GNU Linux-libre 4.19.242-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156         struct r10conf *conf = data;
157         struct r10bio *r10_bio;
158         struct bio *bio;
159         int j;
160         int nalloc, nalloc_rp;
161         struct resync_pages *rps;
162
163         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164         if (!r10_bio)
165                 return NULL;
166
167         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169                 nalloc = conf->copies; /* resync */
170         else
171                 nalloc = 2; /* recovery */
172
173         /* allocate once for all bios */
174         if (!conf->have_replacement)
175                 nalloc_rp = nalloc;
176         else
177                 nalloc_rp = nalloc * 2;
178         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179         if (!rps)
180                 goto out_free_r10bio;
181
182         /*
183          * Allocate bios.
184          */
185         for (j = nalloc ; j-- ; ) {
186                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187                 if (!bio)
188                         goto out_free_bio;
189                 r10_bio->devs[j].bio = bio;
190                 if (!conf->have_replacement)
191                         continue;
192                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193                 if (!bio)
194                         goto out_free_bio;
195                 r10_bio->devs[j].repl_bio = bio;
196         }
197         /*
198          * Allocate RESYNC_PAGES data pages and attach them
199          * where needed.
200          */
201         for (j = 0; j < nalloc; j++) {
202                 struct bio *rbio = r10_bio->devs[j].repl_bio;
203                 struct resync_pages *rp, *rp_repl;
204
205                 rp = &rps[j];
206                 if (rbio)
207                         rp_repl = &rps[nalloc + j];
208
209                 bio = r10_bio->devs[j].bio;
210
211                 if (!j || test_bit(MD_RECOVERY_SYNC,
212                                    &conf->mddev->recovery)) {
213                         if (resync_alloc_pages(rp, gfp_flags))
214                                 goto out_free_pages;
215                 } else {
216                         memcpy(rp, &rps[0], sizeof(*rp));
217                         resync_get_all_pages(rp);
218                 }
219
220                 rp->raid_bio = r10_bio;
221                 bio->bi_private = rp;
222                 if (rbio) {
223                         memcpy(rp_repl, rp, sizeof(*rp));
224                         rbio->bi_private = rp_repl;
225                 }
226         }
227
228         return r10_bio;
229
230 out_free_pages:
231         while (--j >= 0)
232                 resync_free_pages(&rps[j]);
233
234         j = 0;
235 out_free_bio:
236         for ( ; j < nalloc; j++) {
237                 if (r10_bio->devs[j].bio)
238                         bio_put(r10_bio->devs[j].bio);
239                 if (r10_bio->devs[j].repl_bio)
240                         bio_put(r10_bio->devs[j].repl_bio);
241         }
242         kfree(rps);
243 out_free_r10bio:
244         r10bio_pool_free(r10_bio, conf);
245         return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250         struct r10conf *conf = data;
251         struct r10bio *r10bio = __r10_bio;
252         int j;
253         struct resync_pages *rp = NULL;
254
255         for (j = conf->copies; j--; ) {
256                 struct bio *bio = r10bio->devs[j].bio;
257
258                 if (bio) {
259                         rp = get_resync_pages(bio);
260                         resync_free_pages(rp);
261                         bio_put(bio);
262                 }
263
264                 bio = r10bio->devs[j].repl_bio;
265                 if (bio)
266                         bio_put(bio);
267         }
268
269         /* resync pages array stored in the 1st bio's .bi_private */
270         kfree(rp);
271
272         r10bio_pool_free(r10bio, conf);
273 }
274
275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277         int i;
278
279         for (i = 0; i < conf->copies; i++) {
280                 struct bio **bio = & r10_bio->devs[i].bio;
281                 if (!BIO_SPECIAL(*bio))
282                         bio_put(*bio);
283                 *bio = NULL;
284                 bio = &r10_bio->devs[i].repl_bio;
285                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286                         bio_put(*bio);
287                 *bio = NULL;
288         }
289 }
290
291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293         struct r10conf *conf = r10_bio->mddev->private;
294
295         put_all_bios(conf, r10_bio);
296         mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298
299 static void put_buf(struct r10bio *r10_bio)
300 {
301         struct r10conf *conf = r10_bio->mddev->private;
302
303         mempool_free(r10_bio, &conf->r10buf_pool);
304
305         lower_barrier(conf);
306 }
307
308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310         unsigned long flags;
311         struct mddev *mddev = r10_bio->mddev;
312         struct r10conf *conf = mddev->private;
313
314         spin_lock_irqsave(&conf->device_lock, flags);
315         list_add(&r10_bio->retry_list, &conf->retry_list);
316         conf->nr_queued ++;
317         spin_unlock_irqrestore(&conf->device_lock, flags);
318
319         /* wake up frozen array... */
320         wake_up(&conf->wait_barrier);
321
322         md_wakeup_thread(mddev->thread);
323 }
324
325 /*
326  * raid_end_bio_io() is called when we have finished servicing a mirrored
327  * operation and are ready to return a success/failure code to the buffer
328  * cache layer.
329  */
330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332         struct bio *bio = r10_bio->master_bio;
333         struct r10conf *conf = r10_bio->mddev->private;
334
335         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336                 bio->bi_status = BLK_STS_IOERR;
337
338         bio_endio(bio);
339         /*
340          * Wake up any possible resync thread that waits for the device
341          * to go idle.
342          */
343         allow_barrier(conf);
344
345         free_r10bio(r10_bio);
346 }
347
348 /*
349  * Update disk head position estimator based on IRQ completion info.
350  */
351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353         struct r10conf *conf = r10_bio->mddev->private;
354
355         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356                 r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358
359 /*
360  * Find the disk number which triggered given bio
361  */
362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363                          struct bio *bio, int *slotp, int *replp)
364 {
365         int slot;
366         int repl = 0;
367
368         for (slot = 0; slot < conf->copies; slot++) {
369                 if (r10_bio->devs[slot].bio == bio)
370                         break;
371                 if (r10_bio->devs[slot].repl_bio == bio) {
372                         repl = 1;
373                         break;
374                 }
375         }
376
377         BUG_ON(slot == conf->copies);
378         update_head_pos(slot, r10_bio);
379
380         if (slotp)
381                 *slotp = slot;
382         if (replp)
383                 *replp = repl;
384         return r10_bio->devs[slot].devnum;
385 }
386
387 static void raid10_end_read_request(struct bio *bio)
388 {
389         int uptodate = !bio->bi_status;
390         struct r10bio *r10_bio = bio->bi_private;
391         int slot;
392         struct md_rdev *rdev;
393         struct r10conf *conf = r10_bio->mddev->private;
394
395         slot = r10_bio->read_slot;
396         rdev = r10_bio->devs[slot].rdev;
397         /*
398          * this branch is our 'one mirror IO has finished' event handler:
399          */
400         update_head_pos(slot, r10_bio);
401
402         if (uptodate) {
403                 /*
404                  * Set R10BIO_Uptodate in our master bio, so that
405                  * we will return a good error code to the higher
406                  * levels even if IO on some other mirrored buffer fails.
407                  *
408                  * The 'master' represents the composite IO operation to
409                  * user-side. So if something waits for IO, then it will
410                  * wait for the 'master' bio.
411                  */
412                 set_bit(R10BIO_Uptodate, &r10_bio->state);
413         } else {
414                 /* If all other devices that store this block have
415                  * failed, we want to return the error upwards rather
416                  * than fail the last device.  Here we redefine
417                  * "uptodate" to mean "Don't want to retry"
418                  */
419                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420                              rdev->raid_disk))
421                         uptodate = 1;
422         }
423         if (uptodate) {
424                 raid_end_bio_io(r10_bio);
425                 rdev_dec_pending(rdev, conf->mddev);
426         } else {
427                 /*
428                  * oops, read error - keep the refcount on the rdev
429                  */
430                 char b[BDEVNAME_SIZE];
431                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432                                    mdname(conf->mddev),
433                                    bdevname(rdev->bdev, b),
434                                    (unsigned long long)r10_bio->sector);
435                 set_bit(R10BIO_ReadError, &r10_bio->state);
436                 reschedule_retry(r10_bio);
437         }
438 }
439
440 static void close_write(struct r10bio *r10_bio)
441 {
442         /* clear the bitmap if all writes complete successfully */
443         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444                            r10_bio->sectors,
445                            !test_bit(R10BIO_Degraded, &r10_bio->state),
446                            0);
447         md_write_end(r10_bio->mddev);
448 }
449
450 static void one_write_done(struct r10bio *r10_bio)
451 {
452         if (atomic_dec_and_test(&r10_bio->remaining)) {
453                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454                         reschedule_retry(r10_bio);
455                 else {
456                         close_write(r10_bio);
457                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458                                 reschedule_retry(r10_bio);
459                         else
460                                 raid_end_bio_io(r10_bio);
461                 }
462         }
463 }
464
465 static void raid10_end_write_request(struct bio *bio)
466 {
467         struct r10bio *r10_bio = bio->bi_private;
468         int dev;
469         int dec_rdev = 1;
470         struct r10conf *conf = r10_bio->mddev->private;
471         int slot, repl;
472         struct md_rdev *rdev = NULL;
473         struct bio *to_put = NULL;
474         bool discard_error;
475
476         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477
478         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479
480         if (repl)
481                 rdev = conf->mirrors[dev].replacement;
482         if (!rdev) {
483                 smp_rmb();
484                 repl = 0;
485                 rdev = conf->mirrors[dev].rdev;
486         }
487         /*
488          * this branch is our 'one mirror IO has finished' event handler:
489          */
490         if (bio->bi_status && !discard_error) {
491                 if (repl)
492                         /* Never record new bad blocks to replacement,
493                          * just fail it.
494                          */
495                         md_error(rdev->mddev, rdev);
496                 else {
497                         set_bit(WriteErrorSeen, &rdev->flags);
498                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
499                                 set_bit(MD_RECOVERY_NEEDED,
500                                         &rdev->mddev->recovery);
501
502                         dec_rdev = 0;
503                         if (test_bit(FailFast, &rdev->flags) &&
504                             (bio->bi_opf & MD_FAILFAST)) {
505                                 md_error(rdev->mddev, rdev);
506                                 if (!test_bit(Faulty, &rdev->flags))
507                                         /* This is the only remaining device,
508                                          * We need to retry the write without
509                                          * FailFast
510                                          */
511                                         set_bit(R10BIO_WriteError, &r10_bio->state);
512                                 else {
513                                         r10_bio->devs[slot].bio = NULL;
514                                         to_put = bio;
515                                         dec_rdev = 1;
516                                 }
517                         } else
518                                 set_bit(R10BIO_WriteError, &r10_bio->state);
519                 }
520         } else {
521                 /*
522                  * Set R10BIO_Uptodate in our master bio, so that
523                  * we will return a good error code for to the higher
524                  * levels even if IO on some other mirrored buffer fails.
525                  *
526                  * The 'master' represents the composite IO operation to
527                  * user-side. So if something waits for IO, then it will
528                  * wait for the 'master' bio.
529                  */
530                 sector_t first_bad;
531                 int bad_sectors;
532
533                 /*
534                  * Do not set R10BIO_Uptodate if the current device is
535                  * rebuilding or Faulty. This is because we cannot use
536                  * such device for properly reading the data back (we could
537                  * potentially use it, if the current write would have felt
538                  * before rdev->recovery_offset, but for simplicity we don't
539                  * check this here.
540                  */
541                 if (test_bit(In_sync, &rdev->flags) &&
542                     !test_bit(Faulty, &rdev->flags))
543                         set_bit(R10BIO_Uptodate, &r10_bio->state);
544
545                 /* Maybe we can clear some bad blocks. */
546                 if (is_badblock(rdev,
547                                 r10_bio->devs[slot].addr,
548                                 r10_bio->sectors,
549                                 &first_bad, &bad_sectors) && !discard_error) {
550                         bio_put(bio);
551                         if (repl)
552                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553                         else
554                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
555                         dec_rdev = 0;
556                         set_bit(R10BIO_MadeGood, &r10_bio->state);
557                 }
558         }
559
560         /*
561          *
562          * Let's see if all mirrored write operations have finished
563          * already.
564          */
565         one_write_done(r10_bio);
566         if (dec_rdev)
567                 rdev_dec_pending(rdev, conf->mddev);
568         if (to_put)
569                 bio_put(to_put);
570 }
571
572 /*
573  * RAID10 layout manager
574  * As well as the chunksize and raid_disks count, there are two
575  * parameters: near_copies and far_copies.
576  * near_copies * far_copies must be <= raid_disks.
577  * Normally one of these will be 1.
578  * If both are 1, we get raid0.
579  * If near_copies == raid_disks, we get raid1.
580  *
581  * Chunks are laid out in raid0 style with near_copies copies of the
582  * first chunk, followed by near_copies copies of the next chunk and
583  * so on.
584  * If far_copies > 1, then after 1/far_copies of the array has been assigned
585  * as described above, we start again with a device offset of near_copies.
586  * So we effectively have another copy of the whole array further down all
587  * the drives, but with blocks on different drives.
588  * With this layout, and block is never stored twice on the one device.
589  *
590  * raid10_find_phys finds the sector offset of a given virtual sector
591  * on each device that it is on.
592  *
593  * raid10_find_virt does the reverse mapping, from a device and a
594  * sector offset to a virtual address
595  */
596
597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599         int n,f;
600         sector_t sector;
601         sector_t chunk;
602         sector_t stripe;
603         int dev;
604         int slot = 0;
605         int last_far_set_start, last_far_set_size;
606
607         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608         last_far_set_start *= geo->far_set_size;
609
610         last_far_set_size = geo->far_set_size;
611         last_far_set_size += (geo->raid_disks % geo->far_set_size);
612
613         /* now calculate first sector/dev */
614         chunk = r10bio->sector >> geo->chunk_shift;
615         sector = r10bio->sector & geo->chunk_mask;
616
617         chunk *= geo->near_copies;
618         stripe = chunk;
619         dev = sector_div(stripe, geo->raid_disks);
620         if (geo->far_offset)
621                 stripe *= geo->far_copies;
622
623         sector += stripe << geo->chunk_shift;
624
625         /* and calculate all the others */
626         for (n = 0; n < geo->near_copies; n++) {
627                 int d = dev;
628                 int set;
629                 sector_t s = sector;
630                 r10bio->devs[slot].devnum = d;
631                 r10bio->devs[slot].addr = s;
632                 slot++;
633
634                 for (f = 1; f < geo->far_copies; f++) {
635                         set = d / geo->far_set_size;
636                         d += geo->near_copies;
637
638                         if ((geo->raid_disks % geo->far_set_size) &&
639                             (d > last_far_set_start)) {
640                                 d -= last_far_set_start;
641                                 d %= last_far_set_size;
642                                 d += last_far_set_start;
643                         } else {
644                                 d %= geo->far_set_size;
645                                 d += geo->far_set_size * set;
646                         }
647                         s += geo->stride;
648                         r10bio->devs[slot].devnum = d;
649                         r10bio->devs[slot].addr = s;
650                         slot++;
651                 }
652                 dev++;
653                 if (dev >= geo->raid_disks) {
654                         dev = 0;
655                         sector += (geo->chunk_mask + 1);
656                 }
657         }
658 }
659
660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662         struct geom *geo = &conf->geo;
663
664         if (conf->reshape_progress != MaxSector &&
665             ((r10bio->sector >= conf->reshape_progress) !=
666              conf->mddev->reshape_backwards)) {
667                 set_bit(R10BIO_Previous, &r10bio->state);
668                 geo = &conf->prev;
669         } else
670                 clear_bit(R10BIO_Previous, &r10bio->state);
671
672         __raid10_find_phys(geo, r10bio);
673 }
674
675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677         sector_t offset, chunk, vchunk;
678         /* Never use conf->prev as this is only called during resync
679          * or recovery, so reshape isn't happening
680          */
681         struct geom *geo = &conf->geo;
682         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683         int far_set_size = geo->far_set_size;
684         int last_far_set_start;
685
686         if (geo->raid_disks % geo->far_set_size) {
687                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688                 last_far_set_start *= geo->far_set_size;
689
690                 if (dev >= last_far_set_start) {
691                         far_set_size = geo->far_set_size;
692                         far_set_size += (geo->raid_disks % geo->far_set_size);
693                         far_set_start = last_far_set_start;
694                 }
695         }
696
697         offset = sector & geo->chunk_mask;
698         if (geo->far_offset) {
699                 int fc;
700                 chunk = sector >> geo->chunk_shift;
701                 fc = sector_div(chunk, geo->far_copies);
702                 dev -= fc * geo->near_copies;
703                 if (dev < far_set_start)
704                         dev += far_set_size;
705         } else {
706                 while (sector >= geo->stride) {
707                         sector -= geo->stride;
708                         if (dev < (geo->near_copies + far_set_start))
709                                 dev += far_set_size - geo->near_copies;
710                         else
711                                 dev -= geo->near_copies;
712                 }
713                 chunk = sector >> geo->chunk_shift;
714         }
715         vchunk = chunk * geo->raid_disks + dev;
716         sector_div(vchunk, geo->near_copies);
717         return (vchunk << geo->chunk_shift) + offset;
718 }
719
720 /*
721  * This routine returns the disk from which the requested read should
722  * be done. There is a per-array 'next expected sequential IO' sector
723  * number - if this matches on the next IO then we use the last disk.
724  * There is also a per-disk 'last know head position' sector that is
725  * maintained from IRQ contexts, both the normal and the resync IO
726  * completion handlers update this position correctly. If there is no
727  * perfect sequential match then we pick the disk whose head is closest.
728  *
729  * If there are 2 mirrors in the same 2 devices, performance degrades
730  * because position is mirror, not device based.
731  *
732  * The rdev for the device selected will have nr_pending incremented.
733  */
734
735 /*
736  * FIXME: possibly should rethink readbalancing and do it differently
737  * depending on near_copies / far_copies geometry.
738  */
739 static struct md_rdev *read_balance(struct r10conf *conf,
740                                     struct r10bio *r10_bio,
741                                     int *max_sectors)
742 {
743         const sector_t this_sector = r10_bio->sector;
744         int disk, slot;
745         int sectors = r10_bio->sectors;
746         int best_good_sectors;
747         sector_t new_distance, best_dist;
748         struct md_rdev *best_rdev, *rdev = NULL;
749         int do_balance;
750         int best_slot;
751         struct geom *geo = &conf->geo;
752
753         raid10_find_phys(conf, r10_bio);
754         rcu_read_lock();
755         best_slot = -1;
756         best_rdev = NULL;
757         best_dist = MaxSector;
758         best_good_sectors = 0;
759         do_balance = 1;
760         clear_bit(R10BIO_FailFast, &r10_bio->state);
761         /*
762          * Check if we can balance. We can balance on the whole
763          * device if no resync is going on (recovery is ok), or below
764          * the resync window. We take the first readable disk when
765          * above the resync window.
766          */
767         if ((conf->mddev->recovery_cp < MaxSector
768              && (this_sector + sectors >= conf->next_resync)) ||
769             (mddev_is_clustered(conf->mddev) &&
770              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771                                             this_sector + sectors)))
772                 do_balance = 0;
773
774         for (slot = 0; slot < conf->copies ; slot++) {
775                 sector_t first_bad;
776                 int bad_sectors;
777                 sector_t dev_sector;
778
779                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780                         continue;
781                 disk = r10_bio->devs[slot].devnum;
782                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
786                 if (rdev == NULL ||
787                     test_bit(Faulty, &rdev->flags))
788                         continue;
789                 if (!test_bit(In_sync, &rdev->flags) &&
790                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791                         continue;
792
793                 dev_sector = r10_bio->devs[slot].addr;
794                 if (is_badblock(rdev, dev_sector, sectors,
795                                 &first_bad, &bad_sectors)) {
796                         if (best_dist < MaxSector)
797                                 /* Already have a better slot */
798                                 continue;
799                         if (first_bad <= dev_sector) {
800                                 /* Cannot read here.  If this is the
801                                  * 'primary' device, then we must not read
802                                  * beyond 'bad_sectors' from another device.
803                                  */
804                                 bad_sectors -= (dev_sector - first_bad);
805                                 if (!do_balance && sectors > bad_sectors)
806                                         sectors = bad_sectors;
807                                 if (best_good_sectors > sectors)
808                                         best_good_sectors = sectors;
809                         } else {
810                                 sector_t good_sectors =
811                                         first_bad - dev_sector;
812                                 if (good_sectors > best_good_sectors) {
813                                         best_good_sectors = good_sectors;
814                                         best_slot = slot;
815                                         best_rdev = rdev;
816                                 }
817                                 if (!do_balance)
818                                         /* Must read from here */
819                                         break;
820                         }
821                         continue;
822                 } else
823                         best_good_sectors = sectors;
824
825                 if (!do_balance)
826                         break;
827
828                 if (best_slot >= 0)
829                         /* At least 2 disks to choose from so failfast is OK */
830                         set_bit(R10BIO_FailFast, &r10_bio->state);
831                 /* This optimisation is debatable, and completely destroys
832                  * sequential read speed for 'far copies' arrays.  So only
833                  * keep it for 'near' arrays, and review those later.
834                  */
835                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836                         new_distance = 0;
837
838                 /* for far > 1 always use the lowest address */
839                 else if (geo->far_copies > 1)
840                         new_distance = r10_bio->devs[slot].addr;
841                 else
842                         new_distance = abs(r10_bio->devs[slot].addr -
843                                            conf->mirrors[disk].head_position);
844                 if (new_distance < best_dist) {
845                         best_dist = new_distance;
846                         best_slot = slot;
847                         best_rdev = rdev;
848                 }
849         }
850         if (slot >= conf->copies) {
851                 slot = best_slot;
852                 rdev = best_rdev;
853         }
854
855         if (slot >= 0) {
856                 atomic_inc(&rdev->nr_pending);
857                 r10_bio->read_slot = slot;
858         } else
859                 rdev = NULL;
860         rcu_read_unlock();
861         *max_sectors = best_good_sectors;
862
863         return rdev;
864 }
865
866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868         struct r10conf *conf = mddev->private;
869         int i, ret = 0;
870
871         if ((bits & (1 << WB_async_congested)) &&
872             conf->pending_count >= max_queued_requests)
873                 return 1;
874
875         rcu_read_lock();
876         for (i = 0;
877              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878                      && ret == 0;
879              i++) {
880                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882                         struct request_queue *q = bdev_get_queue(rdev->bdev);
883
884                         ret |= bdi_congested(q->backing_dev_info, bits);
885                 }
886         }
887         rcu_read_unlock();
888         return ret;
889 }
890
891 static void flush_pending_writes(struct r10conf *conf)
892 {
893         /* Any writes that have been queued but are awaiting
894          * bitmap updates get flushed here.
895          */
896         spin_lock_irq(&conf->device_lock);
897
898         if (conf->pending_bio_list.head) {
899                 struct blk_plug plug;
900                 struct bio *bio;
901
902                 bio = bio_list_get(&conf->pending_bio_list);
903                 conf->pending_count = 0;
904                 spin_unlock_irq(&conf->device_lock);
905
906                 /*
907                  * As this is called in a wait_event() loop (see freeze_array),
908                  * current->state might be TASK_UNINTERRUPTIBLE which will
909                  * cause a warning when we prepare to wait again.  As it is
910                  * rare that this path is taken, it is perfectly safe to force
911                  * us to go around the wait_event() loop again, so the warning
912                  * is a false-positive. Silence the warning by resetting
913                  * thread state
914                  */
915                 __set_current_state(TASK_RUNNING);
916
917                 blk_start_plug(&plug);
918                 /* flush any pending bitmap writes to disk
919                  * before proceeding w/ I/O */
920                 md_bitmap_unplug(conf->mddev->bitmap);
921                 wake_up(&conf->wait_barrier);
922
923                 while (bio) { /* submit pending writes */
924                         struct bio *next = bio->bi_next;
925                         struct md_rdev *rdev = (void*)bio->bi_disk;
926                         bio->bi_next = NULL;
927                         bio_set_dev(bio, rdev->bdev);
928                         if (test_bit(Faulty, &rdev->flags)) {
929                                 bio_io_error(bio);
930                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
931                                             !blk_queue_discard(bio->bi_disk->queue)))
932                                 /* Just ignore it */
933                                 bio_endio(bio);
934                         else
935                                 generic_make_request(bio);
936                         bio = next;
937                 }
938                 blk_finish_plug(&plug);
939         } else
940                 spin_unlock_irq(&conf->device_lock);
941 }
942
943 /* Barriers....
944  * Sometimes we need to suspend IO while we do something else,
945  * either some resync/recovery, or reconfigure the array.
946  * To do this we raise a 'barrier'.
947  * The 'barrier' is a counter that can be raised multiple times
948  * to count how many activities are happening which preclude
949  * normal IO.
950  * We can only raise the barrier if there is no pending IO.
951  * i.e. if nr_pending == 0.
952  * We choose only to raise the barrier if no-one is waiting for the
953  * barrier to go down.  This means that as soon as an IO request
954  * is ready, no other operations which require a barrier will start
955  * until the IO request has had a chance.
956  *
957  * So: regular IO calls 'wait_barrier'.  When that returns there
958  *    is no backgroup IO happening,  It must arrange to call
959  *    allow_barrier when it has finished its IO.
960  * backgroup IO calls must call raise_barrier.  Once that returns
961  *    there is no normal IO happeing.  It must arrange to call
962  *    lower_barrier when the particular background IO completes.
963  */
964
965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967         BUG_ON(force && !conf->barrier);
968         spin_lock_irq(&conf->resync_lock);
969
970         /* Wait until no block IO is waiting (unless 'force') */
971         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972                             conf->resync_lock);
973
974         /* block any new IO from starting */
975         conf->barrier++;
976
977         /* Now wait for all pending IO to complete */
978         wait_event_lock_irq(conf->wait_barrier,
979                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980                             conf->resync_lock);
981
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void lower_barrier(struct r10conf *conf)
986 {
987         unsigned long flags;
988         spin_lock_irqsave(&conf->resync_lock, flags);
989         conf->barrier--;
990         spin_unlock_irqrestore(&conf->resync_lock, flags);
991         wake_up(&conf->wait_barrier);
992 }
993
994 static void wait_barrier(struct r10conf *conf)
995 {
996         spin_lock_irq(&conf->resync_lock);
997         if (conf->barrier) {
998                 conf->nr_waiting++;
999                 /* Wait for the barrier to drop.
1000                  * However if there are already pending
1001                  * requests (preventing the barrier from
1002                  * rising completely), and the
1003                  * pre-process bio queue isn't empty,
1004                  * then don't wait, as we need to empty
1005                  * that queue to get the nr_pending
1006                  * count down.
1007                  */
1008                 raid10_log(conf->mddev, "wait barrier");
1009                 wait_event_lock_irq(conf->wait_barrier,
1010                                     !conf->barrier ||
1011                                     (atomic_read(&conf->nr_pending) &&
1012                                      current->bio_list &&
1013                                      (!bio_list_empty(&current->bio_list[0]) ||
1014                                       !bio_list_empty(&current->bio_list[1]))),
1015                                     conf->resync_lock);
1016                 conf->nr_waiting--;
1017                 if (!conf->nr_waiting)
1018                         wake_up(&conf->wait_barrier);
1019         }
1020         atomic_inc(&conf->nr_pending);
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027                         (conf->array_freeze_pending))
1028                 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033         /* stop syncio and normal IO and wait for everything to
1034          * go quiet.
1035          * We increment barrier and nr_waiting, and then
1036          * wait until nr_pending match nr_queued+extra
1037          * This is called in the context of one normal IO request
1038          * that has failed. Thus any sync request that might be pending
1039          * will be blocked by nr_pending, and we need to wait for
1040          * pending IO requests to complete or be queued for re-try.
1041          * Thus the number queued (nr_queued) plus this request (extra)
1042          * must match the number of pending IOs (nr_pending) before
1043          * we continue.
1044          */
1045         spin_lock_irq(&conf->resync_lock);
1046         conf->array_freeze_pending++;
1047         conf->barrier++;
1048         conf->nr_waiting++;
1049         wait_event_lock_irq_cmd(conf->wait_barrier,
1050                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051                                 conf->resync_lock,
1052                                 flush_pending_writes(conf));
1053
1054         conf->array_freeze_pending--;
1055         spin_unlock_irq(&conf->resync_lock);
1056 }
1057
1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060         /* reverse the effect of the freeze */
1061         spin_lock_irq(&conf->resync_lock);
1062         conf->barrier--;
1063         conf->nr_waiting--;
1064         wake_up(&conf->wait_barrier);
1065         spin_unlock_irq(&conf->resync_lock);
1066 }
1067
1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069                                    struct md_rdev *rdev)
1070 {
1071         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072             test_bit(R10BIO_Previous, &r10_bio->state))
1073                 return rdev->data_offset;
1074         else
1075                 return rdev->new_data_offset;
1076 }
1077
1078 struct raid10_plug_cb {
1079         struct blk_plug_cb      cb;
1080         struct bio_list         pending;
1081         int                     pending_cnt;
1082 };
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087                                                    cb);
1088         struct mddev *mddev = plug->cb.data;
1089         struct r10conf *conf = mddev->private;
1090         struct bio *bio;
1091
1092         if (from_schedule || current->bio_list) {
1093                 spin_lock_irq(&conf->device_lock);
1094                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095                 conf->pending_count += plug->pending_cnt;
1096                 spin_unlock_irq(&conf->device_lock);
1097                 wake_up(&conf->wait_barrier);
1098                 md_wakeup_thread(mddev->thread);
1099                 kfree(plug);
1100                 return;
1101         }
1102
1103         /* we aren't scheduling, so we can do the write-out directly. */
1104         bio = bio_list_get(&plug->pending);
1105         md_bitmap_unplug(mddev->bitmap);
1106         wake_up(&conf->wait_barrier);
1107
1108         while (bio) { /* submit pending writes */
1109                 struct bio *next = bio->bi_next;
1110                 struct md_rdev *rdev = (void*)bio->bi_disk;
1111                 bio->bi_next = NULL;
1112                 bio_set_dev(bio, rdev->bdev);
1113                 if (test_bit(Faulty, &rdev->flags)) {
1114                         bio_io_error(bio);
1115                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1116                                     !blk_queue_discard(bio->bi_disk->queue)))
1117                         /* Just ignore it */
1118                         bio_endio(bio);
1119                 else
1120                         generic_make_request(bio);
1121                 bio = next;
1122         }
1123         kfree(plug);
1124 }
1125
1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127                                 struct r10bio *r10_bio)
1128 {
1129         struct r10conf *conf = mddev->private;
1130         struct bio *read_bio;
1131         const int op = bio_op(bio);
1132         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133         int max_sectors;
1134         sector_t sectors;
1135         struct md_rdev *rdev;
1136         char b[BDEVNAME_SIZE];
1137         int slot = r10_bio->read_slot;
1138         struct md_rdev *err_rdev = NULL;
1139         gfp_t gfp = GFP_NOIO;
1140
1141         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1142                 /*
1143                  * This is an error retry, but we cannot
1144                  * safely dereference the rdev in the r10_bio,
1145                  * we must use the one in conf.
1146                  * If it has already been disconnected (unlikely)
1147                  * we lose the device name in error messages.
1148                  */
1149                 int disk;
1150                 /*
1151                  * As we are blocking raid10, it is a little safer to
1152                  * use __GFP_HIGH.
1153                  */
1154                 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156                 rcu_read_lock();
1157                 disk = r10_bio->devs[slot].devnum;
1158                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159                 if (err_rdev)
1160                         bdevname(err_rdev->bdev, b);
1161                 else {
1162                         strcpy(b, "???");
1163                         /* This never gets dereferenced */
1164                         err_rdev = r10_bio->devs[slot].rdev;
1165                 }
1166                 rcu_read_unlock();
1167         }
1168         /*
1169          * Register the new request and wait if the reconstruction
1170          * thread has put up a bar for new requests.
1171          * Continue immediately if no resync is active currently.
1172          */
1173         wait_barrier(conf);
1174
1175         sectors = r10_bio->sectors;
1176         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177             bio->bi_iter.bi_sector < conf->reshape_progress &&
1178             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179                 /*
1180                  * IO spans the reshape position.  Need to wait for reshape to
1181                  * pass
1182                  */
1183                 raid10_log(conf->mddev, "wait reshape");
1184                 allow_barrier(conf);
1185                 wait_event(conf->wait_barrier,
1186                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1188                            sectors);
1189                 wait_barrier(conf);
1190         }
1191
1192         rdev = read_balance(conf, r10_bio, &max_sectors);
1193         if (!rdev) {
1194                 if (err_rdev) {
1195                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196                                             mdname(mddev), b,
1197                                             (unsigned long long)r10_bio->sector);
1198                 }
1199                 raid_end_bio_io(r10_bio);
1200                 return;
1201         }
1202         if (err_rdev)
1203                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204                                    mdname(mddev),
1205                                    bdevname(rdev->bdev, b),
1206                                    (unsigned long long)r10_bio->sector);
1207         if (max_sectors < bio_sectors(bio)) {
1208                 struct bio *split = bio_split(bio, max_sectors,
1209                                               gfp, &conf->bio_split);
1210                 bio_chain(split, bio);
1211                 allow_barrier(conf);
1212                 generic_make_request(bio);
1213                 wait_barrier(conf);
1214                 bio = split;
1215                 r10_bio->master_bio = bio;
1216                 r10_bio->sectors = max_sectors;
1217         }
1218         slot = r10_bio->read_slot;
1219
1220         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1221
1222         r10_bio->devs[slot].bio = read_bio;
1223         r10_bio->devs[slot].rdev = rdev;
1224
1225         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1226                 choose_data_offset(r10_bio, rdev);
1227         bio_set_dev(read_bio, rdev->bdev);
1228         read_bio->bi_end_io = raid10_end_read_request;
1229         bio_set_op_attrs(read_bio, op, do_sync);
1230         if (test_bit(FailFast, &rdev->flags) &&
1231             test_bit(R10BIO_FailFast, &r10_bio->state))
1232                 read_bio->bi_opf |= MD_FAILFAST;
1233         read_bio->bi_private = r10_bio;
1234
1235         if (mddev->gendisk)
1236                 trace_block_bio_remap(read_bio->bi_disk->queue,
1237                                       read_bio, disk_devt(mddev->gendisk),
1238                                       r10_bio->sector);
1239         generic_make_request(read_bio);
1240         return;
1241 }
1242
1243 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1244                                   struct bio *bio, bool replacement,
1245                                   int n_copy)
1246 {
1247         const int op = bio_op(bio);
1248         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1249         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1250         unsigned long flags;
1251         struct blk_plug_cb *cb;
1252         struct raid10_plug_cb *plug = NULL;
1253         struct r10conf *conf = mddev->private;
1254         struct md_rdev *rdev;
1255         int devnum = r10_bio->devs[n_copy].devnum;
1256         struct bio *mbio;
1257
1258         if (replacement) {
1259                 rdev = conf->mirrors[devnum].replacement;
1260                 if (rdev == NULL) {
1261                         /* Replacement just got moved to main 'rdev' */
1262                         smp_mb();
1263                         rdev = conf->mirrors[devnum].rdev;
1264                 }
1265         } else
1266                 rdev = conf->mirrors[devnum].rdev;
1267
1268         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1269         if (replacement)
1270                 r10_bio->devs[n_copy].repl_bio = mbio;
1271         else
1272                 r10_bio->devs[n_copy].bio = mbio;
1273
1274         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1275                                    choose_data_offset(r10_bio, rdev));
1276         bio_set_dev(mbio, rdev->bdev);
1277         mbio->bi_end_io = raid10_end_write_request;
1278         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1279         if (!replacement && test_bit(FailFast,
1280                                      &conf->mirrors[devnum].rdev->flags)
1281                          && enough(conf, devnum))
1282                 mbio->bi_opf |= MD_FAILFAST;
1283         mbio->bi_private = r10_bio;
1284
1285         if (conf->mddev->gendisk)
1286                 trace_block_bio_remap(mbio->bi_disk->queue,
1287                                       mbio, disk_devt(conf->mddev->gendisk),
1288                                       r10_bio->sector);
1289         /* flush_pending_writes() needs access to the rdev so...*/
1290         mbio->bi_disk = (void *)rdev;
1291
1292         atomic_inc(&r10_bio->remaining);
1293
1294         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1295         if (cb)
1296                 plug = container_of(cb, struct raid10_plug_cb, cb);
1297         else
1298                 plug = NULL;
1299         if (plug) {
1300                 bio_list_add(&plug->pending, mbio);
1301                 plug->pending_cnt++;
1302         } else {
1303                 spin_lock_irqsave(&conf->device_lock, flags);
1304                 bio_list_add(&conf->pending_bio_list, mbio);
1305                 conf->pending_count++;
1306                 spin_unlock_irqrestore(&conf->device_lock, flags);
1307                 md_wakeup_thread(mddev->thread);
1308         }
1309 }
1310
1311 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1312                                  struct r10bio *r10_bio)
1313 {
1314         struct r10conf *conf = mddev->private;
1315         int i;
1316         struct md_rdev *blocked_rdev;
1317         sector_t sectors;
1318         int max_sectors;
1319
1320         if ((mddev_is_clustered(mddev) &&
1321              md_cluster_ops->area_resyncing(mddev, WRITE,
1322                                             bio->bi_iter.bi_sector,
1323                                             bio_end_sector(bio)))) {
1324                 DEFINE_WAIT(w);
1325                 for (;;) {
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_IDLE);
1328                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1329                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1330                                 break;
1331                         schedule();
1332                 }
1333                 finish_wait(&conf->wait_barrier, &w);
1334         }
1335
1336         /*
1337          * Register the new request and wait if the reconstruction
1338          * thread has put up a bar for new requests.
1339          * Continue immediately if no resync is active currently.
1340          */
1341         wait_barrier(conf);
1342
1343         sectors = r10_bio->sectors;
1344         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345             bio->bi_iter.bi_sector < conf->reshape_progress &&
1346             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1347                 /*
1348                  * IO spans the reshape position.  Need to wait for reshape to
1349                  * pass
1350                  */
1351                 raid10_log(conf->mddev, "wait reshape");
1352                 allow_barrier(conf);
1353                 wait_event(conf->wait_barrier,
1354                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1355                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1356                            sectors);
1357                 wait_barrier(conf);
1358         }
1359
1360         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1361             (mddev->reshape_backwards
1362              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1363                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1364              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1365                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1366                 /* Need to update reshape_position in metadata */
1367                 mddev->reshape_position = conf->reshape_progress;
1368                 set_mask_bits(&mddev->sb_flags, 0,
1369                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1370                 md_wakeup_thread(mddev->thread);
1371                 raid10_log(conf->mddev, "wait reshape metadata");
1372                 wait_event(mddev->sb_wait,
1373                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1374
1375                 conf->reshape_safe = mddev->reshape_position;
1376         }
1377
1378         if (conf->pending_count >= max_queued_requests) {
1379                 md_wakeup_thread(mddev->thread);
1380                 raid10_log(mddev, "wait queued");
1381                 wait_event(conf->wait_barrier,
1382                            conf->pending_count < max_queued_requests);
1383         }
1384         /* first select target devices under rcu_lock and
1385          * inc refcount on their rdev.  Record them by setting
1386          * bios[x] to bio
1387          * If there are known/acknowledged bad blocks on any device
1388          * on which we have seen a write error, we want to avoid
1389          * writing to those blocks.  This potentially requires several
1390          * writes to write around the bad blocks.  Each set of writes
1391          * gets its own r10_bio with a set of bios attached.
1392          */
1393
1394         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1395         raid10_find_phys(conf, r10_bio);
1396 retry_write:
1397         blocked_rdev = NULL;
1398         rcu_read_lock();
1399         max_sectors = r10_bio->sectors;
1400
1401         for (i = 0;  i < conf->copies; i++) {
1402                 int d = r10_bio->devs[i].devnum;
1403                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1404                 struct md_rdev *rrdev = rcu_dereference(
1405                         conf->mirrors[d].replacement);
1406                 if (rdev == rrdev)
1407                         rrdev = NULL;
1408                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409                         atomic_inc(&rdev->nr_pending);
1410                         blocked_rdev = rdev;
1411                         break;
1412                 }
1413                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1414                         atomic_inc(&rrdev->nr_pending);
1415                         blocked_rdev = rrdev;
1416                         break;
1417                 }
1418                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1419                         rdev = NULL;
1420                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1421                         rrdev = NULL;
1422
1423                 r10_bio->devs[i].bio = NULL;
1424                 r10_bio->devs[i].repl_bio = NULL;
1425
1426                 if (!rdev && !rrdev) {
1427                         set_bit(R10BIO_Degraded, &r10_bio->state);
1428                         continue;
1429                 }
1430                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1431                         sector_t first_bad;
1432                         sector_t dev_sector = r10_bio->devs[i].addr;
1433                         int bad_sectors;
1434                         int is_bad;
1435
1436                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1437                                              &first_bad, &bad_sectors);
1438                         if (is_bad < 0) {
1439                                 /* Mustn't write here until the bad block
1440                                  * is acknowledged
1441                                  */
1442                                 atomic_inc(&rdev->nr_pending);
1443                                 set_bit(BlockedBadBlocks, &rdev->flags);
1444                                 blocked_rdev = rdev;
1445                                 break;
1446                         }
1447                         if (is_bad && first_bad <= dev_sector) {
1448                                 /* Cannot write here at all */
1449                                 bad_sectors -= (dev_sector - first_bad);
1450                                 if (bad_sectors < max_sectors)
1451                                         /* Mustn't write more than bad_sectors
1452                                          * to other devices yet
1453                                          */
1454                                         max_sectors = bad_sectors;
1455                                 /* We don't set R10BIO_Degraded as that
1456                                  * only applies if the disk is missing,
1457                                  * so it might be re-added, and we want to
1458                                  * know to recover this chunk.
1459                                  * In this case the device is here, and the
1460                                  * fact that this chunk is not in-sync is
1461                                  * recorded in the bad block log.
1462                                  */
1463                                 continue;
1464                         }
1465                         if (is_bad) {
1466                                 int good_sectors = first_bad - dev_sector;
1467                                 if (good_sectors < max_sectors)
1468                                         max_sectors = good_sectors;
1469                         }
1470                 }
1471                 if (rdev) {
1472                         r10_bio->devs[i].bio = bio;
1473                         atomic_inc(&rdev->nr_pending);
1474                 }
1475                 if (rrdev) {
1476                         r10_bio->devs[i].repl_bio = bio;
1477                         atomic_inc(&rrdev->nr_pending);
1478                 }
1479         }
1480         rcu_read_unlock();
1481
1482         if (unlikely(blocked_rdev)) {
1483                 /* Have to wait for this device to get unblocked, then retry */
1484                 int j;
1485                 int d;
1486
1487                 for (j = 0; j < i; j++) {
1488                         if (r10_bio->devs[j].bio) {
1489                                 d = r10_bio->devs[j].devnum;
1490                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491                         }
1492                         if (r10_bio->devs[j].repl_bio) {
1493                                 struct md_rdev *rdev;
1494                                 d = r10_bio->devs[j].devnum;
1495                                 rdev = conf->mirrors[d].replacement;
1496                                 if (!rdev) {
1497                                         /* Race with remove_disk */
1498                                         smp_mb();
1499                                         rdev = conf->mirrors[d].rdev;
1500                                 }
1501                                 rdev_dec_pending(rdev, mddev);
1502                         }
1503                 }
1504                 allow_barrier(conf);
1505                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1506                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1507                 wait_barrier(conf);
1508                 goto retry_write;
1509         }
1510
1511         if (max_sectors < r10_bio->sectors)
1512                 r10_bio->sectors = max_sectors;
1513
1514         if (r10_bio->sectors < bio_sectors(bio)) {
1515                 struct bio *split = bio_split(bio, r10_bio->sectors,
1516                                               GFP_NOIO, &conf->bio_split);
1517                 bio_chain(split, bio);
1518                 allow_barrier(conf);
1519                 generic_make_request(bio);
1520                 wait_barrier(conf);
1521                 bio = split;
1522                 r10_bio->master_bio = bio;
1523         }
1524
1525         atomic_set(&r10_bio->remaining, 1);
1526         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1527
1528         for (i = 0; i < conf->copies; i++) {
1529                 if (r10_bio->devs[i].bio)
1530                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1531                 if (r10_bio->devs[i].repl_bio)
1532                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1533         }
1534         one_write_done(r10_bio);
1535 }
1536
1537 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1538 {
1539         struct r10conf *conf = mddev->private;
1540         struct r10bio *r10_bio;
1541
1542         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1543
1544         r10_bio->master_bio = bio;
1545         r10_bio->sectors = sectors;
1546
1547         r10_bio->mddev = mddev;
1548         r10_bio->sector = bio->bi_iter.bi_sector;
1549         r10_bio->state = 0;
1550         r10_bio->read_slot = -1;
1551         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1552
1553         if (bio_data_dir(bio) == READ)
1554                 raid10_read_request(mddev, bio, r10_bio);
1555         else
1556                 raid10_write_request(mddev, bio, r10_bio);
1557 }
1558
1559 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1560 {
1561         struct r10conf *conf = mddev->private;
1562         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1563         int chunk_sects = chunk_mask + 1;
1564         int sectors = bio_sectors(bio);
1565
1566         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1567             && md_flush_request(mddev, bio))
1568                 return true;
1569
1570         if (!md_write_start(mddev, bio))
1571                 return false;
1572
1573         /*
1574          * If this request crosses a chunk boundary, we need to split
1575          * it.
1576          */
1577         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1578                      sectors > chunk_sects
1579                      && (conf->geo.near_copies < conf->geo.raid_disks
1580                          || conf->prev.near_copies <
1581                          conf->prev.raid_disks)))
1582                 sectors = chunk_sects -
1583                         (bio->bi_iter.bi_sector &
1584                          (chunk_sects - 1));
1585         __make_request(mddev, bio, sectors);
1586
1587         /* In case raid10d snuck in to freeze_array */
1588         wake_up(&conf->wait_barrier);
1589         return true;
1590 }
1591
1592 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1593 {
1594         struct r10conf *conf = mddev->private;
1595         int i;
1596
1597         if (conf->geo.near_copies < conf->geo.raid_disks)
1598                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1599         if (conf->geo.near_copies > 1)
1600                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1601         if (conf->geo.far_copies > 1) {
1602                 if (conf->geo.far_offset)
1603                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1604                 else
1605                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1606                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1607                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1608         }
1609         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1610                                         conf->geo.raid_disks - mddev->degraded);
1611         rcu_read_lock();
1612         for (i = 0; i < conf->geo.raid_disks; i++) {
1613                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1614                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1615         }
1616         rcu_read_unlock();
1617         seq_printf(seq, "]");
1618 }
1619
1620 /* check if there are enough drives for
1621  * every block to appear on atleast one.
1622  * Don't consider the device numbered 'ignore'
1623  * as we might be about to remove it.
1624  */
1625 static int _enough(struct r10conf *conf, int previous, int ignore)
1626 {
1627         int first = 0;
1628         int has_enough = 0;
1629         int disks, ncopies;
1630         if (previous) {
1631                 disks = conf->prev.raid_disks;
1632                 ncopies = conf->prev.near_copies;
1633         } else {
1634                 disks = conf->geo.raid_disks;
1635                 ncopies = conf->geo.near_copies;
1636         }
1637
1638         rcu_read_lock();
1639         do {
1640                 int n = conf->copies;
1641                 int cnt = 0;
1642                 int this = first;
1643                 while (n--) {
1644                         struct md_rdev *rdev;
1645                         if (this != ignore &&
1646                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1647                             test_bit(In_sync, &rdev->flags))
1648                                 cnt++;
1649                         this = (this+1) % disks;
1650                 }
1651                 if (cnt == 0)
1652                         goto out;
1653                 first = (first + ncopies) % disks;
1654         } while (first != 0);
1655         has_enough = 1;
1656 out:
1657         rcu_read_unlock();
1658         return has_enough;
1659 }
1660
1661 static int enough(struct r10conf *conf, int ignore)
1662 {
1663         /* when calling 'enough', both 'prev' and 'geo' must
1664          * be stable.
1665          * This is ensured if ->reconfig_mutex or ->device_lock
1666          * is held.
1667          */
1668         return _enough(conf, 0, ignore) &&
1669                 _enough(conf, 1, ignore);
1670 }
1671
1672 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1673 {
1674         char b[BDEVNAME_SIZE];
1675         struct r10conf *conf = mddev->private;
1676         unsigned long flags;
1677
1678         /*
1679          * If it is not operational, then we have already marked it as dead
1680          * else if it is the last working disks, ignore the error, let the
1681          * next level up know.
1682          * else mark the drive as failed
1683          */
1684         spin_lock_irqsave(&conf->device_lock, flags);
1685         if (test_bit(In_sync, &rdev->flags)
1686             && !enough(conf, rdev->raid_disk)) {
1687                 /*
1688                  * Don't fail the drive, just return an IO error.
1689                  */
1690                 spin_unlock_irqrestore(&conf->device_lock, flags);
1691                 return;
1692         }
1693         if (test_and_clear_bit(In_sync, &rdev->flags))
1694                 mddev->degraded++;
1695         /*
1696          * If recovery is running, make sure it aborts.
1697          */
1698         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1699         set_bit(Blocked, &rdev->flags);
1700         set_bit(Faulty, &rdev->flags);
1701         set_mask_bits(&mddev->sb_flags, 0,
1702                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1703         spin_unlock_irqrestore(&conf->device_lock, flags);
1704         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1705                 "md/raid10:%s: Operation continuing on %d devices.\n",
1706                 mdname(mddev), bdevname(rdev->bdev, b),
1707                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1708 }
1709
1710 static void print_conf(struct r10conf *conf)
1711 {
1712         int i;
1713         struct md_rdev *rdev;
1714
1715         pr_debug("RAID10 conf printout:\n");
1716         if (!conf) {
1717                 pr_debug("(!conf)\n");
1718                 return;
1719         }
1720         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1721                  conf->geo.raid_disks);
1722
1723         /* This is only called with ->reconfix_mutex held, so
1724          * rcu protection of rdev is not needed */
1725         for (i = 0; i < conf->geo.raid_disks; i++) {
1726                 char b[BDEVNAME_SIZE];
1727                 rdev = conf->mirrors[i].rdev;
1728                 if (rdev)
1729                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1730                                  i, !test_bit(In_sync, &rdev->flags),
1731                                  !test_bit(Faulty, &rdev->flags),
1732                                  bdevname(rdev->bdev,b));
1733         }
1734 }
1735
1736 static void close_sync(struct r10conf *conf)
1737 {
1738         wait_barrier(conf);
1739         allow_barrier(conf);
1740
1741         mempool_exit(&conf->r10buf_pool);
1742 }
1743
1744 static int raid10_spare_active(struct mddev *mddev)
1745 {
1746         int i;
1747         struct r10conf *conf = mddev->private;
1748         struct raid10_info *tmp;
1749         int count = 0;
1750         unsigned long flags;
1751
1752         /*
1753          * Find all non-in_sync disks within the RAID10 configuration
1754          * and mark them in_sync
1755          */
1756         for (i = 0; i < conf->geo.raid_disks; i++) {
1757                 tmp = conf->mirrors + i;
1758                 if (tmp->replacement
1759                     && tmp->replacement->recovery_offset == MaxSector
1760                     && !test_bit(Faulty, &tmp->replacement->flags)
1761                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1762                         /* Replacement has just become active */
1763                         if (!tmp->rdev
1764                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1765                                 count++;
1766                         if (tmp->rdev) {
1767                                 /* Replaced device not technically faulty,
1768                                  * but we need to be sure it gets removed
1769                                  * and never re-added.
1770                                  */
1771                                 set_bit(Faulty, &tmp->rdev->flags);
1772                                 sysfs_notify_dirent_safe(
1773                                         tmp->rdev->sysfs_state);
1774                         }
1775                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1776                 } else if (tmp->rdev
1777                            && tmp->rdev->recovery_offset == MaxSector
1778                            && !test_bit(Faulty, &tmp->rdev->flags)
1779                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1780                         count++;
1781                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1782                 }
1783         }
1784         spin_lock_irqsave(&conf->device_lock, flags);
1785         mddev->degraded -= count;
1786         spin_unlock_irqrestore(&conf->device_lock, flags);
1787
1788         print_conf(conf);
1789         return count;
1790 }
1791
1792 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1793 {
1794         struct r10conf *conf = mddev->private;
1795         int err = -EEXIST;
1796         int mirror;
1797         int first = 0;
1798         int last = conf->geo.raid_disks - 1;
1799
1800         if (mddev->recovery_cp < MaxSector)
1801                 /* only hot-add to in-sync arrays, as recovery is
1802                  * very different from resync
1803                  */
1804                 return -EBUSY;
1805         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1806                 return -EINVAL;
1807
1808         if (md_integrity_add_rdev(rdev, mddev))
1809                 return -ENXIO;
1810
1811         if (rdev->raid_disk >= 0)
1812                 first = last = rdev->raid_disk;
1813
1814         if (rdev->saved_raid_disk >= first &&
1815             rdev->saved_raid_disk < conf->geo.raid_disks &&
1816             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1817                 mirror = rdev->saved_raid_disk;
1818         else
1819                 mirror = first;
1820         for ( ; mirror <= last ; mirror++) {
1821                 struct raid10_info *p = &conf->mirrors[mirror];
1822                 if (p->recovery_disabled == mddev->recovery_disabled)
1823                         continue;
1824                 if (p->rdev) {
1825                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1826                             p->replacement != NULL)
1827                                 continue;
1828                         clear_bit(In_sync, &rdev->flags);
1829                         set_bit(Replacement, &rdev->flags);
1830                         rdev->raid_disk = mirror;
1831                         err = 0;
1832                         if (mddev->gendisk)
1833                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1834                                                   rdev->data_offset << 9);
1835                         conf->fullsync = 1;
1836                         rcu_assign_pointer(p->replacement, rdev);
1837                         break;
1838                 }
1839
1840                 if (mddev->gendisk)
1841                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1842                                           rdev->data_offset << 9);
1843
1844                 p->head_position = 0;
1845                 p->recovery_disabled = mddev->recovery_disabled - 1;
1846                 rdev->raid_disk = mirror;
1847                 err = 0;
1848                 if (rdev->saved_raid_disk != mirror)
1849                         conf->fullsync = 1;
1850                 rcu_assign_pointer(p->rdev, rdev);
1851                 break;
1852         }
1853         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1854                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1855
1856         print_conf(conf);
1857         return err;
1858 }
1859
1860 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1861 {
1862         struct r10conf *conf = mddev->private;
1863         int err = 0;
1864         int number = rdev->raid_disk;
1865         struct md_rdev **rdevp;
1866         struct raid10_info *p = conf->mirrors + number;
1867
1868         print_conf(conf);
1869         if (rdev == p->rdev)
1870                 rdevp = &p->rdev;
1871         else if (rdev == p->replacement)
1872                 rdevp = &p->replacement;
1873         else
1874                 return 0;
1875
1876         if (test_bit(In_sync, &rdev->flags) ||
1877             atomic_read(&rdev->nr_pending)) {
1878                 err = -EBUSY;
1879                 goto abort;
1880         }
1881         /* Only remove non-faulty devices if recovery
1882          * is not possible.
1883          */
1884         if (!test_bit(Faulty, &rdev->flags) &&
1885             mddev->recovery_disabled != p->recovery_disabled &&
1886             (!p->replacement || p->replacement == rdev) &&
1887             number < conf->geo.raid_disks &&
1888             enough(conf, -1)) {
1889                 err = -EBUSY;
1890                 goto abort;
1891         }
1892         *rdevp = NULL;
1893         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1894                 synchronize_rcu();
1895                 if (atomic_read(&rdev->nr_pending)) {
1896                         /* lost the race, try later */
1897                         err = -EBUSY;
1898                         *rdevp = rdev;
1899                         goto abort;
1900                 }
1901         }
1902         if (p->replacement) {
1903                 /* We must have just cleared 'rdev' */
1904                 p->rdev = p->replacement;
1905                 clear_bit(Replacement, &p->replacement->flags);
1906                 smp_mb(); /* Make sure other CPUs may see both as identical
1907                            * but will never see neither -- if they are careful.
1908                            */
1909                 p->replacement = NULL;
1910         }
1911
1912         clear_bit(WantReplacement, &rdev->flags);
1913         err = md_integrity_register(mddev);
1914
1915 abort:
1916
1917         print_conf(conf);
1918         return err;
1919 }
1920
1921 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1922 {
1923         struct r10conf *conf = r10_bio->mddev->private;
1924
1925         if (!bio->bi_status)
1926                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1927         else
1928                 /* The write handler will notice the lack of
1929                  * R10BIO_Uptodate and record any errors etc
1930                  */
1931                 atomic_add(r10_bio->sectors,
1932                            &conf->mirrors[d].rdev->corrected_errors);
1933
1934         /* for reconstruct, we always reschedule after a read.
1935          * for resync, only after all reads
1936          */
1937         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1938         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1939             atomic_dec_and_test(&r10_bio->remaining)) {
1940                 /* we have read all the blocks,
1941                  * do the comparison in process context in raid10d
1942                  */
1943                 reschedule_retry(r10_bio);
1944         }
1945 }
1946
1947 static void end_sync_read(struct bio *bio)
1948 {
1949         struct r10bio *r10_bio = get_resync_r10bio(bio);
1950         struct r10conf *conf = r10_bio->mddev->private;
1951         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1952
1953         __end_sync_read(r10_bio, bio, d);
1954 }
1955
1956 static void end_reshape_read(struct bio *bio)
1957 {
1958         /* reshape read bio isn't allocated from r10buf_pool */
1959         struct r10bio *r10_bio = bio->bi_private;
1960
1961         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1962 }
1963
1964 static void end_sync_request(struct r10bio *r10_bio)
1965 {
1966         struct mddev *mddev = r10_bio->mddev;
1967
1968         while (atomic_dec_and_test(&r10_bio->remaining)) {
1969                 if (r10_bio->master_bio == NULL) {
1970                         /* the primary of several recovery bios */
1971                         sector_t s = r10_bio->sectors;
1972                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1973                             test_bit(R10BIO_WriteError, &r10_bio->state))
1974                                 reschedule_retry(r10_bio);
1975                         else
1976                                 put_buf(r10_bio);
1977                         md_done_sync(mddev, s, 1);
1978                         break;
1979                 } else {
1980                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1981                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1982                             test_bit(R10BIO_WriteError, &r10_bio->state))
1983                                 reschedule_retry(r10_bio);
1984                         else
1985                                 put_buf(r10_bio);
1986                         r10_bio = r10_bio2;
1987                 }
1988         }
1989 }
1990
1991 static void end_sync_write(struct bio *bio)
1992 {
1993         struct r10bio *r10_bio = get_resync_r10bio(bio);
1994         struct mddev *mddev = r10_bio->mddev;
1995         struct r10conf *conf = mddev->private;
1996         int d;
1997         sector_t first_bad;
1998         int bad_sectors;
1999         int slot;
2000         int repl;
2001         struct md_rdev *rdev = NULL;
2002
2003         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2004         if (repl)
2005                 rdev = conf->mirrors[d].replacement;
2006         else
2007                 rdev = conf->mirrors[d].rdev;
2008
2009         if (bio->bi_status) {
2010                 if (repl)
2011                         md_error(mddev, rdev);
2012                 else {
2013                         set_bit(WriteErrorSeen, &rdev->flags);
2014                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2015                                 set_bit(MD_RECOVERY_NEEDED,
2016                                         &rdev->mddev->recovery);
2017                         set_bit(R10BIO_WriteError, &r10_bio->state);
2018                 }
2019         } else if (is_badblock(rdev,
2020                              r10_bio->devs[slot].addr,
2021                              r10_bio->sectors,
2022                              &first_bad, &bad_sectors))
2023                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2024
2025         rdev_dec_pending(rdev, mddev);
2026
2027         end_sync_request(r10_bio);
2028 }
2029
2030 /*
2031  * Note: sync and recover and handled very differently for raid10
2032  * This code is for resync.
2033  * For resync, we read through virtual addresses and read all blocks.
2034  * If there is any error, we schedule a write.  The lowest numbered
2035  * drive is authoritative.
2036  * However requests come for physical address, so we need to map.
2037  * For every physical address there are raid_disks/copies virtual addresses,
2038  * which is always are least one, but is not necessarly an integer.
2039  * This means that a physical address can span multiple chunks, so we may
2040  * have to submit multiple io requests for a single sync request.
2041  */
2042 /*
2043  * We check if all blocks are in-sync and only write to blocks that
2044  * aren't in sync
2045  */
2046 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2047 {
2048         struct r10conf *conf = mddev->private;
2049         int i, first;
2050         struct bio *tbio, *fbio;
2051         int vcnt;
2052         struct page **tpages, **fpages;
2053
2054         atomic_set(&r10_bio->remaining, 1);
2055
2056         /* find the first device with a block */
2057         for (i=0; i<conf->copies; i++)
2058                 if (!r10_bio->devs[i].bio->bi_status)
2059                         break;
2060
2061         if (i == conf->copies)
2062                 goto done;
2063
2064         first = i;
2065         fbio = r10_bio->devs[i].bio;
2066         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2067         fbio->bi_iter.bi_idx = 0;
2068         fpages = get_resync_pages(fbio)->pages;
2069
2070         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2071         /* now find blocks with errors */
2072         for (i=0 ; i < conf->copies ; i++) {
2073                 int  j, d;
2074                 struct md_rdev *rdev;
2075                 struct resync_pages *rp;
2076
2077                 tbio = r10_bio->devs[i].bio;
2078
2079                 if (tbio->bi_end_io != end_sync_read)
2080                         continue;
2081                 if (i == first)
2082                         continue;
2083
2084                 tpages = get_resync_pages(tbio)->pages;
2085                 d = r10_bio->devs[i].devnum;
2086                 rdev = conf->mirrors[d].rdev;
2087                 if (!r10_bio->devs[i].bio->bi_status) {
2088                         /* We know that the bi_io_vec layout is the same for
2089                          * both 'first' and 'i', so we just compare them.
2090                          * All vec entries are PAGE_SIZE;
2091                          */
2092                         int sectors = r10_bio->sectors;
2093                         for (j = 0; j < vcnt; j++) {
2094                                 int len = PAGE_SIZE;
2095                                 if (sectors < (len / 512))
2096                                         len = sectors * 512;
2097                                 if (memcmp(page_address(fpages[j]),
2098                                            page_address(tpages[j]),
2099                                            len))
2100                                         break;
2101                                 sectors -= len/512;
2102                         }
2103                         if (j == vcnt)
2104                                 continue;
2105                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2106                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2107                                 /* Don't fix anything. */
2108                                 continue;
2109                 } else if (test_bit(FailFast, &rdev->flags)) {
2110                         /* Just give up on this device */
2111                         md_error(rdev->mddev, rdev);
2112                         continue;
2113                 }
2114                 /* Ok, we need to write this bio, either to correct an
2115                  * inconsistency or to correct an unreadable block.
2116                  * First we need to fixup bv_offset, bv_len and
2117                  * bi_vecs, as the read request might have corrupted these
2118                  */
2119                 rp = get_resync_pages(tbio);
2120                 bio_reset(tbio);
2121
2122                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2123
2124                 rp->raid_bio = r10_bio;
2125                 tbio->bi_private = rp;
2126                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2127                 tbio->bi_end_io = end_sync_write;
2128                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2129
2130                 bio_copy_data(tbio, fbio);
2131
2132                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2133                 atomic_inc(&r10_bio->remaining);
2134                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2135
2136                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2137                         tbio->bi_opf |= MD_FAILFAST;
2138                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2139                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2140                 generic_make_request(tbio);
2141         }
2142
2143         /* Now write out to any replacement devices
2144          * that are active
2145          */
2146         for (i = 0; i < conf->copies; i++) {
2147                 int d;
2148
2149                 tbio = r10_bio->devs[i].repl_bio;
2150                 if (!tbio || !tbio->bi_end_io)
2151                         continue;
2152                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2153                     && r10_bio->devs[i].bio != fbio)
2154                         bio_copy_data(tbio, fbio);
2155                 d = r10_bio->devs[i].devnum;
2156                 atomic_inc(&r10_bio->remaining);
2157                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2158                              bio_sectors(tbio));
2159                 generic_make_request(tbio);
2160         }
2161
2162 done:
2163         if (atomic_dec_and_test(&r10_bio->remaining)) {
2164                 md_done_sync(mddev, r10_bio->sectors, 1);
2165                 put_buf(r10_bio);
2166         }
2167 }
2168
2169 /*
2170  * Now for the recovery code.
2171  * Recovery happens across physical sectors.
2172  * We recover all non-is_sync drives by finding the virtual address of
2173  * each, and then choose a working drive that also has that virt address.
2174  * There is a separate r10_bio for each non-in_sync drive.
2175  * Only the first two slots are in use. The first for reading,
2176  * The second for writing.
2177  *
2178  */
2179 static void fix_recovery_read_error(struct r10bio *r10_bio)
2180 {
2181         /* We got a read error during recovery.
2182          * We repeat the read in smaller page-sized sections.
2183          * If a read succeeds, write it to the new device or record
2184          * a bad block if we cannot.
2185          * If a read fails, record a bad block on both old and
2186          * new devices.
2187          */
2188         struct mddev *mddev = r10_bio->mddev;
2189         struct r10conf *conf = mddev->private;
2190         struct bio *bio = r10_bio->devs[0].bio;
2191         sector_t sect = 0;
2192         int sectors = r10_bio->sectors;
2193         int idx = 0;
2194         int dr = r10_bio->devs[0].devnum;
2195         int dw = r10_bio->devs[1].devnum;
2196         struct page **pages = get_resync_pages(bio)->pages;
2197
2198         while (sectors) {
2199                 int s = sectors;
2200                 struct md_rdev *rdev;
2201                 sector_t addr;
2202                 int ok;
2203
2204                 if (s > (PAGE_SIZE>>9))
2205                         s = PAGE_SIZE >> 9;
2206
2207                 rdev = conf->mirrors[dr].rdev;
2208                 addr = r10_bio->devs[0].addr + sect,
2209                 ok = sync_page_io(rdev,
2210                                   addr,
2211                                   s << 9,
2212                                   pages[idx],
2213                                   REQ_OP_READ, 0, false);
2214                 if (ok) {
2215                         rdev = conf->mirrors[dw].rdev;
2216                         addr = r10_bio->devs[1].addr + sect;
2217                         ok = sync_page_io(rdev,
2218                                           addr,
2219                                           s << 9,
2220                                           pages[idx],
2221                                           REQ_OP_WRITE, 0, false);
2222                         if (!ok) {
2223                                 set_bit(WriteErrorSeen, &rdev->flags);
2224                                 if (!test_and_set_bit(WantReplacement,
2225                                                       &rdev->flags))
2226                                         set_bit(MD_RECOVERY_NEEDED,
2227                                                 &rdev->mddev->recovery);
2228                         }
2229                 }
2230                 if (!ok) {
2231                         /* We don't worry if we cannot set a bad block -
2232                          * it really is bad so there is no loss in not
2233                          * recording it yet
2234                          */
2235                         rdev_set_badblocks(rdev, addr, s, 0);
2236
2237                         if (rdev != conf->mirrors[dw].rdev) {
2238                                 /* need bad block on destination too */
2239                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2240                                 addr = r10_bio->devs[1].addr + sect;
2241                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2242                                 if (!ok) {
2243                                         /* just abort the recovery */
2244                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2245                                                   mdname(mddev));
2246
2247                                         conf->mirrors[dw].recovery_disabled
2248                                                 = mddev->recovery_disabled;
2249                                         set_bit(MD_RECOVERY_INTR,
2250                                                 &mddev->recovery);
2251                                         break;
2252                                 }
2253                         }
2254                 }
2255
2256                 sectors -= s;
2257                 sect += s;
2258                 idx++;
2259         }
2260 }
2261
2262 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2263 {
2264         struct r10conf *conf = mddev->private;
2265         int d;
2266         struct bio *wbio, *wbio2;
2267
2268         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2269                 fix_recovery_read_error(r10_bio);
2270                 end_sync_request(r10_bio);
2271                 return;
2272         }
2273
2274         /*
2275          * share the pages with the first bio
2276          * and submit the write request
2277          */
2278         d = r10_bio->devs[1].devnum;
2279         wbio = r10_bio->devs[1].bio;
2280         wbio2 = r10_bio->devs[1].repl_bio;
2281         /* Need to test wbio2->bi_end_io before we call
2282          * generic_make_request as if the former is NULL,
2283          * the latter is free to free wbio2.
2284          */
2285         if (wbio2 && !wbio2->bi_end_io)
2286                 wbio2 = NULL;
2287         if (wbio->bi_end_io) {
2288                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2289                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2290                 generic_make_request(wbio);
2291         }
2292         if (wbio2) {
2293                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2294                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2295                              bio_sectors(wbio2));
2296                 generic_make_request(wbio2);
2297         }
2298 }
2299
2300 /*
2301  * Used by fix_read_error() to decay the per rdev read_errors.
2302  * We halve the read error count for every hour that has elapsed
2303  * since the last recorded read error.
2304  *
2305  */
2306 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307 {
2308         long cur_time_mon;
2309         unsigned long hours_since_last;
2310         unsigned int read_errors = atomic_read(&rdev->read_errors);
2311
2312         cur_time_mon = ktime_get_seconds();
2313
2314         if (rdev->last_read_error == 0) {
2315                 /* first time we've seen a read error */
2316                 rdev->last_read_error = cur_time_mon;
2317                 return;
2318         }
2319
2320         hours_since_last = (long)(cur_time_mon -
2321                             rdev->last_read_error) / 3600;
2322
2323         rdev->last_read_error = cur_time_mon;
2324
2325         /*
2326          * if hours_since_last is > the number of bits in read_errors
2327          * just set read errors to 0. We do this to avoid
2328          * overflowing the shift of read_errors by hours_since_last.
2329          */
2330         if (hours_since_last >= 8 * sizeof(read_errors))
2331                 atomic_set(&rdev->read_errors, 0);
2332         else
2333                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2334 }
2335
2336 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2337                             int sectors, struct page *page, int rw)
2338 {
2339         sector_t first_bad;
2340         int bad_sectors;
2341
2342         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2343             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2344                 return -1;
2345         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2346                 /* success */
2347                 return 1;
2348         if (rw == WRITE) {
2349                 set_bit(WriteErrorSeen, &rdev->flags);
2350                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2351                         set_bit(MD_RECOVERY_NEEDED,
2352                                 &rdev->mddev->recovery);
2353         }
2354         /* need to record an error - either for the block or the device */
2355         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2356                 md_error(rdev->mddev, rdev);
2357         return 0;
2358 }
2359
2360 /*
2361  * This is a kernel thread which:
2362  *
2363  *      1.      Retries failed read operations on working mirrors.
2364  *      2.      Updates the raid superblock when problems encounter.
2365  *      3.      Performs writes following reads for array synchronising.
2366  */
2367
2368 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2369 {
2370         int sect = 0; /* Offset from r10_bio->sector */
2371         int sectors = r10_bio->sectors;
2372         struct md_rdev *rdev;
2373         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2374         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2375
2376         /* still own a reference to this rdev, so it cannot
2377          * have been cleared recently.
2378          */
2379         rdev = conf->mirrors[d].rdev;
2380
2381         if (test_bit(Faulty, &rdev->flags))
2382                 /* drive has already been failed, just ignore any
2383                    more fix_read_error() attempts */
2384                 return;
2385
2386         check_decay_read_errors(mddev, rdev);
2387         atomic_inc(&rdev->read_errors);
2388         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2389                 char b[BDEVNAME_SIZE];
2390                 bdevname(rdev->bdev, b);
2391
2392                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2393                           mdname(mddev), b,
2394                           atomic_read(&rdev->read_errors), max_read_errors);
2395                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2396                           mdname(mddev), b);
2397                 md_error(mddev, rdev);
2398                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2399                 return;
2400         }
2401
2402         while(sectors) {
2403                 int s = sectors;
2404                 int sl = r10_bio->read_slot;
2405                 int success = 0;
2406                 int start;
2407
2408                 if (s > (PAGE_SIZE>>9))
2409                         s = PAGE_SIZE >> 9;
2410
2411                 rcu_read_lock();
2412                 do {
2413                         sector_t first_bad;
2414                         int bad_sectors;
2415
2416                         d = r10_bio->devs[sl].devnum;
2417                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2418                         if (rdev &&
2419                             test_bit(In_sync, &rdev->flags) &&
2420                             !test_bit(Faulty, &rdev->flags) &&
2421                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2422                                         &first_bad, &bad_sectors) == 0) {
2423                                 atomic_inc(&rdev->nr_pending);
2424                                 rcu_read_unlock();
2425                                 success = sync_page_io(rdev,
2426                                                        r10_bio->devs[sl].addr +
2427                                                        sect,
2428                                                        s<<9,
2429                                                        conf->tmppage,
2430                                                        REQ_OP_READ, 0, false);
2431                                 rdev_dec_pending(rdev, mddev);
2432                                 rcu_read_lock();
2433                                 if (success)
2434                                         break;
2435                         }
2436                         sl++;
2437                         if (sl == conf->copies)
2438                                 sl = 0;
2439                 } while (!success && sl != r10_bio->read_slot);
2440                 rcu_read_unlock();
2441
2442                 if (!success) {
2443                         /* Cannot read from anywhere, just mark the block
2444                          * as bad on the first device to discourage future
2445                          * reads.
2446                          */
2447                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2448                         rdev = conf->mirrors[dn].rdev;
2449
2450                         if (!rdev_set_badblocks(
2451                                     rdev,
2452                                     r10_bio->devs[r10_bio->read_slot].addr
2453                                     + sect,
2454                                     s, 0)) {
2455                                 md_error(mddev, rdev);
2456                                 r10_bio->devs[r10_bio->read_slot].bio
2457                                         = IO_BLOCKED;
2458                         }
2459                         break;
2460                 }
2461
2462                 start = sl;
2463                 /* write it back and re-read */
2464                 rcu_read_lock();
2465                 while (sl != r10_bio->read_slot) {
2466                         char b[BDEVNAME_SIZE];
2467
2468                         if (sl==0)
2469                                 sl = conf->copies;
2470                         sl--;
2471                         d = r10_bio->devs[sl].devnum;
2472                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2473                         if (!rdev ||
2474                             test_bit(Faulty, &rdev->flags) ||
2475                             !test_bit(In_sync, &rdev->flags))
2476                                 continue;
2477
2478                         atomic_inc(&rdev->nr_pending);
2479                         rcu_read_unlock();
2480                         if (r10_sync_page_io(rdev,
2481                                              r10_bio->devs[sl].addr +
2482                                              sect,
2483                                              s, conf->tmppage, WRITE)
2484                             == 0) {
2485                                 /* Well, this device is dead */
2486                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2487                                           mdname(mddev), s,
2488                                           (unsigned long long)(
2489                                                   sect +
2490                                                   choose_data_offset(r10_bio,
2491                                                                      rdev)),
2492                                           bdevname(rdev->bdev, b));
2493                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2494                                           mdname(mddev),
2495                                           bdevname(rdev->bdev, b));
2496                         }
2497                         rdev_dec_pending(rdev, mddev);
2498                         rcu_read_lock();
2499                 }
2500                 sl = start;
2501                 while (sl != r10_bio->read_slot) {
2502                         char b[BDEVNAME_SIZE];
2503
2504                         if (sl==0)
2505                                 sl = conf->copies;
2506                         sl--;
2507                         d = r10_bio->devs[sl].devnum;
2508                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2509                         if (!rdev ||
2510                             test_bit(Faulty, &rdev->flags) ||
2511                             !test_bit(In_sync, &rdev->flags))
2512                                 continue;
2513
2514                         atomic_inc(&rdev->nr_pending);
2515                         rcu_read_unlock();
2516                         switch (r10_sync_page_io(rdev,
2517                                              r10_bio->devs[sl].addr +
2518                                              sect,
2519                                              s, conf->tmppage,
2520                                                  READ)) {
2521                         case 0:
2522                                 /* Well, this device is dead */
2523                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2524                                        mdname(mddev), s,
2525                                        (unsigned long long)(
2526                                                sect +
2527                                                choose_data_offset(r10_bio, rdev)),
2528                                        bdevname(rdev->bdev, b));
2529                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2530                                        mdname(mddev),
2531                                        bdevname(rdev->bdev, b));
2532                                 break;
2533                         case 1:
2534                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2535                                        mdname(mddev), s,
2536                                        (unsigned long long)(
2537                                                sect +
2538                                                choose_data_offset(r10_bio, rdev)),
2539                                        bdevname(rdev->bdev, b));
2540                                 atomic_add(s, &rdev->corrected_errors);
2541                         }
2542
2543                         rdev_dec_pending(rdev, mddev);
2544                         rcu_read_lock();
2545                 }
2546                 rcu_read_unlock();
2547
2548                 sectors -= s;
2549                 sect += s;
2550         }
2551 }
2552
2553 static int narrow_write_error(struct r10bio *r10_bio, int i)
2554 {
2555         struct bio *bio = r10_bio->master_bio;
2556         struct mddev *mddev = r10_bio->mddev;
2557         struct r10conf *conf = mddev->private;
2558         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2559         /* bio has the data to be written to slot 'i' where
2560          * we just recently had a write error.
2561          * We repeatedly clone the bio and trim down to one block,
2562          * then try the write.  Where the write fails we record
2563          * a bad block.
2564          * It is conceivable that the bio doesn't exactly align with
2565          * blocks.  We must handle this.
2566          *
2567          * We currently own a reference to the rdev.
2568          */
2569
2570         int block_sectors;
2571         sector_t sector;
2572         int sectors;
2573         int sect_to_write = r10_bio->sectors;
2574         int ok = 1;
2575
2576         if (rdev->badblocks.shift < 0)
2577                 return 0;
2578
2579         block_sectors = roundup(1 << rdev->badblocks.shift,
2580                                 bdev_logical_block_size(rdev->bdev) >> 9);
2581         sector = r10_bio->sector;
2582         sectors = ((r10_bio->sector + block_sectors)
2583                    & ~(sector_t)(block_sectors - 1))
2584                 - sector;
2585
2586         while (sect_to_write) {
2587                 struct bio *wbio;
2588                 sector_t wsector;
2589                 if (sectors > sect_to_write)
2590                         sectors = sect_to_write;
2591                 /* Write at 'sector' for 'sectors' */
2592                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2593                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2594                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2595                 wbio->bi_iter.bi_sector = wsector +
2596                                    choose_data_offset(r10_bio, rdev);
2597                 bio_set_dev(wbio, rdev->bdev);
2598                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2599
2600                 if (submit_bio_wait(wbio) < 0)
2601                         /* Failure! */
2602                         ok = rdev_set_badblocks(rdev, wsector,
2603                                                 sectors, 0)
2604                                 && ok;
2605
2606                 bio_put(wbio);
2607                 sect_to_write -= sectors;
2608                 sector += sectors;
2609                 sectors = block_sectors;
2610         }
2611         return ok;
2612 }
2613
2614 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2615 {
2616         int slot = r10_bio->read_slot;
2617         struct bio *bio;
2618         struct r10conf *conf = mddev->private;
2619         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2620
2621         /* we got a read error. Maybe the drive is bad.  Maybe just
2622          * the block and we can fix it.
2623          * We freeze all other IO, and try reading the block from
2624          * other devices.  When we find one, we re-write
2625          * and check it that fixes the read error.
2626          * This is all done synchronously while the array is
2627          * frozen.
2628          */
2629         bio = r10_bio->devs[slot].bio;
2630         bio_put(bio);
2631         r10_bio->devs[slot].bio = NULL;
2632
2633         if (mddev->ro)
2634                 r10_bio->devs[slot].bio = IO_BLOCKED;
2635         else if (!test_bit(FailFast, &rdev->flags)) {
2636                 freeze_array(conf, 1);
2637                 fix_read_error(conf, mddev, r10_bio);
2638                 unfreeze_array(conf);
2639         } else
2640                 md_error(mddev, rdev);
2641
2642         rdev_dec_pending(rdev, mddev);
2643         allow_barrier(conf);
2644         r10_bio->state = 0;
2645         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2646 }
2647
2648 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2649 {
2650         /* Some sort of write request has finished and it
2651          * succeeded in writing where we thought there was a
2652          * bad block.  So forget the bad block.
2653          * Or possibly if failed and we need to record
2654          * a bad block.
2655          */
2656         int m;
2657         struct md_rdev *rdev;
2658
2659         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2660             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2661                 for (m = 0; m < conf->copies; m++) {
2662                         int dev = r10_bio->devs[m].devnum;
2663                         rdev = conf->mirrors[dev].rdev;
2664                         if (r10_bio->devs[m].bio == NULL ||
2665                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2666                                 continue;
2667                         if (!r10_bio->devs[m].bio->bi_status) {
2668                                 rdev_clear_badblocks(
2669                                         rdev,
2670                                         r10_bio->devs[m].addr,
2671                                         r10_bio->sectors, 0);
2672                         } else {
2673                                 if (!rdev_set_badblocks(
2674                                             rdev,
2675                                             r10_bio->devs[m].addr,
2676                                             r10_bio->sectors, 0))
2677                                         md_error(conf->mddev, rdev);
2678                         }
2679                         rdev = conf->mirrors[dev].replacement;
2680                         if (r10_bio->devs[m].repl_bio == NULL ||
2681                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2682                                 continue;
2683
2684                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2685                                 rdev_clear_badblocks(
2686                                         rdev,
2687                                         r10_bio->devs[m].addr,
2688                                         r10_bio->sectors, 0);
2689                         } else {
2690                                 if (!rdev_set_badblocks(
2691                                             rdev,
2692                                             r10_bio->devs[m].addr,
2693                                             r10_bio->sectors, 0))
2694                                         md_error(conf->mddev, rdev);
2695                         }
2696                 }
2697                 put_buf(r10_bio);
2698         } else {
2699                 bool fail = false;
2700                 for (m = 0; m < conf->copies; m++) {
2701                         int dev = r10_bio->devs[m].devnum;
2702                         struct bio *bio = r10_bio->devs[m].bio;
2703                         rdev = conf->mirrors[dev].rdev;
2704                         if (bio == IO_MADE_GOOD) {
2705                                 rdev_clear_badblocks(
2706                                         rdev,
2707                                         r10_bio->devs[m].addr,
2708                                         r10_bio->sectors, 0);
2709                                 rdev_dec_pending(rdev, conf->mddev);
2710                         } else if (bio != NULL && bio->bi_status) {
2711                                 fail = true;
2712                                 if (!narrow_write_error(r10_bio, m)) {
2713                                         md_error(conf->mddev, rdev);
2714                                         set_bit(R10BIO_Degraded,
2715                                                 &r10_bio->state);
2716                                 }
2717                                 rdev_dec_pending(rdev, conf->mddev);
2718                         }
2719                         bio = r10_bio->devs[m].repl_bio;
2720                         rdev = conf->mirrors[dev].replacement;
2721                         if (rdev && bio == IO_MADE_GOOD) {
2722                                 rdev_clear_badblocks(
2723                                         rdev,
2724                                         r10_bio->devs[m].addr,
2725                                         r10_bio->sectors, 0);
2726                                 rdev_dec_pending(rdev, conf->mddev);
2727                         }
2728                 }
2729                 if (fail) {
2730                         spin_lock_irq(&conf->device_lock);
2731                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2732                         conf->nr_queued++;
2733                         spin_unlock_irq(&conf->device_lock);
2734                         /*
2735                          * In case freeze_array() is waiting for condition
2736                          * nr_pending == nr_queued + extra to be true.
2737                          */
2738                         wake_up(&conf->wait_barrier);
2739                         md_wakeup_thread(conf->mddev->thread);
2740                 } else {
2741                         if (test_bit(R10BIO_WriteError,
2742                                      &r10_bio->state))
2743                                 close_write(r10_bio);
2744                         raid_end_bio_io(r10_bio);
2745                 }
2746         }
2747 }
2748
2749 static void raid10d(struct md_thread *thread)
2750 {
2751         struct mddev *mddev = thread->mddev;
2752         struct r10bio *r10_bio;
2753         unsigned long flags;
2754         struct r10conf *conf = mddev->private;
2755         struct list_head *head = &conf->retry_list;
2756         struct blk_plug plug;
2757
2758         md_check_recovery(mddev);
2759
2760         if (!list_empty_careful(&conf->bio_end_io_list) &&
2761             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2762                 LIST_HEAD(tmp);
2763                 spin_lock_irqsave(&conf->device_lock, flags);
2764                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2765                         while (!list_empty(&conf->bio_end_io_list)) {
2766                                 list_move(conf->bio_end_io_list.prev, &tmp);
2767                                 conf->nr_queued--;
2768                         }
2769                 }
2770                 spin_unlock_irqrestore(&conf->device_lock, flags);
2771                 while (!list_empty(&tmp)) {
2772                         r10_bio = list_first_entry(&tmp, struct r10bio,
2773                                                    retry_list);
2774                         list_del(&r10_bio->retry_list);
2775                         if (mddev->degraded)
2776                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2777
2778                         if (test_bit(R10BIO_WriteError,
2779                                      &r10_bio->state))
2780                                 close_write(r10_bio);
2781                         raid_end_bio_io(r10_bio);
2782                 }
2783         }
2784
2785         blk_start_plug(&plug);
2786         for (;;) {
2787
2788                 flush_pending_writes(conf);
2789
2790                 spin_lock_irqsave(&conf->device_lock, flags);
2791                 if (list_empty(head)) {
2792                         spin_unlock_irqrestore(&conf->device_lock, flags);
2793                         break;
2794                 }
2795                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2796                 list_del(head->prev);
2797                 conf->nr_queued--;
2798                 spin_unlock_irqrestore(&conf->device_lock, flags);
2799
2800                 mddev = r10_bio->mddev;
2801                 conf = mddev->private;
2802                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2803                     test_bit(R10BIO_WriteError, &r10_bio->state))
2804                         handle_write_completed(conf, r10_bio);
2805                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2806                         reshape_request_write(mddev, r10_bio);
2807                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2808                         sync_request_write(mddev, r10_bio);
2809                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2810                         recovery_request_write(mddev, r10_bio);
2811                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2812                         handle_read_error(mddev, r10_bio);
2813                 else
2814                         WARN_ON_ONCE(1);
2815
2816                 cond_resched();
2817                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2818                         md_check_recovery(mddev);
2819         }
2820         blk_finish_plug(&plug);
2821 }
2822
2823 static int init_resync(struct r10conf *conf)
2824 {
2825         int ret, buffs, i;
2826
2827         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2828         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2829         conf->have_replacement = 0;
2830         for (i = 0; i < conf->geo.raid_disks; i++)
2831                 if (conf->mirrors[i].replacement)
2832                         conf->have_replacement = 1;
2833         ret = mempool_init(&conf->r10buf_pool, buffs,
2834                            r10buf_pool_alloc, r10buf_pool_free, conf);
2835         if (ret)
2836                 return ret;
2837         conf->next_resync = 0;
2838         return 0;
2839 }
2840
2841 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2842 {
2843         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2844         struct rsync_pages *rp;
2845         struct bio *bio;
2846         int nalloc;
2847         int i;
2848
2849         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2850             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2851                 nalloc = conf->copies; /* resync */
2852         else
2853                 nalloc = 2; /* recovery */
2854
2855         for (i = 0; i < nalloc; i++) {
2856                 bio = r10bio->devs[i].bio;
2857                 rp = bio->bi_private;
2858                 bio_reset(bio);
2859                 bio->bi_private = rp;
2860                 bio = r10bio->devs[i].repl_bio;
2861                 if (bio) {
2862                         rp = bio->bi_private;
2863                         bio_reset(bio);
2864                         bio->bi_private = rp;
2865                 }
2866         }
2867         return r10bio;
2868 }
2869
2870 /*
2871  * Set cluster_sync_high since we need other nodes to add the
2872  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2873  */
2874 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2875 {
2876         sector_t window_size;
2877         int extra_chunk, chunks;
2878
2879         /*
2880          * First, here we define "stripe" as a unit which across
2881          * all member devices one time, so we get chunks by use
2882          * raid_disks / near_copies. Otherwise, if near_copies is
2883          * close to raid_disks, then resync window could increases
2884          * linearly with the increase of raid_disks, which means
2885          * we will suspend a really large IO window while it is not
2886          * necessary. If raid_disks is not divisible by near_copies,
2887          * an extra chunk is needed to ensure the whole "stripe" is
2888          * covered.
2889          */
2890
2891         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2892         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2893                 extra_chunk = 0;
2894         else
2895                 extra_chunk = 1;
2896         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2897
2898         /*
2899          * At least use a 32M window to align with raid1's resync window
2900          */
2901         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2902                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2903
2904         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2905 }
2906
2907 /*
2908  * perform a "sync" on one "block"
2909  *
2910  * We need to make sure that no normal I/O request - particularly write
2911  * requests - conflict with active sync requests.
2912  *
2913  * This is achieved by tracking pending requests and a 'barrier' concept
2914  * that can be installed to exclude normal IO requests.
2915  *
2916  * Resync and recovery are handled very differently.
2917  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2918  *
2919  * For resync, we iterate over virtual addresses, read all copies,
2920  * and update if there are differences.  If only one copy is live,
2921  * skip it.
2922  * For recovery, we iterate over physical addresses, read a good
2923  * value for each non-in_sync drive, and over-write.
2924  *
2925  * So, for recovery we may have several outstanding complex requests for a
2926  * given address, one for each out-of-sync device.  We model this by allocating
2927  * a number of r10_bio structures, one for each out-of-sync device.
2928  * As we setup these structures, we collect all bio's together into a list
2929  * which we then process collectively to add pages, and then process again
2930  * to pass to generic_make_request.
2931  *
2932  * The r10_bio structures are linked using a borrowed master_bio pointer.
2933  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2934  * has its remaining count decremented to 0, the whole complex operation
2935  * is complete.
2936  *
2937  */
2938
2939 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2940                              int *skipped)
2941 {
2942         struct r10conf *conf = mddev->private;
2943         struct r10bio *r10_bio;
2944         struct bio *biolist = NULL, *bio;
2945         sector_t max_sector, nr_sectors;
2946         int i;
2947         int max_sync;
2948         sector_t sync_blocks;
2949         sector_t sectors_skipped = 0;
2950         int chunks_skipped = 0;
2951         sector_t chunk_mask = conf->geo.chunk_mask;
2952         int page_idx = 0;
2953
2954         if (!mempool_initialized(&conf->r10buf_pool))
2955                 if (init_resync(conf))
2956                         return 0;
2957
2958         /*
2959          * Allow skipping a full rebuild for incremental assembly
2960          * of a clean array, like RAID1 does.
2961          */
2962         if (mddev->bitmap == NULL &&
2963             mddev->recovery_cp == MaxSector &&
2964             mddev->reshape_position == MaxSector &&
2965             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2966             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2967             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2968             conf->fullsync == 0) {
2969                 *skipped = 1;
2970                 return mddev->dev_sectors - sector_nr;
2971         }
2972
2973  skipped:
2974         max_sector = mddev->dev_sectors;
2975         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2976             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2977                 max_sector = mddev->resync_max_sectors;
2978         if (sector_nr >= max_sector) {
2979                 conf->cluster_sync_low = 0;
2980                 conf->cluster_sync_high = 0;
2981
2982                 /* If we aborted, we need to abort the
2983                  * sync on the 'current' bitmap chucks (there can
2984                  * be several when recovering multiple devices).
2985                  * as we may have started syncing it but not finished.
2986                  * We can find the current address in
2987                  * mddev->curr_resync, but for recovery,
2988                  * we need to convert that to several
2989                  * virtual addresses.
2990                  */
2991                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2992                         end_reshape(conf);
2993                         close_sync(conf);
2994                         return 0;
2995                 }
2996
2997                 if (mddev->curr_resync < max_sector) { /* aborted */
2998                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2999                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3000                                                    &sync_blocks, 1);
3001                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3002                                 sector_t sect =
3003                                         raid10_find_virt(conf, mddev->curr_resync, i);
3004                                 md_bitmap_end_sync(mddev->bitmap, sect,
3005                                                    &sync_blocks, 1);
3006                         }
3007                 } else {
3008                         /* completed sync */
3009                         if ((!mddev->bitmap || conf->fullsync)
3010                             && conf->have_replacement
3011                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3012                                 /* Completed a full sync so the replacements
3013                                  * are now fully recovered.
3014                                  */
3015                                 rcu_read_lock();
3016                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3017                                         struct md_rdev *rdev =
3018                                                 rcu_dereference(conf->mirrors[i].replacement);
3019                                         if (rdev)
3020                                                 rdev->recovery_offset = MaxSector;
3021                                 }
3022                                 rcu_read_unlock();
3023                         }
3024                         conf->fullsync = 0;
3025                 }
3026                 md_bitmap_close_sync(mddev->bitmap);
3027                 close_sync(conf);
3028                 *skipped = 1;
3029                 return sectors_skipped;
3030         }
3031
3032         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3033                 return reshape_request(mddev, sector_nr, skipped);
3034
3035         if (chunks_skipped >= conf->geo.raid_disks) {
3036                 /* if there has been nothing to do on any drive,
3037                  * then there is nothing to do at all..
3038                  */
3039                 *skipped = 1;
3040                 return (max_sector - sector_nr) + sectors_skipped;
3041         }
3042
3043         if (max_sector > mddev->resync_max)
3044                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3045
3046         /* make sure whole request will fit in a chunk - if chunks
3047          * are meaningful
3048          */
3049         if (conf->geo.near_copies < conf->geo.raid_disks &&
3050             max_sector > (sector_nr | chunk_mask))
3051                 max_sector = (sector_nr | chunk_mask) + 1;
3052
3053         /*
3054          * If there is non-resync activity waiting for a turn, then let it
3055          * though before starting on this new sync request.
3056          */
3057         if (conf->nr_waiting)
3058                 schedule_timeout_uninterruptible(1);
3059
3060         /* Again, very different code for resync and recovery.
3061          * Both must result in an r10bio with a list of bios that
3062          * have bi_end_io, bi_sector, bi_disk set,
3063          * and bi_private set to the r10bio.
3064          * For recovery, we may actually create several r10bios
3065          * with 2 bios in each, that correspond to the bios in the main one.
3066          * In this case, the subordinate r10bios link back through a
3067          * borrowed master_bio pointer, and the counter in the master
3068          * includes a ref from each subordinate.
3069          */
3070         /* First, we decide what to do and set ->bi_end_io
3071          * To end_sync_read if we want to read, and
3072          * end_sync_write if we will want to write.
3073          */
3074
3075         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3076         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3077                 /* recovery... the complicated one */
3078                 int j;
3079                 r10_bio = NULL;
3080
3081                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3082                         int still_degraded;
3083                         struct r10bio *rb2;
3084                         sector_t sect;
3085                         int must_sync;
3086                         int any_working;
3087                         struct raid10_info *mirror = &conf->mirrors[i];
3088                         struct md_rdev *mrdev, *mreplace;
3089
3090                         rcu_read_lock();
3091                         mrdev = rcu_dereference(mirror->rdev);
3092                         mreplace = rcu_dereference(mirror->replacement);
3093
3094                         if ((mrdev == NULL ||
3095                              test_bit(Faulty, &mrdev->flags) ||
3096                              test_bit(In_sync, &mrdev->flags)) &&
3097                             (mreplace == NULL ||
3098                              test_bit(Faulty, &mreplace->flags))) {
3099                                 rcu_read_unlock();
3100                                 continue;
3101                         }
3102
3103                         still_degraded = 0;
3104                         /* want to reconstruct this device */
3105                         rb2 = r10_bio;
3106                         sect = raid10_find_virt(conf, sector_nr, i);
3107                         if (sect >= mddev->resync_max_sectors) {
3108                                 /* last stripe is not complete - don't
3109                                  * try to recover this sector.
3110                                  */
3111                                 rcu_read_unlock();
3112                                 continue;
3113                         }
3114                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3115                                 mreplace = NULL;
3116                         /* Unless we are doing a full sync, or a replacement
3117                          * we only need to recover the block if it is set in
3118                          * the bitmap
3119                          */
3120                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3121                                                          &sync_blocks, 1);
3122                         if (sync_blocks < max_sync)
3123                                 max_sync = sync_blocks;
3124                         if (!must_sync &&
3125                             mreplace == NULL &&
3126                             !conf->fullsync) {
3127                                 /* yep, skip the sync_blocks here, but don't assume
3128                                  * that there will never be anything to do here
3129                                  */
3130                                 chunks_skipped = -1;
3131                                 rcu_read_unlock();
3132                                 continue;
3133                         }
3134                         atomic_inc(&mrdev->nr_pending);
3135                         if (mreplace)
3136                                 atomic_inc(&mreplace->nr_pending);
3137                         rcu_read_unlock();
3138
3139                         r10_bio = raid10_alloc_init_r10buf(conf);
3140                         r10_bio->state = 0;
3141                         raise_barrier(conf, rb2 != NULL);
3142                         atomic_set(&r10_bio->remaining, 0);
3143
3144                         r10_bio->master_bio = (struct bio*)rb2;
3145                         if (rb2)
3146                                 atomic_inc(&rb2->remaining);
3147                         r10_bio->mddev = mddev;
3148                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3149                         r10_bio->sector = sect;
3150
3151                         raid10_find_phys(conf, r10_bio);
3152
3153                         /* Need to check if the array will still be
3154                          * degraded
3155                          */
3156                         rcu_read_lock();
3157                         for (j = 0; j < conf->geo.raid_disks; j++) {
3158                                 struct md_rdev *rdev = rcu_dereference(
3159                                         conf->mirrors[j].rdev);
3160                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3161                                         still_degraded = 1;
3162                                         break;
3163                                 }
3164                         }
3165
3166                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3167                                                          &sync_blocks, still_degraded);
3168
3169                         any_working = 0;
3170                         for (j=0; j<conf->copies;j++) {
3171                                 int k;
3172                                 int d = r10_bio->devs[j].devnum;
3173                                 sector_t from_addr, to_addr;
3174                                 struct md_rdev *rdev =
3175                                         rcu_dereference(conf->mirrors[d].rdev);
3176                                 sector_t sector, first_bad;
3177                                 int bad_sectors;
3178                                 if (!rdev ||
3179                                     !test_bit(In_sync, &rdev->flags))
3180                                         continue;
3181                                 /* This is where we read from */
3182                                 any_working = 1;
3183                                 sector = r10_bio->devs[j].addr;
3184
3185                                 if (is_badblock(rdev, sector, max_sync,
3186                                                 &first_bad, &bad_sectors)) {
3187                                         if (first_bad > sector)
3188                                                 max_sync = first_bad - sector;
3189                                         else {
3190                                                 bad_sectors -= (sector
3191                                                                 - first_bad);
3192                                                 if (max_sync > bad_sectors)
3193                                                         max_sync = bad_sectors;
3194                                                 continue;
3195                                         }
3196                                 }
3197                                 bio = r10_bio->devs[0].bio;
3198                                 bio->bi_next = biolist;
3199                                 biolist = bio;
3200                                 bio->bi_end_io = end_sync_read;
3201                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3202                                 if (test_bit(FailFast, &rdev->flags))
3203                                         bio->bi_opf |= MD_FAILFAST;
3204                                 from_addr = r10_bio->devs[j].addr;
3205                                 bio->bi_iter.bi_sector = from_addr +
3206                                         rdev->data_offset;
3207                                 bio_set_dev(bio, rdev->bdev);
3208                                 atomic_inc(&rdev->nr_pending);
3209                                 /* and we write to 'i' (if not in_sync) */
3210
3211                                 for (k=0; k<conf->copies; k++)
3212                                         if (r10_bio->devs[k].devnum == i)
3213                                                 break;
3214                                 BUG_ON(k == conf->copies);
3215                                 to_addr = r10_bio->devs[k].addr;
3216                                 r10_bio->devs[0].devnum = d;
3217                                 r10_bio->devs[0].addr = from_addr;
3218                                 r10_bio->devs[1].devnum = i;
3219                                 r10_bio->devs[1].addr = to_addr;
3220
3221                                 if (!test_bit(In_sync, &mrdev->flags)) {
3222                                         bio = r10_bio->devs[1].bio;
3223                                         bio->bi_next = biolist;
3224                                         biolist = bio;
3225                                         bio->bi_end_io = end_sync_write;
3226                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3227                                         bio->bi_iter.bi_sector = to_addr
3228                                                 + mrdev->data_offset;
3229                                         bio_set_dev(bio, mrdev->bdev);
3230                                         atomic_inc(&r10_bio->remaining);
3231                                 } else
3232                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3233
3234                                 /* and maybe write to replacement */
3235                                 bio = r10_bio->devs[1].repl_bio;
3236                                 if (bio)
3237                                         bio->bi_end_io = NULL;
3238                                 /* Note: if mreplace != NULL, then bio
3239                                  * cannot be NULL as r10buf_pool_alloc will
3240                                  * have allocated it.
3241                                  * So the second test here is pointless.
3242                                  * But it keeps semantic-checkers happy, and
3243                                  * this comment keeps human reviewers
3244                                  * happy.
3245                                  */
3246                                 if (mreplace == NULL || bio == NULL ||
3247                                     test_bit(Faulty, &mreplace->flags))
3248                                         break;
3249                                 bio->bi_next = biolist;
3250                                 biolist = bio;
3251                                 bio->bi_end_io = end_sync_write;
3252                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3253                                 bio->bi_iter.bi_sector = to_addr +
3254                                         mreplace->data_offset;
3255                                 bio_set_dev(bio, mreplace->bdev);
3256                                 atomic_inc(&r10_bio->remaining);
3257                                 break;
3258                         }
3259                         rcu_read_unlock();
3260                         if (j == conf->copies) {
3261                                 /* Cannot recover, so abort the recovery or
3262                                  * record a bad block */
3263                                 if (any_working) {
3264                                         /* problem is that there are bad blocks
3265                                          * on other device(s)
3266                                          */
3267                                         int k;
3268                                         for (k = 0; k < conf->copies; k++)
3269                                                 if (r10_bio->devs[k].devnum == i)
3270                                                         break;
3271                                         if (!test_bit(In_sync,
3272                                                       &mrdev->flags)
3273                                             && !rdev_set_badblocks(
3274                                                     mrdev,
3275                                                     r10_bio->devs[k].addr,
3276                                                     max_sync, 0))
3277                                                 any_working = 0;
3278                                         if (mreplace &&
3279                                             !rdev_set_badblocks(
3280                                                     mreplace,
3281                                                     r10_bio->devs[k].addr,
3282                                                     max_sync, 0))
3283                                                 any_working = 0;
3284                                 }
3285                                 if (!any_working)  {
3286                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3287                                                               &mddev->recovery))
3288                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3289                                                        mdname(mddev));
3290                                         mirror->recovery_disabled
3291                                                 = mddev->recovery_disabled;
3292                                 }
3293                                 put_buf(r10_bio);
3294                                 if (rb2)
3295                                         atomic_dec(&rb2->remaining);
3296                                 r10_bio = rb2;
3297                                 rdev_dec_pending(mrdev, mddev);
3298                                 if (mreplace)
3299                                         rdev_dec_pending(mreplace, mddev);
3300                                 break;
3301                         }
3302                         rdev_dec_pending(mrdev, mddev);
3303                         if (mreplace)
3304                                 rdev_dec_pending(mreplace, mddev);
3305                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3306                                 /* Only want this if there is elsewhere to
3307                                  * read from. 'j' is currently the first
3308                                  * readable copy.
3309                                  */
3310                                 int targets = 1;
3311                                 for (; j < conf->copies; j++) {
3312                                         int d = r10_bio->devs[j].devnum;
3313                                         if (conf->mirrors[d].rdev &&
3314                                             test_bit(In_sync,
3315                                                       &conf->mirrors[d].rdev->flags))
3316                                                 targets++;
3317                                 }
3318                                 if (targets == 1)
3319                                         r10_bio->devs[0].bio->bi_opf
3320                                                 &= ~MD_FAILFAST;
3321                         }
3322                 }
3323                 if (biolist == NULL) {
3324                         while (r10_bio) {
3325                                 struct r10bio *rb2 = r10_bio;
3326                                 r10_bio = (struct r10bio*) rb2->master_bio;
3327                                 rb2->master_bio = NULL;
3328                                 put_buf(rb2);
3329                         }
3330                         goto giveup;
3331                 }
3332         } else {
3333                 /* resync. Schedule a read for every block at this virt offset */
3334                 int count = 0;
3335
3336                 /*
3337                  * Since curr_resync_completed could probably not update in
3338                  * time, and we will set cluster_sync_low based on it.
3339                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3340                  * safety reason, which ensures curr_resync_completed is
3341                  * updated in bitmap_cond_end_sync.
3342                  */
3343                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3344                                         mddev_is_clustered(mddev) &&
3345                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3346
3347                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3348                                           &sync_blocks, mddev->degraded) &&
3349                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3350                                                  &mddev->recovery)) {
3351                         /* We can skip this block */
3352                         *skipped = 1;
3353                         return sync_blocks + sectors_skipped;
3354                 }
3355                 if (sync_blocks < max_sync)
3356                         max_sync = sync_blocks;
3357                 r10_bio = raid10_alloc_init_r10buf(conf);
3358                 r10_bio->state = 0;
3359
3360                 r10_bio->mddev = mddev;
3361                 atomic_set(&r10_bio->remaining, 0);
3362                 raise_barrier(conf, 0);
3363                 conf->next_resync = sector_nr;
3364
3365                 r10_bio->master_bio = NULL;
3366                 r10_bio->sector = sector_nr;
3367                 set_bit(R10BIO_IsSync, &r10_bio->state);
3368                 raid10_find_phys(conf, r10_bio);
3369                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3370
3371                 for (i = 0; i < conf->copies; i++) {
3372                         int d = r10_bio->devs[i].devnum;
3373                         sector_t first_bad, sector;
3374                         int bad_sectors;
3375                         struct md_rdev *rdev;
3376
3377                         if (r10_bio->devs[i].repl_bio)
3378                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3379
3380                         bio = r10_bio->devs[i].bio;
3381                         bio->bi_status = BLK_STS_IOERR;
3382                         rcu_read_lock();
3383                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3384                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3385                                 rcu_read_unlock();
3386                                 continue;
3387                         }
3388                         sector = r10_bio->devs[i].addr;
3389                         if (is_badblock(rdev, sector, max_sync,
3390                                         &first_bad, &bad_sectors)) {
3391                                 if (first_bad > sector)
3392                                         max_sync = first_bad - sector;
3393                                 else {
3394                                         bad_sectors -= (sector - first_bad);
3395                                         if (max_sync > bad_sectors)
3396                                                 max_sync = bad_sectors;
3397                                         rcu_read_unlock();
3398                                         continue;
3399                                 }
3400                         }
3401                         atomic_inc(&rdev->nr_pending);
3402                         atomic_inc(&r10_bio->remaining);
3403                         bio->bi_next = biolist;
3404                         biolist = bio;
3405                         bio->bi_end_io = end_sync_read;
3406                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3407                         if (test_bit(FailFast, &rdev->flags))
3408                                 bio->bi_opf |= MD_FAILFAST;
3409                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3410                         bio_set_dev(bio, rdev->bdev);
3411                         count++;
3412
3413                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3414                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3415                                 rcu_read_unlock();
3416                                 continue;
3417                         }
3418                         atomic_inc(&rdev->nr_pending);
3419
3420                         /* Need to set up for writing to the replacement */
3421                         bio = r10_bio->devs[i].repl_bio;
3422                         bio->bi_status = BLK_STS_IOERR;
3423
3424                         sector = r10_bio->devs[i].addr;
3425                         bio->bi_next = biolist;
3426                         biolist = bio;
3427                         bio->bi_end_io = end_sync_write;
3428                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3429                         if (test_bit(FailFast, &rdev->flags))
3430                                 bio->bi_opf |= MD_FAILFAST;
3431                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3432                         bio_set_dev(bio, rdev->bdev);
3433                         count++;
3434                         rcu_read_unlock();
3435                 }
3436
3437                 if (count < 2) {
3438                         for (i=0; i<conf->copies; i++) {
3439                                 int d = r10_bio->devs[i].devnum;
3440                                 if (r10_bio->devs[i].bio->bi_end_io)
3441                                         rdev_dec_pending(conf->mirrors[d].rdev,
3442                                                          mddev);
3443                                 if (r10_bio->devs[i].repl_bio &&
3444                                     r10_bio->devs[i].repl_bio->bi_end_io)
3445                                         rdev_dec_pending(
3446                                                 conf->mirrors[d].replacement,
3447                                                 mddev);
3448                         }
3449                         put_buf(r10_bio);
3450                         biolist = NULL;
3451                         goto giveup;
3452                 }
3453         }
3454
3455         nr_sectors = 0;
3456         if (sector_nr + max_sync < max_sector)
3457                 max_sector = sector_nr + max_sync;
3458         do {
3459                 struct page *page;
3460                 int len = PAGE_SIZE;
3461                 if (sector_nr + (len>>9) > max_sector)
3462                         len = (max_sector - sector_nr) << 9;
3463                 if (len == 0)
3464                         break;
3465                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3466                         struct resync_pages *rp = get_resync_pages(bio);
3467                         page = resync_fetch_page(rp, page_idx);
3468                         /*
3469                          * won't fail because the vec table is big enough
3470                          * to hold all these pages
3471                          */
3472                         bio_add_page(bio, page, len, 0);
3473                 }
3474                 nr_sectors += len>>9;
3475                 sector_nr += len>>9;
3476         } while (++page_idx < RESYNC_PAGES);
3477         r10_bio->sectors = nr_sectors;
3478
3479         if (mddev_is_clustered(mddev) &&
3480             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3481                 /* It is resync not recovery */
3482                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3483                         conf->cluster_sync_low = mddev->curr_resync_completed;
3484                         raid10_set_cluster_sync_high(conf);
3485                         /* Send resync message */
3486                         md_cluster_ops->resync_info_update(mddev,
3487                                                 conf->cluster_sync_low,
3488                                                 conf->cluster_sync_high);
3489                 }
3490         } else if (mddev_is_clustered(mddev)) {
3491                 /* This is recovery not resync */
3492                 sector_t sect_va1, sect_va2;
3493                 bool broadcast_msg = false;
3494
3495                 for (i = 0; i < conf->geo.raid_disks; i++) {
3496                         /*
3497                          * sector_nr is a device address for recovery, so we
3498                          * need translate it to array address before compare
3499                          * with cluster_sync_high.
3500                          */
3501                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3502
3503                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3504                                 broadcast_msg = true;
3505                                 /*
3506                                  * curr_resync_completed is similar as
3507                                  * sector_nr, so make the translation too.
3508                                  */
3509                                 sect_va2 = raid10_find_virt(conf,
3510                                         mddev->curr_resync_completed, i);
3511
3512                                 if (conf->cluster_sync_low == 0 ||
3513                                     conf->cluster_sync_low > sect_va2)
3514                                         conf->cluster_sync_low = sect_va2;
3515                         }
3516                 }
3517                 if (broadcast_msg) {
3518                         raid10_set_cluster_sync_high(conf);
3519                         md_cluster_ops->resync_info_update(mddev,
3520                                                 conf->cluster_sync_low,
3521                                                 conf->cluster_sync_high);
3522                 }
3523         }
3524
3525         while (biolist) {
3526                 bio = biolist;
3527                 biolist = biolist->bi_next;
3528
3529                 bio->bi_next = NULL;
3530                 r10_bio = get_resync_r10bio(bio);
3531                 r10_bio->sectors = nr_sectors;
3532
3533                 if (bio->bi_end_io == end_sync_read) {
3534                         md_sync_acct_bio(bio, nr_sectors);
3535                         bio->bi_status = 0;
3536                         generic_make_request(bio);
3537                 }
3538         }
3539
3540         if (sectors_skipped)
3541                 /* pretend they weren't skipped, it makes
3542                  * no important difference in this case
3543                  */
3544                 md_done_sync(mddev, sectors_skipped, 1);
3545
3546         return sectors_skipped + nr_sectors;
3547  giveup:
3548         /* There is nowhere to write, so all non-sync
3549          * drives must be failed or in resync, all drives
3550          * have a bad block, so try the next chunk...
3551          */
3552         if (sector_nr + max_sync < max_sector)
3553                 max_sector = sector_nr + max_sync;
3554
3555         sectors_skipped += (max_sector - sector_nr);
3556         chunks_skipped ++;
3557         sector_nr = max_sector;
3558         goto skipped;
3559 }
3560
3561 static sector_t
3562 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3563 {
3564         sector_t size;
3565         struct r10conf *conf = mddev->private;
3566
3567         if (!raid_disks)
3568                 raid_disks = min(conf->geo.raid_disks,
3569                                  conf->prev.raid_disks);
3570         if (!sectors)
3571                 sectors = conf->dev_sectors;
3572
3573         size = sectors >> conf->geo.chunk_shift;
3574         sector_div(size, conf->geo.far_copies);
3575         size = size * raid_disks;
3576         sector_div(size, conf->geo.near_copies);
3577
3578         return size << conf->geo.chunk_shift;
3579 }
3580
3581 static void calc_sectors(struct r10conf *conf, sector_t size)
3582 {
3583         /* Calculate the number of sectors-per-device that will
3584          * actually be used, and set conf->dev_sectors and
3585          * conf->stride
3586          */
3587
3588         size = size >> conf->geo.chunk_shift;
3589         sector_div(size, conf->geo.far_copies);
3590         size = size * conf->geo.raid_disks;
3591         sector_div(size, conf->geo.near_copies);
3592         /* 'size' is now the number of chunks in the array */
3593         /* calculate "used chunks per device" */
3594         size = size * conf->copies;
3595
3596         /* We need to round up when dividing by raid_disks to
3597          * get the stride size.
3598          */
3599         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3600
3601         conf->dev_sectors = size << conf->geo.chunk_shift;
3602
3603         if (conf->geo.far_offset)
3604                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3605         else {
3606                 sector_div(size, conf->geo.far_copies);
3607                 conf->geo.stride = size << conf->geo.chunk_shift;
3608         }
3609 }
3610
3611 enum geo_type {geo_new, geo_old, geo_start};
3612 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3613 {
3614         int nc, fc, fo;
3615         int layout, chunk, disks;
3616         switch (new) {
3617         case geo_old:
3618                 layout = mddev->layout;
3619                 chunk = mddev->chunk_sectors;
3620                 disks = mddev->raid_disks - mddev->delta_disks;
3621                 break;
3622         case geo_new:
3623                 layout = mddev->new_layout;
3624                 chunk = mddev->new_chunk_sectors;
3625                 disks = mddev->raid_disks;
3626                 break;
3627         default: /* avoid 'may be unused' warnings */
3628         case geo_start: /* new when starting reshape - raid_disks not
3629                          * updated yet. */
3630                 layout = mddev->new_layout;
3631                 chunk = mddev->new_chunk_sectors;
3632                 disks = mddev->raid_disks + mddev->delta_disks;
3633                 break;
3634         }
3635         if (layout >> 19)
3636                 return -1;
3637         if (chunk < (PAGE_SIZE >> 9) ||
3638             !is_power_of_2(chunk))
3639                 return -2;
3640         nc = layout & 255;
3641         fc = (layout >> 8) & 255;
3642         fo = layout & (1<<16);
3643         geo->raid_disks = disks;
3644         geo->near_copies = nc;
3645         geo->far_copies = fc;
3646         geo->far_offset = fo;
3647         switch (layout >> 17) {
3648         case 0: /* original layout.  simple but not always optimal */
3649                 geo->far_set_size = disks;
3650                 break;
3651         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3652                  * actually using this, but leave code here just in case.*/
3653                 geo->far_set_size = disks/fc;
3654                 WARN(geo->far_set_size < fc,
3655                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3656                 break;
3657         case 2: /* "improved" layout fixed to match documentation */
3658                 geo->far_set_size = fc * nc;
3659                 break;
3660         default: /* Not a valid layout */
3661                 return -1;
3662         }
3663         geo->chunk_mask = chunk - 1;
3664         geo->chunk_shift = ffz(~chunk);
3665         return nc*fc;
3666 }
3667
3668 static struct r10conf *setup_conf(struct mddev *mddev)
3669 {
3670         struct r10conf *conf = NULL;
3671         int err = -EINVAL;
3672         struct geom geo;
3673         int copies;
3674
3675         copies = setup_geo(&geo, mddev, geo_new);
3676
3677         if (copies == -2) {
3678                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3679                         mdname(mddev), PAGE_SIZE);
3680                 goto out;
3681         }
3682
3683         if (copies < 2 || copies > mddev->raid_disks) {
3684                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3685                         mdname(mddev), mddev->new_layout);
3686                 goto out;
3687         }
3688
3689         err = -ENOMEM;
3690         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3691         if (!conf)
3692                 goto out;
3693
3694         /* FIXME calc properly */
3695         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3696                                 sizeof(struct raid10_info),
3697                                 GFP_KERNEL);
3698         if (!conf->mirrors)
3699                 goto out;
3700
3701         conf->tmppage = alloc_page(GFP_KERNEL);
3702         if (!conf->tmppage)
3703                 goto out;
3704
3705         conf->geo = geo;
3706         conf->copies = copies;
3707         err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3708                            r10bio_pool_free, conf);
3709         if (err)
3710                 goto out;
3711
3712         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3713         if (err)
3714                 goto out;
3715
3716         calc_sectors(conf, mddev->dev_sectors);
3717         if (mddev->reshape_position == MaxSector) {
3718                 conf->prev = conf->geo;
3719                 conf->reshape_progress = MaxSector;
3720         } else {
3721                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3722                         err = -EINVAL;
3723                         goto out;
3724                 }
3725                 conf->reshape_progress = mddev->reshape_position;
3726                 if (conf->prev.far_offset)
3727                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3728                 else
3729                         /* far_copies must be 1 */
3730                         conf->prev.stride = conf->dev_sectors;
3731         }
3732         conf->reshape_safe = conf->reshape_progress;
3733         spin_lock_init(&conf->device_lock);
3734         INIT_LIST_HEAD(&conf->retry_list);
3735         INIT_LIST_HEAD(&conf->bio_end_io_list);
3736
3737         spin_lock_init(&conf->resync_lock);
3738         init_waitqueue_head(&conf->wait_barrier);
3739         atomic_set(&conf->nr_pending, 0);
3740
3741         err = -ENOMEM;
3742         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3743         if (!conf->thread)
3744                 goto out;
3745
3746         conf->mddev = mddev;
3747         return conf;
3748
3749  out:
3750         if (conf) {
3751                 mempool_exit(&conf->r10bio_pool);
3752                 kfree(conf->mirrors);
3753                 safe_put_page(conf->tmppage);
3754                 bioset_exit(&conf->bio_split);
3755                 kfree(conf);
3756         }
3757         return ERR_PTR(err);
3758 }
3759
3760 static int raid10_run(struct mddev *mddev)
3761 {
3762         struct r10conf *conf;
3763         int i, disk_idx, chunk_size;
3764         struct raid10_info *disk;
3765         struct md_rdev *rdev;
3766         sector_t size;
3767         sector_t min_offset_diff = 0;
3768         int first = 1;
3769         bool discard_supported = false;
3770
3771         if (mddev_init_writes_pending(mddev) < 0)
3772                 return -ENOMEM;
3773
3774         if (mddev->private == NULL) {
3775                 conf = setup_conf(mddev);
3776                 if (IS_ERR(conf))
3777                         return PTR_ERR(conf);
3778                 mddev->private = conf;
3779         }
3780         conf = mddev->private;
3781         if (!conf)
3782                 goto out;
3783
3784         if (mddev_is_clustered(conf->mddev)) {
3785                 int fc, fo;
3786
3787                 fc = (mddev->layout >> 8) & 255;
3788                 fo = mddev->layout & (1<<16);
3789                 if (fc > 1 || fo > 0) {
3790                         pr_err("only near layout is supported by clustered"
3791                                 " raid10\n");
3792                         goto out_free_conf;
3793                 }
3794         }
3795
3796         mddev->thread = conf->thread;
3797         conf->thread = NULL;
3798
3799         chunk_size = mddev->chunk_sectors << 9;
3800         if (mddev->queue) {
3801                 blk_queue_max_discard_sectors(mddev->queue,
3802                                               mddev->chunk_sectors);
3803                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3804                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3805                 blk_queue_io_min(mddev->queue, chunk_size);
3806                 if (conf->geo.raid_disks % conf->geo.near_copies)
3807                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3808                 else
3809                         blk_queue_io_opt(mddev->queue, chunk_size *
3810                                          (conf->geo.raid_disks / conf->geo.near_copies));
3811         }
3812
3813         rdev_for_each(rdev, mddev) {
3814                 long long diff;
3815
3816                 disk_idx = rdev->raid_disk;
3817                 if (disk_idx < 0)
3818                         continue;
3819                 if (disk_idx >= conf->geo.raid_disks &&
3820                     disk_idx >= conf->prev.raid_disks)
3821                         continue;
3822                 disk = conf->mirrors + disk_idx;
3823
3824                 if (test_bit(Replacement, &rdev->flags)) {
3825                         if (disk->replacement)
3826                                 goto out_free_conf;
3827                         disk->replacement = rdev;
3828                 } else {
3829                         if (disk->rdev)
3830                                 goto out_free_conf;
3831                         disk->rdev = rdev;
3832                 }
3833                 diff = (rdev->new_data_offset - rdev->data_offset);
3834                 if (!mddev->reshape_backwards)
3835                         diff = -diff;
3836                 if (diff < 0)
3837                         diff = 0;
3838                 if (first || diff < min_offset_diff)
3839                         min_offset_diff = diff;
3840
3841                 if (mddev->gendisk)
3842                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3843                                           rdev->data_offset << 9);
3844
3845                 disk->head_position = 0;
3846
3847                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3848                         discard_supported = true;
3849                 first = 0;
3850         }
3851
3852         if (mddev->queue) {
3853                 if (discard_supported)
3854                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3855                                                 mddev->queue);
3856                 else
3857                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3858                                                   mddev->queue);
3859         }
3860         /* need to check that every block has at least one working mirror */
3861         if (!enough(conf, -1)) {
3862                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3863                        mdname(mddev));
3864                 goto out_free_conf;
3865         }
3866
3867         if (conf->reshape_progress != MaxSector) {
3868                 /* must ensure that shape change is supported */
3869                 if (conf->geo.far_copies != 1 &&
3870                     conf->geo.far_offset == 0)
3871                         goto out_free_conf;
3872                 if (conf->prev.far_copies != 1 &&
3873                     conf->prev.far_offset == 0)
3874                         goto out_free_conf;
3875         }
3876
3877         mddev->degraded = 0;
3878         for (i = 0;
3879              i < conf->geo.raid_disks
3880                      || i < conf->prev.raid_disks;
3881              i++) {
3882
3883                 disk = conf->mirrors + i;
3884
3885                 if (!disk->rdev && disk->replacement) {
3886                         /* The replacement is all we have - use it */
3887                         disk->rdev = disk->replacement;
3888                         disk->replacement = NULL;
3889                         clear_bit(Replacement, &disk->rdev->flags);
3890                 }
3891
3892                 if (!disk->rdev ||
3893                     !test_bit(In_sync, &disk->rdev->flags)) {
3894                         disk->head_position = 0;
3895                         mddev->degraded++;
3896                         if (disk->rdev &&
3897                             disk->rdev->saved_raid_disk < 0)
3898                                 conf->fullsync = 1;
3899                 }
3900
3901                 if (disk->replacement &&
3902                     !test_bit(In_sync, &disk->replacement->flags) &&
3903                     disk->replacement->saved_raid_disk < 0) {
3904                         conf->fullsync = 1;
3905                 }
3906
3907                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3908         }
3909
3910         if (mddev->recovery_cp != MaxSector)
3911                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3912                           mdname(mddev));
3913         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3914                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3915                 conf->geo.raid_disks);
3916         /*
3917          * Ok, everything is just fine now
3918          */
3919         mddev->dev_sectors = conf->dev_sectors;
3920         size = raid10_size(mddev, 0, 0);
3921         md_set_array_sectors(mddev, size);
3922         mddev->resync_max_sectors = size;
3923         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3924
3925         if (mddev->queue) {
3926                 int stripe = conf->geo.raid_disks *
3927                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3928
3929                 /* Calculate max read-ahead size.
3930                  * We need to readahead at least twice a whole stripe....
3931                  * maybe...
3932                  */
3933                 stripe /= conf->geo.near_copies;
3934                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3935                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3936         }
3937
3938         if (md_integrity_register(mddev))
3939                 goto out_free_conf;
3940
3941         if (conf->reshape_progress != MaxSector) {
3942                 unsigned long before_length, after_length;
3943
3944                 before_length = ((1 << conf->prev.chunk_shift) *
3945                                  conf->prev.far_copies);
3946                 after_length = ((1 << conf->geo.chunk_shift) *
3947                                 conf->geo.far_copies);
3948
3949                 if (max(before_length, after_length) > min_offset_diff) {
3950                         /* This cannot work */
3951                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3952                         goto out_free_conf;
3953                 }
3954                 conf->offset_diff = min_offset_diff;
3955
3956                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3957                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3958                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3959                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3960                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3961                                                         "reshape");
3962                 if (!mddev->sync_thread)
3963                         goto out_free_conf;
3964         }
3965
3966         return 0;
3967
3968 out_free_conf:
3969         md_unregister_thread(&mddev->thread);
3970         mempool_exit(&conf->r10bio_pool);
3971         safe_put_page(conf->tmppage);
3972         kfree(conf->mirrors);
3973         kfree(conf);
3974         mddev->private = NULL;
3975 out:
3976         return -EIO;
3977 }
3978
3979 static void raid10_free(struct mddev *mddev, void *priv)
3980 {
3981         struct r10conf *conf = priv;
3982
3983         mempool_exit(&conf->r10bio_pool);
3984         safe_put_page(conf->tmppage);
3985         kfree(conf->mirrors);
3986         kfree(conf->mirrors_old);
3987         kfree(conf->mirrors_new);
3988         bioset_exit(&conf->bio_split);
3989         kfree(conf);
3990 }
3991
3992 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3993 {
3994         struct r10conf *conf = mddev->private;
3995
3996         if (quiesce)
3997                 raise_barrier(conf, 0);
3998         else
3999                 lower_barrier(conf);
4000 }
4001
4002 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4003 {
4004         /* Resize of 'far' arrays is not supported.
4005          * For 'near' and 'offset' arrays we can set the
4006          * number of sectors used to be an appropriate multiple
4007          * of the chunk size.
4008          * For 'offset', this is far_copies*chunksize.
4009          * For 'near' the multiplier is the LCM of
4010          * near_copies and raid_disks.
4011          * So if far_copies > 1 && !far_offset, fail.
4012          * Else find LCM(raid_disks, near_copy)*far_copies and
4013          * multiply by chunk_size.  Then round to this number.
4014          * This is mostly done by raid10_size()
4015          */
4016         struct r10conf *conf = mddev->private;
4017         sector_t oldsize, size;
4018
4019         if (mddev->reshape_position != MaxSector)
4020                 return -EBUSY;
4021
4022         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4023                 return -EINVAL;
4024
4025         oldsize = raid10_size(mddev, 0, 0);
4026         size = raid10_size(mddev, sectors, 0);
4027         if (mddev->external_size &&
4028             mddev->array_sectors > size)
4029                 return -EINVAL;
4030         if (mddev->bitmap) {
4031                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4032                 if (ret)
4033                         return ret;
4034         }
4035         md_set_array_sectors(mddev, size);
4036         if (sectors > mddev->dev_sectors &&
4037             mddev->recovery_cp > oldsize) {
4038                 mddev->recovery_cp = oldsize;
4039                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4040         }
4041         calc_sectors(conf, sectors);
4042         mddev->dev_sectors = conf->dev_sectors;
4043         mddev->resync_max_sectors = size;
4044         return 0;
4045 }
4046
4047 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4048 {
4049         struct md_rdev *rdev;
4050         struct r10conf *conf;
4051
4052         if (mddev->degraded > 0) {
4053                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4054                         mdname(mddev));
4055                 return ERR_PTR(-EINVAL);
4056         }
4057         sector_div(size, devs);
4058
4059         /* Set new parameters */
4060         mddev->new_level = 10;
4061         /* new layout: far_copies = 1, near_copies = 2 */
4062         mddev->new_layout = (1<<8) + 2;
4063         mddev->new_chunk_sectors = mddev->chunk_sectors;
4064         mddev->delta_disks = mddev->raid_disks;
4065         mddev->raid_disks *= 2;
4066         /* make sure it will be not marked as dirty */
4067         mddev->recovery_cp = MaxSector;
4068         mddev->dev_sectors = size;
4069
4070         conf = setup_conf(mddev);
4071         if (!IS_ERR(conf)) {
4072                 rdev_for_each(rdev, mddev)
4073                         if (rdev->raid_disk >= 0) {
4074                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4075                                 rdev->sectors = size;
4076                         }
4077                 conf->barrier = 1;
4078         }
4079
4080         return conf;
4081 }
4082
4083 static void *raid10_takeover(struct mddev *mddev)
4084 {
4085         struct r0conf *raid0_conf;
4086
4087         /* raid10 can take over:
4088          *  raid0 - providing it has only two drives
4089          */
4090         if (mddev->level == 0) {
4091                 /* for raid0 takeover only one zone is supported */
4092                 raid0_conf = mddev->private;
4093                 if (raid0_conf->nr_strip_zones > 1) {
4094                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4095                                 mdname(mddev));
4096                         return ERR_PTR(-EINVAL);
4097                 }
4098                 return raid10_takeover_raid0(mddev,
4099                         raid0_conf->strip_zone->zone_end,
4100                         raid0_conf->strip_zone->nb_dev);
4101         }
4102         return ERR_PTR(-EINVAL);
4103 }
4104
4105 static int raid10_check_reshape(struct mddev *mddev)
4106 {
4107         /* Called when there is a request to change
4108          * - layout (to ->new_layout)
4109          * - chunk size (to ->new_chunk_sectors)
4110          * - raid_disks (by delta_disks)
4111          * or when trying to restart a reshape that was ongoing.
4112          *
4113          * We need to validate the request and possibly allocate
4114          * space if that might be an issue later.
4115          *
4116          * Currently we reject any reshape of a 'far' mode array,
4117          * allow chunk size to change if new is generally acceptable,
4118          * allow raid_disks to increase, and allow
4119          * a switch between 'near' mode and 'offset' mode.
4120          */
4121         struct r10conf *conf = mddev->private;
4122         struct geom geo;
4123
4124         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4125                 return -EINVAL;
4126
4127         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4128                 /* mustn't change number of copies */
4129                 return -EINVAL;
4130         if (geo.far_copies > 1 && !geo.far_offset)
4131                 /* Cannot switch to 'far' mode */
4132                 return -EINVAL;
4133
4134         if (mddev->array_sectors & geo.chunk_mask)
4135                         /* not factor of array size */
4136                         return -EINVAL;
4137
4138         if (!enough(conf, -1))
4139                 return -EINVAL;
4140
4141         kfree(conf->mirrors_new);
4142         conf->mirrors_new = NULL;
4143         if (mddev->delta_disks > 0) {
4144                 /* allocate new 'mirrors' list */
4145                 conf->mirrors_new =
4146                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4147                                 sizeof(struct raid10_info),
4148                                 GFP_KERNEL);
4149                 if (!conf->mirrors_new)
4150                         return -ENOMEM;
4151         }
4152         return 0;
4153 }
4154
4155 /*
4156  * Need to check if array has failed when deciding whether to:
4157  *  - start an array
4158  *  - remove non-faulty devices
4159  *  - add a spare
4160  *  - allow a reshape
4161  * This determination is simple when no reshape is happening.
4162  * However if there is a reshape, we need to carefully check
4163  * both the before and after sections.
4164  * This is because some failed devices may only affect one
4165  * of the two sections, and some non-in_sync devices may
4166  * be insync in the section most affected by failed devices.
4167  */
4168 static int calc_degraded(struct r10conf *conf)
4169 {
4170         int degraded, degraded2;
4171         int i;
4172
4173         rcu_read_lock();
4174         degraded = 0;
4175         /* 'prev' section first */
4176         for (i = 0; i < conf->prev.raid_disks; i++) {
4177                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4178                 if (!rdev || test_bit(Faulty, &rdev->flags))
4179                         degraded++;
4180                 else if (!test_bit(In_sync, &rdev->flags))
4181                         /* When we can reduce the number of devices in
4182                          * an array, this might not contribute to
4183                          * 'degraded'.  It does now.
4184                          */
4185                         degraded++;
4186         }
4187         rcu_read_unlock();
4188         if (conf->geo.raid_disks == conf->prev.raid_disks)
4189                 return degraded;
4190         rcu_read_lock();
4191         degraded2 = 0;
4192         for (i = 0; i < conf->geo.raid_disks; i++) {
4193                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4194                 if (!rdev || test_bit(Faulty, &rdev->flags))
4195                         degraded2++;
4196                 else if (!test_bit(In_sync, &rdev->flags)) {
4197                         /* If reshape is increasing the number of devices,
4198                          * this section has already been recovered, so
4199                          * it doesn't contribute to degraded.
4200                          * else it does.
4201                          */
4202                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4203                                 degraded2++;
4204                 }
4205         }
4206         rcu_read_unlock();
4207         if (degraded2 > degraded)
4208                 return degraded2;
4209         return degraded;
4210 }
4211
4212 static int raid10_start_reshape(struct mddev *mddev)
4213 {
4214         /* A 'reshape' has been requested. This commits
4215          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4216          * This also checks if there are enough spares and adds them
4217          * to the array.
4218          * We currently require enough spares to make the final
4219          * array non-degraded.  We also require that the difference
4220          * between old and new data_offset - on each device - is
4221          * enough that we never risk over-writing.
4222          */
4223
4224         unsigned long before_length, after_length;
4225         sector_t min_offset_diff = 0;
4226         int first = 1;
4227         struct geom new;
4228         struct r10conf *conf = mddev->private;
4229         struct md_rdev *rdev;
4230         int spares = 0;
4231         int ret;
4232
4233         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4234                 return -EBUSY;
4235
4236         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4237                 return -EINVAL;
4238
4239         before_length = ((1 << conf->prev.chunk_shift) *
4240                          conf->prev.far_copies);
4241         after_length = ((1 << conf->geo.chunk_shift) *
4242                         conf->geo.far_copies);
4243
4244         rdev_for_each(rdev, mddev) {
4245                 if (!test_bit(In_sync, &rdev->flags)
4246                     && !test_bit(Faulty, &rdev->flags))
4247                         spares++;
4248                 if (rdev->raid_disk >= 0) {
4249                         long long diff = (rdev->new_data_offset
4250                                           - rdev->data_offset);
4251                         if (!mddev->reshape_backwards)
4252                                 diff = -diff;
4253                         if (diff < 0)
4254                                 diff = 0;
4255                         if (first || diff < min_offset_diff)
4256                                 min_offset_diff = diff;
4257                         first = 0;
4258                 }
4259         }
4260
4261         if (max(before_length, after_length) > min_offset_diff)
4262                 return -EINVAL;
4263
4264         if (spares < mddev->delta_disks)
4265                 return -EINVAL;
4266
4267         conf->offset_diff = min_offset_diff;
4268         spin_lock_irq(&conf->device_lock);
4269         if (conf->mirrors_new) {
4270                 memcpy(conf->mirrors_new, conf->mirrors,
4271                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4272                 smp_mb();
4273                 kfree(conf->mirrors_old);
4274                 conf->mirrors_old = conf->mirrors;
4275                 conf->mirrors = conf->mirrors_new;
4276                 conf->mirrors_new = NULL;
4277         }
4278         setup_geo(&conf->geo, mddev, geo_start);
4279         smp_mb();
4280         if (mddev->reshape_backwards) {
4281                 sector_t size = raid10_size(mddev, 0, 0);
4282                 if (size < mddev->array_sectors) {
4283                         spin_unlock_irq(&conf->device_lock);
4284                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4285                                 mdname(mddev));
4286                         return -EINVAL;
4287                 }
4288                 mddev->resync_max_sectors = size;
4289                 conf->reshape_progress = size;
4290         } else
4291                 conf->reshape_progress = 0;
4292         conf->reshape_safe = conf->reshape_progress;
4293         spin_unlock_irq(&conf->device_lock);
4294
4295         if (mddev->delta_disks && mddev->bitmap) {
4296                 ret = md_bitmap_resize(mddev->bitmap,
4297                                        raid10_size(mddev, 0, conf->geo.raid_disks),
4298                                        0, 0);
4299                 if (ret)
4300                         goto abort;
4301         }
4302         if (mddev->delta_disks > 0) {
4303                 rdev_for_each(rdev, mddev)
4304                         if (rdev->raid_disk < 0 &&
4305                             !test_bit(Faulty, &rdev->flags)) {
4306                                 if (raid10_add_disk(mddev, rdev) == 0) {
4307                                         if (rdev->raid_disk >=
4308                                             conf->prev.raid_disks)
4309                                                 set_bit(In_sync, &rdev->flags);
4310                                         else
4311                                                 rdev->recovery_offset = 0;
4312
4313                                         if (sysfs_link_rdev(mddev, rdev))
4314                                                 /* Failure here  is OK */;
4315                                 }
4316                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4317                                    && !test_bit(Faulty, &rdev->flags)) {
4318                                 /* This is a spare that was manually added */
4319                                 set_bit(In_sync, &rdev->flags);
4320                         }
4321         }
4322         /* When a reshape changes the number of devices,
4323          * ->degraded is measured against the larger of the
4324          * pre and  post numbers.
4325          */
4326         spin_lock_irq(&conf->device_lock);
4327         mddev->degraded = calc_degraded(conf);
4328         spin_unlock_irq(&conf->device_lock);
4329         mddev->raid_disks = conf->geo.raid_disks;
4330         mddev->reshape_position = conf->reshape_progress;
4331         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4332
4333         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4334         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4335         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4336         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4337         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4338
4339         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4340                                                 "reshape");
4341         if (!mddev->sync_thread) {
4342                 ret = -EAGAIN;
4343                 goto abort;
4344         }
4345         conf->reshape_checkpoint = jiffies;
4346         md_wakeup_thread(mddev->sync_thread);
4347         md_new_event(mddev);
4348         return 0;
4349
4350 abort:
4351         mddev->recovery = 0;
4352         spin_lock_irq(&conf->device_lock);
4353         conf->geo = conf->prev;
4354         mddev->raid_disks = conf->geo.raid_disks;
4355         rdev_for_each(rdev, mddev)
4356                 rdev->new_data_offset = rdev->data_offset;
4357         smp_wmb();
4358         conf->reshape_progress = MaxSector;
4359         conf->reshape_safe = MaxSector;
4360         mddev->reshape_position = MaxSector;
4361         spin_unlock_irq(&conf->device_lock);
4362         return ret;
4363 }
4364
4365 /* Calculate the last device-address that could contain
4366  * any block from the chunk that includes the array-address 's'
4367  * and report the next address.
4368  * i.e. the address returned will be chunk-aligned and after
4369  * any data that is in the chunk containing 's'.
4370  */
4371 static sector_t last_dev_address(sector_t s, struct geom *geo)
4372 {
4373         s = (s | geo->chunk_mask) + 1;
4374         s >>= geo->chunk_shift;
4375         s *= geo->near_copies;
4376         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4377         s *= geo->far_copies;
4378         s <<= geo->chunk_shift;
4379         return s;
4380 }
4381
4382 /* Calculate the first device-address that could contain
4383  * any block from the chunk that includes the array-address 's'.
4384  * This too will be the start of a chunk
4385  */
4386 static sector_t first_dev_address(sector_t s, struct geom *geo)
4387 {
4388         s >>= geo->chunk_shift;
4389         s *= geo->near_copies;
4390         sector_div(s, geo->raid_disks);
4391         s *= geo->far_copies;
4392         s <<= geo->chunk_shift;
4393         return s;
4394 }
4395
4396 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4397                                 int *skipped)
4398 {
4399         /* We simply copy at most one chunk (smallest of old and new)
4400          * at a time, possibly less if that exceeds RESYNC_PAGES,
4401          * or we hit a bad block or something.
4402          * This might mean we pause for normal IO in the middle of
4403          * a chunk, but that is not a problem as mddev->reshape_position
4404          * can record any location.
4405          *
4406          * If we will want to write to a location that isn't
4407          * yet recorded as 'safe' (i.e. in metadata on disk) then
4408          * we need to flush all reshape requests and update the metadata.
4409          *
4410          * When reshaping forwards (e.g. to more devices), we interpret
4411          * 'safe' as the earliest block which might not have been copied
4412          * down yet.  We divide this by previous stripe size and multiply
4413          * by previous stripe length to get lowest device offset that we
4414          * cannot write to yet.
4415          * We interpret 'sector_nr' as an address that we want to write to.
4416          * From this we use last_device_address() to find where we might
4417          * write to, and first_device_address on the  'safe' position.
4418          * If this 'next' write position is after the 'safe' position,
4419          * we must update the metadata to increase the 'safe' position.
4420          *
4421          * When reshaping backwards, we round in the opposite direction
4422          * and perform the reverse test:  next write position must not be
4423          * less than current safe position.
4424          *
4425          * In all this the minimum difference in data offsets
4426          * (conf->offset_diff - always positive) allows a bit of slack,
4427          * so next can be after 'safe', but not by more than offset_diff
4428          *
4429          * We need to prepare all the bios here before we start any IO
4430          * to ensure the size we choose is acceptable to all devices.
4431          * The means one for each copy for write-out and an extra one for
4432          * read-in.
4433          * We store the read-in bio in ->master_bio and the others in
4434          * ->devs[x].bio and ->devs[x].repl_bio.
4435          */
4436         struct r10conf *conf = mddev->private;
4437         struct r10bio *r10_bio;
4438         sector_t next, safe, last;
4439         int max_sectors;
4440         int nr_sectors;
4441         int s;
4442         struct md_rdev *rdev;
4443         int need_flush = 0;
4444         struct bio *blist;
4445         struct bio *bio, *read_bio;
4446         int sectors_done = 0;
4447         struct page **pages;
4448
4449         if (sector_nr == 0) {
4450                 /* If restarting in the middle, skip the initial sectors */
4451                 if (mddev->reshape_backwards &&
4452                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4453                         sector_nr = (raid10_size(mddev, 0, 0)
4454                                      - conf->reshape_progress);
4455                 } else if (!mddev->reshape_backwards &&
4456                            conf->reshape_progress > 0)
4457                         sector_nr = conf->reshape_progress;
4458                 if (sector_nr) {
4459                         mddev->curr_resync_completed = sector_nr;
4460                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4461                         *skipped = 1;
4462                         return sector_nr;
4463                 }
4464         }
4465
4466         /* We don't use sector_nr to track where we are up to
4467          * as that doesn't work well for ->reshape_backwards.
4468          * So just use ->reshape_progress.
4469          */
4470         if (mddev->reshape_backwards) {
4471                 /* 'next' is the earliest device address that we might
4472                  * write to for this chunk in the new layout
4473                  */
4474                 next = first_dev_address(conf->reshape_progress - 1,
4475                                          &conf->geo);
4476
4477                 /* 'safe' is the last device address that we might read from
4478                  * in the old layout after a restart
4479                  */
4480                 safe = last_dev_address(conf->reshape_safe - 1,
4481                                         &conf->prev);
4482
4483                 if (next + conf->offset_diff < safe)
4484                         need_flush = 1;
4485
4486                 last = conf->reshape_progress - 1;
4487                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4488                                                & conf->prev.chunk_mask);
4489                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4490                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4491         } else {
4492                 /* 'next' is after the last device address that we
4493                  * might write to for this chunk in the new layout
4494                  */
4495                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4496
4497                 /* 'safe' is the earliest device address that we might
4498                  * read from in the old layout after a restart
4499                  */
4500                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4501
4502                 /* Need to update metadata if 'next' might be beyond 'safe'
4503                  * as that would possibly corrupt data
4504                  */
4505                 if (next > safe + conf->offset_diff)
4506                         need_flush = 1;
4507
4508                 sector_nr = conf->reshape_progress;
4509                 last  = sector_nr | (conf->geo.chunk_mask
4510                                      & conf->prev.chunk_mask);
4511
4512                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4513                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4514         }
4515
4516         if (need_flush ||
4517             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4518                 /* Need to update reshape_position in metadata */
4519                 wait_barrier(conf);
4520                 mddev->reshape_position = conf->reshape_progress;
4521                 if (mddev->reshape_backwards)
4522                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4523                                 - conf->reshape_progress;
4524                 else
4525                         mddev->curr_resync_completed = conf->reshape_progress;
4526                 conf->reshape_checkpoint = jiffies;
4527                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4528                 md_wakeup_thread(mddev->thread);
4529                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4530                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4531                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4532                         allow_barrier(conf);
4533                         return sectors_done;
4534                 }
4535                 conf->reshape_safe = mddev->reshape_position;
4536                 allow_barrier(conf);
4537         }
4538
4539         raise_barrier(conf, 0);
4540 read_more:
4541         /* Now schedule reads for blocks from sector_nr to last */
4542         r10_bio = raid10_alloc_init_r10buf(conf);
4543         r10_bio->state = 0;
4544         raise_barrier(conf, 1);
4545         atomic_set(&r10_bio->remaining, 0);
4546         r10_bio->mddev = mddev;
4547         r10_bio->sector = sector_nr;
4548         set_bit(R10BIO_IsReshape, &r10_bio->state);
4549         r10_bio->sectors = last - sector_nr + 1;
4550         rdev = read_balance(conf, r10_bio, &max_sectors);
4551         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4552
4553         if (!rdev) {
4554                 /* Cannot read from here, so need to record bad blocks
4555                  * on all the target devices.
4556                  */
4557                 // FIXME
4558                 mempool_free(r10_bio, &conf->r10buf_pool);
4559                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4560                 return sectors_done;
4561         }
4562
4563         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4564
4565         bio_set_dev(read_bio, rdev->bdev);
4566         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4567                                + rdev->data_offset);
4568         read_bio->bi_private = r10_bio;
4569         read_bio->bi_end_io = end_reshape_read;
4570         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4571         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4572         read_bio->bi_status = 0;
4573         read_bio->bi_vcnt = 0;
4574         read_bio->bi_iter.bi_size = 0;
4575         r10_bio->master_bio = read_bio;
4576         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4577
4578         /* Now find the locations in the new layout */
4579         __raid10_find_phys(&conf->geo, r10_bio);
4580
4581         blist = read_bio;
4582         read_bio->bi_next = NULL;
4583
4584         rcu_read_lock();
4585         for (s = 0; s < conf->copies*2; s++) {
4586                 struct bio *b;
4587                 int d = r10_bio->devs[s/2].devnum;
4588                 struct md_rdev *rdev2;
4589                 if (s&1) {
4590                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4591                         b = r10_bio->devs[s/2].repl_bio;
4592                 } else {
4593                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4594                         b = r10_bio->devs[s/2].bio;
4595                 }
4596                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4597                         continue;
4598
4599                 bio_set_dev(b, rdev2->bdev);
4600                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4601                         rdev2->new_data_offset;
4602                 b->bi_end_io = end_reshape_write;
4603                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4604                 b->bi_next = blist;
4605                 blist = b;
4606         }
4607
4608         /* Now add as many pages as possible to all of these bios. */
4609
4610         nr_sectors = 0;
4611         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4612         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4613                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4614                 int len = (max_sectors - s) << 9;
4615                 if (len > PAGE_SIZE)
4616                         len = PAGE_SIZE;
4617                 for (bio = blist; bio ; bio = bio->bi_next) {
4618                         /*
4619                          * won't fail because the vec table is big enough
4620                          * to hold all these pages
4621                          */
4622                         bio_add_page(bio, page, len, 0);
4623                 }
4624                 sector_nr += len >> 9;
4625                 nr_sectors += len >> 9;
4626         }
4627         rcu_read_unlock();
4628         r10_bio->sectors = nr_sectors;
4629
4630         /* Now submit the read */
4631         md_sync_acct_bio(read_bio, r10_bio->sectors);
4632         atomic_inc(&r10_bio->remaining);
4633         read_bio->bi_next = NULL;
4634         generic_make_request(read_bio);
4635         sectors_done += nr_sectors;
4636         if (sector_nr <= last)
4637                 goto read_more;
4638
4639         lower_barrier(conf);
4640
4641         /* Now that we have done the whole section we can
4642          * update reshape_progress
4643          */
4644         if (mddev->reshape_backwards)
4645                 conf->reshape_progress -= sectors_done;
4646         else
4647                 conf->reshape_progress += sectors_done;
4648
4649         return sectors_done;
4650 }
4651
4652 static void end_reshape_request(struct r10bio *r10_bio);
4653 static int handle_reshape_read_error(struct mddev *mddev,
4654                                      struct r10bio *r10_bio);
4655 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4656 {
4657         /* Reshape read completed.  Hopefully we have a block
4658          * to write out.
4659          * If we got a read error then we do sync 1-page reads from
4660          * elsewhere until we find the data - or give up.
4661          */
4662         struct r10conf *conf = mddev->private;
4663         int s;
4664
4665         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4666                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4667                         /* Reshape has been aborted */
4668                         md_done_sync(mddev, r10_bio->sectors, 0);
4669                         return;
4670                 }
4671
4672         /* We definitely have the data in the pages, schedule the
4673          * writes.
4674          */
4675         atomic_set(&r10_bio->remaining, 1);
4676         for (s = 0; s < conf->copies*2; s++) {
4677                 struct bio *b;
4678                 int d = r10_bio->devs[s/2].devnum;
4679                 struct md_rdev *rdev;
4680                 rcu_read_lock();
4681                 if (s&1) {
4682                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4683                         b = r10_bio->devs[s/2].repl_bio;
4684                 } else {
4685                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4686                         b = r10_bio->devs[s/2].bio;
4687                 }
4688                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4689                         rcu_read_unlock();
4690                         continue;
4691                 }
4692                 atomic_inc(&rdev->nr_pending);
4693                 rcu_read_unlock();
4694                 md_sync_acct_bio(b, r10_bio->sectors);
4695                 atomic_inc(&r10_bio->remaining);
4696                 b->bi_next = NULL;
4697                 generic_make_request(b);
4698         }
4699         end_reshape_request(r10_bio);
4700 }
4701
4702 static void end_reshape(struct r10conf *conf)
4703 {
4704         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4705                 return;
4706
4707         spin_lock_irq(&conf->device_lock);
4708         conf->prev = conf->geo;
4709         md_finish_reshape(conf->mddev);
4710         smp_wmb();
4711         conf->reshape_progress = MaxSector;
4712         conf->reshape_safe = MaxSector;
4713         spin_unlock_irq(&conf->device_lock);
4714
4715         /* read-ahead size must cover two whole stripes, which is
4716          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4717          */
4718         if (conf->mddev->queue) {
4719                 int stripe = conf->geo.raid_disks *
4720                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4721                 stripe /= conf->geo.near_copies;
4722                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4723                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4724         }
4725         conf->fullsync = 0;
4726 }
4727
4728 static int handle_reshape_read_error(struct mddev *mddev,
4729                                      struct r10bio *r10_bio)
4730 {
4731         /* Use sync reads to get the blocks from somewhere else */
4732         int sectors = r10_bio->sectors;
4733         struct r10conf *conf = mddev->private;
4734         struct r10bio *r10b;
4735         int slot = 0;
4736         int idx = 0;
4737         struct page **pages;
4738
4739         r10b = kmalloc(sizeof(*r10b) +
4740                sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4741         if (!r10b) {
4742                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4743                 return -ENOMEM;
4744         }
4745
4746         /* reshape IOs share pages from .devs[0].bio */
4747         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4748
4749         r10b->sector = r10_bio->sector;
4750         __raid10_find_phys(&conf->prev, r10b);
4751
4752         while (sectors) {
4753                 int s = sectors;
4754                 int success = 0;
4755                 int first_slot = slot;
4756
4757                 if (s > (PAGE_SIZE >> 9))
4758                         s = PAGE_SIZE >> 9;
4759
4760                 rcu_read_lock();
4761                 while (!success) {
4762                         int d = r10b->devs[slot].devnum;
4763                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4764                         sector_t addr;
4765                         if (rdev == NULL ||
4766                             test_bit(Faulty, &rdev->flags) ||
4767                             !test_bit(In_sync, &rdev->flags))
4768                                 goto failed;
4769
4770                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4771                         atomic_inc(&rdev->nr_pending);
4772                         rcu_read_unlock();
4773                         success = sync_page_io(rdev,
4774                                                addr,
4775                                                s << 9,
4776                                                pages[idx],
4777                                                REQ_OP_READ, 0, false);
4778                         rdev_dec_pending(rdev, mddev);
4779                         rcu_read_lock();
4780                         if (success)
4781                                 break;
4782                 failed:
4783                         slot++;
4784                         if (slot >= conf->copies)
4785                                 slot = 0;
4786                         if (slot == first_slot)
4787                                 break;
4788                 }
4789                 rcu_read_unlock();
4790                 if (!success) {
4791                         /* couldn't read this block, must give up */
4792                         set_bit(MD_RECOVERY_INTR,
4793                                 &mddev->recovery);
4794                         kfree(r10b);
4795                         return -EIO;
4796                 }
4797                 sectors -= s;
4798                 idx++;
4799         }
4800         kfree(r10b);
4801         return 0;
4802 }
4803
4804 static void end_reshape_write(struct bio *bio)
4805 {
4806         struct r10bio *r10_bio = get_resync_r10bio(bio);
4807         struct mddev *mddev = r10_bio->mddev;
4808         struct r10conf *conf = mddev->private;
4809         int d;
4810         int slot;
4811         int repl;
4812         struct md_rdev *rdev = NULL;
4813
4814         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4815         if (repl)
4816                 rdev = conf->mirrors[d].replacement;
4817         if (!rdev) {
4818                 smp_mb();
4819                 rdev = conf->mirrors[d].rdev;
4820         }
4821
4822         if (bio->bi_status) {
4823                 /* FIXME should record badblock */
4824                 md_error(mddev, rdev);
4825         }
4826
4827         rdev_dec_pending(rdev, mddev);
4828         end_reshape_request(r10_bio);
4829 }
4830
4831 static void end_reshape_request(struct r10bio *r10_bio)
4832 {
4833         if (!atomic_dec_and_test(&r10_bio->remaining))
4834                 return;
4835         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4836         bio_put(r10_bio->master_bio);
4837         put_buf(r10_bio);
4838 }
4839
4840 static void raid10_finish_reshape(struct mddev *mddev)
4841 {
4842         struct r10conf *conf = mddev->private;
4843
4844         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4845                 return;
4846
4847         if (mddev->delta_disks > 0) {
4848                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4849                         mddev->recovery_cp = mddev->resync_max_sectors;
4850                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4851                 }
4852                 mddev->resync_max_sectors = mddev->array_sectors;
4853         } else {
4854                 int d;
4855                 rcu_read_lock();
4856                 for (d = conf->geo.raid_disks ;
4857                      d < conf->geo.raid_disks - mddev->delta_disks;
4858                      d++) {
4859                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4860                         if (rdev)
4861                                 clear_bit(In_sync, &rdev->flags);
4862                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4863                         if (rdev)
4864                                 clear_bit(In_sync, &rdev->flags);
4865                 }
4866                 rcu_read_unlock();
4867         }
4868         mddev->layout = mddev->new_layout;
4869         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4870         mddev->reshape_position = MaxSector;
4871         mddev->delta_disks = 0;
4872         mddev->reshape_backwards = 0;
4873 }
4874
4875 static struct md_personality raid10_personality =
4876 {
4877         .name           = "raid10",
4878         .level          = 10,
4879         .owner          = THIS_MODULE,
4880         .make_request   = raid10_make_request,
4881         .run            = raid10_run,
4882         .free           = raid10_free,
4883         .status         = raid10_status,
4884         .error_handler  = raid10_error,
4885         .hot_add_disk   = raid10_add_disk,
4886         .hot_remove_disk= raid10_remove_disk,
4887         .spare_active   = raid10_spare_active,
4888         .sync_request   = raid10_sync_request,
4889         .quiesce        = raid10_quiesce,
4890         .size           = raid10_size,
4891         .resize         = raid10_resize,
4892         .takeover       = raid10_takeover,
4893         .check_reshape  = raid10_check_reshape,
4894         .start_reshape  = raid10_start_reshape,
4895         .finish_reshape = raid10_finish_reshape,
4896         .congested      = raid10_congested,
4897 };
4898
4899 static int __init raid_init(void)
4900 {
4901         return register_md_personality(&raid10_personality);
4902 }
4903
4904 static void raid_exit(void)
4905 {
4906         unregister_md_personality(&raid10_personality);
4907 }
4908
4909 module_init(raid_init);
4910 module_exit(raid_exit);
4911 MODULE_LICENSE("GPL");
4912 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4913 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4914 MODULE_ALIAS("md-raid10");
4915 MODULE_ALIAS("md-level-10");
4916
4917 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);