435                 return sprintf(page, "%d\n", conf->rmw_level);
6436         else
6437                 return 0;
6438 }
6439
6440 static ssize_t
6441 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6442 {
6443         struct r5conf *conf = mddev->private;
6444         unsigned long new;
6445
6446         if (!conf)
6447                 return -ENODEV;
6448
6449         if (len >= PAGE_SIZE)
6450                 return -EINVAL;
6451
6452         if (kstrtoul(page, 10, &new))
6453                 return -EINVAL;
6454
6455         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6456                 return -EINVAL;
6457
6458         if (new != PARITY_DISABLE_RMW &&
6459             new != PARITY_ENABLE_RMW &&
6460             new != PARITY_PREFER_RMW)
6461                 return -EINVAL;
6462
6463         conf->rmw_level = new;
6464         return len;
6465 }
6466
6467 static struct md_sysfs_entry
6468 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6469                          raid5_show_rmw_level,
6470                          raid5_store_rmw_level);
6471
6472
6473 static ssize_t
6474 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6475 {
6476         struct r5conf *conf;
6477         int ret = 0;
6478         spin_lock(&mddev->lock);
6479         conf = mddev->private;
6480         if (conf)
6481                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6482         spin_unlock(&mddev->lock);
6483         return ret;
6484 }
6485
6486 static ssize_t
6487 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6488 {
6489         struct r5conf *conf;
6490         unsigned long new;
6491         int err;
6492
6493         if (len >= PAGE_SIZE)
6494                 return -EINVAL;
6495         if (kstrtoul(page, 10, &new))
6496                 return -EINVAL;
6497
6498         err = mddev_lock(mddev);
6499         if (err)
6500                 return err;
6501         conf = mddev->private;
6502         if (!conf)
6503                 err = -ENODEV;
6504         else if (new > conf->min_nr_stripes)
6505                 err = -EINVAL;
6506         else
6507                 conf->bypass_threshold = new;
6508         mddev_unlock(mddev);
6509         return err ?: len;
6510 }
6511
6512 static struct md_sysfs_entry
6513 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6514                                         S_IRUGO | S_IWUSR,
6515                                         raid5_show_preread_threshold,
6516                                         raid5_store_preread_threshold);
6517
6518 static ssize_t
6519 raid5_show_skip_copy(struct mddev *mddev, char *page)
6520 {
6521         struct r5conf *conf;
6522         int ret = 0;
6523         spin_lock(&mddev->lock);
6524         conf = mddev->private;
6525         if (conf)
6526                 ret = sprintf(page, "%d\n", conf->skip_copy);
6527         spin_unlock(&mddev->lock);
6528         return ret;
6529 }
6530
6531 static ssize_t
6532 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6533 {
6534         struct r5conf *conf;
6535         unsigned long new;
6536         int err;
6537
6538         if (len >= PAGE_SIZE)
6539                 return -EINVAL;
6540         if (kstrtoul(page, 10, &new))
6541                 return -EINVAL;
6542         new = !!new;
6543
6544         err = mddev_lock(mddev);
6545         if (err)
6546                 return err;
6547         conf = mddev->private;
6548         if (!conf)
6549                 err = -ENODEV;
6550         else if (new != conf->skip_copy) {
6551                 mddev_suspend(mddev);
6552                 conf->skip_copy = new;
6553                 if (new)
6554                         mddev->queue->backing_dev_info->capabilities |=
6555                                 BDI_CAP_STABLE_WRITES;
6556                 else
6557                         mddev->queue->backing_dev_info->capabilities &=
6558                                 ~BDI_CAP_STABLE_WRITES;
6559                 mddev_resume(mddev);
6560         }
6561         mddev_unlock(mddev);
6562         return err ?: len;
6563 }
6564
6565 static struct md_sysfs_entry
6566 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6567                                         raid5_show_skip_copy,
6568                                         raid5_store_skip_copy);
6569
6570 static ssize_t
6571 stripe_cache_active_show(struct mddev *mddev, char *page)
6572 {
6573         struct r5conf *conf = mddev->private;
6574         if (conf)
6575                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6576         else
6577                 return 0;
6578 }
6579
6580 static struct md_sysfs_entry
6581 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6582
6583 static ssize_t
6584 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6585 {
6586         struct r5conf *conf;
6587         int ret = 0;
6588         spin_lock(&mddev->lock);
6589         conf = mddev->private;
6590         if (conf)
6591                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6592         spin_unlock(&mddev->lock);
6593         return ret;
6594 }
6595
6596 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6597                                int *group_cnt,
6598                                int *worker_cnt_per_group,
6599                                struct r5worker_group **worker_groups);
6600 static ssize_t
6601 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6602 {
6603         struct r5conf *conf;
6604         unsigned int new;
6605         int err;
6606         struct r5worker_group *new_groups, *old_groups;
6607         int group_cnt, worker_cnt_per_group;
6608
6609         if (len >= PAGE_SIZE)
6610                 return -EINVAL;
6611         if (kstrtouint(page, 10, &new))
6612                 return -EINVAL;
6613         /* 8192 should be big enough */
6614         if (new > 8192)
6615                 return -EINVAL;
6616
6617         err = mddev_lock(mddev);
6618         if (err)
6619                 return err;
6620         conf = mddev->private;
6621         if (!conf)
6622                 err = -ENODEV;
6623         else if (new != conf->worker_cnt_per_group) {
6624                 mddev_suspend(mddev);
6625
6626                 old_groups = conf->worker_groups;
6627                 if (old_groups)
6628                         flush_workqueue(raid5_wq);
6629
6630                 err = alloc_thread_groups(conf, new,
6631                                           &group_cnt, &worker_cnt_per_group,
6632                                           &new_groups);
6633                 if (!err) {
6634                         spin_lock_irq(&conf->device_lock);
6635                         conf->group_cnt = group_cnt;
6636                         conf->worker_cnt_per_group = worker_cnt_per_group;
6637                         conf->worker_groups = new_groups;
6638                         spin_unlock_irq(&conf->device_lock);
6639
6640                         if (old_groups)
6641                                 kfree(old_groups[0].workers);
6642                         kfree(old_groups);
6643                 }
6644                 mddev_resume(mddev);
6645         }
6646         mddev_unlock(mddev);
6647
6648         return err ?: len;
6649 }
6650
6651 static struct md_sysfs_entry
6652 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6653                                 raid5_show_group_thread_cnt,
6654                                 raid5_store_group_thread_cnt);
6655
6656 static struct attribute *raid5_attrs[] =  {
6657         &raid5_stripecache_size.attr,
6658         &raid5_stripecache_active.attr,
6659         &raid5_preread_bypass_threshold.attr,
6660         &raid5_group_thread_cnt.attr,
6661         &raid5_skip_copy.attr,
6662         &raid5_rmw_level.attr,
6663         &r5c_journal_mode.attr,
6664         NULL,
6665 };
6666 static struct attribute_group raid5_attrs_group = {
6667         .name = NULL,
6668         .attrs = raid5_attrs,
6669 };
6670
6671 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6672                                int *group_cnt,
6673                                int *worker_cnt_per_group,
6674                                struct r5worker_group **worker_groups)
6675 {
6676         int i, j, k;
6677         ssize_t size;
6678         struct r5worker *workers;
6679
6680         *worker_cnt_per_group = cnt;
6681         if (cnt == 0) {
6682                 *group_cnt = 0;
6683                 *worker_groups = NULL;
6684                 return 0;
6685         }
6686         *group_cnt = num_possible_nodes();
6687         size = sizeof(struct r5worker) * cnt;
6688         workers = kcalloc(size, *group_cnt, GFP_NOIO);
6689         *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6690                                  GFP_NOIO);
6691         if (!*worker_groups || !workers) {
6692                 kfree(workers);
6693                 kfree(*worker_groups);
6694                 return -ENOMEM;
6695         }
6696
6697         for (i = 0; i < *group_cnt; i++) {
6698                 struct r5worker_group *group;
6699
6700                 group = &(*worker_groups)[i];
6701                 INIT_LIST_HEAD(&group->handle_list);
6702                 INIT_LIST_HEAD(&group->loprio_list);
6703                 group->conf = conf;
6704                 group->workers = workers + i * cnt;
6705
6706                 for (j = 0; j < cnt; j++) {
6707                         struct r5worker *worker = group->workers + j;
6708                         worker->group = group;
6709                         INIT_WORK(&worker->work, raid5_do_work);
6710
6711                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6712                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6713                 }
6714         }
6715
6716         return 0;
6717 }
6718
6719 static void free_thread_groups(struct r5conf *conf)
6720 {
6721         if (conf->worker_groups)
6722                 kfree(conf->worker_groups[0].workers);
6723         kfree(conf->worker_groups);
6724         conf->worker_groups = NULL;
6725 }
6726
6727 static sector_t
6728 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6729 {
6730         struct r5conf *conf = mddev->private;
6731
6732         if (!sectors)
6733                 sectors = mddev->dev_sectors;
6734         if (!raid_disks)
6735                 /* size is defined by the smallest of previous and new size */
6736                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6737
6738         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6739         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6740         return sectors * (raid_disks - conf->max_degraded);
6741 }
6742
6743 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6744 {
6745         safe_put_page(percpu->spare_page);
6746         if (percpu->scribble)
6747                 flex_array_free(percpu->scribble);
6748         percpu->spare_page = NULL;
6749         percpu->scribble = NULL;
6750 }
6751
6752 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6753 {
6754         if (conf->level == 6 && !percpu->spare_page)
6755                 percpu->spare_page = alloc_page(GFP_KERNEL);
6756         if (!percpu->scribble)
6757                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6758                                                       conf->previous_raid_disks),
6759                                                   max(conf->chunk_sectors,
6760                                                       conf->prev_chunk_sectors)
6761                                                    / STRIPE_SECTORS,
6762                                                   GFP_KERNEL);
6763
6764         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6765                 free_scratch_buffer(conf, percpu);
6766                 return -ENOMEM;
6767         }
6768
6769         return 0;
6770 }
6771
6772 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6773 {
6774         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6775
6776         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6777         return 0;
6778 }
6779
6780 static void raid5_free_percpu(struct r5conf *conf)
6781 {
6782         if (!conf->percpu)
6783                 return;
6784
6785         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6786         free_percpu(conf->percpu);
6787 }
6788
6789 static void free_conf(struct r5conf *conf)
6790 {
6791         int i;
6792
6793         log_exit(conf);
6794
6795         unregister_shrinker(&conf->shrinker);
6796         free_thread_groups(conf);
6797         shrink_stripes(conf);
6798         raid5_free_percpu(conf);
6799         for (i = 0; i < conf->pool_size; i++)
6800                 if (conf->disks[i].extra_page)
6801                         put_page(conf->disks[i].extra_page);
6802         kfree(conf->disks);
6803         bioset_exit(&conf->bio_split);
6804         kfree(conf->stripe_hashtbl);
6805         kfree(conf->pending_data);
6806         kfree(conf);
6807 }
6808
6809 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6810 {
6811         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6812         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6813
6814         if (alloc_scratch_buffer(conf, percpu)) {
6815                 pr_warn("%s: failed memory allocation for cpu%u\n",
6816                         __func__, cpu);
6817                 return -ENOMEM;
6818         }
6819         return 0;
6820 }
6821
6822 static int raid5_alloc_percpu(struct r5conf *conf)
6823 {
6824         int err = 0;
6825
6826         conf->percpu = alloc_percpu(struct raid5_percpu);
6827         if (!conf->percpu)
6828                 return -ENOMEM;
6829
6830         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6831         if (!err) {
6832                 conf->scribble_disks = max(conf->raid_disks,
6833                         conf->previous_raid_disks);
6834                 conf->scribble_sectors = max(conf->chunk_sectors,
6835                         conf->prev_chunk_sectors);
6836         }
6837         return err;
6838 }
6839
6840 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6841                                       struct shrink_control *sc)
6842 {
6843         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6844         unsigned long ret = SHRINK_STOP;
6845
6846         if (mutex_trylock(&conf->cache_size_mutex)) {
6847                 ret= 0;
6848                 while (ret < sc->nr_to_scan &&
6849                        conf->max_nr_stripes > conf->min_nr_stripes) {
6850                         if (drop_one_stripe(conf) == 0) {
6851                                 ret = SHRINK_STOP;
6852                                 break;
6853                         }
6854                         ret++;
6855                 }
6856                 mutex_unlock(&conf->cache_size_mutex);
6857         }
6858         return ret;
6859 }
6860
6861 static unsigned long raid5_cache_count(struct shrinker *shrink,
6862                                        struct shrink_control *sc)
6863 {
6864         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6865
6866         if (conf->max_nr_stripes < conf->min_nr_stripes)
6867                 /* unlikely, but not impossible */
6868                 return 0;
6869         return conf->max_nr_stripes - conf->min_nr_stripes;
6870 }
6871
6872 static struct r5conf *setup_conf(struct mddev *mddev)
6873 {
6874         struct r5conf *conf;
6875         int raid_disk, memory, max_disks;
6876         struct md_rdev *rdev;
6877         struct disk_info *disk;
6878         char pers_name[6];
6879         int i;
6880         int group_cnt, worker_cnt_per_group;
6881         struct r5worker_group *new_group;
6882         int ret;
6883
6884         if (mddev->new_level != 5
6885             && mddev->new_level != 4
6886             && mddev->new_level != 6) {
6887                 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6888                         mdname(mddev), mddev->new_level);
6889                 return ERR_PTR(-EIO);
6890         }
6891         if ((mddev->new_level == 5
6892              && !algorithm_valid_raid5(mddev->new_layout)) ||
6893             (mddev->new_level == 6
6894              && !algorithm_valid_raid6(mddev->new_layout))) {
6895                 pr_warn("md/raid:%s: layout %d not supported\n",
6896                         mdname(mddev), mddev->new_layout);
6897                 return ERR_PTR(-EIO);
6898         }
6899         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6900                 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6901                         mdname(mddev), mddev->raid_disks);
6902                 return ERR_PTR(-EINVAL);
6903         }
6904
6905         if (!mddev->new_chunk_sectors ||
6906             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6907             !is_power_of_2(mddev->new_chunk_sectors)) {
6908                 pr_warn("md/raid:%s: invalid chunk size %d\n",
6909                         mdname(mddev), mddev->new_chunk_sectors << 9);
6910                 return ERR_PTR(-EINVAL);
6911         }
6912
6913         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6914         if (conf == NULL)
6915                 goto abort;
6916         INIT_LIST_HEAD(&conf->free_list);
6917         INIT_LIST_HEAD(&conf->pending_list);
6918         conf->pending_data = kcalloc(PENDING_IO_MAX,
6919                                      sizeof(struct r5pending_data),
6920                                      GFP_KERNEL);
6921         if (!conf->pending_data)
6922                 goto abort;
6923         for (i = 0; i < PENDING_IO_MAX; i++)
6924                 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6925         /* Don't enable multi-threading by default*/
6926         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6927                                  &new_group)) {
6928                 conf->group_cnt = group_cnt;
6929                 conf->worker_cnt_per_group = worker_cnt_per_group;
6930                 conf->worker_groups = new_group;
6931         } else
6932                 goto abort;
6933         spin_lock_init(&conf->device_lock);
6934         seqcount_init(&conf->gen_lock);
6935         mutex_init(&conf->cache_size_mutex);
6936         init_waitqueue_head(&conf->wait_for_quiescent);
6937         init_waitqueue_head(&conf->wait_for_stripe);
6938         init_waitqueue_head(&conf->wait_for_overlap);
6939         INIT_LIST_HEAD(&conf->handle_list);
6940         INIT_LIST_HEAD(&conf->loprio_list);
6941         INIT_LIST_HEAD(&conf->hold_list);
6942         INIT_LIST_HEAD(&conf->delayed_list);
6943         INIT_LIST_HEAD(&conf->bitmap_list);
6944         init_llist_head(&conf->released_stripes);
6945         atomic_set(&conf->active_stripes, 0);
6946         atomic_set(&conf->preread_active_stripes, 0);
6947         atomic_set(&conf->active_aligned_reads, 0);
6948         spin_lock_init(&conf->pending_bios_lock);
6949         conf->batch_bio_dispatch = true;
6950         rdev_for_each(rdev, mddev) {
6951                 if (test_bit(Journal, &rdev->flags))
6952                         continue;
6953                 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6954                         conf->batch_bio_dispatch = false;
6955                         break;
6956                 }
6957         }
6958
6959         conf->bypass_threshold = BYPASS_THRESHOLD;
6960         conf->recovery_disabled = mddev->recovery_disabled - 1;
6961
6962         conf->raid_disks = mddev->raid_disks;
6963         if (mddev->reshape_position == MaxSector)
6964                 conf->previous_raid_disks = mddev->raid_disks;
6965         else
6966                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6967         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6968
6969         conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6970                               GFP_KERNEL);
6971
6972         if (!conf->disks)
6973                 goto abort;
6974
6975         for (i = 0; i < max_disks; i++) {
6976                 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6977                 if (!conf->disks[i].extra_page)
6978                         goto abort;
6979         }
6980
6981         ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6982         if (ret)
6983                 goto abort;
6984         conf->mddev = mddev;
6985
6986         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6987                 goto abort;
6988
6989         /* We init hash_locks[0] separately to that it can be used
6990          * as the reference lock in the spin_lock_nest_lock() call
6991          * in lock_all_device_hash_locks_irq in order to convince
6992          * lockdep that we know what we are doing.
6993          */
6994         spin_lock_init(conf->hash_locks);
6995         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6996                 spin_lock_init(conf->hash_locks + i);
6997
6998         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6999                 INIT_LIST_HEAD(conf->inactive_list + i);
7000
7001         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7002                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7003
7004         atomic_set(&conf->r5c_cached_full_stripes, 0);
7005         INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7006         atomic_set(&conf->r5c_cached_partial_stripes, 0);
7007         INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7008         atomic_set(&conf->r5c_flushing_full_stripes, 0);
7009         atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7010
7011         conf->level = mddev->new_level;
7012         conf->chunk_sectors = mddev->new_chunk_sectors;
7013         if (raid5_alloc_percpu(conf) != 0)
7014                 goto abort;
7015
7016         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7017
7018         rdev_for_each(rdev, mddev) {
7019                 raid_disk = rdev->raid_disk;
7020                 if (raid_disk >= max_disks
7021                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7022                         continue;
7023                 disk = conf->disks + raid_disk;
7024
7025                 if (test_bit(Replacement, &rdev->flags)) {
7026                         if (disk->replacement)
7027                                 goto abort;
7028                         disk->replacement = rdev;
7029                 } else {
7030                         if (disk->rdev)
7031                                 goto abort;
7032                         disk->rdev = rdev;
7033                 }
7034
7035                 if (test_bit(In_sync, &rdev->flags)) {
7036                         char b[BDEVNAME_SIZE];
7037                         pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7038                                 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7039                 } else if (rdev->saved_raid_disk != raid_disk)
7040                         /* Cannot rely on bitmap to complete recovery */
7041                         conf->fullsync = 1;
7042         }
7043
7044         conf->level = mddev->new_level;
7045         if (conf->level == 6) {
7046                 conf->max_degraded = 2;
7047                 if (raid6_call.xor_syndrome)
7048                         conf->rmw_level = PARITY_ENABLE_RMW;
7049                 else
7050                         conf->rmw_level = PARITY_DISABLE_RMW;
7051         } else {
7052                 conf->max_degraded = 1;
7053                 conf->rmw_level = PARITY_ENABLE_RMW;
7054         }
7055         conf->algorithm = mddev->new_layout;
7056         conf->reshape_progress = mddev->reshape_position;
7057         if (conf->reshape_progress != MaxSector) {
7058                 conf->prev_chunk_sectors = mddev->chunk_sectors;
7059                 conf->prev_algo = mddev->layout;
7060         } else {
7061                 conf->prev_chunk_sectors = conf->chunk_sectors;
7062                 conf->prev_algo = conf->algorithm;
7063         }
7064
7065         conf->min_nr_stripes = NR_STRIPES;
7066         if (mddev->reshape_position != MaxSector) {
7067                 int stripes = max_t(int,
7068                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7069                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7070                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7071                 if (conf->min_nr_stripes != NR_STRIPES)
7072                         pr_info("md/raid:%s: force stripe size %d for reshape\n",
7073                                 mdname(mddev), conf->min_nr_stripes);
7074         }
7075         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7076                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7077         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7078         if (grow_stripes(conf, conf->min_nr_stripes)) {
7079                 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7080                         mdname(mddev), memory);
7081                 goto abort;
7082         } else
7083                 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7084         /*
7085          * Losing a stripe head costs more than the time to refill it,
7086          * it reduces the queue depth and so can hurt throughput.
7087          * So set it rather large, scaled by number of devices.
7088          */
7089         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7090         conf->shrinker.scan_objects = raid5_cache_scan;
7091         conf->shrinker.count_objects = raid5_cache_count;
7092         conf->shrinker.batch = 128;
7093         conf->shrinker.flags = 0;
7094         if (register_shrinker(&conf->shrinker)) {
7095                 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7096                         mdname(mddev));
7097                 goto abort;
7098         }
7099
7100         sprintf(pers_name, "raid%d", mddev->new_level);
7101         conf->thread = md_register_thread(raid5d, mddev, pers_name);
7102         if (!conf->thread) {
7103                 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7104                         mdname(mddev));
7105                 goto abort;
7106         }
7107
7108         return conf;
7109
7110  abort:
7111         if (conf) {
7112                 free_conf(conf);
7113                 return ERR_PTR(-EIO);
7114         } else
7115                 return ERR_PTR(-ENOMEM);
7116 }
7117
7118 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7119 {
7120         switch (algo) {
7121         case ALGORITHM_PARITY_0:
7122                 if (raid_disk < max_degraded)
7123                         return 1;
7124                 break;
7125         case ALGORITHM_PARITY_N:
7126                 if (raid_disk >= raid_disks - max_degraded)
7127                         return 1;
7128                 break;
7129         case ALGORITHM_PARITY_0_6:
7130                 if (raid_disk == 0 ||
7131                     raid_disk == raid_disks - 1)
7132                         return 1;
7133                 break;
7134         case ALGORITHM_LEFT_ASYMMETRIC_6:
7135         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7136         case ALGORITHM_LEFT_SYMMETRIC_6:
7137         case ALGORITHM_RIGHT_SYMMETRIC_6:
7138                 if (raid_disk == raid_disks - 1)
7139                         return 1;
7140         }
7141         return 0;
7142 }
7143
7144 static int raid5_run(struct mddev *mddev)
7145 {
7146         struct r5conf *conf;
7147         int working_disks = 0;
7148         int dirty_parity_disks = 0;
7149         struct md_rdev *rdev;
7150         struct md_rdev *journal_dev = NULL;
7151         sector_t reshape_offset = 0;
7152         int i;
7153         long long min_offset_diff = 0;
7154         int first = 1;
7155
7156         if (mddev_init_writes_pending(mddev) < 0)
7157                 return -ENOMEM;
7158
7159         if (mddev->recovery_cp != MaxSector)
7160                 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7161                           mdname(mddev));
7162
7163         rdev_for_each(rdev, mddev) {
7164                 long long diff;
7165
7166                 if (test_bit(Journal, &rdev->flags)) {
7167                         journal_dev = rdev;
7168                         continue;
7169                 }
7170                 if (rdev->raid_disk < 0)
7171                         continue;
7172                 diff = (rdev->new_data_offset - rdev->data_offset);
7173                 if (first) {
7174                         min_offset_diff = diff;
7175                         first = 0;
7176                 } else if (mddev->reshape_backwards &&
7177                          diff < min_offset_diff)
7178                         min_offset_diff = diff;
7179                 else if (!mddev->reshape_backwards &&
7180                          diff > min_offset_diff)
7181                         min_offset_diff = diff;
7182         }
7183
7184         if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7185             (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7186                 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7187                           mdname(mddev));
7188                 return -EINVAL;
7189         }
7190
7191         if (mddev->reshape_position != MaxSector) {
7192                 /* Check that we can continue the reshape.
7193                  * Difficulties arise if the stripe we would write to
7194                  * next is at or after the stripe we would read from next.
7195                  * For a reshape that changes the number of devices, this
7196                  * is only possible for a very short time, and mdadm makes
7197                  * sure that time appears to have past before assembling
7198                  * the array.  So we fail if that time hasn't passed.
7199                  * For a reshape that keeps the number of devices the same
7200                  * mdadm must be monitoring the reshape can keeping the
7201                  * critical areas read-only and backed up.  It will start
7202                  * the array in read-only mode, so we check for that.
7203                  */
7204                 sector_t here_new, here_old;
7205                 int old_disks;
7206                 int max_degraded = (mddev->level == 6 ? 2 : 1);
7207                 int chunk_sectors;
7208                 int new_data_disks;
7209
7210                 if (journal_dev) {
7211                         pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7212                                 mdname(mddev));
7213                         return -EINVAL;
7214                 }
7215
7216                 if (mddev->new_level != mddev->level) {
7217                         pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7218                                 mdname(mddev));
7219                         return -EINVAL;
7220                 }
7221                 old_disks = mddev->raid_disks - mddev->delta_disks;
7222                 /* reshape_position must be on a new-stripe boundary, and one
7223                  * further up in new geometry must map after here in old
7224                  * geometry.
7225                  * If the chunk sizes are different, then as we perform reshape
7226                  * in units of the largest of the two, reshape_position needs
7227                  * be a multiple of the largest chunk size times new data disks.
7228                  */
7229                 here_new = mddev->reshape_position;
7230                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7231                 new_data_disks = mddev->raid_disks - max_degraded;
7232                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7233                         pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7234                                 mdname(mddev));
7235                         return -EINVAL;
7236                 }
7237                 reshape_offset = here_new * chunk_sectors;
7238                 /* here_new is the stripe we will write to */
7239                 here_old = mddev->reshape_position;
7240                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7241                 /* here_old is the first stripe that we might need to read
7242                  * from */
7243                 if (mddev->delta_disks == 0) {
7244                         /* We cannot be sure it is safe to start an in-place
7245                          * reshape.  It is only safe if user-space is monitoring
7246                          * and taking constant backups.
7247                          * mdadm always starts a situation like this in
7248                          * readonly mode so it can take control before
7249                          * allowing any writes.  So just check for that.
7250                          */
7251                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7252                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
7253                                 /* not really in-place - so OK */;
7254                         else if (mddev->ro == 0) {
7255                                 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7256                                         mdname(mddev));
7257                                 return -EINVAL;
7258                         }
7259                 } else if (mddev->reshape_backwards
7260                     ? (here_new * chunk_sectors + min_offset_diff <=
7261                        here_old * chunk_sectors)
7262                     : (here_new * chunk_sectors >=
7263                        here_old * chunk_sectors + (-min_offset_diff))) {
7264                         /* Reading from the same stripe as writing to - bad */
7265                         pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7266                                 mdname(mddev));
7267                         return -EINVAL;
7268                 }
7269                 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7270                 /* OK, we should be able to continue; */
7271         } else {
7272                 BUG_ON(mddev->level != mddev->new_level);
7273                 BUG_ON(mddev->layout != mddev->new_layout);
7274                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7275                 BUG_ON(mddev->delta_disks != 0);
7276         }
7277
7278         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7279             test_bit(MD_HAS_PPL, &mddev->flags)) {
7280                 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7281                         mdname(mddev));
7282                 clear_bit(MD_HAS_PPL, &mddev->flags);
7283                 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7284         }
7285
7286         if (mddev->private == NULL)
7287                 conf = setup_conf(mddev);
7288         else
7289                 conf = mddev->private;
7290
7291         if (IS_ERR(conf))
7292                 return PTR_ERR(conf);
7293
7294         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7295                 if (!journal_dev) {
7296                         pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7297                                 mdname(mddev));
7298                         mddev->ro = 1;
7299                         set_disk_ro(mddev->gendisk, 1);
7300                 } else if (mddev->recovery_cp == MaxSector)
7301                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7302         }
7303
7304         conf->min_offset_diff = min_offset_diff;
7305         mddev->thread = conf->thread;
7306         conf->thread = NULL;
7307         mddev->private = conf;
7308
7309         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7310              i++) {
7311                 rdev = conf->disks[i].rdev;
7312                 if (!rdev && conf->disks[i].replacement) {
7313                         /* The replacement is all we have yet */
7314                         rdev = conf->disks[i].replacement;
7315                         conf->disks[i].replacement = NULL;
7316                         clear_bit(Replacement, &rdev->flags);
7317                         conf->disks[i].rdev = rdev;
7318                 }
7319                 if (!rdev)
7320                         continue;
7321                 if (conf->disks[i].replacement &&
7322                     conf->reshape_progress != MaxSector) {
7323                         /* replacements and reshape simply do not mix. */
7324                         pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7325                         goto abort;
7326                 }
7327                 if (test_bit(In_sync, &rdev->flags)) {
7328                         working_disks++;
7329                         continue;
7330                 }
7331                 /* This disc is not fully in-sync.  However if it
7332                  * just stored parity (beyond the recovery_offset),
7333                  * when we don't need to be concerned about the
7334                  * array being dirty.
7335                  * When reshape goes 'backwards', we never have
7336                  * partially completed devices, so we only need
7337                  * to worry about reshape going forwards.
7338                  */
7339                 /* Hack because v0.91 doesn't store recovery_offset properly. */
7340                 if (mddev->major_version == 0 &&
7341                     mddev->minor_version > 90)
7342                         rdev->recovery_offset = reshape_offset;
7343
7344                 if (rdev->recovery_offset < reshape_offset) {
7345                         /* We need to check old and new layout */
7346                         if (!only_parity(rdev->raid_disk,
7347                                          conf->algorithm,
7348                                          conf->raid_disks,
7349                                          conf->max_degraded))
7350                                 continue;
7351                 }
7352                 if (!only_parity(rdev->raid_disk,
7353                                  conf->prev_algo,
7354                                  conf->previous_raid_disks,
7355                                  conf->max_degraded))
7356                         continue;
7357                 dirty_parity_disks++;
7358         }
7359
7360         /*
7361          * 0 for a fully functional array, 1 or 2 for a degraded array.
7362          */
7363         mddev->degraded = raid5_calc_degraded(conf);
7364
7365         if (has_failed(conf)) {
7366                 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7367                         mdname(mddev), mddev->degraded, conf->raid_disks);
7368                 goto abort;
7369         }
7370
7371         /* device size must be a multiple of chunk size */
7372         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7373         mddev->resync_max_sectors = mddev->dev_sectors;
7374
7375         if (mddev->degraded > dirty_parity_disks &&
7376             mddev->recovery_cp != MaxSector) {
7377                 if (test_bit(MD_HAS_PPL, &mddev->flags))
7378                         pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7379                                 mdname(mddev));
7380                 else if (mddev->ok_start_degraded)
7381                         pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7382                                 mdname(mddev));
7383                 else {
7384                         pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7385                                 mdname(mddev));
7386                         goto abort;
7387                 }
7388         }
7389
7390         pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7391                 mdname(mddev), conf->level,
7392                 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7393                 mddev->new_layout);
7394
7395         print_raid5_conf(conf);
7396
7397         if (conf->reshape_progress != MaxSector) {
7398                 conf->reshape_safe = conf->reshape_progress;
7399                 atomic_set(&conf->reshape_stripes, 0);
7400                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7401                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7402                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7403                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7404                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7405                                                         "reshape");
7406                 if (!mddev->sync_thread)
7407                         goto abort;
7408         }
7409
7410         /* Ok, everything is just fine now */
7411         if (mddev->to_remove == &raid5_attrs_group)
7412                 mddev->to_remove = NULL;
7413         else if (mddev->kobj.sd &&
7414             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7415                 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7416                         mdname(mddev));
7417         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7418
7419         if (mddev->queue) {
7420                 int chunk_size;
7421                 /* read-ahead size must cover two whole stripes, which
7422                  * is 2 * (datadisks) * chunksize where 'n' is the
7423                  * number of raid devices
7424                  */
7425                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7426                 int stripe = data_disks *
7427                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7428                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7429                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7430
7431                 chunk_size = mddev->chunk_sectors << 9;
7432                 blk_queue_io_min(mddev->queue, chunk_size);
7433                 blk_queue_io_opt(mddev->queue, chunk_size *
7434                                  (conf->raid_disks - conf->max_degraded));
7435                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7436                 /*
7437                  * We can only discard a whole stripe. It doesn't make sense to
7438                  * discard data disk but write parity disk
7439                  */
7440                 stripe = stripe * PAGE_SIZE;
7441                 /* Round up to power of 2, as discard handling
7442                  * currently assumes that */
7443                 while ((stripe-1) & stripe)
7444                         stripe = (stripe | (stripe-1)) + 1;
7445                 mddev->queue->limits.discard_alignment = stripe;
7446                 mddev->queue->limits.discard_granularity = stripe;
7447
7448                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7449                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7450
7451                 rdev_for_each(rdev, mddev) {
7452                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7453                                           rdev->data_offset << 9);
7454                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7455                                           rdev->new_data_offset << 9);
7456                 }
7457
7458                 /*
7459                  * zeroing is required, otherwise data
7460                  * could be lost. Consider a scenario: discard a stripe
7461                  * (the stripe could be inconsistent if
7462                  * discard_zeroes_data is 0); write one disk of the
7463                  * stripe (the stripe could be inconsistent again
7464                  * depending on which disks are used to calculate
7465                  * parity); the disk is broken; The stripe data of this
7466                  * disk is lost.
7467                  *
7468                  * We only allow DISCARD if the sysadmin has confirmed that
7469                  * only safe devices are in use by setting a module parameter.
7470                  * A better idea might be to turn DISCARD into WRITE_ZEROES
7471                  * requests, as that is required to be safe.
7472                  */
7473                 if (devices_handle_discard_safely &&
7474                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7475                     mddev->queue->limits.discard_granularity >= stripe)
7476                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7477                                                 mddev->queue);
7478                 else
7479                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7480                                                 mddev->queue);
7481
7482                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7483         }
7484
7485         if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7486                 goto abort;
7487
7488         return 0;
7489 abort:
7490         md_unregister_thread(&mddev->thread);
7491         print_raid5_conf(conf);
7492         free_conf(conf);
7493         mddev->private = NULL;
7494         pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7495         return -EIO;
7496 }
7497
7498 static void raid5_free(struct mddev *mddev, void *priv)
7499 {
7500         struct r5conf *conf = priv;
7501
7502         free_conf(conf);
7503         mddev->to_remove = &raid5_attrs_group;
7504 }
7505
7506 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7507 {
7508         struct r5conf *conf = mddev->private;
7509         int i;
7510
7511         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7512                 conf->chunk_sectors / 2, mddev->layout);
7513         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7514         rcu_read_lock();
7515         for (i = 0; i < conf->raid_disks; i++) {
7516                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7517                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7518         }
7519         rcu_read_unlock();
7520         seq_printf (seq, "]");
7521 }
7522
7523 static void print_raid5_conf (struct r5conf *conf)
7524 {
7525         int i;
7526         struct disk_info *tmp;
7527
7528         pr_debug("RAID conf printout:\n");
7529         if (!conf) {
7530                 pr_debug("(conf==NULL)\n");
7531                 return;
7532         }
7533         pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7534                conf->raid_disks,
7535                conf->raid_disks - conf->mddev->degraded);
7536
7537         for (i = 0; i < conf->raid_disks; i++) {
7538                 char b[BDEVNAME_SIZE];
7539                 tmp = conf->disks + i;
7540                 if (tmp->rdev)
7541                         pr_debug(" disk %d, o:%d, dev:%s\n",
7542                                i, !test_bit(Faulty, &tmp->rdev->flags),
7543                                bdevname(tmp->rdev->bdev, b));
7544         }
7545 }
7546
7547 static int raid5_spare_active(struct mddev *mddev)
7548 {
7549         int i;
7550         struct r5conf *conf = mddev->private;
7551         struct disk_info *tmp;
7552         int count = 0;
7553         unsigned long flags;
7554
7555         for (i = 0; i < conf->raid_disks; i++) {
7556                 tmp = conf->disks + i;
7557                 if (tmp->replacement
7558                     && tmp->replacement->recovery_offset == MaxSector
7559                     && !test_bit(Faulty, &tmp->replacement->flags)
7560                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7561                         /* Replacement has just become active. */
7562                         if (!tmp->rdev
7563                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7564                                 count++;
7565                         if (tmp->rdev) {
7566                                 /* Replaced device not technically faulty,
7567                                  * but we need to be sure it gets removed
7568                                  * and never re-added.
7569                                  */
7570                                 set_bit(Faulty, &tmp->rdev->flags);
7571                                 sysfs_notify_dirent_safe(
7572                                         tmp->rdev->sysfs_state);
7573                         }
7574                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7575                 } else if (tmp->rdev
7576                     && tmp->rdev->recovery_offset == MaxSector
7577                     && !test_bit(Faulty, &tmp->rdev->flags)
7578                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7579                         count++;
7580                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7581                 }
7582         }
7583         spin_lock_irqsave(&conf->device_lock, flags);
7584         mddev->degraded = raid5_calc_degraded(conf);
7585         spin_unlock_irqrestore(&conf->device_lock, flags);
7586         print_raid5_conf(conf);
7587         return count;
7588 }
7589
7590 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7591 {
7592         struct r5conf *conf = mddev->private;
7593         int err = 0;
7594         int number = rdev->raid_disk;
7595         struct md_rdev **rdevp;
7596         struct disk_info *p = conf->disks + number;
7597
7598         print_raid5_conf(conf);
7599         if (test_bit(Journal, &rdev->flags) && conf->log) {
7600                 /*
7601                  * we can't wait pending write here, as this is called in
7602                  * raid5d, wait will deadlock.
7603                  * neilb: there is no locking about new writes here,
7604                  * so this cannot be safe.
7605                  */
7606                 if (atomic_read(&conf->active_stripes) ||
7607                     atomic_read(&conf->r5c_cached_full_stripes) ||
7608                     atomic_read(&conf->r5c_cached_partial_stripes)) {
7609                         return -EBUSY;
7610                 }
7611                 log_exit(conf);
7612                 return 0;
7613         }
7614         if (rdev == p->rdev)
7615                 rdevp = &p->rdev;
7616         else if (rdev == p->replacement)
7617                 rdevp = &p->replacement;
7618         else
7619                 return 0;
7620
7621         if (number >= conf->raid_disks &&
7622             conf->reshape_progress == MaxSector)
7623                 clear_bit(In_sync, &rdev->flags);
7624
7625         if (test_bit(In_sync, &rdev->flags) ||
7626             atomic_read(&rdev->nr_pending)) {
7627                 err = -EBUSY;
7628                 goto abort;
7629         }
7630         /* Only remove non-faulty devices if recovery
7631          * isn't possible.
7632          */
7633         if (!test_bit(Faulty, &rdev->flags) &&
7634             mddev->recovery_disabled != conf->recovery_disabled &&
7635             !has_failed(conf) &&
7636             (!p->replacement || p->replacement == rdev) &&
7637             number < conf->raid_disks) {
7638                 err = -EBUSY;
7639                 goto abort;
7640         }
7641         *rdevp = NULL;
7642         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7643                 synchronize_rcu();
7644                 if (atomic_read(&rdev->nr_pending)) {
7645                         /* lost the race, try later */
7646                         err = -EBUSY;
7647                         *rdevp = rdev;
7648                 }
7649         }
7650         if (!err) {
7651                 err = log_modify(conf, rdev, false);
7652                 if (err)
7653                         goto abort;
7654         }
7655         if (p->replacement) {
7656                 /* We must have just cleared 'rdev' */
7657                 p->rdev = p->replacement;
7658                 clear_bit(Replacement, &p->replacement->flags);
7659                 smp_mb(); /* Make sure other CPUs may see both as identical
7660                            * but will never see neither - if they are careful
7661                            */
7662                 p->replacement = NULL;
7663
7664                 if (!err)
7665                         err = log_modify(conf, p->rdev, true);
7666         }
7667
7668         clear_bit(WantReplacement, &rdev->flags);
7669 abort:
7670
7671         print_raid5_conf(conf);
7672         return err;
7673 }
7674
7675 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7676 {
7677         struct r5conf *conf = mddev->private;
7678         int ret, err = -EEXIST;
7679         int disk;
7680         struct disk_info *p;
7681         int first = 0;
7682         int last = conf->raid_disks - 1;
7683
7684         if (test_bit(Journal, &rdev->flags)) {
7685                 if (conf->log)
7686                         return -EBUSY;
7687
7688                 rdev->raid_disk = 0;
7689                 /*
7690                  * The array is in readonly mode if journal is missing, so no
7691                  * write requests running. We should be safe
7692                  */
7693                 ret = log_init(conf, rdev, false);
7694                 if (ret)
7695                         return ret;
7696
7697                 ret = r5l_start(conf->log);
7698                 if (ret)
7699                         return ret;
7700
7701                 return 0;
7702         }
7703         if (mddev->recovery_disabled == conf->recovery_disabled)
7704                 return -EBUSY;
7705
7706         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7707                 /* no point adding a device */
7708                 return -EINVAL;
7709
7710         if (rdev->raid_disk >= 0)
7711                 first = last = rdev->raid_disk;
7712
7713         /*
7714          * find the disk ... but prefer rdev->saved_raid_disk
7715          * if possible.
7716          */
7717         if (rdev->saved_raid_disk >= 0 &&
7718             rdev->saved_raid_disk >= first &&
7719             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7720                 first = rdev->saved_raid_disk;
7721
7722         for (disk = first; disk <= last; disk++) {
7723                 p = conf->disks + disk;
7724                 if (p->rdev == NULL) {
7725                         clear_bit(In_sync, &rdev->flags);
7726                         rdev->raid_disk = disk;
7727                         if (rdev->saved_raid_disk != disk)
7728                                 conf->fullsync = 1;
7729                         rcu_assign_pointer(p->rdev, rdev);
7730
7731                         err = log_modify(conf, rdev, true);
7732
7733                         goto out;
7734                 }
7735         }
7736         for (disk = first; disk <= last; disk++) {
7737                 p = conf->disks + disk;
7738                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7739                     p->replacement == NULL) {
7740                         clear_bit(In_sync, &rdev->flags);
7741                         set_bit(Replacement, &rdev->flags);
7742                         rdev->raid_disk = disk;
7743                         err = 0;
7744                         conf->fullsync = 1;
7745                         rcu_assign_pointer(p->replacement, rdev);
7746                         break;
7747                 }
7748         }
7749 out:
7750         print_raid5_conf(conf);
7751         return err;
7752 }
7753
7754 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7755 {
7756         /* no resync is happening, and there is enough space
7757          * on all devices, so we can resize.
7758          * We need to make sure resync covers any new space.
7759          * If the array is shrinking we should possibly wait until
7760          * any io in the removed space completes, but it hardly seems
7761          * worth it.
7762          */
7763         sector_t newsize;
7764         struct r5conf *conf = mddev->private;
7765
7766         if (raid5_has_log(conf) || raid5_has_ppl(conf))
7767                 return -EINVAL;
7768         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7769         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7770         if (mddev->external_size &&
7771             mddev->array_sectors > newsize)
7772                 return -EINVAL;
7773         if (mddev->bitmap) {
7774                 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7775                 if (ret)
7776                         return ret;
7777         }
7778         md_set_array_sectors(mddev, newsize);
7779         if (sectors > mddev->dev_sectors &&
7780             mddev->recovery_cp > mddev->dev_sectors) {
7781                 mddev->recovery_cp = mddev->dev_sectors;
7782                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7783         }
7784         mddev->dev_sectors = sectors;
7785         mddev->resync_max_sectors = sectors;
7786         return 0;
7787 }
7788
7789 static int check_stripe_cache(struct mddev *mddev)
7790 {
7791         /* Can only proceed if there are plenty of stripe_heads.
7792          * We need a minimum of one full stripe,, and for sensible progress
7793          * it is best to have about 4 times that.
7794          * If we require 4 times, then the default 256 4K stripe_heads will
7795          * allow for chunk sizes up to 256K, which is probably OK.
7796          * If the chunk size is greater, user-space should request more
7797          * stripe_heads first.
7798          */
7799         struct r5conf *conf = mddev->private;
7800         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7801             > conf->min_nr_stripes ||
7802             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7803             > conf->min_nr_stripes) {
7804                 pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7805                         mdname(mddev),
7806                         ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7807                          / STRIPE_SIZE)*4);
7808                 return 0;
7809         }
7810         return 1;
7811 }
7812
7813 static int check_reshape(struct mddev *mddev)
7814 {
7815         struct r5conf *conf = mddev->private;
7816
7817         if (raid5_has_log(conf) || raid5_has_ppl(conf))
7818                 return -EINVAL;
7819         if (mddev->delta_disks == 0 &&
7820             mddev->new_layout == mddev->layout &&
7821             mddev->new_chunk_sectors == mddev->chunk_sectors)
7822                 return 0; /* nothing to do */
7823         if (has_failed(conf))
7824                 return -EINVAL;
7825         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7826                 /* We might be able to shrink, but the devices must
7827                  * be made bigger first.
7828                  * For raid6, 4 is the minimum size.
7829                  * Otherwise 2 is the minimum
7830                  */
7831                 int min = 2;
7832                 if (mddev->level == 6)
7833                         min = 4;
7834                 if (mddev->raid_disks + mddev->delta_disks < min)
7835                         return -EINVAL;
7836         }
7837
7838         if (!check_stripe_cache(mddev))
7839                 return -ENOSPC;
7840
7841         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7842             mddev->delta_disks > 0)
7843                 if (resize_chunks(conf,
7844                                   conf->previous_raid_disks
7845                                   + max(0, mddev->delta_disks),
7846                                   max(mddev->new_chunk_sectors,
7847                                       mddev->chunk_sectors)
7848                             ) < 0)
7849                         return -ENOMEM;
7850
7851         if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7852                 return 0; /* never bother to shrink */
7853         return resize_stripes(conf, (conf->previous_raid_disks
7854                                      + mddev->delta_disks));
7855 }
7856
7857 static int raid5_start_reshape(struct mddev *mddev)
7858 {
7859         struct r5conf *conf = mddev->private;
7860         struct md_rdev *rdev;
7861         int spares = 0;
7862         unsigned long flags;
7863
7864         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7865                 return -EBUSY;
7866
7867         if (!check_stripe_cache(mddev))
7868                 return -ENOSPC;
7869
7870         if (has_failed(conf))
7871                 return -EINVAL;
7872
7873         rdev_for_each(rdev, mddev) {
7874                 if (!test_bit(In_sync, &rdev->flags)
7875                     && !test_bit(Faulty, &rdev->flags))
7876                         spares++;
7877         }
7878
7879         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7880                 /* Not enough devices even to make a degraded array
7881                  * of that size
7882                  */
7883                 return -EINVAL;
7884
7885         /* Refuse to reduce size of the array.  Any reductions in
7886          * array size must be through explicit setting of array_size
7887          * attribute.
7888          */
7889         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7890             < mddev->array_sectors) {
7891                 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7892                         mdname(mddev));
7893                 return -EINVAL;
7894         }
7895
7896         atomic_set(&conf->reshape_stripes, 0);
7897         spin_lock_irq(&conf->device_lock);
7898         write_seqcount_begin(&conf->gen_lock);
7899         conf->previous_raid_disks = conf->raid_disks;
7900         conf->raid_disks += mddev->delta_disks;
7901         conf->prev_chunk_sectors = conf->chunk_sectors;
7902         conf->chunk_sectors = mddev->new_chunk_sectors;
7903         conf->prev_algo = conf->algorithm;
7904         conf->algorithm = mddev->new_layout;
7905         conf->generation++;
7906         /* Code that selects data_offset needs to see the generation update
7907          * if reshape_progress has been set - so a memory barrier needed.
7908          */
7909         smp_mb();
7910         if (mddev->reshape_backwards)
7911                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7912         else
7913                 conf->reshape_progress = 0;
7914         conf->reshape_safe = conf->reshape_progress;
7915         write_seqcount_end(&conf->gen_lock);
7916         spin_unlock_irq(&conf->device_lock);
7917
7918         /* Now make sure any requests that proceeded on the assumption
7919          * the reshape wasn't running - like Discard or Read - have
7920          * completed.
7921          */
7922         mddev_suspend(mddev);
7923         mddev_resume(mddev);
7924
7925         /* Add some new drives, as many as will fit.
7926          * We know there are enough to make the newly sized array work.
7927          * Don't add devices if we are reducing the number of
7928          * devices in the array.  This is because it is not possible
7929          * to correctly record the "partially reconstructed" state of
7930          * such devices during the reshape and confusion could result.
7931          */
7932         if (mddev->delta_disks >= 0) {
7933                 rdev_for_each(rdev, mddev)
7934                         if (rdev->raid_disk < 0 &&
7935                             !test_bit(Faulty, &rdev->flags)) {
7936                                 if (raid5_add_disk(mddev, rdev) == 0) {
7937                                         if (rdev->raid_disk
7938                                             >= conf->previous_raid_disks)
7939                                                 set_bit(In_sync, &rdev->flags);
7940                                         else
7941                                                 rdev->recovery_offset = 0;
7942
7943                                         if (sysfs_link_rdev(mddev, rdev))
7944                                                 /* Failure here is OK */;
7945                                 }
7946                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7947                                    && !test_bit(Faulty, &rdev->flags)) {
7948                                 /* This is a spare that was manually added */
7949                                 set_bit(In_sync, &rdev->flags);
7950                         }
7951
7952                 /* When a reshape changes the number of devices,
7953                  * ->degraded is measured against the larger of the
7954                  * pre and post number of devices.
7955                  */
7956                 spin_lock_irqsave(&conf->device_lock, flags);
7957                 mddev->degraded = raid5_calc_degraded(conf);
7958                 spin_unlock_irqrestore(&conf->device_lock, flags);
7959         }
7960         mddev->raid_disks = conf->raid_disks;
7961         mddev->reshape_position = conf->reshape_progress;
7962         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7963
7964         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7965         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7966         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7967         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7968         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7969         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7970                                                 "reshape");
7971         if (!mddev->sync_thread) {
7972                 mddev->recovery = 0;
7973                 spin_lock_irq(&conf->device_lock);
7974                 write_seqcount_begin(&conf->gen_lock);
7975                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7976                 mddev->new_chunk_sectors =
7977                         conf->chunk_sectors = conf->prev_chunk_sectors;
7978                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7979                 rdev_for_each(rdev, mddev)
7980                         rdev->new_data_offset = rdev->data_offset;
7981                 smp_wmb();
7982                 conf->generation --;
7983                 conf->reshape_progress = MaxSector;
7984                 mddev->reshape_position = MaxSector;
7985                 write_seqcount_end(&conf->gen_lock);
7986                 spin_unlock_irq(&conf->device_lock);
7987                 return -EAGAIN;
7988         }
7989         conf->reshape_checkpoint = jiffies;
7990         md_wakeup_thread(mddev->sync_thread);
7991         md_new_event(mddev);
7992         return 0;
7993 }
7994
7995 /* This is called from the reshape thread and should make any
7996  * changes needed in 'conf'
7997  */
7998 static void end_reshape(struct r5conf *conf)
7999 {
8000
8001         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8002                 struct md_rdev *rdev;
8003
8004                 spin_lock_irq(&conf->device_lock);
8005                 conf->previous_raid_disks = conf->raid_disks;
8006                 md_finish_reshape(conf->mddev);
8007                 smp_wmb();
8008                 conf->reshape_progress = MaxSector;
8009                 conf->mddev->reshape_position = MaxSector;
8010                 rdev_for_each(rdev, conf->mddev)
8011                         if (rdev->raid_disk >= 0 &&
8012                             !test_bit(Journal, &rdev->flags) &&
8013                             !test_bit(In_sync, &rdev->flags))
8014                                 rdev->recovery_offset = MaxSector;
8015                 spin_unlock_irq(&conf->device_lock);
8016                 wake_up(&conf->wait_for_overlap);
8017
8018                 /* read-ahead size must cover two whole stripes, which is
8019                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8020                  */
8021                 if (conf->mddev->queue) {
8022                         int data_disks = conf->raid_disks - conf->max_degraded;
8023                         int stripe = data_disks * ((conf->chunk_sectors << 9)
8024                                                    / PAGE_SIZE);
8025                         if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8026                                 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8027                 }
8028         }
8029 }
8030
8031 /* This is called from the raid5d thread with mddev_lock held.
8032  * It makes config changes to the device.
8033  */
8034 static void raid5_finish_reshape(struct mddev *mddev)
8035 {
8036         struct r5conf *conf = mddev->private;
8037
8038         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8039
8040                 if (mddev->delta_disks <= 0) {
8041                         int d;
8042                         spin_lock_irq(&conf->device_lock);
8043                         mddev->degraded = raid5_calc_degraded(conf);
8044                         spin_unlock_irq(&conf->device_lock);
8045                         for (d = conf->raid_disks ;
8046                              d < conf->raid_disks - mddev->delta_disks;
8047                              d++) {
8048                                 struct md_rdev *rdev = conf->disks[d].rdev;
8049                                 if (rdev)
8050                                         clear_bit(In_sync, &rdev->flags);
8051                                 rdev = conf->disks[d].replacement;
8052                                 if (rdev)
8053                                         clear_bit(In_sync, &rdev->flags);
8054                         }
8055                 }
8056                 mddev->layout = conf->algorithm;
8057                 mddev->chunk_sectors = conf->chunk_sectors;
8058                 mddev->reshape_position = MaxSector;
8059                 mddev->delta_disks = 0;
8060                 mddev->reshape_backwards = 0;
8061         }
8062 }
8063
8064 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8065 {
8066         struct r5conf *conf = mddev->private;
8067
8068         if (quiesce) {
8069                 /* stop all writes */
8070                 lock_all_device_hash_locks_irq(conf);
8071                 /* '2' tells resync/reshape to pause so that all
8072                  * active stripes can drain
8073                  */
8074                 r5c_flush_cache(conf, INT_MAX);
8075                 conf->quiesce = 2;
8076                 wait_event_cmd(conf->wait_for_quiescent,
8077                                     atomic_read(&conf->active_stripes) == 0 &&
8078                                     atomic_read(&conf->active_aligned_reads) == 0,
8079                                     unlock_all_device_hash_locks_irq(conf),
8080                                     lock_all_device_hash_locks_irq(conf));
8081                 conf->quiesce = 1;
8082                 unlock_all_device_hash_locks_irq(conf);
8083                 /* allow reshape to continue */
8084                 wake_up(&conf->wait_for_overlap);
8085         } else {
8086                 /* re-enable writes */
8087                 lock_all_device_hash_locks_irq(conf);
8088                 conf->quiesce = 0;
8089                 wake_up(&conf->wait_for_quiescent);
8090                 wake_up(&conf->wait_for_overlap);
8091                 unlock_all_device_hash_locks_irq(conf);
8092         }
8093         log_quiesce(conf, quiesce);
8094 }
8095
8096 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8097 {
8098         struct r0conf *raid0_conf = mddev->private;
8099         sector_t sectors;
8100
8101         /* for raid0 takeover only one zone is supported */
8102         if (raid0_conf->nr_strip_zones > 1) {
8103                 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8104                         mdname(mddev));
8105                 return ERR_PTR(-EINVAL);
8106         }
8107
8108         sectors = raid0_conf->strip_zone[0].zone_end;
8109         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8110         mddev->dev_sectors = sectors;
8111         mddev->new_level = level;
8112         mddev->new_layout = ALGORITHM_PARITY_N;
8113         mddev->new_chunk_sectors = mddev->chunk_sectors;
8114         mddev->raid_disks += 1;
8115         mddev->delta_disks = 1;
8116         /* make sure it will be not marked as dirty */
8117         mddev->recovery_cp = MaxSector;
8118
8119         return setup_conf(mddev);
8120 }
8121
8122 static void *raid5_takeover_raid1(struct mddev *mddev)
8123 {
8124         int chunksect;
8125         void *ret;
8126
8127         if (mddev->raid_disks != 2 ||
8128             mddev->degraded > 1)
8129                 return ERR_PTR(-EINVAL);
8130
8131         /* Should check if there are write-behind devices? */
8132
8133         chunksect = 64*2; /* 64K by default */
8134
8135         /* The array must be an exact multiple of chunksize */
8136         while (chunksect && (mddev->array_sectors & (chunksect-1)))
8137                 chunksect >>= 1;
8138
8139         if ((chunksect<<9) < STRIPE_SIZE)
8140                 /* array size does not allow a suitable chunk size */
8141                 return ERR_PTR(-EINVAL);
8142
8143         mddev->new_level = 5;
8144         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8145         mddev->new_chunk_sectors = chunksect;
8146
8147         ret = setup_conf(mddev);
8148         if (!IS_ERR(ret))
8149                 mddev_clear_unsupported_flags(mddev,
8150                         UNSUPPORTED_MDDEV_FLAGS);
8151         return ret;
8152 }
8153
8154 static void *raid5_takeover_raid6(struct mddev *mddev)
8155 {
8156         int new_layout;
8157
8158         switch (mddev->layout) {
8159         case ALGORITHM_LEFT_ASYMMETRIC_6:
8160                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8161                 break;
8162         case ALGORITHM_RIGHT_ASYMMETRIC_6:
8163                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8164                 break;
8165         case ALGORITHM_LEFT_SYMMETRIC_6:
8166                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8167                 break;
8168         case ALGORITHM_RIGHT_SYMMETRIC_6:
8169                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8170                 break;
8171         case ALGORITHM_PARITY_0_6:
8172                 new_layout = ALGORITHM_PARITY_0;
8173                 break;
8174         case ALGORITHM_PARITY_N:
8175                 new_layout = ALGORITHM_PARITY_N;
8176                 break;
8177         default:
8178                 return ERR_PTR(-EINVAL);
8179         }
8180         mddev->new_level = 5;
8181         mddev->new_layout = new_layout;
8182         mddev->delta_disks = -1;
8183         mddev->raid_disks -= 1;
8184         return setup_conf(mddev);
8185 }
8186
8187 static int raid5_check_reshape(struct mddev *mddev)
8188 {
8189         /* For a 2-drive array, the layout and chunk size can be changed
8190          * immediately as not restriping is needed.
8191          * For larger arrays we record the new value - after validation
8192          * to be used by a reshape pass.
8193          */
8194         struct r5conf *conf = mddev->private;
8195         int new_chunk = mddev->new_chunk_sectors;
8196
8197         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8198                 return -EINVAL;
8199         if (new_chunk > 0) {
8200                 if (!is_power_of_2(new_chunk))
8201                         return -EINVAL;
8202                 if (new_chunk < (PAGE_SIZE>>9))
8203                         return -EINVAL;
8204                 if (mddev->array_sectors & (new_chunk-1))
8205                         /* not factor of array size */
8206                         return -EINVAL;
8207         }
8208
8209         /* They look valid */
8210
8211         if (mddev->raid_disks == 2) {
8212                 /* can make the change immediately */
8213                 if (mddev->new_layout >= 0) {
8214                         conf->algorithm = mddev->new_layout;
8215                         mddev->layout = mddev->new_layout;
8216                 }
8217                 if (new_chunk > 0) {
8218                         conf->chunk_sectors = new_chunk ;
8219                         mddev->chunk_sectors = new_chunk;
8220                 }
8221                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8222                 md_wakeup_thread(mddev->thread);
8223         }
8224         return check_reshape(mddev);
8225 }
8226
8227 static int raid6_check_reshape(struct mddev *mddev)
8228 {
8229         int new_chunk = mddev->new_chunk_sectors;
8230
8231         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8232                 return -EINVAL;
8233         if (new_chunk > 0) {
8234                 if (!is_power_of_2(new_chunk))
8235                         return -EINVAL;
8236                 if (new_chunk < (PAGE_SIZE >> 9))
8237                         return -EINVAL;
8238                 if (mddev->array_sectors & (new_chunk-1))
8239                         /* not factor of array size */
8240                         return -EINVAL;
8241         }
8242
8243         /* They look valid */
8244         return check_reshape(mddev);
8245 }
8246
8247 static void *raid5_takeover(struct mddev *mddev)
8248 {
8249         /* raid5 can take over:
8250          *  raid0 - if there is only one strip zone - make it a raid4 layout
8251          *  raid1 - if there are two drives.  We need to know the chunk size
8252          *  raid4 - trivial - just use a raid4 layout.
8253          *  raid6 - Providing it is a *_6 layout
8254          */
8255         if (mddev->level == 0)
8256                 return raid45_takeover_raid0(mddev, 5);
8257         if (mddev->level == 1)
8258                 return raid5_takeover_raid1(mddev);
8259         if (mddev->level == 4) {
8260                 mddev->new_layout = ALGORITHM_PARITY_N;
8261                 mddev->new_level = 5;
8262                 return setup_conf(mddev);
8263         }
8264         if (mddev->level == 6)
8265                 return raid5_takeover_raid6(mddev);
8266
8267         return ERR_PTR(-EINVAL);
8268 }
8269
8270 static void *raid4_takeover(struct mddev *mddev)
8271 {
8272         /* raid4 can take over:
8273          *  raid0 - if there is only one strip zone
8274          *  raid5 - if layout is right
8275          */
8276         if (mddev->level == 0)
8277                 return raid45_takeover_raid0(mddev, 4);
8278         if (mddev->level == 5 &&
8279             mddev->layout == ALGORITHM_PARITY_N) {
8280                 mddev->new_layout = 0;
8281                 mddev->new_level = 4;
8282                 return setup_conf(mddev);
8283         }
8284         return ERR_PTR(-EINVAL);
8285 }
8286
8287 static struct md_personality raid5_personality;
8288
8289 static void *raid6_takeover(struct mddev *mddev)
8290 {
8291         /* Currently can only take over a raid5.  We map the
8292          * personality to an equivalent raid6 personality
8293          * with the Q block at the end.
8294          */
8295         int new_layout;
8296
8297         if (mddev->pers != &raid5_personality)
8298                 return ERR_PTR(-EINVAL);
8299         if (mddev->degraded > 1)
8300                 return ERR_PTR(-EINVAL);
8301         if (mddev->raid_disks > 253)
8302                 return ERR_PTR(-EINVAL);
8303         if (mddev->raid_disks < 3)
8304                 return ERR_PTR(-EINVAL);
8305
8306         switch (mddev->layout) {
8307         case ALGORITHM_LEFT_ASYMMETRIC:
8308                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8309                 break;
8310         case ALGORITHM_RIGHT_ASYMMETRIC:
8311                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8312                 break;
8313         case ALGORITHM_LEFT_SYMMETRIC:
8314                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8315                 break;
8316         case ALGORITHM_RIGHT_SYMMETRIC:
8317                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8318                 break;
8319         case ALGORITHM_PARITY_0:
8320                 new_layout = ALGORITHM_PARITY_0_6;
8321                 break;
8322         case ALGORITHM_PARITY_N:
8323                 new_layout = ALGORITHM_PARITY_N;
8324                 break;
8325         default:
8326                 return ERR_PTR(-EINVAL);
8327         }
8328         mddev->new_level = 6;
8329         mddev->new_layout = new_layout;
8330         mddev->delta_disks = 1;
8331         mddev->raid_disks += 1;
8332         return setup_conf(mddev);
8333 }
8334
8335 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8336 {
8337         struct r5conf *conf;
8338         int err;
8339
8340         err = mddev_lock(mddev);
8341         if (err)
8342                 return err;
8343         conf = mddev->private;
8344         if (!conf) {
8345                 mddev_unlock(mddev);
8346                 return -ENODEV;
8347         }
8348
8349         if (strncmp(buf, "ppl", 3) == 0) {
8350                 /* ppl only works with RAID 5 */
8351                 if (!raid5_has_ppl(conf) && conf->level == 5) {
8352                         err = log_init(conf, NULL, true);
8353                         if (!err) {
8354                                 err = resize_stripes(conf, conf->pool_size);
8355                                 if (err)
8356                                         log_exit(conf);
8357                         }
8358                 } else
8359                         err = -EINVAL;
8360         } else if (strncmp(buf, "resync", 6) == 0) {
8361                 if (raid5_has_ppl(conf)) {
8362                         mddev_suspend(mddev);
8363                         log_exit(conf);
8364                         mddev_resume(mddev);
8365                         err = resize_stripes(conf, conf->pool_size);
8366                 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8367                            r5l_log_disk_error(conf)) {
8368                         bool journal_dev_exists = false;
8369                         struct md_rdev *rdev;
8370
8371                         rdev_for_each(rdev, mddev)
8372                                 if (test_bit(Journal, &rdev->flags)) {
8373                                         journal_dev_exists = true;
8374                                         break;
8375                                 }
8376
8377                         if (!journal_dev_exists) {
8378                                 mddev_suspend(mddev);
8379                                 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8380                                 mddev_resume(mddev);
8381                         } else  /* need remove journal device first */
8382                                 err = -EBUSY;
8383                 } else
8384                         err = -EINVAL;
8385         } else {
8386                 err = -EINVAL;
8387         }
8388
8389         if (!err)
8390                 md_update_sb(mddev, 1);
8391
8392         mddev_unlock(mddev);
8393
8394         return err;
8395 }
8396
8397 static int raid5_start(struct mddev *mddev)
8398 {
8399         struct r5conf *conf = mddev->private;
8400
8401         return r5l_start(conf->log);
8402 }
8403
8404 static struct md_personality raid6_personality =
8405 {
8406         .name           = "raid6",
8407         .level          = 6,
8408         .owner          = THIS_MODULE,
8409         .make_request   = raid5_make_request,
8410         .run            = raid5_run,
8411         .start          = raid5_start,
8412         .free           = raid5_free,
8413         .status         = raid5_status,
8414         .error_handler  = raid5_error,
8415         .hot_add_disk   = raid5_add_disk,
8416         .hot_remove_disk= raid5_remove_disk,
8417         .spare_active   = raid5_spare_active,
8418         .sync_request   = raid5_sync_request,
8419         .resize         = raid5_resize,
8420         .size           = raid5_size,
8421         .check_reshape  = raid6_check_reshape,
8422         .start_reshape  = raid5_start_reshape,
8423         .finish_reshape = raid5_finish_reshape,
8424         .quiesce        = raid5_quiesce,
8425         .takeover       = raid6_takeover,
8426         .congested      = raid5_congested,
8427         .change_consistency_policy = raid5_change_consistency_policy,
8428 };
8429 static struct md_personality raid5_personality =
8430 {
8431         .name           = "raid5",
8432         .level          = 5,
8433         .owner          = THIS_MODULE,
8434         .make_request   = raid5_make_request,
8435         .run            = raid5_run,
8436         .start          = raid5_start,
8437         .free           = raid5_free,
8438         .status         = raid5_status,
8439         .error_handler  = raid5_error,
8440         .hot_add_disk   = raid5_add_disk,
8441         .hot_remove_disk= raid5_remove_disk,
8442         .spare_active   = raid5_spare_active,
8443         .sync_request   = raid5_sync_request,
8444         .resize         = raid5_resize,
8445         .size           = raid5_size,
8446         .check_reshape  = raid5_check_reshape,
8447         .start_reshape  = raid5_start_reshape,
8448         .finish_reshape = raid5_finish_reshape,
8449         .quiesce        = raid5_quiesce,
8450         .takeover       = raid5_takeover,
8451         .congested      = raid5_congested,
8452         .change_consistency_policy = raid5_change_consistency_policy,
8453 };
8454
8455 static struct md_personality raid4_personality =
8456 {
8457         .name           = "raid4",
8458         .level          = 4,
8459         .owner          = THIS_MODULE,
8460         .make_request   = raid5_make_request,
8461         .run            = raid5_run,
8462         .start          = raid5_start,
8463         .free           = raid5_free,
8464         .status         = raid5_status,
8465         .error_handler  = raid5_error,
8466         .hot_add_disk   = raid5_add_disk,
8467         .hot_remove_disk= raid5_remove_disk,
8468         .spare_active   = raid5_spare_active,
8469         .sync_request   = raid5_sync_request,
8470         .resize         = raid5_resize,
8471         .size           = raid5_size,
8472         .check_reshape  = raid5_check_reshape,
8473         .start_reshape  = raid5_start_reshape,
8474         .finish_reshape = raid5_finish_reshape,
8475         .quiesce        = raid5_quiesce,
8476         .takeover       = raid4_takeover,
8477         .congested      = raid5_congested,
8478         .change_consistency_policy = raid5_change_consistency_policy,
8479 };
8480
8481 static int __init raid5_init(void)
8482 {
8483         int ret;
8484
8485         raid5_wq = alloc_workqueue("raid5wq",
8486                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8487         if (!raid5_wq)
8488                 return -ENOMEM;
8489
8490         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8491                                       "md/raid5:prepare",
8492                                       raid456_cpu_up_prepare,
8493                                       raid456_cpu_dead);
8494         if (ret) {
8495                 destroy_workqueue(raid5_wq);
8496                 return ret;
8497         }
8498         register_md_personality(&raid6_personality);
8499         register_md_personality(&raid5_personality);
8500         register_md_personality(&raid4_personality);
8501         return 0;
8502 }
8503
8504 static void raid5_exit(void)
8505 {
8506         unregister_md_personality(&raid6_personality);
8507         unregister_md_personality(&raid5_personality);
8508         unregister_md_personality(&raid4_personality);
8509         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8510         destroy_workqueue(raid5_wq);
8511 }
8512
8513 module_init(raid5_init);
8514 module_exit(raid5_exit);
8515 MODULE_LICENSE("GPL");
8516 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8517 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8518 MODULE_ALIAS("md-raid5");
8519 MODULE_ALIAS("md-raid4");
8520 MODULE_ALIAS("md-level-5");
8521 MODULE_ALIAS("md-level-4");
8522 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8523 MODULE_ALIAS("md-raid6");
8524 MODULE_ALIAS("md-level-6");
8525
8526 /* This used to be two separate modules, they were: */
8527 MODULE_ALIAS("raid5");
8528 MODULE_ALIAS("raid6");