GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          */
474                         if (!test_bit(Faulty, &rdev->flags))
475                                 set_bit(R10BIO_WriteError, &r10_bio->state);
476                         else {
477                                 /* Fail the request */
478                                 set_bit(R10BIO_Degraded, &r10_bio->state);
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors >
755                     rdev->recovery_offset) {
756                         /*
757                          * Read replacement first to prevent reading both rdev
758                          * and replacement as NULL during replacement replace
759                          * rdev.
760                          */
761                         smp_mb();
762                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
763                 }
764                 if (rdev == NULL ||
765                     test_bit(Faulty, &rdev->flags))
766                         continue;
767                 if (!test_bit(In_sync, &rdev->flags) &&
768                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769                         continue;
770
771                 dev_sector = r10_bio->devs[slot].addr;
772                 if (is_badblock(rdev, dev_sector, sectors,
773                                 &first_bad, &bad_sectors)) {
774                         if (best_dist < MaxSector)
775                                 /* Already have a better slot */
776                                 continue;
777                         if (first_bad <= dev_sector) {
778                                 /* Cannot read here.  If this is the
779                                  * 'primary' device, then we must not read
780                                  * beyond 'bad_sectors' from another device.
781                                  */
782                                 bad_sectors -= (dev_sector - first_bad);
783                                 if (!do_balance && sectors > bad_sectors)
784                                         sectors = bad_sectors;
785                                 if (best_good_sectors > sectors)
786                                         best_good_sectors = sectors;
787                         } else {
788                                 sector_t good_sectors =
789                                         first_bad - dev_sector;
790                                 if (good_sectors > best_good_sectors) {
791                                         best_good_sectors = good_sectors;
792                                         best_dist_slot = slot;
793                                         best_dist_rdev = rdev;
794                                 }
795                                 if (!do_balance)
796                                         /* Must read from here */
797                                         break;
798                         }
799                         continue;
800                 } else
801                         best_good_sectors = sectors;
802
803                 if (!do_balance)
804                         break;
805
806                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
807                 has_nonrot_disk |= nonrot;
808                 pending = atomic_read(&rdev->nr_pending);
809                 if (min_pending > pending && nonrot) {
810                         min_pending = pending;
811                         best_pending_slot = slot;
812                         best_pending_rdev = rdev;
813                 }
814
815                 if (best_dist_slot >= 0)
816                         /* At least 2 disks to choose from so failfast is OK */
817                         set_bit(R10BIO_FailFast, &r10_bio->state);
818                 /* This optimisation is debatable, and completely destroys
819                  * sequential read speed for 'far copies' arrays.  So only
820                  * keep it for 'near' arrays, and review those later.
821                  */
822                 if (geo->near_copies > 1 && !pending)
823                         new_distance = 0;
824
825                 /* for far > 1 always use the lowest address */
826                 else if (geo->far_copies > 1)
827                         new_distance = r10_bio->devs[slot].addr;
828                 else
829                         new_distance = abs(r10_bio->devs[slot].addr -
830                                            conf->mirrors[disk].head_position);
831
832                 if (new_distance < best_dist) {
833                         best_dist = new_distance;
834                         best_dist_slot = slot;
835                         best_dist_rdev = rdev;
836                 }
837         }
838         if (slot >= conf->copies) {
839                 if (has_nonrot_disk) {
840                         slot = best_pending_slot;
841                         rdev = best_pending_rdev;
842                 } else {
843                         slot = best_dist_slot;
844                         rdev = best_dist_rdev;
845                 }
846         }
847
848         if (slot >= 0) {
849                 atomic_inc(&rdev->nr_pending);
850                 r10_bio->read_slot = slot;
851         } else
852                 rdev = NULL;
853         rcu_read_unlock();
854         *max_sectors = best_good_sectors;
855
856         return rdev;
857 }
858
859 static void flush_pending_writes(struct r10conf *conf)
860 {
861         /* Any writes that have been queued but are awaiting
862          * bitmap updates get flushed here.
863          */
864         spin_lock_irq(&conf->device_lock);
865
866         if (conf->pending_bio_list.head) {
867                 struct blk_plug plug;
868                 struct bio *bio;
869
870                 bio = bio_list_get(&conf->pending_bio_list);
871                 conf->pending_count = 0;
872                 spin_unlock_irq(&conf->device_lock);
873
874                 /*
875                  * As this is called in a wait_event() loop (see freeze_array),
876                  * current->state might be TASK_UNINTERRUPTIBLE which will
877                  * cause a warning when we prepare to wait again.  As it is
878                  * rare that this path is taken, it is perfectly safe to force
879                  * us to go around the wait_event() loop again, so the warning
880                  * is a false-positive. Silence the warning by resetting
881                  * thread state
882                  */
883                 __set_current_state(TASK_RUNNING);
884
885                 blk_start_plug(&plug);
886                 /* flush any pending bitmap writes to disk
887                  * before proceeding w/ I/O */
888                 md_bitmap_unplug(conf->mddev->bitmap);
889                 wake_up(&conf->wait_barrier);
890
891                 while (bio) { /* submit pending writes */
892                         struct bio *next = bio->bi_next;
893                         struct md_rdev *rdev = (void*)bio->bi_disk;
894                         bio->bi_next = NULL;
895                         bio_set_dev(bio, rdev->bdev);
896                         if (test_bit(Faulty, &rdev->flags)) {
897                                 bio_io_error(bio);
898                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
899                                             !blk_queue_discard(bio->bi_disk->queue)))
900                                 /* Just ignore it */
901                                 bio_endio(bio);
902                         else
903                                 submit_bio_noacct(bio);
904                         bio = next;
905                         cond_resched();
906                 }
907                 blk_finish_plug(&plug);
908         } else
909                 spin_unlock_irq(&conf->device_lock);
910 }
911
912 /* Barriers....
913  * Sometimes we need to suspend IO while we do something else,
914  * either some resync/recovery, or reconfigure the array.
915  * To do this we raise a 'barrier'.
916  * The 'barrier' is a counter that can be raised multiple times
917  * to count how many activities are happening which preclude
918  * normal IO.
919  * We can only raise the barrier if there is no pending IO.
920  * i.e. if nr_pending == 0.
921  * We choose only to raise the barrier if no-one is waiting for the
922  * barrier to go down.  This means that as soon as an IO request
923  * is ready, no other operations which require a barrier will start
924  * until the IO request has had a chance.
925  *
926  * So: regular IO calls 'wait_barrier'.  When that returns there
927  *    is no backgroup IO happening,  It must arrange to call
928  *    allow_barrier when it has finished its IO.
929  * backgroup IO calls must call raise_barrier.  Once that returns
930  *    there is no normal IO happeing.  It must arrange to call
931  *    lower_barrier when the particular background IO completes.
932  */
933
934 static void raise_barrier(struct r10conf *conf, int force)
935 {
936         BUG_ON(force && !conf->barrier);
937         spin_lock_irq(&conf->resync_lock);
938
939         /* Wait until no block IO is waiting (unless 'force') */
940         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
941                             conf->resync_lock);
942
943         /* block any new IO from starting */
944         conf->barrier++;
945
946         /* Now wait for all pending IO to complete */
947         wait_event_lock_irq(conf->wait_barrier,
948                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
949                             conf->resync_lock);
950
951         spin_unlock_irq(&conf->resync_lock);
952 }
953
954 static void lower_barrier(struct r10conf *conf)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&conf->resync_lock, flags);
958         conf->barrier--;
959         spin_unlock_irqrestore(&conf->resync_lock, flags);
960         wake_up(&conf->wait_barrier);
961 }
962
963 static void wait_barrier(struct r10conf *conf)
964 {
965         spin_lock_irq(&conf->resync_lock);
966         if (conf->barrier) {
967                 struct bio_list *bio_list = current->bio_list;
968                 conf->nr_waiting++;
969                 /* Wait for the barrier to drop.
970                  * However if there are already pending
971                  * requests (preventing the barrier from
972                  * rising completely), and the
973                  * pre-process bio queue isn't empty,
974                  * then don't wait, as we need to empty
975                  * that queue to get the nr_pending
976                  * count down.
977                  */
978                 raid10_log(conf->mddev, "wait barrier");
979                 wait_event_lock_irq(conf->wait_barrier,
980                                     !conf->barrier ||
981                                     (atomic_read(&conf->nr_pending) &&
982                                      bio_list &&
983                                      (!bio_list_empty(&bio_list[0]) ||
984                                       !bio_list_empty(&bio_list[1]))) ||
985                                      /* move on if recovery thread is
986                                       * blocked by us
987                                       */
988                                      (conf->mddev->thread->tsk == current &&
989                                       test_bit(MD_RECOVERY_RUNNING,
990                                                &conf->mddev->recovery) &&
991                                       conf->nr_queued > 0),
992                                     conf->resync_lock);
993                 conf->nr_waiting--;
994                 if (!conf->nr_waiting)
995                         wake_up(&conf->wait_barrier);
996         }
997         atomic_inc(&conf->nr_pending);
998         spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001 static void allow_barrier(struct r10conf *conf)
1002 {
1003         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1004                         (conf->array_freeze_pending))
1005                 wake_up(&conf->wait_barrier);
1006 }
1007
1008 static void freeze_array(struct r10conf *conf, int extra)
1009 {
1010         /* stop syncio and normal IO and wait for everything to
1011          * go quiet.
1012          * We increment barrier and nr_waiting, and then
1013          * wait until nr_pending match nr_queued+extra
1014          * This is called in the context of one normal IO request
1015          * that has failed. Thus any sync request that might be pending
1016          * will be blocked by nr_pending, and we need to wait for
1017          * pending IO requests to complete or be queued for re-try.
1018          * Thus the number queued (nr_queued) plus this request (extra)
1019          * must match the number of pending IOs (nr_pending) before
1020          * we continue.
1021          */
1022         spin_lock_irq(&conf->resync_lock);
1023         conf->array_freeze_pending++;
1024         conf->barrier++;
1025         conf->nr_waiting++;
1026         wait_event_lock_irq_cmd(conf->wait_barrier,
1027                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1028                                 conf->resync_lock,
1029                                 flush_pending_writes(conf));
1030
1031         conf->array_freeze_pending--;
1032         spin_unlock_irq(&conf->resync_lock);
1033 }
1034
1035 static void unfreeze_array(struct r10conf *conf)
1036 {
1037         /* reverse the effect of the freeze */
1038         spin_lock_irq(&conf->resync_lock);
1039         conf->barrier--;
1040         conf->nr_waiting--;
1041         wake_up(&conf->wait_barrier);
1042         spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static sector_t choose_data_offset(struct r10bio *r10_bio,
1046                                    struct md_rdev *rdev)
1047 {
1048         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1049             test_bit(R10BIO_Previous, &r10_bio->state))
1050                 return rdev->data_offset;
1051         else
1052                 return rdev->new_data_offset;
1053 }
1054
1055 struct raid10_plug_cb {
1056         struct blk_plug_cb      cb;
1057         struct bio_list         pending;
1058         int                     pending_cnt;
1059 };
1060
1061 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1062 {
1063         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1064                                                    cb);
1065         struct mddev *mddev = plug->cb.data;
1066         struct r10conf *conf = mddev->private;
1067         struct bio *bio;
1068
1069         if (from_schedule || current->bio_list) {
1070                 spin_lock_irq(&conf->device_lock);
1071                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072                 conf->pending_count += plug->pending_cnt;
1073                 spin_unlock_irq(&conf->device_lock);
1074                 wake_up(&conf->wait_barrier);
1075                 md_wakeup_thread(mddev->thread);
1076                 kfree(plug);
1077                 return;
1078         }
1079
1080         /* we aren't scheduling, so we can do the write-out directly. */
1081         bio = bio_list_get(&plug->pending);
1082         md_bitmap_unplug(mddev->bitmap);
1083         wake_up(&conf->wait_barrier);
1084
1085         while (bio) { /* submit pending writes */
1086                 struct bio *next = bio->bi_next;
1087                 struct md_rdev *rdev = (void*)bio->bi_disk;
1088                 bio->bi_next = NULL;
1089                 bio_set_dev(bio, rdev->bdev);
1090                 if (test_bit(Faulty, &rdev->flags)) {
1091                         bio_io_error(bio);
1092                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1093                                     !blk_queue_discard(bio->bi_disk->queue)))
1094                         /* Just ignore it */
1095                         bio_endio(bio);
1096                 else
1097                         submit_bio_noacct(bio);
1098                 bio = next;
1099                 cond_resched();
1100         }
1101         kfree(plug);
1102 }
1103
1104 /*
1105  * 1. Register the new request and wait if the reconstruction thread has put
1106  * up a bar for new requests. Continue immediately if no resync is active
1107  * currently.
1108  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1109  */
1110 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1111                                  struct bio *bio, sector_t sectors)
1112 {
1113         wait_barrier(conf);
1114         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1115             bio->bi_iter.bi_sector < conf->reshape_progress &&
1116             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1117                 raid10_log(conf->mddev, "wait reshape");
1118                 allow_barrier(conf);
1119                 wait_event(conf->wait_barrier,
1120                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1121                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1122                            sectors);
1123                 wait_barrier(conf);
1124         }
1125 }
1126
1127 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1128                                 struct r10bio *r10_bio)
1129 {
1130         struct r10conf *conf = mddev->private;
1131         struct bio *read_bio;
1132         const int op = bio_op(bio);
1133         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1134         int max_sectors;
1135         struct md_rdev *rdev;
1136         char b[BDEVNAME_SIZE];
1137         int slot = r10_bio->read_slot;
1138         struct md_rdev *err_rdev = NULL;
1139         gfp_t gfp = GFP_NOIO;
1140
1141         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1142                 /*
1143                  * This is an error retry, but we cannot
1144                  * safely dereference the rdev in the r10_bio,
1145                  * we must use the one in conf.
1146                  * If it has already been disconnected (unlikely)
1147                  * we lose the device name in error messages.
1148                  */
1149                 int disk;
1150                 /*
1151                  * As we are blocking raid10, it is a little safer to
1152                  * use __GFP_HIGH.
1153                  */
1154                 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156                 rcu_read_lock();
1157                 disk = r10_bio->devs[slot].devnum;
1158                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159                 if (err_rdev)
1160                         bdevname(err_rdev->bdev, b);
1161                 else {
1162                         strcpy(b, "???");
1163                         /* This never gets dereferenced */
1164                         err_rdev = r10_bio->devs[slot].rdev;
1165                 }
1166                 rcu_read_unlock();
1167         }
1168
1169         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1170         rdev = read_balance(conf, r10_bio, &max_sectors);
1171         if (!rdev) {
1172                 if (err_rdev) {
1173                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174                                             mdname(mddev), b,
1175                                             (unsigned long long)r10_bio->sector);
1176                 }
1177                 raid_end_bio_io(r10_bio);
1178                 return;
1179         }
1180         if (err_rdev)
1181                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182                                    mdname(mddev),
1183                                    bdevname(rdev->bdev, b),
1184                                    (unsigned long long)r10_bio->sector);
1185         if (max_sectors < bio_sectors(bio)) {
1186                 struct bio *split = bio_split(bio, max_sectors,
1187                                               gfp, &conf->bio_split);
1188                 bio_chain(split, bio);
1189                 allow_barrier(conf);
1190                 submit_bio_noacct(bio);
1191                 wait_barrier(conf);
1192                 bio = split;
1193                 r10_bio->master_bio = bio;
1194                 r10_bio->sectors = max_sectors;
1195         }
1196         slot = r10_bio->read_slot;
1197
1198         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1199
1200         r10_bio->devs[slot].bio = read_bio;
1201         r10_bio->devs[slot].rdev = rdev;
1202
1203         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1204                 choose_data_offset(r10_bio, rdev);
1205         bio_set_dev(read_bio, rdev->bdev);
1206         read_bio->bi_end_io = raid10_end_read_request;
1207         bio_set_op_attrs(read_bio, op, do_sync);
1208         if (test_bit(FailFast, &rdev->flags) &&
1209             test_bit(R10BIO_FailFast, &r10_bio->state))
1210                 read_bio->bi_opf |= MD_FAILFAST;
1211         read_bio->bi_private = r10_bio;
1212
1213         if (mddev->gendisk)
1214                 trace_block_bio_remap(read_bio->bi_disk->queue,
1215                                       read_bio, disk_devt(mddev->gendisk),
1216                                       r10_bio->sector);
1217         submit_bio_noacct(read_bio);
1218         return;
1219 }
1220
1221 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1222                                   struct bio *bio, bool replacement,
1223                                   int n_copy)
1224 {
1225         const int op = bio_op(bio);
1226         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1227         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1228         unsigned long flags;
1229         struct blk_plug_cb *cb;
1230         struct raid10_plug_cb *plug = NULL;
1231         struct r10conf *conf = mddev->private;
1232         struct md_rdev *rdev;
1233         int devnum = r10_bio->devs[n_copy].devnum;
1234         struct bio *mbio;
1235
1236         if (replacement) {
1237                 rdev = conf->mirrors[devnum].replacement;
1238                 if (rdev == NULL) {
1239                         /* Replacement just got moved to main 'rdev' */
1240                         smp_mb();
1241                         rdev = conf->mirrors[devnum].rdev;
1242                 }
1243         } else
1244                 rdev = conf->mirrors[devnum].rdev;
1245
1246         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1247         if (replacement)
1248                 r10_bio->devs[n_copy].repl_bio = mbio;
1249         else
1250                 r10_bio->devs[n_copy].bio = mbio;
1251
1252         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1253                                    choose_data_offset(r10_bio, rdev));
1254         bio_set_dev(mbio, rdev->bdev);
1255         mbio->bi_end_io = raid10_end_write_request;
1256         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1257         if (!replacement && test_bit(FailFast,
1258                                      &conf->mirrors[devnum].rdev->flags)
1259                          && enough(conf, devnum))
1260                 mbio->bi_opf |= MD_FAILFAST;
1261         mbio->bi_private = r10_bio;
1262
1263         if (conf->mddev->gendisk)
1264                 trace_block_bio_remap(mbio->bi_disk->queue,
1265                                       mbio, disk_devt(conf->mddev->gendisk),
1266                                       r10_bio->sector);
1267         /* flush_pending_writes() needs access to the rdev so...*/
1268         mbio->bi_disk = (void *)rdev;
1269
1270         atomic_inc(&r10_bio->remaining);
1271
1272         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1273         if (cb)
1274                 plug = container_of(cb, struct raid10_plug_cb, cb);
1275         else
1276                 plug = NULL;
1277         if (plug) {
1278                 bio_list_add(&plug->pending, mbio);
1279                 plug->pending_cnt++;
1280         } else {
1281                 spin_lock_irqsave(&conf->device_lock, flags);
1282                 bio_list_add(&conf->pending_bio_list, mbio);
1283                 conf->pending_count++;
1284                 spin_unlock_irqrestore(&conf->device_lock, flags);
1285                 md_wakeup_thread(mddev->thread);
1286         }
1287 }
1288
1289 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1290                                  struct r10bio *r10_bio)
1291 {
1292         struct r10conf *conf = mddev->private;
1293         int i;
1294         struct md_rdev *blocked_rdev;
1295         sector_t sectors;
1296         int max_sectors;
1297
1298         if ((mddev_is_clustered(mddev) &&
1299              md_cluster_ops->area_resyncing(mddev, WRITE,
1300                                             bio->bi_iter.bi_sector,
1301                                             bio_end_sector(bio)))) {
1302                 DEFINE_WAIT(w);
1303                 for (;;) {
1304                         prepare_to_wait(&conf->wait_barrier,
1305                                         &w, TASK_IDLE);
1306                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1307                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1308                                 break;
1309                         schedule();
1310                 }
1311                 finish_wait(&conf->wait_barrier, &w);
1312         }
1313
1314         sectors = r10_bio->sectors;
1315         regular_request_wait(mddev, conf, bio, sectors);
1316         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1317             (mddev->reshape_backwards
1318              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1319                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1320              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1321                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1322                 /* Need to update reshape_position in metadata */
1323                 mddev->reshape_position = conf->reshape_progress;
1324                 set_mask_bits(&mddev->sb_flags, 0,
1325                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1326                 md_wakeup_thread(mddev->thread);
1327                 raid10_log(conf->mddev, "wait reshape metadata");
1328                 wait_event(mddev->sb_wait,
1329                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1330
1331                 conf->reshape_safe = mddev->reshape_position;
1332         }
1333
1334         if (conf->pending_count >= max_queued_requests) {
1335                 md_wakeup_thread(mddev->thread);
1336                 raid10_log(mddev, "wait queued");
1337                 wait_event(conf->wait_barrier,
1338                            conf->pending_count < max_queued_requests);
1339         }
1340         /* first select target devices under rcu_lock and
1341          * inc refcount on their rdev.  Record them by setting
1342          * bios[x] to bio
1343          * If there are known/acknowledged bad blocks on any device
1344          * on which we have seen a write error, we want to avoid
1345          * writing to those blocks.  This potentially requires several
1346          * writes to write around the bad blocks.  Each set of writes
1347          * gets its own r10_bio with a set of bios attached.
1348          */
1349
1350         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1351         raid10_find_phys(conf, r10_bio);
1352 retry_write:
1353         blocked_rdev = NULL;
1354         rcu_read_lock();
1355         max_sectors = r10_bio->sectors;
1356
1357         for (i = 0;  i < conf->copies; i++) {
1358                 int d = r10_bio->devs[i].devnum;
1359                 struct md_rdev *rdev, *rrdev;
1360
1361                 rrdev = rcu_dereference(conf->mirrors[d].replacement);
1362                 /*
1363                  * Read replacement first to prevent reading both rdev and
1364                  * replacement as NULL during replacement replace rdev.
1365                  */
1366                 smp_mb();
1367                 rdev = rcu_dereference(conf->mirrors[d].rdev);
1368                 if (rdev == rrdev)
1369                         rrdev = NULL;
1370                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1371                         atomic_inc(&rdev->nr_pending);
1372                         blocked_rdev = rdev;
1373                         break;
1374                 }
1375                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1376                         atomic_inc(&rrdev->nr_pending);
1377                         blocked_rdev = rrdev;
1378                         break;
1379                 }
1380                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1381                         rdev = NULL;
1382                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1383                         rrdev = NULL;
1384
1385                 r10_bio->devs[i].bio = NULL;
1386                 r10_bio->devs[i].repl_bio = NULL;
1387
1388                 if (!rdev && !rrdev) {
1389                         set_bit(R10BIO_Degraded, &r10_bio->state);
1390                         continue;
1391                 }
1392                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1393                         sector_t first_bad;
1394                         sector_t dev_sector = r10_bio->devs[i].addr;
1395                         int bad_sectors;
1396                         int is_bad;
1397
1398                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1399                                              &first_bad, &bad_sectors);
1400                         if (is_bad < 0) {
1401                                 /* Mustn't write here until the bad block
1402                                  * is acknowledged
1403                                  */
1404                                 atomic_inc(&rdev->nr_pending);
1405                                 set_bit(BlockedBadBlocks, &rdev->flags);
1406                                 blocked_rdev = rdev;
1407                                 break;
1408                         }
1409                         if (is_bad && first_bad <= dev_sector) {
1410                                 /* Cannot write here at all */
1411                                 bad_sectors -= (dev_sector - first_bad);
1412                                 if (bad_sectors < max_sectors)
1413                                         /* Mustn't write more than bad_sectors
1414                                          * to other devices yet
1415                                          */
1416                                         max_sectors = bad_sectors;
1417                                 /* We don't set R10BIO_Degraded as that
1418                                  * only applies if the disk is missing,
1419                                  * so it might be re-added, and we want to
1420                                  * know to recover this chunk.
1421                                  * In this case the device is here, and the
1422                                  * fact that this chunk is not in-sync is
1423                                  * recorded in the bad block log.
1424                                  */
1425                                 continue;
1426                         }
1427                         if (is_bad) {
1428                                 int good_sectors = first_bad - dev_sector;
1429                                 if (good_sectors < max_sectors)
1430                                         max_sectors = good_sectors;
1431                         }
1432                 }
1433                 if (rdev) {
1434                         r10_bio->devs[i].bio = bio;
1435                         atomic_inc(&rdev->nr_pending);
1436                 }
1437                 if (rrdev) {
1438                         r10_bio->devs[i].repl_bio = bio;
1439                         atomic_inc(&rrdev->nr_pending);
1440                 }
1441         }
1442         rcu_read_unlock();
1443
1444         if (unlikely(blocked_rdev)) {
1445                 /* Have to wait for this device to get unblocked, then retry */
1446                 int j;
1447                 int d;
1448
1449                 for (j = 0; j < i; j++) {
1450                         if (r10_bio->devs[j].bio) {
1451                                 d = r10_bio->devs[j].devnum;
1452                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1453                         }
1454                         if (r10_bio->devs[j].repl_bio) {
1455                                 struct md_rdev *rdev;
1456                                 d = r10_bio->devs[j].devnum;
1457                                 rdev = conf->mirrors[d].replacement;
1458                                 if (!rdev) {
1459                                         /* Race with remove_disk */
1460                                         smp_mb();
1461                                         rdev = conf->mirrors[d].rdev;
1462                                 }
1463                                 rdev_dec_pending(rdev, mddev);
1464                         }
1465                 }
1466                 allow_barrier(conf);
1467                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1468                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1469                 wait_barrier(conf);
1470                 goto retry_write;
1471         }
1472
1473         if (max_sectors < r10_bio->sectors)
1474                 r10_bio->sectors = max_sectors;
1475
1476         if (r10_bio->sectors < bio_sectors(bio)) {
1477                 struct bio *split = bio_split(bio, r10_bio->sectors,
1478                                               GFP_NOIO, &conf->bio_split);
1479                 bio_chain(split, bio);
1480                 allow_barrier(conf);
1481                 submit_bio_noacct(bio);
1482                 wait_barrier(conf);
1483                 bio = split;
1484                 r10_bio->master_bio = bio;
1485         }
1486
1487         atomic_set(&r10_bio->remaining, 1);
1488         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1489
1490         for (i = 0; i < conf->copies; i++) {
1491                 if (r10_bio->devs[i].bio)
1492                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1493                 if (r10_bio->devs[i].repl_bio)
1494                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1495         }
1496         one_write_done(r10_bio);
1497 }
1498
1499 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1500 {
1501         struct r10conf *conf = mddev->private;
1502         struct r10bio *r10_bio;
1503
1504         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1505
1506         r10_bio->master_bio = bio;
1507         r10_bio->sectors = sectors;
1508
1509         r10_bio->mddev = mddev;
1510         r10_bio->sector = bio->bi_iter.bi_sector;
1511         r10_bio->state = 0;
1512         r10_bio->read_slot = -1;
1513         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515         if (bio_data_dir(bio) == READ)
1516                 raid10_read_request(mddev, bio, r10_bio);
1517         else
1518                 raid10_write_request(mddev, bio, r10_bio);
1519 }
1520
1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522 {
1523         struct r10conf *conf = mddev->private;
1524         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525         int chunk_sects = chunk_mask + 1;
1526         int sectors = bio_sectors(bio);
1527
1528         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1529             && md_flush_request(mddev, bio))
1530                 return true;
1531
1532         if (!md_write_start(mddev, bio))
1533                 return false;
1534
1535         /*
1536          * If this request crosses a chunk boundary, we need to split
1537          * it.
1538          */
1539         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1540                      sectors > chunk_sects
1541                      && (conf->geo.near_copies < conf->geo.raid_disks
1542                          || conf->prev.near_copies <
1543                          conf->prev.raid_disks)))
1544                 sectors = chunk_sects -
1545                         (bio->bi_iter.bi_sector &
1546                          (chunk_sects - 1));
1547         __make_request(mddev, bio, sectors);
1548
1549         /* In case raid10d snuck in to freeze_array */
1550         wake_up(&conf->wait_barrier);
1551         return true;
1552 }
1553
1554 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1555 {
1556         struct r10conf *conf = mddev->private;
1557         int i;
1558
1559         if (conf->geo.near_copies < conf->geo.raid_disks)
1560                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1561         if (conf->geo.near_copies > 1)
1562                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1563         if (conf->geo.far_copies > 1) {
1564                 if (conf->geo.far_offset)
1565                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1566                 else
1567                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1568                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1569                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1570         }
1571         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1572                                         conf->geo.raid_disks - mddev->degraded);
1573         rcu_read_lock();
1574         for (i = 0; i < conf->geo.raid_disks; i++) {
1575                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1576                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577         }
1578         rcu_read_unlock();
1579         seq_printf(seq, "]");
1580 }
1581
1582 /* check if there are enough drives for
1583  * every block to appear on atleast one.
1584  * Don't consider the device numbered 'ignore'
1585  * as we might be about to remove it.
1586  */
1587 static int _enough(struct r10conf *conf, int previous, int ignore)
1588 {
1589         int first = 0;
1590         int has_enough = 0;
1591         int disks, ncopies;
1592         if (previous) {
1593                 disks = conf->prev.raid_disks;
1594                 ncopies = conf->prev.near_copies;
1595         } else {
1596                 disks = conf->geo.raid_disks;
1597                 ncopies = conf->geo.near_copies;
1598         }
1599
1600         rcu_read_lock();
1601         do {
1602                 int n = conf->copies;
1603                 int cnt = 0;
1604                 int this = first;
1605                 while (n--) {
1606                         struct md_rdev *rdev;
1607                         if (this != ignore &&
1608                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1609                             test_bit(In_sync, &rdev->flags))
1610                                 cnt++;
1611                         this = (this+1) % disks;
1612                 }
1613                 if (cnt == 0)
1614                         goto out;
1615                 first = (first + ncopies) % disks;
1616         } while (first != 0);
1617         has_enough = 1;
1618 out:
1619         rcu_read_unlock();
1620         return has_enough;
1621 }
1622
1623 static int enough(struct r10conf *conf, int ignore)
1624 {
1625         /* when calling 'enough', both 'prev' and 'geo' must
1626          * be stable.
1627          * This is ensured if ->reconfig_mutex or ->device_lock
1628          * is held.
1629          */
1630         return _enough(conf, 0, ignore) &&
1631                 _enough(conf, 1, ignore);
1632 }
1633
1634 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1635 {
1636         char b[BDEVNAME_SIZE];
1637         struct r10conf *conf = mddev->private;
1638         unsigned long flags;
1639
1640         /*
1641          * If it is not operational, then we have already marked it as dead
1642          * else if it is the last working disks with "fail_last_dev == false",
1643          * ignore the error, let the next level up know.
1644          * else mark the drive as failed
1645          */
1646         spin_lock_irqsave(&conf->device_lock, flags);
1647         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1648             && !enough(conf, rdev->raid_disk)) {
1649                 /*
1650                  * Don't fail the drive, just return an IO error.
1651                  */
1652                 spin_unlock_irqrestore(&conf->device_lock, flags);
1653                 return;
1654         }
1655         if (test_and_clear_bit(In_sync, &rdev->flags))
1656                 mddev->degraded++;
1657         /*
1658          * If recovery is running, make sure it aborts.
1659          */
1660         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661         set_bit(Blocked, &rdev->flags);
1662         set_bit(Faulty, &rdev->flags);
1663         set_mask_bits(&mddev->sb_flags, 0,
1664                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1665         spin_unlock_irqrestore(&conf->device_lock, flags);
1666         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1667                 "md/raid10:%s: Operation continuing on %d devices.\n",
1668                 mdname(mddev), bdevname(rdev->bdev, b),
1669                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1670 }
1671
1672 static void print_conf(struct r10conf *conf)
1673 {
1674         int i;
1675         struct md_rdev *rdev;
1676
1677         pr_debug("RAID10 conf printout:\n");
1678         if (!conf) {
1679                 pr_debug("(!conf)\n");
1680                 return;
1681         }
1682         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1683                  conf->geo.raid_disks);
1684
1685         /* This is only called with ->reconfix_mutex held, so
1686          * rcu protection of rdev is not needed */
1687         for (i = 0; i < conf->geo.raid_disks; i++) {
1688                 char b[BDEVNAME_SIZE];
1689                 rdev = conf->mirrors[i].rdev;
1690                 if (rdev)
1691                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1692                                  i, !test_bit(In_sync, &rdev->flags),
1693                                  !test_bit(Faulty, &rdev->flags),
1694                                  bdevname(rdev->bdev,b));
1695         }
1696 }
1697
1698 static void close_sync(struct r10conf *conf)
1699 {
1700         wait_barrier(conf);
1701         allow_barrier(conf);
1702
1703         mempool_exit(&conf->r10buf_pool);
1704 }
1705
1706 static int raid10_spare_active(struct mddev *mddev)
1707 {
1708         int i;
1709         struct r10conf *conf = mddev->private;
1710         struct raid10_info *tmp;
1711         int count = 0;
1712         unsigned long flags;
1713
1714         /*
1715          * Find all non-in_sync disks within the RAID10 configuration
1716          * and mark them in_sync
1717          */
1718         for (i = 0; i < conf->geo.raid_disks; i++) {
1719                 tmp = conf->mirrors + i;
1720                 if (tmp->replacement
1721                     && tmp->replacement->recovery_offset == MaxSector
1722                     && !test_bit(Faulty, &tmp->replacement->flags)
1723                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1724                         /* Replacement has just become active */
1725                         if (!tmp->rdev
1726                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1727                                 count++;
1728                         if (tmp->rdev) {
1729                                 /* Replaced device not technically faulty,
1730                                  * but we need to be sure it gets removed
1731                                  * and never re-added.
1732                                  */
1733                                 set_bit(Faulty, &tmp->rdev->flags);
1734                                 sysfs_notify_dirent_safe(
1735                                         tmp->rdev->sysfs_state);
1736                         }
1737                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1738                 } else if (tmp->rdev
1739                            && tmp->rdev->recovery_offset == MaxSector
1740                            && !test_bit(Faulty, &tmp->rdev->flags)
1741                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1742                         count++;
1743                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1744                 }
1745         }
1746         spin_lock_irqsave(&conf->device_lock, flags);
1747         mddev->degraded -= count;
1748         spin_unlock_irqrestore(&conf->device_lock, flags);
1749
1750         print_conf(conf);
1751         return count;
1752 }
1753
1754 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755 {
1756         struct r10conf *conf = mddev->private;
1757         int err = -EEXIST;
1758         int mirror;
1759         int first = 0;
1760         int last = conf->geo.raid_disks - 1;
1761
1762         if (mddev->recovery_cp < MaxSector)
1763                 /* only hot-add to in-sync arrays, as recovery is
1764                  * very different from resync
1765                  */
1766                 return -EBUSY;
1767         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1768                 return -EINVAL;
1769
1770         if (md_integrity_add_rdev(rdev, mddev))
1771                 return -ENXIO;
1772
1773         if (rdev->raid_disk >= 0)
1774                 first = last = rdev->raid_disk;
1775
1776         if (rdev->saved_raid_disk >= first &&
1777             rdev->saved_raid_disk < conf->geo.raid_disks &&
1778             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1779                 mirror = rdev->saved_raid_disk;
1780         else
1781                 mirror = first;
1782         for ( ; mirror <= last ; mirror++) {
1783                 struct raid10_info *p = &conf->mirrors[mirror];
1784                 if (p->recovery_disabled == mddev->recovery_disabled)
1785                         continue;
1786                 if (p->rdev) {
1787                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1788                             p->replacement != NULL)
1789                                 continue;
1790                         clear_bit(In_sync, &rdev->flags);
1791                         set_bit(Replacement, &rdev->flags);
1792                         rdev->raid_disk = mirror;
1793                         err = 0;
1794                         if (mddev->gendisk)
1795                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1796                                                   rdev->data_offset << 9);
1797                         conf->fullsync = 1;
1798                         rcu_assign_pointer(p->replacement, rdev);
1799                         break;
1800                 }
1801
1802                 if (mddev->gendisk)
1803                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1804                                           rdev->data_offset << 9);
1805
1806                 p->head_position = 0;
1807                 p->recovery_disabled = mddev->recovery_disabled - 1;
1808                 rdev->raid_disk = mirror;
1809                 err = 0;
1810                 if (rdev->saved_raid_disk != mirror)
1811                         conf->fullsync = 1;
1812                 rcu_assign_pointer(p->rdev, rdev);
1813                 break;
1814         }
1815         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1816                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1817
1818         print_conf(conf);
1819         return err;
1820 }
1821
1822 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1823 {
1824         struct r10conf *conf = mddev->private;
1825         int err = 0;
1826         int number = rdev->raid_disk;
1827         struct md_rdev **rdevp;
1828         struct raid10_info *p;
1829
1830         print_conf(conf);
1831         if (unlikely(number >= mddev->raid_disks))
1832                 return 0;
1833         p = conf->mirrors + number;
1834         if (rdev == p->rdev)
1835                 rdevp = &p->rdev;
1836         else if (rdev == p->replacement)
1837                 rdevp = &p->replacement;
1838         else
1839                 return 0;
1840
1841         if (test_bit(In_sync, &rdev->flags) ||
1842             atomic_read(&rdev->nr_pending)) {
1843                 err = -EBUSY;
1844                 goto abort;
1845         }
1846         /* Only remove non-faulty devices if recovery
1847          * is not possible.
1848          */
1849         if (!test_bit(Faulty, &rdev->flags) &&
1850             mddev->recovery_disabled != p->recovery_disabled &&
1851             (!p->replacement || p->replacement == rdev) &&
1852             number < conf->geo.raid_disks &&
1853             enough(conf, -1)) {
1854                 err = -EBUSY;
1855                 goto abort;
1856         }
1857         *rdevp = NULL;
1858         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1859                 synchronize_rcu();
1860                 if (atomic_read(&rdev->nr_pending)) {
1861                         /* lost the race, try later */
1862                         err = -EBUSY;
1863                         *rdevp = rdev;
1864                         goto abort;
1865                 }
1866         }
1867         if (p->replacement) {
1868                 /* We must have just cleared 'rdev' */
1869                 p->rdev = p->replacement;
1870                 clear_bit(Replacement, &p->replacement->flags);
1871                 smp_mb(); /* Make sure other CPUs may see both as identical
1872                            * but will never see neither -- if they are careful.
1873                            */
1874                 p->replacement = NULL;
1875         }
1876
1877         clear_bit(WantReplacement, &rdev->flags);
1878         err = md_integrity_register(mddev);
1879
1880 abort:
1881
1882         print_conf(conf);
1883         return err;
1884 }
1885
1886 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1887 {
1888         struct r10conf *conf = r10_bio->mddev->private;
1889
1890         if (!bio->bi_status)
1891                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1892         else
1893                 /* The write handler will notice the lack of
1894                  * R10BIO_Uptodate and record any errors etc
1895                  */
1896                 atomic_add(r10_bio->sectors,
1897                            &conf->mirrors[d].rdev->corrected_errors);
1898
1899         /* for reconstruct, we always reschedule after a read.
1900          * for resync, only after all reads
1901          */
1902         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1903         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1904             atomic_dec_and_test(&r10_bio->remaining)) {
1905                 /* we have read all the blocks,
1906                  * do the comparison in process context in raid10d
1907                  */
1908                 reschedule_retry(r10_bio);
1909         }
1910 }
1911
1912 static void end_sync_read(struct bio *bio)
1913 {
1914         struct r10bio *r10_bio = get_resync_r10bio(bio);
1915         struct r10conf *conf = r10_bio->mddev->private;
1916         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1917
1918         __end_sync_read(r10_bio, bio, d);
1919 }
1920
1921 static void end_reshape_read(struct bio *bio)
1922 {
1923         /* reshape read bio isn't allocated from r10buf_pool */
1924         struct r10bio *r10_bio = bio->bi_private;
1925
1926         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1927 }
1928
1929 static void end_sync_request(struct r10bio *r10_bio)
1930 {
1931         struct mddev *mddev = r10_bio->mddev;
1932
1933         while (atomic_dec_and_test(&r10_bio->remaining)) {
1934                 if (r10_bio->master_bio == NULL) {
1935                         /* the primary of several recovery bios */
1936                         sector_t s = r10_bio->sectors;
1937                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1938                             test_bit(R10BIO_WriteError, &r10_bio->state))
1939                                 reschedule_retry(r10_bio);
1940                         else
1941                                 put_buf(r10_bio);
1942                         md_done_sync(mddev, s, 1);
1943                         break;
1944                 } else {
1945                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1946                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1947                             test_bit(R10BIO_WriteError, &r10_bio->state))
1948                                 reschedule_retry(r10_bio);
1949                         else
1950                                 put_buf(r10_bio);
1951                         r10_bio = r10_bio2;
1952                 }
1953         }
1954 }
1955
1956 static void end_sync_write(struct bio *bio)
1957 {
1958         struct r10bio *r10_bio = get_resync_r10bio(bio);
1959         struct mddev *mddev = r10_bio->mddev;
1960         struct r10conf *conf = mddev->private;
1961         int d;
1962         sector_t first_bad;
1963         int bad_sectors;
1964         int slot;
1965         int repl;
1966         struct md_rdev *rdev = NULL;
1967
1968         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1969         if (repl)
1970                 rdev = conf->mirrors[d].replacement;
1971         else
1972                 rdev = conf->mirrors[d].rdev;
1973
1974         if (bio->bi_status) {
1975                 if (repl)
1976                         md_error(mddev, rdev);
1977                 else {
1978                         set_bit(WriteErrorSeen, &rdev->flags);
1979                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1980                                 set_bit(MD_RECOVERY_NEEDED,
1981                                         &rdev->mddev->recovery);
1982                         set_bit(R10BIO_WriteError, &r10_bio->state);
1983                 }
1984         } else if (is_badblock(rdev,
1985                              r10_bio->devs[slot].addr,
1986                              r10_bio->sectors,
1987                              &first_bad, &bad_sectors))
1988                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1989
1990         rdev_dec_pending(rdev, mddev);
1991
1992         end_sync_request(r10_bio);
1993 }
1994
1995 /*
1996  * Note: sync and recover and handled very differently for raid10
1997  * This code is for resync.
1998  * For resync, we read through virtual addresses and read all blocks.
1999  * If there is any error, we schedule a write.  The lowest numbered
2000  * drive is authoritative.
2001  * However requests come for physical address, so we need to map.
2002  * For every physical address there are raid_disks/copies virtual addresses,
2003  * which is always are least one, but is not necessarly an integer.
2004  * This means that a physical address can span multiple chunks, so we may
2005  * have to submit multiple io requests for a single sync request.
2006  */
2007 /*
2008  * We check if all blocks are in-sync and only write to blocks that
2009  * aren't in sync
2010  */
2011 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2012 {
2013         struct r10conf *conf = mddev->private;
2014         int i, first;
2015         struct bio *tbio, *fbio;
2016         int vcnt;
2017         struct page **tpages, **fpages;
2018
2019         atomic_set(&r10_bio->remaining, 1);
2020
2021         /* find the first device with a block */
2022         for (i=0; i<conf->copies; i++)
2023                 if (!r10_bio->devs[i].bio->bi_status)
2024                         break;
2025
2026         if (i == conf->copies)
2027                 goto done;
2028
2029         first = i;
2030         fbio = r10_bio->devs[i].bio;
2031         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2032         fbio->bi_iter.bi_idx = 0;
2033         fpages = get_resync_pages(fbio)->pages;
2034
2035         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2036         /* now find blocks with errors */
2037         for (i=0 ; i < conf->copies ; i++) {
2038                 int  j, d;
2039                 struct md_rdev *rdev;
2040                 struct resync_pages *rp;
2041
2042                 tbio = r10_bio->devs[i].bio;
2043
2044                 if (tbio->bi_end_io != end_sync_read)
2045                         continue;
2046                 if (i == first)
2047                         continue;
2048
2049                 tpages = get_resync_pages(tbio)->pages;
2050                 d = r10_bio->devs[i].devnum;
2051                 rdev = conf->mirrors[d].rdev;
2052                 if (!r10_bio->devs[i].bio->bi_status) {
2053                         /* We know that the bi_io_vec layout is the same for
2054                          * both 'first' and 'i', so we just compare them.
2055                          * All vec entries are PAGE_SIZE;
2056                          */
2057                         int sectors = r10_bio->sectors;
2058                         for (j = 0; j < vcnt; j++) {
2059                                 int len = PAGE_SIZE;
2060                                 if (sectors < (len / 512))
2061                                         len = sectors * 512;
2062                                 if (memcmp(page_address(fpages[j]),
2063                                            page_address(tpages[j]),
2064                                            len))
2065                                         break;
2066                                 sectors -= len/512;
2067                         }
2068                         if (j == vcnt)
2069                                 continue;
2070                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2071                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2072                                 /* Don't fix anything. */
2073                                 continue;
2074                 } else if (test_bit(FailFast, &rdev->flags)) {
2075                         /* Just give up on this device */
2076                         md_error(rdev->mddev, rdev);
2077                         continue;
2078                 }
2079                 /* Ok, we need to write this bio, either to correct an
2080                  * inconsistency or to correct an unreadable block.
2081                  * First we need to fixup bv_offset, bv_len and
2082                  * bi_vecs, as the read request might have corrupted these
2083                  */
2084                 rp = get_resync_pages(tbio);
2085                 bio_reset(tbio);
2086
2087                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2088
2089                 rp->raid_bio = r10_bio;
2090                 tbio->bi_private = rp;
2091                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2092                 tbio->bi_end_io = end_sync_write;
2093                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2094
2095                 bio_copy_data(tbio, fbio);
2096
2097                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2098                 atomic_inc(&r10_bio->remaining);
2099                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2100
2101                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2102                         tbio->bi_opf |= MD_FAILFAST;
2103                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2104                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2105                 submit_bio_noacct(tbio);
2106         }
2107
2108         /* Now write out to any replacement devices
2109          * that are active
2110          */
2111         for (i = 0; i < conf->copies; i++) {
2112                 int d;
2113
2114                 tbio = r10_bio->devs[i].repl_bio;
2115                 if (!tbio || !tbio->bi_end_io)
2116                         continue;
2117                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2118                     && r10_bio->devs[i].bio != fbio)
2119                         bio_copy_data(tbio, fbio);
2120                 d = r10_bio->devs[i].devnum;
2121                 atomic_inc(&r10_bio->remaining);
2122                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2123                              bio_sectors(tbio));
2124                 submit_bio_noacct(tbio);
2125         }
2126
2127 done:
2128         if (atomic_dec_and_test(&r10_bio->remaining)) {
2129                 md_done_sync(mddev, r10_bio->sectors, 1);
2130                 put_buf(r10_bio);
2131         }
2132 }
2133
2134 /*
2135  * Now for the recovery code.
2136  * Recovery happens across physical sectors.
2137  * We recover all non-is_sync drives by finding the virtual address of
2138  * each, and then choose a working drive that also has that virt address.
2139  * There is a separate r10_bio for each non-in_sync drive.
2140  * Only the first two slots are in use. The first for reading,
2141  * The second for writing.
2142  *
2143  */
2144 static void fix_recovery_read_error(struct r10bio *r10_bio)
2145 {
2146         /* We got a read error during recovery.
2147          * We repeat the read in smaller page-sized sections.
2148          * If a read succeeds, write it to the new device or record
2149          * a bad block if we cannot.
2150          * If a read fails, record a bad block on both old and
2151          * new devices.
2152          */
2153         struct mddev *mddev = r10_bio->mddev;
2154         struct r10conf *conf = mddev->private;
2155         struct bio *bio = r10_bio->devs[0].bio;
2156         sector_t sect = 0;
2157         int sectors = r10_bio->sectors;
2158         int idx = 0;
2159         int dr = r10_bio->devs[0].devnum;
2160         int dw = r10_bio->devs[1].devnum;
2161         struct page **pages = get_resync_pages(bio)->pages;
2162
2163         while (sectors) {
2164                 int s = sectors;
2165                 struct md_rdev *rdev;
2166                 sector_t addr;
2167                 int ok;
2168
2169                 if (s > (PAGE_SIZE>>9))
2170                         s = PAGE_SIZE >> 9;
2171
2172                 rdev = conf->mirrors[dr].rdev;
2173                 addr = r10_bio->devs[0].addr + sect,
2174                 ok = sync_page_io(rdev,
2175                                   addr,
2176                                   s << 9,
2177                                   pages[idx],
2178                                   REQ_OP_READ, 0, false);
2179                 if (ok) {
2180                         rdev = conf->mirrors[dw].rdev;
2181                         addr = r10_bio->devs[1].addr + sect;
2182                         ok = sync_page_io(rdev,
2183                                           addr,
2184                                           s << 9,
2185                                           pages[idx],
2186                                           REQ_OP_WRITE, 0, false);
2187                         if (!ok) {
2188                                 set_bit(WriteErrorSeen, &rdev->flags);
2189                                 if (!test_and_set_bit(WantReplacement,
2190                                                       &rdev->flags))
2191                                         set_bit(MD_RECOVERY_NEEDED,
2192                                                 &rdev->mddev->recovery);
2193                         }
2194                 }
2195                 if (!ok) {
2196                         /* We don't worry if we cannot set a bad block -
2197                          * it really is bad so there is no loss in not
2198                          * recording it yet
2199                          */
2200                         rdev_set_badblocks(rdev, addr, s, 0);
2201
2202                         if (rdev != conf->mirrors[dw].rdev) {
2203                                 /* need bad block on destination too */
2204                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2205                                 addr = r10_bio->devs[1].addr + sect;
2206                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2207                                 if (!ok) {
2208                                         /* just abort the recovery */
2209                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2210                                                   mdname(mddev));
2211
2212                                         conf->mirrors[dw].recovery_disabled
2213                                                 = mddev->recovery_disabled;
2214                                         set_bit(MD_RECOVERY_INTR,
2215                                                 &mddev->recovery);
2216                                         break;
2217                                 }
2218                         }
2219                 }
2220
2221                 sectors -= s;
2222                 sect += s;
2223                 idx++;
2224         }
2225 }
2226
2227 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2228 {
2229         struct r10conf *conf = mddev->private;
2230         int d;
2231         struct bio *wbio = r10_bio->devs[1].bio;
2232         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2233
2234         /* Need to test wbio2->bi_end_io before we call
2235          * submit_bio_noacct as if the former is NULL,
2236          * the latter is free to free wbio2.
2237          */
2238         if (wbio2 && !wbio2->bi_end_io)
2239                 wbio2 = NULL;
2240
2241         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2242                 fix_recovery_read_error(r10_bio);
2243                 if (wbio->bi_end_io)
2244                         end_sync_request(r10_bio);
2245                 if (wbio2)
2246                         end_sync_request(r10_bio);
2247                 return;
2248         }
2249
2250         /*
2251          * share the pages with the first bio
2252          * and submit the write request
2253          */
2254         d = r10_bio->devs[1].devnum;
2255         if (wbio->bi_end_io) {
2256                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258                 submit_bio_noacct(wbio);
2259         }
2260         if (wbio2) {
2261                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263                              bio_sectors(wbio2));
2264                 submit_bio_noacct(wbio2);
2265         }
2266 }
2267
2268 /*
2269  * Used by fix_read_error() to decay the per rdev read_errors.
2270  * We halve the read error count for every hour that has elapsed
2271  * since the last recorded read error.
2272  *
2273  */
2274 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2275 {
2276         long cur_time_mon;
2277         unsigned long hours_since_last;
2278         unsigned int read_errors = atomic_read(&rdev->read_errors);
2279
2280         cur_time_mon = ktime_get_seconds();
2281
2282         if (rdev->last_read_error == 0) {
2283                 /* first time we've seen a read error */
2284                 rdev->last_read_error = cur_time_mon;
2285                 return;
2286         }
2287
2288         hours_since_last = (long)(cur_time_mon -
2289                             rdev->last_read_error) / 3600;
2290
2291         rdev->last_read_error = cur_time_mon;
2292
2293         /*
2294          * if hours_since_last is > the number of bits in read_errors
2295          * just set read errors to 0. We do this to avoid
2296          * overflowing the shift of read_errors by hours_since_last.
2297          */
2298         if (hours_since_last >= 8 * sizeof(read_errors))
2299                 atomic_set(&rdev->read_errors, 0);
2300         else
2301                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2302 }
2303
2304 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2305                             int sectors, struct page *page, int rw)
2306 {
2307         sector_t first_bad;
2308         int bad_sectors;
2309
2310         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2311             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2312                 return -1;
2313         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2314                 /* success */
2315                 return 1;
2316         if (rw == WRITE) {
2317                 set_bit(WriteErrorSeen, &rdev->flags);
2318                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319                         set_bit(MD_RECOVERY_NEEDED,
2320                                 &rdev->mddev->recovery);
2321         }
2322         /* need to record an error - either for the block or the device */
2323         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2324                 md_error(rdev->mddev, rdev);
2325         return 0;
2326 }
2327
2328 /*
2329  * This is a kernel thread which:
2330  *
2331  *      1.      Retries failed read operations on working mirrors.
2332  *      2.      Updates the raid superblock when problems encounter.
2333  *      3.      Performs writes following reads for array synchronising.
2334  */
2335
2336 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2337 {
2338         int sect = 0; /* Offset from r10_bio->sector */
2339         int sectors = r10_bio->sectors;
2340         struct md_rdev *rdev;
2341         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2342         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2343
2344         /* still own a reference to this rdev, so it cannot
2345          * have been cleared recently.
2346          */
2347         rdev = conf->mirrors[d].rdev;
2348
2349         if (test_bit(Faulty, &rdev->flags))
2350                 /* drive has already been failed, just ignore any
2351                    more fix_read_error() attempts */
2352                 return;
2353
2354         check_decay_read_errors(mddev, rdev);
2355         atomic_inc(&rdev->read_errors);
2356         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2357                 char b[BDEVNAME_SIZE];
2358                 bdevname(rdev->bdev, b);
2359
2360                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2361                           mdname(mddev), b,
2362                           atomic_read(&rdev->read_errors), max_read_errors);
2363                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2364                           mdname(mddev), b);
2365                 md_error(mddev, rdev);
2366                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2367                 return;
2368         }
2369
2370         while(sectors) {
2371                 int s = sectors;
2372                 int sl = r10_bio->read_slot;
2373                 int success = 0;
2374                 int start;
2375
2376                 if (s > (PAGE_SIZE>>9))
2377                         s = PAGE_SIZE >> 9;
2378
2379                 rcu_read_lock();
2380                 do {
2381                         sector_t first_bad;
2382                         int bad_sectors;
2383
2384                         d = r10_bio->devs[sl].devnum;
2385                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2386                         if (rdev &&
2387                             test_bit(In_sync, &rdev->flags) &&
2388                             !test_bit(Faulty, &rdev->flags) &&
2389                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2390                                         &first_bad, &bad_sectors) == 0) {
2391                                 atomic_inc(&rdev->nr_pending);
2392                                 rcu_read_unlock();
2393                                 success = sync_page_io(rdev,
2394                                                        r10_bio->devs[sl].addr +
2395                                                        sect,
2396                                                        s<<9,
2397                                                        conf->tmppage,
2398                                                        REQ_OP_READ, 0, false);
2399                                 rdev_dec_pending(rdev, mddev);
2400                                 rcu_read_lock();
2401                                 if (success)
2402                                         break;
2403                         }
2404                         sl++;
2405                         if (sl == conf->copies)
2406                                 sl = 0;
2407                 } while (!success && sl != r10_bio->read_slot);
2408                 rcu_read_unlock();
2409
2410                 if (!success) {
2411                         /* Cannot read from anywhere, just mark the block
2412                          * as bad on the first device to discourage future
2413                          * reads.
2414                          */
2415                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2416                         rdev = conf->mirrors[dn].rdev;
2417
2418                         if (!rdev_set_badblocks(
2419                                     rdev,
2420                                     r10_bio->devs[r10_bio->read_slot].addr
2421                                     + sect,
2422                                     s, 0)) {
2423                                 md_error(mddev, rdev);
2424                                 r10_bio->devs[r10_bio->read_slot].bio
2425                                         = IO_BLOCKED;
2426                         }
2427                         break;
2428                 }
2429
2430                 start = sl;
2431                 /* write it back and re-read */
2432                 rcu_read_lock();
2433                 while (sl != r10_bio->read_slot) {
2434                         char b[BDEVNAME_SIZE];
2435
2436                         if (sl==0)
2437                                 sl = conf->copies;
2438                         sl--;
2439                         d = r10_bio->devs[sl].devnum;
2440                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2441                         if (!rdev ||
2442                             test_bit(Faulty, &rdev->flags) ||
2443                             !test_bit(In_sync, &rdev->flags))
2444                                 continue;
2445
2446                         atomic_inc(&rdev->nr_pending);
2447                         rcu_read_unlock();
2448                         if (r10_sync_page_io(rdev,
2449                                              r10_bio->devs[sl].addr +
2450                                              sect,
2451                                              s, conf->tmppage, WRITE)
2452                             == 0) {
2453                                 /* Well, this device is dead */
2454                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2455                                           mdname(mddev), s,
2456                                           (unsigned long long)(
2457                                                   sect +
2458                                                   choose_data_offset(r10_bio,
2459                                                                      rdev)),
2460                                           bdevname(rdev->bdev, b));
2461                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2462                                           mdname(mddev),
2463                                           bdevname(rdev->bdev, b));
2464                         }
2465                         rdev_dec_pending(rdev, mddev);
2466                         rcu_read_lock();
2467                 }
2468                 sl = start;
2469                 while (sl != r10_bio->read_slot) {
2470                         char b[BDEVNAME_SIZE];
2471
2472                         if (sl==0)
2473                                 sl = conf->copies;
2474                         sl--;
2475                         d = r10_bio->devs[sl].devnum;
2476                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2477                         if (!rdev ||
2478                             test_bit(Faulty, &rdev->flags) ||
2479                             !test_bit(In_sync, &rdev->flags))
2480                                 continue;
2481
2482                         atomic_inc(&rdev->nr_pending);
2483                         rcu_read_unlock();
2484                         switch (r10_sync_page_io(rdev,
2485                                              r10_bio->devs[sl].addr +
2486                                              sect,
2487                                              s, conf->tmppage,
2488                                                  READ)) {
2489                         case 0:
2490                                 /* Well, this device is dead */
2491                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2492                                        mdname(mddev), s,
2493                                        (unsigned long long)(
2494                                                sect +
2495                                                choose_data_offset(r10_bio, rdev)),
2496                                        bdevname(rdev->bdev, b));
2497                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2498                                        mdname(mddev),
2499                                        bdevname(rdev->bdev, b));
2500                                 break;
2501                         case 1:
2502                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2503                                        mdname(mddev), s,
2504                                        (unsigned long long)(
2505                                                sect +
2506                                                choose_data_offset(r10_bio, rdev)),
2507                                        bdevname(rdev->bdev, b));
2508                                 atomic_add(s, &rdev->corrected_errors);
2509                         }
2510
2511                         rdev_dec_pending(rdev, mddev);
2512                         rcu_read_lock();
2513                 }
2514                 rcu_read_unlock();
2515
2516                 sectors -= s;
2517                 sect += s;
2518         }
2519 }
2520
2521 static int narrow_write_error(struct r10bio *r10_bio, int i)
2522 {
2523         struct bio *bio = r10_bio->master_bio;
2524         struct mddev *mddev = r10_bio->mddev;
2525         struct r10conf *conf = mddev->private;
2526         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2527         /* bio has the data to be written to slot 'i' where
2528          * we just recently had a write error.
2529          * We repeatedly clone the bio and trim down to one block,
2530          * then try the write.  Where the write fails we record
2531          * a bad block.
2532          * It is conceivable that the bio doesn't exactly align with
2533          * blocks.  We must handle this.
2534          *
2535          * We currently own a reference to the rdev.
2536          */
2537
2538         int block_sectors;
2539         sector_t sector;
2540         int sectors;
2541         int sect_to_write = r10_bio->sectors;
2542         int ok = 1;
2543
2544         if (rdev->badblocks.shift < 0)
2545                 return 0;
2546
2547         block_sectors = roundup(1 << rdev->badblocks.shift,
2548                                 bdev_logical_block_size(rdev->bdev) >> 9);
2549         sector = r10_bio->sector;
2550         sectors = ((r10_bio->sector + block_sectors)
2551                    & ~(sector_t)(block_sectors - 1))
2552                 - sector;
2553
2554         while (sect_to_write) {
2555                 struct bio *wbio;
2556                 sector_t wsector;
2557                 if (sectors > sect_to_write)
2558                         sectors = sect_to_write;
2559                 /* Write at 'sector' for 'sectors' */
2560                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2561                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2562                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2563                 wbio->bi_iter.bi_sector = wsector +
2564                                    choose_data_offset(r10_bio, rdev);
2565                 bio_set_dev(wbio, rdev->bdev);
2566                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2567
2568                 if (submit_bio_wait(wbio) < 0)
2569                         /* Failure! */
2570                         ok = rdev_set_badblocks(rdev, wsector,
2571                                                 sectors, 0)
2572                                 && ok;
2573
2574                 bio_put(wbio);
2575                 sect_to_write -= sectors;
2576                 sector += sectors;
2577                 sectors = block_sectors;
2578         }
2579         return ok;
2580 }
2581
2582 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2583 {
2584         int slot = r10_bio->read_slot;
2585         struct bio *bio;
2586         struct r10conf *conf = mddev->private;
2587         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2588
2589         /* we got a read error. Maybe the drive is bad.  Maybe just
2590          * the block and we can fix it.
2591          * We freeze all other IO, and try reading the block from
2592          * other devices.  When we find one, we re-write
2593          * and check it that fixes the read error.
2594          * This is all done synchronously while the array is
2595          * frozen.
2596          */
2597         bio = r10_bio->devs[slot].bio;
2598         bio_put(bio);
2599         r10_bio->devs[slot].bio = NULL;
2600
2601         if (mddev->ro)
2602                 r10_bio->devs[slot].bio = IO_BLOCKED;
2603         else if (!test_bit(FailFast, &rdev->flags)) {
2604                 freeze_array(conf, 1);
2605                 fix_read_error(conf, mddev, r10_bio);
2606                 unfreeze_array(conf);
2607         } else
2608                 md_error(mddev, rdev);
2609
2610         rdev_dec_pending(rdev, mddev);
2611         allow_barrier(conf);
2612         r10_bio->state = 0;
2613         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2614 }
2615
2616 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2617 {
2618         /* Some sort of write request has finished and it
2619          * succeeded in writing where we thought there was a
2620          * bad block.  So forget the bad block.
2621          * Or possibly if failed and we need to record
2622          * a bad block.
2623          */
2624         int m;
2625         struct md_rdev *rdev;
2626
2627         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2628             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2629                 for (m = 0; m < conf->copies; m++) {
2630                         int dev = r10_bio->devs[m].devnum;
2631                         rdev = conf->mirrors[dev].rdev;
2632                         if (r10_bio->devs[m].bio == NULL ||
2633                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2634                                 continue;
2635                         if (!r10_bio->devs[m].bio->bi_status) {
2636                                 rdev_clear_badblocks(
2637                                         rdev,
2638                                         r10_bio->devs[m].addr,
2639                                         r10_bio->sectors, 0);
2640                         } else {
2641                                 if (!rdev_set_badblocks(
2642                                             rdev,
2643                                             r10_bio->devs[m].addr,
2644                                             r10_bio->sectors, 0))
2645                                         md_error(conf->mddev, rdev);
2646                         }
2647                         rdev = conf->mirrors[dev].replacement;
2648                         if (r10_bio->devs[m].repl_bio == NULL ||
2649                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2650                                 continue;
2651
2652                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2653                                 rdev_clear_badblocks(
2654                                         rdev,
2655                                         r10_bio->devs[m].addr,
2656                                         r10_bio->sectors, 0);
2657                         } else {
2658                                 if (!rdev_set_badblocks(
2659                                             rdev,
2660                                             r10_bio->devs[m].addr,
2661                                             r10_bio->sectors, 0))
2662                                         md_error(conf->mddev, rdev);
2663                         }
2664                 }
2665                 put_buf(r10_bio);
2666         } else {
2667                 bool fail = false;
2668                 for (m = 0; m < conf->copies; m++) {
2669                         int dev = r10_bio->devs[m].devnum;
2670                         struct bio *bio = r10_bio->devs[m].bio;
2671                         rdev = conf->mirrors[dev].rdev;
2672                         if (bio == IO_MADE_GOOD) {
2673                                 rdev_clear_badblocks(
2674                                         rdev,
2675                                         r10_bio->devs[m].addr,
2676                                         r10_bio->sectors, 0);
2677                                 rdev_dec_pending(rdev, conf->mddev);
2678                         } else if (bio != NULL && bio->bi_status) {
2679                                 fail = true;
2680                                 if (!narrow_write_error(r10_bio, m)) {
2681                                         md_error(conf->mddev, rdev);
2682                                         set_bit(R10BIO_Degraded,
2683                                                 &r10_bio->state);
2684                                 }
2685                                 rdev_dec_pending(rdev, conf->mddev);
2686                         }
2687                         bio = r10_bio->devs[m].repl_bio;
2688                         rdev = conf->mirrors[dev].replacement;
2689                         if (rdev && bio == IO_MADE_GOOD) {
2690                                 rdev_clear_badblocks(
2691                                         rdev,
2692                                         r10_bio->devs[m].addr,
2693                                         r10_bio->sectors, 0);
2694                                 rdev_dec_pending(rdev, conf->mddev);
2695                         }
2696                 }
2697                 if (fail) {
2698                         spin_lock_irq(&conf->device_lock);
2699                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2700                         conf->nr_queued++;
2701                         spin_unlock_irq(&conf->device_lock);
2702                         /*
2703                          * In case freeze_array() is waiting for condition
2704                          * nr_pending == nr_queued + extra to be true.
2705                          */
2706                         wake_up(&conf->wait_barrier);
2707                         md_wakeup_thread(conf->mddev->thread);
2708                 } else {
2709                         if (test_bit(R10BIO_WriteError,
2710                                      &r10_bio->state))
2711                                 close_write(r10_bio);
2712                         raid_end_bio_io(r10_bio);
2713                 }
2714         }
2715 }
2716
2717 static void raid10d(struct md_thread *thread)
2718 {
2719         struct mddev *mddev = thread->mddev;
2720         struct r10bio *r10_bio;
2721         unsigned long flags;
2722         struct r10conf *conf = mddev->private;
2723         struct list_head *head = &conf->retry_list;
2724         struct blk_plug plug;
2725
2726         md_check_recovery(mddev);
2727
2728         if (!list_empty_careful(&conf->bio_end_io_list) &&
2729             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2730                 LIST_HEAD(tmp);
2731                 spin_lock_irqsave(&conf->device_lock, flags);
2732                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2733                         while (!list_empty(&conf->bio_end_io_list)) {
2734                                 list_move(conf->bio_end_io_list.prev, &tmp);
2735                                 conf->nr_queued--;
2736                         }
2737                 }
2738                 spin_unlock_irqrestore(&conf->device_lock, flags);
2739                 while (!list_empty(&tmp)) {
2740                         r10_bio = list_first_entry(&tmp, struct r10bio,
2741                                                    retry_list);
2742                         list_del(&r10_bio->retry_list);
2743                         if (mddev->degraded)
2744                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2745
2746                         if (test_bit(R10BIO_WriteError,
2747                                      &r10_bio->state))
2748                                 close_write(r10_bio);
2749                         raid_end_bio_io(r10_bio);
2750                 }
2751         }
2752
2753         blk_start_plug(&plug);
2754         for (;;) {
2755
2756                 flush_pending_writes(conf);
2757
2758                 spin_lock_irqsave(&conf->device_lock, flags);
2759                 if (list_empty(head)) {
2760                         spin_unlock_irqrestore(&conf->device_lock, flags);
2761                         break;
2762                 }
2763                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2764                 list_del(head->prev);
2765                 conf->nr_queued--;
2766                 spin_unlock_irqrestore(&conf->device_lock, flags);
2767
2768                 mddev = r10_bio->mddev;
2769                 conf = mddev->private;
2770                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2771                     test_bit(R10BIO_WriteError, &r10_bio->state))
2772                         handle_write_completed(conf, r10_bio);
2773                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2774                         reshape_request_write(mddev, r10_bio);
2775                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2776                         sync_request_write(mddev, r10_bio);
2777                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2778                         recovery_request_write(mddev, r10_bio);
2779                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2780                         handle_read_error(mddev, r10_bio);
2781                 else
2782                         WARN_ON_ONCE(1);
2783
2784                 cond_resched();
2785                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2786                         md_check_recovery(mddev);
2787         }
2788         blk_finish_plug(&plug);
2789 }
2790
2791 static int init_resync(struct r10conf *conf)
2792 {
2793         int ret, buffs, i;
2794
2795         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2796         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2797         conf->have_replacement = 0;
2798         for (i = 0; i < conf->geo.raid_disks; i++)
2799                 if (conf->mirrors[i].replacement)
2800                         conf->have_replacement = 1;
2801         ret = mempool_init(&conf->r10buf_pool, buffs,
2802                            r10buf_pool_alloc, r10buf_pool_free, conf);
2803         if (ret)
2804                 return ret;
2805         conf->next_resync = 0;
2806         return 0;
2807 }
2808
2809 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2810 {
2811         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2812         struct rsync_pages *rp;
2813         struct bio *bio;
2814         int nalloc;
2815         int i;
2816
2817         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2818             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2819                 nalloc = conf->copies; /* resync */
2820         else
2821                 nalloc = 2; /* recovery */
2822
2823         for (i = 0; i < nalloc; i++) {
2824                 bio = r10bio->devs[i].bio;
2825                 rp = bio->bi_private;
2826                 bio_reset(bio);
2827                 bio->bi_private = rp;
2828                 bio = r10bio->devs[i].repl_bio;
2829                 if (bio) {
2830                         rp = bio->bi_private;
2831                         bio_reset(bio);
2832                         bio->bi_private = rp;
2833                 }
2834         }
2835         return r10bio;
2836 }
2837
2838 /*
2839  * Set cluster_sync_high since we need other nodes to add the
2840  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2841  */
2842 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2843 {
2844         sector_t window_size;
2845         int extra_chunk, chunks;
2846
2847         /*
2848          * First, here we define "stripe" as a unit which across
2849          * all member devices one time, so we get chunks by use
2850          * raid_disks / near_copies. Otherwise, if near_copies is
2851          * close to raid_disks, then resync window could increases
2852          * linearly with the increase of raid_disks, which means
2853          * we will suspend a really large IO window while it is not
2854          * necessary. If raid_disks is not divisible by near_copies,
2855          * an extra chunk is needed to ensure the whole "stripe" is
2856          * covered.
2857          */
2858
2859         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2860         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2861                 extra_chunk = 0;
2862         else
2863                 extra_chunk = 1;
2864         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2865
2866         /*
2867          * At least use a 32M window to align with raid1's resync window
2868          */
2869         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2870                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2871
2872         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2873 }
2874
2875 /*
2876  * perform a "sync" on one "block"
2877  *
2878  * We need to make sure that no normal I/O request - particularly write
2879  * requests - conflict with active sync requests.
2880  *
2881  * This is achieved by tracking pending requests and a 'barrier' concept
2882  * that can be installed to exclude normal IO requests.
2883  *
2884  * Resync and recovery are handled very differently.
2885  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886  *
2887  * For resync, we iterate over virtual addresses, read all copies,
2888  * and update if there are differences.  If only one copy is live,
2889  * skip it.
2890  * For recovery, we iterate over physical addresses, read a good
2891  * value for each non-in_sync drive, and over-write.
2892  *
2893  * So, for recovery we may have several outstanding complex requests for a
2894  * given address, one for each out-of-sync device.  We model this by allocating
2895  * a number of r10_bio structures, one for each out-of-sync device.
2896  * As we setup these structures, we collect all bio's together into a list
2897  * which we then process collectively to add pages, and then process again
2898  * to pass to submit_bio_noacct.
2899  *
2900  * The r10_bio structures are linked using a borrowed master_bio pointer.
2901  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902  * has its remaining count decremented to 0, the whole complex operation
2903  * is complete.
2904  *
2905  */
2906
2907 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2908                              int *skipped)
2909 {
2910         struct r10conf *conf = mddev->private;
2911         struct r10bio *r10_bio;
2912         struct bio *biolist = NULL, *bio;
2913         sector_t max_sector, nr_sectors;
2914         int i;
2915         int max_sync;
2916         sector_t sync_blocks;
2917         sector_t sectors_skipped = 0;
2918         int chunks_skipped = 0;
2919         sector_t chunk_mask = conf->geo.chunk_mask;
2920         int page_idx = 0;
2921
2922         /*
2923          * Allow skipping a full rebuild for incremental assembly
2924          * of a clean array, like RAID1 does.
2925          */
2926         if (mddev->bitmap == NULL &&
2927             mddev->recovery_cp == MaxSector &&
2928             mddev->reshape_position == MaxSector &&
2929             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2930             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2931             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2932             conf->fullsync == 0) {
2933                 *skipped = 1;
2934                 return mddev->dev_sectors - sector_nr;
2935         }
2936
2937         if (!mempool_initialized(&conf->r10buf_pool))
2938                 if (init_resync(conf))
2939                         return 0;
2940
2941  skipped:
2942         max_sector = mddev->dev_sectors;
2943         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2944             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2945                 max_sector = mddev->resync_max_sectors;
2946         if (sector_nr >= max_sector) {
2947                 conf->cluster_sync_low = 0;
2948                 conf->cluster_sync_high = 0;
2949
2950                 /* If we aborted, we need to abort the
2951                  * sync on the 'current' bitmap chucks (there can
2952                  * be several when recovering multiple devices).
2953                  * as we may have started syncing it but not finished.
2954                  * We can find the current address in
2955                  * mddev->curr_resync, but for recovery,
2956                  * we need to convert that to several
2957                  * virtual addresses.
2958                  */
2959                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2960                         end_reshape(conf);
2961                         close_sync(conf);
2962                         return 0;
2963                 }
2964
2965                 if (mddev->curr_resync < max_sector) { /* aborted */
2966                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2967                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2968                                                    &sync_blocks, 1);
2969                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2970                                 sector_t sect =
2971                                         raid10_find_virt(conf, mddev->curr_resync, i);
2972                                 md_bitmap_end_sync(mddev->bitmap, sect,
2973                                                    &sync_blocks, 1);
2974                         }
2975                 } else {
2976                         /* completed sync */
2977                         if ((!mddev->bitmap || conf->fullsync)
2978                             && conf->have_replacement
2979                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2980                                 /* Completed a full sync so the replacements
2981                                  * are now fully recovered.
2982                                  */
2983                                 rcu_read_lock();
2984                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2985                                         struct md_rdev *rdev =
2986                                                 rcu_dereference(conf->mirrors[i].replacement);
2987                                         if (rdev)
2988                                                 rdev->recovery_offset = MaxSector;
2989                                 }
2990                                 rcu_read_unlock();
2991                         }
2992                         conf->fullsync = 0;
2993                 }
2994                 md_bitmap_close_sync(mddev->bitmap);
2995                 close_sync(conf);
2996                 *skipped = 1;
2997                 return sectors_skipped;
2998         }
2999
3000         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3001                 return reshape_request(mddev, sector_nr, skipped);
3002
3003         if (chunks_skipped >= conf->geo.raid_disks) {
3004                 /* if there has been nothing to do on any drive,
3005                  * then there is nothing to do at all..
3006                  */
3007                 *skipped = 1;
3008                 return (max_sector - sector_nr) + sectors_skipped;
3009         }
3010
3011         if (max_sector > mddev->resync_max)
3012                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3013
3014         /* make sure whole request will fit in a chunk - if chunks
3015          * are meaningful
3016          */
3017         if (conf->geo.near_copies < conf->geo.raid_disks &&
3018             max_sector > (sector_nr | chunk_mask))
3019                 max_sector = (sector_nr | chunk_mask) + 1;
3020
3021         /*
3022          * If there is non-resync activity waiting for a turn, then let it
3023          * though before starting on this new sync request.
3024          */
3025         if (conf->nr_waiting)
3026                 schedule_timeout_uninterruptible(1);
3027
3028         /* Again, very different code for resync and recovery.
3029          * Both must result in an r10bio with a list of bios that
3030          * have bi_end_io, bi_sector, bi_disk set,
3031          * and bi_private set to the r10bio.
3032          * For recovery, we may actually create several r10bios
3033          * with 2 bios in each, that correspond to the bios in the main one.
3034          * In this case, the subordinate r10bios link back through a
3035          * borrowed master_bio pointer, and the counter in the master
3036          * includes a ref from each subordinate.
3037          */
3038         /* First, we decide what to do and set ->bi_end_io
3039          * To end_sync_read if we want to read, and
3040          * end_sync_write if we will want to write.
3041          */
3042
3043         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3044         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3045                 /* recovery... the complicated one */
3046                 int j;
3047                 r10_bio = NULL;
3048
3049                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3050                         int still_degraded;
3051                         struct r10bio *rb2;
3052                         sector_t sect;
3053                         int must_sync;
3054                         int any_working;
3055                         int need_recover = 0;
3056                         struct raid10_info *mirror = &conf->mirrors[i];
3057                         struct md_rdev *mrdev, *mreplace;
3058
3059                         rcu_read_lock();
3060                         mrdev = rcu_dereference(mirror->rdev);
3061                         mreplace = rcu_dereference(mirror->replacement);
3062
3063                         if (mrdev != NULL &&
3064                             !test_bit(Faulty, &mrdev->flags) &&
3065                             !test_bit(In_sync, &mrdev->flags))
3066                                 need_recover = 1;
3067                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3068                                 mreplace = NULL;
3069
3070                         if (!need_recover && !mreplace) {
3071                                 rcu_read_unlock();
3072                                 continue;
3073                         }
3074
3075                         still_degraded = 0;
3076                         /* want to reconstruct this device */
3077                         rb2 = r10_bio;
3078                         sect = raid10_find_virt(conf, sector_nr, i);
3079                         if (sect >= mddev->resync_max_sectors) {
3080                                 /* last stripe is not complete - don't
3081                                  * try to recover this sector.
3082                                  */
3083                                 rcu_read_unlock();
3084                                 continue;
3085                         }
3086                         /* Unless we are doing a full sync, or a replacement
3087                          * we only need to recover the block if it is set in
3088                          * the bitmap
3089                          */
3090                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3091                                                          &sync_blocks, 1);
3092                         if (sync_blocks < max_sync)
3093                                 max_sync = sync_blocks;
3094                         if (!must_sync &&
3095                             mreplace == NULL &&
3096                             !conf->fullsync) {
3097                                 /* yep, skip the sync_blocks here, but don't assume
3098                                  * that there will never be anything to do here
3099                                  */
3100                                 chunks_skipped = -1;
3101                                 rcu_read_unlock();
3102                                 continue;
3103                         }
3104                         atomic_inc(&mrdev->nr_pending);
3105                         if (mreplace)
3106                                 atomic_inc(&mreplace->nr_pending);
3107                         rcu_read_unlock();
3108
3109                         r10_bio = raid10_alloc_init_r10buf(conf);
3110                         r10_bio->state = 0;
3111                         raise_barrier(conf, rb2 != NULL);
3112                         atomic_set(&r10_bio->remaining, 0);
3113
3114                         r10_bio->master_bio = (struct bio*)rb2;
3115                         if (rb2)
3116                                 atomic_inc(&rb2->remaining);
3117                         r10_bio->mddev = mddev;
3118                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3119                         r10_bio->sector = sect;
3120
3121                         raid10_find_phys(conf, r10_bio);
3122
3123                         /* Need to check if the array will still be
3124                          * degraded
3125                          */
3126                         rcu_read_lock();
3127                         for (j = 0; j < conf->geo.raid_disks; j++) {
3128                                 struct md_rdev *rdev = rcu_dereference(
3129                                         conf->mirrors[j].rdev);
3130                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3131                                         still_degraded = 1;
3132                                         break;
3133                                 }
3134                         }
3135
3136                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3137                                                          &sync_blocks, still_degraded);
3138
3139                         any_working = 0;
3140                         for (j=0; j<conf->copies;j++) {
3141                                 int k;
3142                                 int d = r10_bio->devs[j].devnum;
3143                                 sector_t from_addr, to_addr;
3144                                 struct md_rdev *rdev =
3145                                         rcu_dereference(conf->mirrors[d].rdev);
3146                                 sector_t sector, first_bad;
3147                                 int bad_sectors;
3148                                 if (!rdev ||
3149                                     !test_bit(In_sync, &rdev->flags))
3150                                         continue;
3151                                 /* This is where we read from */
3152                                 any_working = 1;
3153                                 sector = r10_bio->devs[j].addr;
3154
3155                                 if (is_badblock(rdev, sector, max_sync,
3156                                                 &first_bad, &bad_sectors)) {
3157                                         if (first_bad > sector)
3158                                                 max_sync = first_bad - sector;
3159                                         else {
3160                                                 bad_sectors -= (sector
3161                                                                 - first_bad);
3162                                                 if (max_sync > bad_sectors)
3163                                                         max_sync = bad_sectors;
3164                                                 continue;
3165                                         }
3166                                 }
3167                                 bio = r10_bio->devs[0].bio;
3168                                 bio->bi_next = biolist;
3169                                 biolist = bio;
3170                                 bio->bi_end_io = end_sync_read;
3171                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3172                                 if (test_bit(FailFast, &rdev->flags))
3173                                         bio->bi_opf |= MD_FAILFAST;
3174                                 from_addr = r10_bio->devs[j].addr;
3175                                 bio->bi_iter.bi_sector = from_addr +
3176                                         rdev->data_offset;
3177                                 bio_set_dev(bio, rdev->bdev);
3178                                 atomic_inc(&rdev->nr_pending);
3179                                 /* and we write to 'i' (if not in_sync) */
3180
3181                                 for (k=0; k<conf->copies; k++)
3182                                         if (r10_bio->devs[k].devnum == i)
3183                                                 break;
3184                                 BUG_ON(k == conf->copies);
3185                                 to_addr = r10_bio->devs[k].addr;
3186                                 r10_bio->devs[0].devnum = d;
3187                                 r10_bio->devs[0].addr = from_addr;
3188                                 r10_bio->devs[1].devnum = i;
3189                                 r10_bio->devs[1].addr = to_addr;
3190
3191                                 if (need_recover) {
3192                                         bio = r10_bio->devs[1].bio;
3193                                         bio->bi_next = biolist;
3194                                         biolist = bio;
3195                                         bio->bi_end_io = end_sync_write;
3196                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3197                                         bio->bi_iter.bi_sector = to_addr
3198                                                 + mrdev->data_offset;
3199                                         bio_set_dev(bio, mrdev->bdev);
3200                                         atomic_inc(&r10_bio->remaining);
3201                                 } else
3202                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3203
3204                                 /* and maybe write to replacement */
3205                                 bio = r10_bio->devs[1].repl_bio;
3206                                 if (bio)
3207                                         bio->bi_end_io = NULL;
3208                                 /* Note: if replace is not NULL, then bio
3209                                  * cannot be NULL as r10buf_pool_alloc will
3210                                  * have allocated it.
3211                                  */
3212                                 if (!mreplace)
3213                                         break;
3214                                 bio->bi_next = biolist;
3215                                 biolist = bio;
3216                                 bio->bi_end_io = end_sync_write;
3217                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3218                                 bio->bi_iter.bi_sector = to_addr +
3219                                         mreplace->data_offset;
3220                                 bio_set_dev(bio, mreplace->bdev);
3221                                 atomic_inc(&r10_bio->remaining);
3222                                 break;
3223                         }
3224                         rcu_read_unlock();
3225                         if (j == conf->copies) {
3226                                 /* Cannot recover, so abort the recovery or
3227                                  * record a bad block */
3228                                 if (any_working) {
3229                                         /* problem is that there are bad blocks
3230                                          * on other device(s)
3231                                          */
3232                                         int k;
3233                                         for (k = 0; k < conf->copies; k++)
3234                                                 if (r10_bio->devs[k].devnum == i)
3235                                                         break;
3236                                         if (!test_bit(In_sync,
3237                                                       &mrdev->flags)
3238                                             && !rdev_set_badblocks(
3239                                                     mrdev,
3240                                                     r10_bio->devs[k].addr,
3241                                                     max_sync, 0))
3242                                                 any_working = 0;
3243                                         if (mreplace &&
3244                                             !rdev_set_badblocks(
3245                                                     mreplace,
3246                                                     r10_bio->devs[k].addr,
3247                                                     max_sync, 0))
3248                                                 any_working = 0;
3249                                 }
3250                                 if (!any_working)  {
3251                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3252                                                               &mddev->recovery))
3253                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3254                                                        mdname(mddev));
3255                                         mirror->recovery_disabled
3256                                                 = mddev->recovery_disabled;
3257                                 }
3258                                 put_buf(r10_bio);
3259                                 if (rb2)
3260                                         atomic_dec(&rb2->remaining);
3261                                 r10_bio = rb2;
3262                                 rdev_dec_pending(mrdev, mddev);
3263                                 if (mreplace)
3264                                         rdev_dec_pending(mreplace, mddev);
3265                                 break;
3266                         }
3267                         rdev_dec_pending(mrdev, mddev);
3268                         if (mreplace)
3269                                 rdev_dec_pending(mreplace, mddev);
3270                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3271                                 /* Only want this if there is elsewhere to
3272                                  * read from. 'j' is currently the first
3273                                  * readable copy.
3274                                  */
3275                                 int targets = 1;
3276                                 for (; j < conf->copies; j++) {
3277                                         int d = r10_bio->devs[j].devnum;
3278                                         if (conf->mirrors[d].rdev &&
3279                                             test_bit(In_sync,
3280                                                       &conf->mirrors[d].rdev->flags))
3281                                                 targets++;
3282                                 }
3283                                 if (targets == 1)
3284                                         r10_bio->devs[0].bio->bi_opf
3285                                                 &= ~MD_FAILFAST;
3286                         }
3287                 }
3288                 if (biolist == NULL) {
3289                         while (r10_bio) {
3290                                 struct r10bio *rb2 = r10_bio;
3291                                 r10_bio = (struct r10bio*) rb2->master_bio;
3292                                 rb2->master_bio = NULL;
3293                                 put_buf(rb2);
3294                         }
3295                         goto giveup;
3296                 }
3297         } else {
3298                 /* resync. Schedule a read for every block at this virt offset */
3299                 int count = 0;
3300
3301                 /*
3302                  * Since curr_resync_completed could probably not update in
3303                  * time, and we will set cluster_sync_low based on it.
3304                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3305                  * safety reason, which ensures curr_resync_completed is
3306                  * updated in bitmap_cond_end_sync.
3307                  */
3308                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3309                                         mddev_is_clustered(mddev) &&
3310                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3311
3312                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3313                                           &sync_blocks, mddev->degraded) &&
3314                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3315                                                  &mddev->recovery)) {
3316                         /* We can skip this block */
3317                         *skipped = 1;
3318                         return sync_blocks + sectors_skipped;
3319                 }
3320                 if (sync_blocks < max_sync)
3321                         max_sync = sync_blocks;
3322                 r10_bio = raid10_alloc_init_r10buf(conf);
3323                 r10_bio->state = 0;
3324
3325                 r10_bio->mddev = mddev;
3326                 atomic_set(&r10_bio->remaining, 0);
3327                 raise_barrier(conf, 0);
3328                 conf->next_resync = sector_nr;
3329
3330                 r10_bio->master_bio = NULL;
3331                 r10_bio->sector = sector_nr;
3332                 set_bit(R10BIO_IsSync, &r10_bio->state);
3333                 raid10_find_phys(conf, r10_bio);
3334                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3335
3336                 for (i = 0; i < conf->copies; i++) {
3337                         int d = r10_bio->devs[i].devnum;
3338                         sector_t first_bad, sector;
3339                         int bad_sectors;
3340                         struct md_rdev *rdev;
3341
3342                         if (r10_bio->devs[i].repl_bio)
3343                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3344
3345                         bio = r10_bio->devs[i].bio;
3346                         bio->bi_status = BLK_STS_IOERR;
3347                         rcu_read_lock();
3348                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3349                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3350                                 rcu_read_unlock();
3351                                 continue;
3352                         }
3353                         sector = r10_bio->devs[i].addr;
3354                         if (is_badblock(rdev, sector, max_sync,
3355                                         &first_bad, &bad_sectors)) {
3356                                 if (first_bad > sector)
3357                                         max_sync = first_bad - sector;
3358                                 else {
3359                                         bad_sectors -= (sector - first_bad);
3360                                         if (max_sync > bad_sectors)
3361                                                 max_sync = bad_sectors;
3362                                         rcu_read_unlock();
3363                                         continue;
3364                                 }
3365                         }
3366                         atomic_inc(&rdev->nr_pending);
3367                         atomic_inc(&r10_bio->remaining);
3368                         bio->bi_next = biolist;
3369                         biolist = bio;
3370                         bio->bi_end_io = end_sync_read;
3371                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3372                         if (test_bit(FailFast, &rdev->flags))
3373                                 bio->bi_opf |= MD_FAILFAST;
3374                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3375                         bio_set_dev(bio, rdev->bdev);
3376                         count++;
3377
3378                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3379                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380                                 rcu_read_unlock();
3381                                 continue;
3382                         }
3383                         atomic_inc(&rdev->nr_pending);
3384
3385                         /* Need to set up for writing to the replacement */
3386                         bio = r10_bio->devs[i].repl_bio;
3387                         bio->bi_status = BLK_STS_IOERR;
3388
3389                         sector = r10_bio->devs[i].addr;
3390                         bio->bi_next = biolist;
3391                         biolist = bio;
3392                         bio->bi_end_io = end_sync_write;
3393                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3394                         if (test_bit(FailFast, &rdev->flags))
3395                                 bio->bi_opf |= MD_FAILFAST;
3396                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3397                         bio_set_dev(bio, rdev->bdev);
3398                         count++;
3399                         rcu_read_unlock();
3400                 }
3401
3402                 if (count < 2) {
3403                         for (i=0; i<conf->copies; i++) {
3404                                 int d = r10_bio->devs[i].devnum;
3405                                 if (r10_bio->devs[i].bio->bi_end_io)
3406                                         rdev_dec_pending(conf->mirrors[d].rdev,
3407                                                          mddev);
3408                                 if (r10_bio->devs[i].repl_bio &&
3409                                     r10_bio->devs[i].repl_bio->bi_end_io)
3410                                         rdev_dec_pending(
3411                                                 conf->mirrors[d].replacement,
3412                                                 mddev);
3413                         }
3414                         put_buf(r10_bio);
3415                         biolist = NULL;
3416                         goto giveup;
3417                 }
3418         }
3419
3420         nr_sectors = 0;
3421         if (sector_nr + max_sync < max_sector)
3422                 max_sector = sector_nr + max_sync;
3423         do {
3424                 struct page *page;
3425                 int len = PAGE_SIZE;
3426                 if (sector_nr + (len>>9) > max_sector)
3427                         len = (max_sector - sector_nr) << 9;
3428                 if (len == 0)
3429                         break;
3430                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3431                         struct resync_pages *rp = get_resync_pages(bio);
3432                         page = resync_fetch_page(rp, page_idx);
3433                         /*
3434                          * won't fail because the vec table is big enough
3435                          * to hold all these pages
3436                          */
3437                         bio_add_page(bio, page, len, 0);
3438                 }
3439                 nr_sectors += len>>9;
3440                 sector_nr += len>>9;
3441         } while (++page_idx < RESYNC_PAGES);
3442         r10_bio->sectors = nr_sectors;
3443
3444         if (mddev_is_clustered(mddev) &&
3445             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3446                 /* It is resync not recovery */
3447                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3448                         conf->cluster_sync_low = mddev->curr_resync_completed;
3449                         raid10_set_cluster_sync_high(conf);
3450                         /* Send resync message */
3451                         md_cluster_ops->resync_info_update(mddev,
3452                                                 conf->cluster_sync_low,
3453                                                 conf->cluster_sync_high);
3454                 }
3455         } else if (mddev_is_clustered(mddev)) {
3456                 /* This is recovery not resync */
3457                 sector_t sect_va1, sect_va2;
3458                 bool broadcast_msg = false;
3459
3460                 for (i = 0; i < conf->geo.raid_disks; i++) {
3461                         /*
3462                          * sector_nr is a device address for recovery, so we
3463                          * need translate it to array address before compare
3464                          * with cluster_sync_high.
3465                          */
3466                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3467
3468                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3469                                 broadcast_msg = true;
3470                                 /*
3471                                  * curr_resync_completed is similar as
3472                                  * sector_nr, so make the translation too.
3473                                  */
3474                                 sect_va2 = raid10_find_virt(conf,
3475                                         mddev->curr_resync_completed, i);
3476
3477                                 if (conf->cluster_sync_low == 0 ||
3478                                     conf->cluster_sync_low > sect_va2)
3479                                         conf->cluster_sync_low = sect_va2;
3480                         }
3481                 }
3482                 if (broadcast_msg) {
3483                         raid10_set_cluster_sync_high(conf);
3484                         md_cluster_ops->resync_info_update(mddev,
3485                                                 conf->cluster_sync_low,
3486                                                 conf->cluster_sync_high);
3487                 }
3488         }
3489
3490         while (biolist) {
3491                 bio = biolist;
3492                 biolist = biolist->bi_next;
3493
3494                 bio->bi_next = NULL;
3495                 r10_bio = get_resync_r10bio(bio);
3496                 r10_bio->sectors = nr_sectors;
3497
3498                 if (bio->bi_end_io == end_sync_read) {
3499                         md_sync_acct_bio(bio, nr_sectors);
3500                         bio->bi_status = 0;
3501                         submit_bio_noacct(bio);
3502                 }
3503         }
3504
3505         if (sectors_skipped)
3506                 /* pretend they weren't skipped, it makes
3507                  * no important difference in this case
3508                  */
3509                 md_done_sync(mddev, sectors_skipped, 1);
3510
3511         return sectors_skipped + nr_sectors;
3512  giveup:
3513         /* There is nowhere to write, so all non-sync
3514          * drives must be failed or in resync, all drives
3515          * have a bad block, so try the next chunk...
3516          */
3517         if (sector_nr + max_sync < max_sector)
3518                 max_sector = sector_nr + max_sync;
3519
3520         sectors_skipped += (max_sector - sector_nr);
3521         chunks_skipped ++;
3522         sector_nr = max_sector;
3523         goto skipped;
3524 }
3525
3526 static sector_t
3527 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3528 {
3529         sector_t size;
3530         struct r10conf *conf = mddev->private;
3531
3532         if (!raid_disks)
3533                 raid_disks = min(conf->geo.raid_disks,
3534                                  conf->prev.raid_disks);
3535         if (!sectors)
3536                 sectors = conf->dev_sectors;
3537
3538         size = sectors >> conf->geo.chunk_shift;
3539         sector_div(size, conf->geo.far_copies);
3540         size = size * raid_disks;
3541         sector_div(size, conf->geo.near_copies);
3542
3543         return size << conf->geo.chunk_shift;
3544 }
3545
3546 static void calc_sectors(struct r10conf *conf, sector_t size)
3547 {
3548         /* Calculate the number of sectors-per-device that will
3549          * actually be used, and set conf->dev_sectors and
3550          * conf->stride
3551          */
3552
3553         size = size >> conf->geo.chunk_shift;
3554         sector_div(size, conf->geo.far_copies);
3555         size = size * conf->geo.raid_disks;
3556         sector_div(size, conf->geo.near_copies);
3557         /* 'size' is now the number of chunks in the array */
3558         /* calculate "used chunks per device" */
3559         size = size * conf->copies;
3560
3561         /* We need to round up when dividing by raid_disks to
3562          * get the stride size.
3563          */
3564         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3565
3566         conf->dev_sectors = size << conf->geo.chunk_shift;
3567
3568         if (conf->geo.far_offset)
3569                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3570         else {
3571                 sector_div(size, conf->geo.far_copies);
3572                 conf->geo.stride = size << conf->geo.chunk_shift;
3573         }
3574 }
3575
3576 enum geo_type {geo_new, geo_old, geo_start};
3577 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3578 {
3579         int nc, fc, fo;
3580         int layout, chunk, disks;
3581         switch (new) {
3582         case geo_old:
3583                 layout = mddev->layout;
3584                 chunk = mddev->chunk_sectors;
3585                 disks = mddev->raid_disks - mddev->delta_disks;
3586                 break;
3587         case geo_new:
3588                 layout = mddev->new_layout;
3589                 chunk = mddev->new_chunk_sectors;
3590                 disks = mddev->raid_disks;
3591                 break;
3592         default: /* avoid 'may be unused' warnings */
3593         case geo_start: /* new when starting reshape - raid_disks not
3594                          * updated yet. */
3595                 layout = mddev->new_layout;
3596                 chunk = mddev->new_chunk_sectors;
3597                 disks = mddev->raid_disks + mddev->delta_disks;
3598                 break;
3599         }
3600         if (layout >> 19)
3601                 return -1;
3602         if (chunk < (PAGE_SIZE >> 9) ||
3603             !is_power_of_2(chunk))
3604                 return -2;
3605         nc = layout & 255;
3606         fc = (layout >> 8) & 255;
3607         fo = layout & (1<<16);
3608         geo->raid_disks = disks;
3609         geo->near_copies = nc;
3610         geo->far_copies = fc;
3611         geo->far_offset = fo;
3612         switch (layout >> 17) {
3613         case 0: /* original layout.  simple but not always optimal */
3614                 geo->far_set_size = disks;
3615                 break;
3616         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3617                  * actually using this, but leave code here just in case.*/
3618                 geo->far_set_size = disks/fc;
3619                 WARN(geo->far_set_size < fc,
3620                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3621                 break;
3622         case 2: /* "improved" layout fixed to match documentation */
3623                 geo->far_set_size = fc * nc;
3624                 break;
3625         default: /* Not a valid layout */
3626                 return -1;
3627         }
3628         geo->chunk_mask = chunk - 1;
3629         geo->chunk_shift = ffz(~chunk);
3630         return nc*fc;
3631 }
3632
3633 static void raid10_free_conf(struct r10conf *conf)
3634 {
3635         if (!conf)
3636                 return;
3637
3638         mempool_exit(&conf->r10bio_pool);
3639         kfree(conf->mirrors);
3640         kfree(conf->mirrors_old);
3641         kfree(conf->mirrors_new);
3642         safe_put_page(conf->tmppage);
3643         bioset_exit(&conf->bio_split);
3644         kfree(conf);
3645 }
3646
3647 static struct r10conf *setup_conf(struct mddev *mddev)
3648 {
3649         struct r10conf *conf = NULL;
3650         int err = -EINVAL;
3651         struct geom geo;
3652         int copies;
3653
3654         copies = setup_geo(&geo, mddev, geo_new);
3655
3656         if (copies == -2) {
3657                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3658                         mdname(mddev), PAGE_SIZE);
3659                 goto out;
3660         }
3661
3662         if (copies < 2 || copies > mddev->raid_disks) {
3663                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3664                         mdname(mddev), mddev->new_layout);
3665                 goto out;
3666         }
3667
3668         err = -ENOMEM;
3669         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3670         if (!conf)
3671                 goto out;
3672
3673         /* FIXME calc properly */
3674         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3675                                 sizeof(struct raid10_info),
3676                                 GFP_KERNEL);
3677         if (!conf->mirrors)
3678                 goto out;
3679
3680         conf->tmppage = alloc_page(GFP_KERNEL);
3681         if (!conf->tmppage)
3682                 goto out;
3683
3684         conf->geo = geo;
3685         conf->copies = copies;
3686         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3687                            rbio_pool_free, conf);
3688         if (err)
3689                 goto out;
3690
3691         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3692         if (err)
3693                 goto out;
3694
3695         calc_sectors(conf, mddev->dev_sectors);
3696         if (mddev->reshape_position == MaxSector) {
3697                 conf->prev = conf->geo;
3698                 conf->reshape_progress = MaxSector;
3699         } else {
3700                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3701                         err = -EINVAL;
3702                         goto out;
3703                 }
3704                 conf->reshape_progress = mddev->reshape_position;
3705                 if (conf->prev.far_offset)
3706                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3707                 else
3708                         /* far_copies must be 1 */
3709                         conf->prev.stride = conf->dev_sectors;
3710         }
3711         conf->reshape_safe = conf->reshape_progress;
3712         spin_lock_init(&conf->device_lock);
3713         INIT_LIST_HEAD(&conf->retry_list);
3714         INIT_LIST_HEAD(&conf->bio_end_io_list);
3715
3716         spin_lock_init(&conf->resync_lock);
3717         init_waitqueue_head(&conf->wait_barrier);
3718         atomic_set(&conf->nr_pending, 0);
3719
3720         err = -ENOMEM;
3721         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3722         if (!conf->thread)
3723                 goto out;
3724
3725         conf->mddev = mddev;
3726         return conf;
3727
3728  out:
3729         raid10_free_conf(conf);
3730         return ERR_PTR(err);
3731 }
3732
3733 static void raid10_set_io_opt(struct r10conf *conf)
3734 {
3735         int raid_disks = conf->geo.raid_disks;
3736
3737         if (!(conf->geo.raid_disks % conf->geo.near_copies))
3738                 raid_disks /= conf->geo.near_copies;
3739         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3740                          raid_disks);
3741 }
3742
3743 static int raid10_run(struct mddev *mddev)
3744 {
3745         struct r10conf *conf;
3746         int i, disk_idx;
3747         struct raid10_info *disk;
3748         struct md_rdev *rdev;
3749         sector_t size;
3750         sector_t min_offset_diff = 0;
3751         int first = 1;
3752         bool discard_supported = false;
3753
3754         if (mddev_init_writes_pending(mddev) < 0)
3755                 return -ENOMEM;
3756
3757         if (mddev->private == NULL) {
3758                 conf = setup_conf(mddev);
3759                 if (IS_ERR(conf))
3760                         return PTR_ERR(conf);
3761                 mddev->private = conf;
3762         }
3763         conf = mddev->private;
3764         if (!conf)
3765                 goto out;
3766
3767         mddev->thread = conf->thread;
3768         conf->thread = NULL;
3769
3770         if (mddev_is_clustered(conf->mddev)) {
3771                 int fc, fo;
3772
3773                 fc = (mddev->layout >> 8) & 255;
3774                 fo = mddev->layout & (1<<16);
3775                 if (fc > 1 || fo > 0) {
3776                         pr_err("only near layout is supported by clustered"
3777                                 " raid10\n");
3778                         goto out_free_conf;
3779                 }
3780         }
3781
3782         if (mddev->queue) {
3783                 blk_queue_max_discard_sectors(mddev->queue,
3784                                               mddev->chunk_sectors);
3785                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3786                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3787                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3788                 raid10_set_io_opt(conf);
3789         }
3790
3791         rdev_for_each(rdev, mddev) {
3792                 long long diff;
3793
3794                 disk_idx = rdev->raid_disk;
3795                 if (disk_idx < 0)
3796                         continue;
3797                 if (disk_idx >= conf->geo.raid_disks &&
3798                     disk_idx >= conf->prev.raid_disks)
3799                         continue;
3800                 disk = conf->mirrors + disk_idx;
3801
3802                 if (test_bit(Replacement, &rdev->flags)) {
3803                         if (disk->replacement)
3804                                 goto out_free_conf;
3805                         disk->replacement = rdev;
3806                 } else {
3807                         if (disk->rdev)
3808                                 goto out_free_conf;
3809                         disk->rdev = rdev;
3810                 }
3811                 diff = (rdev->new_data_offset - rdev->data_offset);
3812                 if (!mddev->reshape_backwards)
3813                         diff = -diff;
3814                 if (diff < 0)
3815                         diff = 0;
3816                 if (first || diff < min_offset_diff)
3817                         min_offset_diff = diff;
3818
3819                 if (mddev->gendisk)
3820                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3821                                           rdev->data_offset << 9);
3822
3823                 disk->head_position = 0;
3824
3825                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3826                         discard_supported = true;
3827                 first = 0;
3828         }
3829
3830         if (mddev->queue) {
3831                 if (discard_supported)
3832                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3833                                                 mddev->queue);
3834                 else
3835                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3836                                                   mddev->queue);
3837         }
3838         /* need to check that every block has at least one working mirror */
3839         if (!enough(conf, -1)) {
3840                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3841                        mdname(mddev));
3842                 goto out_free_conf;
3843         }
3844
3845         if (conf->reshape_progress != MaxSector) {
3846                 /* must ensure that shape change is supported */
3847                 if (conf->geo.far_copies != 1 &&
3848                     conf->geo.far_offset == 0)
3849                         goto out_free_conf;
3850                 if (conf->prev.far_copies != 1 &&
3851                     conf->prev.far_offset == 0)
3852                         goto out_free_conf;
3853         }
3854
3855         mddev->degraded = 0;
3856         for (i = 0;
3857              i < conf->geo.raid_disks
3858                      || i < conf->prev.raid_disks;
3859              i++) {
3860
3861                 disk = conf->mirrors + i;
3862
3863                 if (!disk->rdev && disk->replacement) {
3864                         /* The replacement is all we have - use it */
3865                         disk->rdev = disk->replacement;
3866                         disk->replacement = NULL;
3867                         clear_bit(Replacement, &disk->rdev->flags);
3868                 }
3869
3870                 if (!disk->rdev ||
3871                     !test_bit(In_sync, &disk->rdev->flags)) {
3872                         disk->head_position = 0;
3873                         mddev->degraded++;
3874                         if (disk->rdev &&
3875                             disk->rdev->saved_raid_disk < 0)
3876                                 conf->fullsync = 1;
3877                 }
3878
3879                 if (disk->replacement &&
3880                     !test_bit(In_sync, &disk->replacement->flags) &&
3881                     disk->replacement->saved_raid_disk < 0) {
3882                         conf->fullsync = 1;
3883                 }
3884
3885                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3886         }
3887
3888         if (mddev->recovery_cp != MaxSector)
3889                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3890                           mdname(mddev));
3891         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3892                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3893                 conf->geo.raid_disks);
3894         /*
3895          * Ok, everything is just fine now
3896          */
3897         mddev->dev_sectors = conf->dev_sectors;
3898         size = raid10_size(mddev, 0, 0);
3899         md_set_array_sectors(mddev, size);
3900         mddev->resync_max_sectors = size;
3901         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3902
3903         if (md_integrity_register(mddev))
3904                 goto out_free_conf;
3905
3906         if (conf->reshape_progress != MaxSector) {
3907                 unsigned long before_length, after_length;
3908
3909                 before_length = ((1 << conf->prev.chunk_shift) *
3910                                  conf->prev.far_copies);
3911                 after_length = ((1 << conf->geo.chunk_shift) *
3912                                 conf->geo.far_copies);
3913
3914                 if (max(before_length, after_length) > min_offset_diff) {
3915                         /* This cannot work */
3916                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3917                         goto out_free_conf;
3918                 }
3919                 conf->offset_diff = min_offset_diff;
3920
3921                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3922                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3923                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3924                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3925                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3926                                                         "reshape");
3927                 if (!mddev->sync_thread)
3928                         goto out_free_conf;
3929         }
3930
3931         return 0;
3932
3933 out_free_conf:
3934         md_unregister_thread(&mddev->thread);
3935         raid10_free_conf(conf);
3936         mddev->private = NULL;
3937 out:
3938         return -EIO;
3939 }
3940
3941 static void raid10_free(struct mddev *mddev, void *priv)
3942 {
3943         raid10_free_conf(priv);
3944 }
3945
3946 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3947 {
3948         struct r10conf *conf = mddev->private;
3949
3950         if (quiesce)
3951                 raise_barrier(conf, 0);
3952         else
3953                 lower_barrier(conf);
3954 }
3955
3956 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3957 {
3958         /* Resize of 'far' arrays is not supported.
3959          * For 'near' and 'offset' arrays we can set the
3960          * number of sectors used to be an appropriate multiple
3961          * of the chunk size.
3962          * For 'offset', this is far_copies*chunksize.
3963          * For 'near' the multiplier is the LCM of
3964          * near_copies and raid_disks.
3965          * So if far_copies > 1 && !far_offset, fail.
3966          * Else find LCM(raid_disks, near_copy)*far_copies and
3967          * multiply by chunk_size.  Then round to this number.
3968          * This is mostly done by raid10_size()
3969          */
3970         struct r10conf *conf = mddev->private;
3971         sector_t oldsize, size;
3972
3973         if (mddev->reshape_position != MaxSector)
3974                 return -EBUSY;
3975
3976         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3977                 return -EINVAL;
3978
3979         oldsize = raid10_size(mddev, 0, 0);
3980         size = raid10_size(mddev, sectors, 0);
3981         if (mddev->external_size &&
3982             mddev->array_sectors > size)
3983                 return -EINVAL;
3984         if (mddev->bitmap) {
3985                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3986                 if (ret)
3987                         return ret;
3988         }
3989         md_set_array_sectors(mddev, size);
3990         if (sectors > mddev->dev_sectors &&
3991             mddev->recovery_cp > oldsize) {
3992                 mddev->recovery_cp = oldsize;
3993                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3994         }
3995         calc_sectors(conf, sectors);
3996         mddev->dev_sectors = conf->dev_sectors;
3997         mddev->resync_max_sectors = size;
3998         return 0;
3999 }
4000
4001 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4002 {
4003         struct md_rdev *rdev;
4004         struct r10conf *conf;
4005
4006         if (mddev->degraded > 0) {
4007                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4008                         mdname(mddev));
4009                 return ERR_PTR(-EINVAL);
4010         }
4011         sector_div(size, devs);
4012
4013         /* Set new parameters */
4014         mddev->new_level = 10;
4015         /* new layout: far_copies = 1, near_copies = 2 */
4016         mddev->new_layout = (1<<8) + 2;
4017         mddev->new_chunk_sectors = mddev->chunk_sectors;
4018         mddev->delta_disks = mddev->raid_disks;
4019         mddev->raid_disks *= 2;
4020         /* make sure it will be not marked as dirty */
4021         mddev->recovery_cp = MaxSector;
4022         mddev->dev_sectors = size;
4023
4024         conf = setup_conf(mddev);
4025         if (!IS_ERR(conf)) {
4026                 rdev_for_each(rdev, mddev)
4027                         if (rdev->raid_disk >= 0) {
4028                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4029                                 rdev->sectors = size;
4030                         }
4031                 conf->barrier = 1;
4032         }
4033
4034         return conf;
4035 }
4036
4037 static void *raid10_takeover(struct mddev *mddev)
4038 {
4039         struct r0conf *raid0_conf;
4040
4041         /* raid10 can take over:
4042          *  raid0 - providing it has only two drives
4043          */
4044         if (mddev->level == 0) {
4045                 /* for raid0 takeover only one zone is supported */
4046                 raid0_conf = mddev->private;
4047                 if (raid0_conf->nr_strip_zones > 1) {
4048                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4049                                 mdname(mddev));
4050                         return ERR_PTR(-EINVAL);
4051                 }
4052                 return raid10_takeover_raid0(mddev,
4053                         raid0_conf->strip_zone->zone_end,
4054                         raid0_conf->strip_zone->nb_dev);
4055         }
4056         return ERR_PTR(-EINVAL);
4057 }
4058
4059 static int raid10_check_reshape(struct mddev *mddev)
4060 {
4061         /* Called when there is a request to change
4062          * - layout (to ->new_layout)
4063          * - chunk size (to ->new_chunk_sectors)
4064          * - raid_disks (by delta_disks)
4065          * or when trying to restart a reshape that was ongoing.
4066          *
4067          * We need to validate the request and possibly allocate
4068          * space if that might be an issue later.
4069          *
4070          * Currently we reject any reshape of a 'far' mode array,
4071          * allow chunk size to change if new is generally acceptable,
4072          * allow raid_disks to increase, and allow
4073          * a switch between 'near' mode and 'offset' mode.
4074          */
4075         struct r10conf *conf = mddev->private;
4076         struct geom geo;
4077
4078         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4079                 return -EINVAL;
4080
4081         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4082                 /* mustn't change number of copies */
4083                 return -EINVAL;
4084         if (geo.far_copies > 1 && !geo.far_offset)
4085                 /* Cannot switch to 'far' mode */
4086                 return -EINVAL;
4087
4088         if (mddev->array_sectors & geo.chunk_mask)
4089                         /* not factor of array size */
4090                         return -EINVAL;
4091
4092         if (!enough(conf, -1))
4093                 return -EINVAL;
4094
4095         kfree(conf->mirrors_new);
4096         conf->mirrors_new = NULL;
4097         if (mddev->delta_disks > 0) {
4098                 /* allocate new 'mirrors' list */
4099                 conf->mirrors_new =
4100                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4101                                 sizeof(struct raid10_info),
4102                                 GFP_KERNEL);
4103                 if (!conf->mirrors_new)
4104                         return -ENOMEM;
4105         }
4106         return 0;
4107 }
4108
4109 /*
4110  * Need to check if array has failed when deciding whether to:
4111  *  - start an array
4112  *  - remove non-faulty devices
4113  *  - add a spare
4114  *  - allow a reshape
4115  * This determination is simple when no reshape is happening.
4116  * However if there is a reshape, we need to carefully check
4117  * both the before and after sections.
4118  * This is because some failed devices may only affect one
4119  * of the two sections, and some non-in_sync devices may
4120  * be insync in the section most affected by failed devices.
4121  */
4122 static int calc_degraded(struct r10conf *conf)
4123 {
4124         int degraded, degraded2;
4125         int i;
4126
4127         rcu_read_lock();
4128         degraded = 0;
4129         /* 'prev' section first */
4130         for (i = 0; i < conf->prev.raid_disks; i++) {
4131                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4132                 if (!rdev || test_bit(Faulty, &rdev->flags))
4133                         degraded++;
4134                 else if (!test_bit(In_sync, &rdev->flags))
4135                         /* When we can reduce the number of devices in
4136                          * an array, this might not contribute to
4137                          * 'degraded'.  It does now.
4138                          */
4139                         degraded++;
4140         }
4141         rcu_read_unlock();
4142         if (conf->geo.raid_disks == conf->prev.raid_disks)
4143                 return degraded;
4144         rcu_read_lock();
4145         degraded2 = 0;
4146         for (i = 0; i < conf->geo.raid_disks; i++) {
4147                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4148                 if (!rdev || test_bit(Faulty, &rdev->flags))
4149                         degraded2++;
4150                 else if (!test_bit(In_sync, &rdev->flags)) {
4151                         /* If reshape is increasing the number of devices,
4152                          * this section has already been recovered, so
4153                          * it doesn't contribute to degraded.
4154                          * else it does.
4155                          */
4156                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4157                                 degraded2++;
4158                 }
4159         }
4160         rcu_read_unlock();
4161         if (degraded2 > degraded)
4162                 return degraded2;
4163         return degraded;
4164 }
4165
4166 static int raid10_start_reshape(struct mddev *mddev)
4167 {
4168         /* A 'reshape' has been requested. This commits
4169          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4170          * This also checks if there are enough spares and adds them
4171          * to the array.
4172          * We currently require enough spares to make the final
4173          * array non-degraded.  We also require that the difference
4174          * between old and new data_offset - on each device - is
4175          * enough that we never risk over-writing.
4176          */
4177
4178         unsigned long before_length, after_length;
4179         sector_t min_offset_diff = 0;
4180         int first = 1;
4181         struct geom new;
4182         struct r10conf *conf = mddev->private;
4183         struct md_rdev *rdev;
4184         int spares = 0;
4185         int ret;
4186
4187         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4188                 return -EBUSY;
4189
4190         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4191                 return -EINVAL;
4192
4193         before_length = ((1 << conf->prev.chunk_shift) *
4194                          conf->prev.far_copies);
4195         after_length = ((1 << conf->geo.chunk_shift) *
4196                         conf->geo.far_copies);
4197
4198         rdev_for_each(rdev, mddev) {
4199                 if (!test_bit(In_sync, &rdev->flags)
4200                     && !test_bit(Faulty, &rdev->flags))
4201                         spares++;
4202                 if (rdev->raid_disk >= 0) {
4203                         long long diff = (rdev->new_data_offset
4204                                           - rdev->data_offset);
4205                         if (!mddev->reshape_backwards)
4206                                 diff = -diff;
4207                         if (diff < 0)
4208                                 diff = 0;
4209                         if (first || diff < min_offset_diff)
4210                                 min_offset_diff = diff;
4211                         first = 0;
4212                 }
4213         }
4214
4215         if (max(before_length, after_length) > min_offset_diff)
4216                 return -EINVAL;
4217
4218         if (spares < mddev->delta_disks)
4219                 return -EINVAL;
4220
4221         conf->offset_diff = min_offset_diff;
4222         spin_lock_irq(&conf->device_lock);
4223         if (conf->mirrors_new) {
4224                 memcpy(conf->mirrors_new, conf->mirrors,
4225                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4226                 smp_mb();
4227                 kfree(conf->mirrors_old);
4228                 conf->mirrors_old = conf->mirrors;
4229                 conf->mirrors = conf->mirrors_new;
4230                 conf->mirrors_new = NULL;
4231         }
4232         setup_geo(&conf->geo, mddev, geo_start);
4233         smp_mb();
4234         if (mddev->reshape_backwards) {
4235                 sector_t size = raid10_size(mddev, 0, 0);
4236                 if (size < mddev->array_sectors) {
4237                         spin_unlock_irq(&conf->device_lock);
4238                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4239                                 mdname(mddev));
4240                         return -EINVAL;
4241                 }
4242                 mddev->resync_max_sectors = size;
4243                 conf->reshape_progress = size;
4244         } else
4245                 conf->reshape_progress = 0;
4246         conf->reshape_safe = conf->reshape_progress;
4247         spin_unlock_irq(&conf->device_lock);
4248
4249         if (mddev->delta_disks && mddev->bitmap) {
4250                 struct mdp_superblock_1 *sb = NULL;
4251                 sector_t oldsize, newsize;
4252
4253                 oldsize = raid10_size(mddev, 0, 0);
4254                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4255
4256                 if (!mddev_is_clustered(mddev)) {
4257                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4258                         if (ret)
4259                                 goto abort;
4260                         else
4261                                 goto out;
4262                 }
4263
4264                 rdev_for_each(rdev, mddev) {
4265                         if (rdev->raid_disk > -1 &&
4266                             !test_bit(Faulty, &rdev->flags))
4267                                 sb = page_address(rdev->sb_page);
4268                 }
4269
4270                 /*
4271                  * some node is already performing reshape, and no need to
4272                  * call md_bitmap_resize again since it should be called when
4273                  * receiving BITMAP_RESIZE msg
4274                  */
4275                 if ((sb && (le32_to_cpu(sb->feature_map) &
4276                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4277                         goto out;
4278
4279                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4280                 if (ret)
4281                         goto abort;
4282
4283                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4284                 if (ret) {
4285                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4286                         goto abort;
4287                 }
4288         }
4289 out:
4290         if (mddev->delta_disks > 0) {
4291                 rdev_for_each(rdev, mddev)
4292                         if (rdev->raid_disk < 0 &&
4293                             !test_bit(Faulty, &rdev->flags)) {
4294                                 if (raid10_add_disk(mddev, rdev) == 0) {
4295                                         if (rdev->raid_disk >=
4296                                             conf->prev.raid_disks)
4297                                                 set_bit(In_sync, &rdev->flags);
4298                                         else
4299                                                 rdev->recovery_offset = 0;
4300
4301                                         /* Failure here is OK */
4302                                         sysfs_link_rdev(mddev, rdev);
4303                                 }
4304                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4305                                    && !test_bit(Faulty, &rdev->flags)) {
4306                                 /* This is a spare that was manually added */
4307                                 set_bit(In_sync, &rdev->flags);
4308                         }
4309         }
4310         /* When a reshape changes the number of devices,
4311          * ->degraded is measured against the larger of the
4312          * pre and  post numbers.
4313          */
4314         spin_lock_irq(&conf->device_lock);
4315         mddev->degraded = calc_degraded(conf);
4316         spin_unlock_irq(&conf->device_lock);
4317         mddev->raid_disks = conf->geo.raid_disks;
4318         mddev->reshape_position = conf->reshape_progress;
4319         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4320
4321         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4322         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4323         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4324         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4325         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4326
4327         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4328                                                 "reshape");
4329         if (!mddev->sync_thread) {
4330                 ret = -EAGAIN;
4331                 goto abort;
4332         }
4333         conf->reshape_checkpoint = jiffies;
4334         md_wakeup_thread(mddev->sync_thread);
4335         md_new_event(mddev);
4336         return 0;
4337
4338 abort:
4339         mddev->recovery = 0;
4340         spin_lock_irq(&conf->device_lock);
4341         conf->geo = conf->prev;
4342         mddev->raid_disks = conf->geo.raid_disks;
4343         rdev_for_each(rdev, mddev)
4344                 rdev->new_data_offset = rdev->data_offset;
4345         smp_wmb();
4346         conf->reshape_progress = MaxSector;
4347         conf->reshape_safe = MaxSector;
4348         mddev->reshape_position = MaxSector;
4349         spin_unlock_irq(&conf->device_lock);
4350         return ret;
4351 }
4352
4353 /* Calculate the last device-address that could contain
4354  * any block from the chunk that includes the array-address 's'
4355  * and report the next address.
4356  * i.e. the address returned will be chunk-aligned and after
4357  * any data that is in the chunk containing 's'.
4358  */
4359 static sector_t last_dev_address(sector_t s, struct geom *geo)
4360 {
4361         s = (s | geo->chunk_mask) + 1;
4362         s >>= geo->chunk_shift;
4363         s *= geo->near_copies;
4364         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4365         s *= geo->far_copies;
4366         s <<= geo->chunk_shift;
4367         return s;
4368 }
4369
4370 /* Calculate the first device-address that could contain
4371  * any block from the chunk that includes the array-address 's'.
4372  * This too will be the start of a chunk
4373  */
4374 static sector_t first_dev_address(sector_t s, struct geom *geo)
4375 {
4376         s >>= geo->chunk_shift;
4377         s *= geo->near_copies;
4378         sector_div(s, geo->raid_disks);
4379         s *= geo->far_copies;
4380         s <<= geo->chunk_shift;
4381         return s;
4382 }
4383
4384 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4385                                 int *skipped)
4386 {
4387         /* We simply copy at most one chunk (smallest of old and new)
4388          * at a time, possibly less if that exceeds RESYNC_PAGES,
4389          * or we hit a bad block or something.
4390          * This might mean we pause for normal IO in the middle of
4391          * a chunk, but that is not a problem as mddev->reshape_position
4392          * can record any location.
4393          *
4394          * If we will want to write to a location that isn't
4395          * yet recorded as 'safe' (i.e. in metadata on disk) then
4396          * we need to flush all reshape requests and update the metadata.
4397          *
4398          * When reshaping forwards (e.g. to more devices), we interpret
4399          * 'safe' as the earliest block which might not have been copied
4400          * down yet.  We divide this by previous stripe size and multiply
4401          * by previous stripe length to get lowest device offset that we
4402          * cannot write to yet.
4403          * We interpret 'sector_nr' as an address that we want to write to.
4404          * From this we use last_device_address() to find where we might
4405          * write to, and first_device_address on the  'safe' position.
4406          * If this 'next' write position is after the 'safe' position,
4407          * we must update the metadata to increase the 'safe' position.
4408          *
4409          * When reshaping backwards, we round in the opposite direction
4410          * and perform the reverse test:  next write position must not be
4411          * less than current safe position.
4412          *
4413          * In all this the minimum difference in data offsets
4414          * (conf->offset_diff - always positive) allows a bit of slack,
4415          * so next can be after 'safe', but not by more than offset_diff
4416          *
4417          * We need to prepare all the bios here before we start any IO
4418          * to ensure the size we choose is acceptable to all devices.
4419          * The means one for each copy for write-out and an extra one for
4420          * read-in.
4421          * We store the read-in bio in ->master_bio and the others in
4422          * ->devs[x].bio and ->devs[x].repl_bio.
4423          */
4424         struct r10conf *conf = mddev->private;
4425         struct r10bio *r10_bio;
4426         sector_t next, safe, last;
4427         int max_sectors;
4428         int nr_sectors;
4429         int s;
4430         struct md_rdev *rdev;
4431         int need_flush = 0;
4432         struct bio *blist;
4433         struct bio *bio, *read_bio;
4434         int sectors_done = 0;
4435         struct page **pages;
4436
4437         if (sector_nr == 0) {
4438                 /* If restarting in the middle, skip the initial sectors */
4439                 if (mddev->reshape_backwards &&
4440                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4441                         sector_nr = (raid10_size(mddev, 0, 0)
4442                                      - conf->reshape_progress);
4443                 } else if (!mddev->reshape_backwards &&
4444                            conf->reshape_progress > 0)
4445                         sector_nr = conf->reshape_progress;
4446                 if (sector_nr) {
4447                         mddev->curr_resync_completed = sector_nr;
4448                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4449                         *skipped = 1;
4450                         return sector_nr;
4451                 }
4452         }
4453
4454         /* We don't use sector_nr to track where we are up to
4455          * as that doesn't work well for ->reshape_backwards.
4456          * So just use ->reshape_progress.
4457          */
4458         if (mddev->reshape_backwards) {
4459                 /* 'next' is the earliest device address that we might
4460                  * write to for this chunk in the new layout
4461                  */
4462                 next = first_dev_address(conf->reshape_progress - 1,
4463                                          &conf->geo);
4464
4465                 /* 'safe' is the last device address that we might read from
4466                  * in the old layout after a restart
4467                  */
4468                 safe = last_dev_address(conf->reshape_safe - 1,
4469                                         &conf->prev);
4470
4471                 if (next + conf->offset_diff < safe)
4472                         need_flush = 1;
4473
4474                 last = conf->reshape_progress - 1;
4475                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4476                                                & conf->prev.chunk_mask);
4477                 if (sector_nr + RESYNC_SECTORS < last)
4478                         sector_nr = last + 1 - RESYNC_SECTORS;
4479         } else {
4480                 /* 'next' is after the last device address that we
4481                  * might write to for this chunk in the new layout
4482                  */
4483                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4484
4485                 /* 'safe' is the earliest device address that we might
4486                  * read from in the old layout after a restart
4487                  */
4488                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4489
4490                 /* Need to update metadata if 'next' might be beyond 'safe'
4491                  * as that would possibly corrupt data
4492                  */
4493                 if (next > safe + conf->offset_diff)
4494                         need_flush = 1;
4495
4496                 sector_nr = conf->reshape_progress;
4497                 last  = sector_nr | (conf->geo.chunk_mask
4498                                      & conf->prev.chunk_mask);
4499
4500                 if (sector_nr + RESYNC_SECTORS <= last)
4501                         last = sector_nr + RESYNC_SECTORS - 1;
4502         }
4503
4504         if (need_flush ||
4505             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4506                 /* Need to update reshape_position in metadata */
4507                 wait_barrier(conf);
4508                 mddev->reshape_position = conf->reshape_progress;
4509                 if (mddev->reshape_backwards)
4510                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4511                                 - conf->reshape_progress;
4512                 else
4513                         mddev->curr_resync_completed = conf->reshape_progress;
4514                 conf->reshape_checkpoint = jiffies;
4515                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4516                 md_wakeup_thread(mddev->thread);
4517                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4518                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4519                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4520                         allow_barrier(conf);
4521                         return sectors_done;
4522                 }
4523                 conf->reshape_safe = mddev->reshape_position;
4524                 allow_barrier(conf);
4525         }
4526
4527         raise_barrier(conf, 0);
4528 read_more:
4529         /* Now schedule reads for blocks from sector_nr to last */
4530         r10_bio = raid10_alloc_init_r10buf(conf);
4531         r10_bio->state = 0;
4532         raise_barrier(conf, 1);
4533         atomic_set(&r10_bio->remaining, 0);
4534         r10_bio->mddev = mddev;
4535         r10_bio->sector = sector_nr;
4536         set_bit(R10BIO_IsReshape, &r10_bio->state);
4537         r10_bio->sectors = last - sector_nr + 1;
4538         rdev = read_balance(conf, r10_bio, &max_sectors);
4539         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541         if (!rdev) {
4542                 /* Cannot read from here, so need to record bad blocks
4543                  * on all the target devices.
4544                  */
4545                 // FIXME
4546                 mempool_free(r10_bio, &conf->r10buf_pool);
4547                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548                 return sectors_done;
4549         }
4550
4551         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553         bio_set_dev(read_bio, rdev->bdev);
4554         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555                                + rdev->data_offset);
4556         read_bio->bi_private = r10_bio;
4557         read_bio->bi_end_io = end_reshape_read;
4558         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560         read_bio->bi_status = 0;
4561         read_bio->bi_vcnt = 0;
4562         read_bio->bi_iter.bi_size = 0;
4563         r10_bio->master_bio = read_bio;
4564         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
4566         /*
4567          * Broadcast RESYNC message to other nodes, so all nodes would not
4568          * write to the region to avoid conflict.
4569         */
4570         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4571                 struct mdp_superblock_1 *sb = NULL;
4572                 int sb_reshape_pos = 0;
4573
4574                 conf->cluster_sync_low = sector_nr;
4575                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4576                 sb = page_address(rdev->sb_page);
4577                 if (sb) {
4578                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4579                         /*
4580                          * Set cluster_sync_low again if next address for array
4581                          * reshape is less than cluster_sync_low. Since we can't
4582                          * update cluster_sync_low until it has finished reshape.
4583                          */
4584                         if (sb_reshape_pos < conf->cluster_sync_low)
4585                                 conf->cluster_sync_low = sb_reshape_pos;
4586                 }
4587
4588                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4589                                                           conf->cluster_sync_high);
4590         }
4591
4592         /* Now find the locations in the new layout */
4593         __raid10_find_phys(&conf->geo, r10_bio);
4594
4595         blist = read_bio;
4596         read_bio->bi_next = NULL;
4597
4598         rcu_read_lock();
4599         for (s = 0; s < conf->copies*2; s++) {
4600                 struct bio *b;
4601                 int d = r10_bio->devs[s/2].devnum;
4602                 struct md_rdev *rdev2;
4603                 if (s&1) {
4604                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4605                         b = r10_bio->devs[s/2].repl_bio;
4606                 } else {
4607                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4608                         b = r10_bio->devs[s/2].bio;
4609                 }
4610                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4611                         continue;
4612
4613                 bio_set_dev(b, rdev2->bdev);
4614                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4615                         rdev2->new_data_offset;
4616                 b->bi_end_io = end_reshape_write;
4617                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4618                 b->bi_next = blist;
4619                 blist = b;
4620         }
4621
4622         /* Now add as many pages as possible to all of these bios. */
4623
4624         nr_sectors = 0;
4625         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4626         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4627                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4628                 int len = (max_sectors - s) << 9;
4629                 if (len > PAGE_SIZE)
4630                         len = PAGE_SIZE;
4631                 for (bio = blist; bio ; bio = bio->bi_next) {
4632                         /*
4633                          * won't fail because the vec table is big enough
4634                          * to hold all these pages
4635                          */
4636                         bio_add_page(bio, page, len, 0);
4637                 }
4638                 sector_nr += len >> 9;
4639                 nr_sectors += len >> 9;
4640         }
4641         rcu_read_unlock();
4642         r10_bio->sectors = nr_sectors;
4643
4644         /* Now submit the read */
4645         md_sync_acct_bio(read_bio, r10_bio->sectors);
4646         atomic_inc(&r10_bio->remaining);
4647         read_bio->bi_next = NULL;
4648         submit_bio_noacct(read_bio);
4649         sectors_done += nr_sectors;
4650         if (sector_nr <= last)
4651                 goto read_more;
4652
4653         lower_barrier(conf);
4654
4655         /* Now that we have done the whole section we can
4656          * update reshape_progress
4657          */
4658         if (mddev->reshape_backwards)
4659                 conf->reshape_progress -= sectors_done;
4660         else
4661                 conf->reshape_progress += sectors_done;
4662
4663         return sectors_done;
4664 }
4665
4666 static void end_reshape_request(struct r10bio *r10_bio);
4667 static int handle_reshape_read_error(struct mddev *mddev,
4668                                      struct r10bio *r10_bio);
4669 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4670 {
4671         /* Reshape read completed.  Hopefully we have a block
4672          * to write out.
4673          * If we got a read error then we do sync 1-page reads from
4674          * elsewhere until we find the data - or give up.
4675          */
4676         struct r10conf *conf = mddev->private;
4677         int s;
4678
4679         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4680                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4681                         /* Reshape has been aborted */
4682                         md_done_sync(mddev, r10_bio->sectors, 0);
4683                         return;
4684                 }
4685
4686         /* We definitely have the data in the pages, schedule the
4687          * writes.
4688          */
4689         atomic_set(&r10_bio->remaining, 1);
4690         for (s = 0; s < conf->copies*2; s++) {
4691                 struct bio *b;
4692                 int d = r10_bio->devs[s/2].devnum;
4693                 struct md_rdev *rdev;
4694                 rcu_read_lock();
4695                 if (s&1) {
4696                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4697                         b = r10_bio->devs[s/2].repl_bio;
4698                 } else {
4699                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4700                         b = r10_bio->devs[s/2].bio;
4701                 }
4702                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4703                         rcu_read_unlock();
4704                         continue;
4705                 }
4706                 atomic_inc(&rdev->nr_pending);
4707                 rcu_read_unlock();
4708                 md_sync_acct_bio(b, r10_bio->sectors);
4709                 atomic_inc(&r10_bio->remaining);
4710                 b->bi_next = NULL;
4711                 submit_bio_noacct(b);
4712         }
4713         end_reshape_request(r10_bio);
4714 }
4715
4716 static void end_reshape(struct r10conf *conf)
4717 {
4718         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4719                 return;
4720
4721         spin_lock_irq(&conf->device_lock);
4722         conf->prev = conf->geo;
4723         md_finish_reshape(conf->mddev);
4724         smp_wmb();
4725         conf->reshape_progress = MaxSector;
4726         conf->reshape_safe = MaxSector;
4727         spin_unlock_irq(&conf->device_lock);
4728
4729         if (conf->mddev->queue)
4730                 raid10_set_io_opt(conf);
4731         conf->fullsync = 0;
4732 }
4733
4734 static void raid10_update_reshape_pos(struct mddev *mddev)
4735 {
4736         struct r10conf *conf = mddev->private;
4737         sector_t lo, hi;
4738
4739         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741             || mddev->reshape_position == MaxSector)
4742                 conf->reshape_progress = mddev->reshape_position;
4743         else
4744                 WARN_ON_ONCE(1);
4745 }
4746
4747 static int handle_reshape_read_error(struct mddev *mddev,
4748                                      struct r10bio *r10_bio)
4749 {
4750         /* Use sync reads to get the blocks from somewhere else */
4751         int sectors = r10_bio->sectors;
4752         struct r10conf *conf = mddev->private;
4753         struct r10bio *r10b;
4754         int slot = 0;
4755         int idx = 0;
4756         struct page **pages;
4757
4758         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759         if (!r10b) {
4760                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761                 return -ENOMEM;
4762         }
4763
4764         /* reshape IOs share pages from .devs[0].bio */
4765         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766
4767         r10b->sector = r10_bio->sector;
4768         __raid10_find_phys(&conf->prev, r10b);
4769
4770         while (sectors) {
4771                 int s = sectors;
4772                 int success = 0;
4773                 int first_slot = slot;
4774
4775                 if (s > (PAGE_SIZE >> 9))
4776                         s = PAGE_SIZE >> 9;
4777
4778                 rcu_read_lock();
4779                 while (!success) {
4780                         int d = r10b->devs[slot].devnum;
4781                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782                         sector_t addr;
4783                         if (rdev == NULL ||
4784                             test_bit(Faulty, &rdev->flags) ||
4785                             !test_bit(In_sync, &rdev->flags))
4786                                 goto failed;
4787
4788                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789                         atomic_inc(&rdev->nr_pending);
4790                         rcu_read_unlock();
4791                         success = sync_page_io(rdev,
4792                                                addr,
4793                                                s << 9,
4794                                                pages[idx],
4795                                                REQ_OP_READ, 0, false);
4796                         rdev_dec_pending(rdev, mddev);
4797                         rcu_read_lock();
4798                         if (success)
4799                                 break;
4800                 failed:
4801                         slot++;
4802                         if (slot >= conf->copies)
4803                                 slot = 0;
4804                         if (slot == first_slot)
4805                                 break;
4806                 }
4807                 rcu_read_unlock();
4808                 if (!success) {
4809                         /* couldn't read this block, must give up */
4810                         set_bit(MD_RECOVERY_INTR,
4811                                 &mddev->recovery);
4812                         kfree(r10b);
4813                         return -EIO;
4814                 }
4815                 sectors -= s;
4816                 idx++;
4817         }
4818         kfree(r10b);
4819         return 0;
4820 }
4821
4822 static void end_reshape_write(struct bio *bio)
4823 {
4824         struct r10bio *r10_bio = get_resync_r10bio(bio);
4825         struct mddev *mddev = r10_bio->mddev;
4826         struct r10conf *conf = mddev->private;
4827         int d;
4828         int slot;
4829         int repl;
4830         struct md_rdev *rdev = NULL;
4831
4832         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833         if (repl)
4834                 rdev = conf->mirrors[d].replacement;
4835         if (!rdev) {
4836                 smp_mb();
4837                 rdev = conf->mirrors[d].rdev;
4838         }
4839
4840         if (bio->bi_status) {
4841                 /* FIXME should record badblock */
4842                 md_error(mddev, rdev);
4843         }
4844
4845         rdev_dec_pending(rdev, mddev);
4846         end_reshape_request(r10_bio);
4847 }
4848
4849 static void end_reshape_request(struct r10bio *r10_bio)
4850 {
4851         if (!atomic_dec_and_test(&r10_bio->remaining))
4852                 return;
4853         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854         bio_put(r10_bio->master_bio);
4855         put_buf(r10_bio);
4856 }
4857
4858 static void raid10_finish_reshape(struct mddev *mddev)
4859 {
4860         struct r10conf *conf = mddev->private;
4861
4862         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863                 return;
4864
4865         if (mddev->delta_disks > 0) {
4866                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867                         mddev->recovery_cp = mddev->resync_max_sectors;
4868                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869                 }
4870                 mddev->resync_max_sectors = mddev->array_sectors;
4871         } else {
4872                 int d;
4873                 rcu_read_lock();
4874                 for (d = conf->geo.raid_disks ;
4875                      d < conf->geo.raid_disks - mddev->delta_disks;
4876                      d++) {
4877                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878                         if (rdev)
4879                                 clear_bit(In_sync, &rdev->flags);
4880                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4881                         if (rdev)
4882                                 clear_bit(In_sync, &rdev->flags);
4883                 }
4884                 rcu_read_unlock();
4885         }
4886         mddev->layout = mddev->new_layout;
4887         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888         mddev->reshape_position = MaxSector;
4889         mddev->delta_disks = 0;
4890         mddev->reshape_backwards = 0;
4891 }
4892
4893 static struct md_personality raid10_personality =
4894 {
4895         .name           = "raid10",
4896         .level          = 10,
4897         .owner          = THIS_MODULE,
4898         .make_request   = raid10_make_request,
4899         .run            = raid10_run,
4900         .free           = raid10_free,
4901         .status         = raid10_status,
4902         .error_handler  = raid10_error,
4903         .hot_add_disk   = raid10_add_disk,
4904         .hot_remove_disk= raid10_remove_disk,
4905         .spare_active   = raid10_spare_active,
4906         .sync_request   = raid10_sync_request,
4907         .quiesce        = raid10_quiesce,
4908         .size           = raid10_size,
4909         .resize         = raid10_resize,
4910         .takeover       = raid10_takeover,
4911         .check_reshape  = raid10_check_reshape,
4912         .start_reshape  = raid10_start_reshape,
4913         .finish_reshape = raid10_finish_reshape,
4914         .update_reshape_pos = raid10_update_reshape_pos,
4915 };
4916
4917 static int __init raid_init(void)
4918 {
4919         return register_md_personality(&raid10_personality);
4920 }
4921
4922 static void raid_exit(void)
4923 {
4924         unregister_md_personality(&raid10_personality);
4925 }
4926
4927 module_init(raid_init);
4928 module_exit(raid_exit);
4929 MODULE_LICENSE("GPL");
4930 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932 MODULE_ALIAS("md-raid10");
4933 MODULE_ALIAS("md-level-10");
4934
4935 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);