GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450         bool discard_error;
451
452         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (bio->bi_error && !discard_error) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 /*
494                  * Do not set R10BIO_Uptodate if the current device is
495                  * rebuilding or Faulty. This is because we cannot use
496                  * such device for properly reading the data back (we could
497                  * potentially use it, if the current write would have felt
498                  * before rdev->recovery_offset, but for simplicity we don't
499                  * check this here.
500                  */
501                 if (test_bit(In_sync, &rdev->flags) &&
502                     !test_bit(Faulty, &rdev->flags))
503                         set_bit(R10BIO_Uptodate, &r10_bio->state);
504
505                 /* Maybe we can clear some bad blocks. */
506                 if (is_badblock(rdev,
507                                 r10_bio->devs[slot].addr,
508                                 r10_bio->sectors,
509                                 &first_bad, &bad_sectors) && !discard_error) {
510                         bio_put(bio);
511                         if (repl)
512                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513                         else
514                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515                         dec_rdev = 0;
516                         set_bit(R10BIO_MadeGood, &r10_bio->state);
517                 }
518         }
519
520         /*
521          *
522          * Let's see if all mirrored write operations have finished
523          * already.
524          */
525         one_write_done(r10_bio);
526         if (dec_rdev)
527                 rdev_dec_pending(rdev, conf->mddev);
528 }
529
530 /*
531  * RAID10 layout manager
532  * As well as the chunksize and raid_disks count, there are two
533  * parameters: near_copies and far_copies.
534  * near_copies * far_copies must be <= raid_disks.
535  * Normally one of these will be 1.
536  * If both are 1, we get raid0.
537  * If near_copies == raid_disks, we get raid1.
538  *
539  * Chunks are laid out in raid0 style with near_copies copies of the
540  * first chunk, followed by near_copies copies of the next chunk and
541  * so on.
542  * If far_copies > 1, then after 1/far_copies of the array has been assigned
543  * as described above, we start again with a device offset of near_copies.
544  * So we effectively have another copy of the whole array further down all
545  * the drives, but with blocks on different drives.
546  * With this layout, and block is never stored twice on the one device.
547  *
548  * raid10_find_phys finds the sector offset of a given virtual sector
549  * on each device that it is on.
550  *
551  * raid10_find_virt does the reverse mapping, from a device and a
552  * sector offset to a virtual address
553  */
554
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557         int n,f;
558         sector_t sector;
559         sector_t chunk;
560         sector_t stripe;
561         int dev;
562         int slot = 0;
563         int last_far_set_start, last_far_set_size;
564
565         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566         last_far_set_start *= geo->far_set_size;
567
568         last_far_set_size = geo->far_set_size;
569         last_far_set_size += (geo->raid_disks % geo->far_set_size);
570
571         /* now calculate first sector/dev */
572         chunk = r10bio->sector >> geo->chunk_shift;
573         sector = r10bio->sector & geo->chunk_mask;
574
575         chunk *= geo->near_copies;
576         stripe = chunk;
577         dev = sector_div(stripe, geo->raid_disks);
578         if (geo->far_offset)
579                 stripe *= geo->far_copies;
580
581         sector += stripe << geo->chunk_shift;
582
583         /* and calculate all the others */
584         for (n = 0; n < geo->near_copies; n++) {
585                 int d = dev;
586                 int set;
587                 sector_t s = sector;
588                 r10bio->devs[slot].devnum = d;
589                 r10bio->devs[slot].addr = s;
590                 slot++;
591
592                 for (f = 1; f < geo->far_copies; f++) {
593                         set = d / geo->far_set_size;
594                         d += geo->near_copies;
595
596                         if ((geo->raid_disks % geo->far_set_size) &&
597                             (d > last_far_set_start)) {
598                                 d -= last_far_set_start;
599                                 d %= last_far_set_size;
600                                 d += last_far_set_start;
601                         } else {
602                                 d %= geo->far_set_size;
603                                 d += geo->far_set_size * set;
604                         }
605                         s += geo->stride;
606                         r10bio->devs[slot].devnum = d;
607                         r10bio->devs[slot].addr = s;
608                         slot++;
609                 }
610                 dev++;
611                 if (dev >= geo->raid_disks) {
612                         dev = 0;
613                         sector += (geo->chunk_mask + 1);
614                 }
615         }
616 }
617
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620         struct geom *geo = &conf->geo;
621
622         if (conf->reshape_progress != MaxSector &&
623             ((r10bio->sector >= conf->reshape_progress) !=
624              conf->mddev->reshape_backwards)) {
625                 set_bit(R10BIO_Previous, &r10bio->state);
626                 geo = &conf->prev;
627         } else
628                 clear_bit(R10BIO_Previous, &r10bio->state);
629
630         __raid10_find_phys(geo, r10bio);
631 }
632
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635         sector_t offset, chunk, vchunk;
636         /* Never use conf->prev as this is only called during resync
637          * or recovery, so reshape isn't happening
638          */
639         struct geom *geo = &conf->geo;
640         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641         int far_set_size = geo->far_set_size;
642         int last_far_set_start;
643
644         if (geo->raid_disks % geo->far_set_size) {
645                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646                 last_far_set_start *= geo->far_set_size;
647
648                 if (dev >= last_far_set_start) {
649                         far_set_size = geo->far_set_size;
650                         far_set_size += (geo->raid_disks % geo->far_set_size);
651                         far_set_start = last_far_set_start;
652                 }
653         }
654
655         offset = sector & geo->chunk_mask;
656         if (geo->far_offset) {
657                 int fc;
658                 chunk = sector >> geo->chunk_shift;
659                 fc = sector_div(chunk, geo->far_copies);
660                 dev -= fc * geo->near_copies;
661                 if (dev < far_set_start)
662                         dev += far_set_size;
663         } else {
664                 while (sector >= geo->stride) {
665                         sector -= geo->stride;
666                         if (dev < (geo->near_copies + far_set_start))
667                                 dev += far_set_size - geo->near_copies;
668                         else
669                                 dev -= geo->near_copies;
670                 }
671                 chunk = sector >> geo->chunk_shift;
672         }
673         vchunk = chunk * geo->raid_disks + dev;
674         sector_div(vchunk, geo->near_copies);
675         return (vchunk << geo->chunk_shift) + offset;
676 }
677
678 /*
679  * This routine returns the disk from which the requested read should
680  * be done. There is a per-array 'next expected sequential IO' sector
681  * number - if this matches on the next IO then we use the last disk.
682  * There is also a per-disk 'last know head position' sector that is
683  * maintained from IRQ contexts, both the normal and the resync IO
684  * completion handlers update this position correctly. If there is no
685  * perfect sequential match then we pick the disk whose head is closest.
686  *
687  * If there are 2 mirrors in the same 2 devices, performance degrades
688  * because position is mirror, not device based.
689  *
690  * The rdev for the device selected will have nr_pending incremented.
691  */
692
693 /*
694  * FIXME: possibly should rethink readbalancing and do it differently
695  * depending on near_copies / far_copies geometry.
696  */
697 static struct md_rdev *read_balance(struct r10conf *conf,
698                                     struct r10bio *r10_bio,
699                                     int *max_sectors)
700 {
701         const sector_t this_sector = r10_bio->sector;
702         int disk, slot;
703         int sectors = r10_bio->sectors;
704         int best_good_sectors;
705         sector_t new_distance, best_dist;
706         struct md_rdev *best_rdev, *rdev = NULL;
707         int do_balance;
708         int best_slot;
709         struct geom *geo = &conf->geo;
710
711         raid10_find_phys(conf, r10_bio);
712         rcu_read_lock();
713         sectors = r10_bio->sectors;
714         best_slot = -1;
715         best_rdev = NULL;
716         best_dist = MaxSector;
717         best_good_sectors = 0;
718         do_balance = 1;
719         /*
720          * Check if we can balance. We can balance on the whole
721          * device if no resync is going on (recovery is ok), or below
722          * the resync window. We take the first readable disk when
723          * above the resync window.
724          */
725         if (conf->mddev->recovery_cp < MaxSector
726             && (this_sector + sectors >= conf->next_resync))
727                 do_balance = 0;
728
729         for (slot = 0; slot < conf->copies ; slot++) {
730                 sector_t first_bad;
731                 int bad_sectors;
732                 sector_t dev_sector;
733
734                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
735                         continue;
736                 disk = r10_bio->devs[slot].devnum;
737                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
738                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
739                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
740                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
741                 if (rdev == NULL ||
742                     test_bit(Faulty, &rdev->flags))
743                         continue;
744                 if (!test_bit(In_sync, &rdev->flags) &&
745                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
746                         continue;
747
748                 dev_sector = r10_bio->devs[slot].addr;
749                 if (is_badblock(rdev, dev_sector, sectors,
750                                 &first_bad, &bad_sectors)) {
751                         if (best_dist < MaxSector)
752                                 /* Already have a better slot */
753                                 continue;
754                         if (first_bad <= dev_sector) {
755                                 /* Cannot read here.  If this is the
756                                  * 'primary' device, then we must not read
757                                  * beyond 'bad_sectors' from another device.
758                                  */
759                                 bad_sectors -= (dev_sector - first_bad);
760                                 if (!do_balance && sectors > bad_sectors)
761                                         sectors = bad_sectors;
762                                 if (best_good_sectors > sectors)
763                                         best_good_sectors = sectors;
764                         } else {
765                                 sector_t good_sectors =
766                                         first_bad - dev_sector;
767                                 if (good_sectors > best_good_sectors) {
768                                         best_good_sectors = good_sectors;
769                                         best_slot = slot;
770                                         best_rdev = rdev;
771                                 }
772                                 if (!do_balance)
773                                         /* Must read from here */
774                                         break;
775                         }
776                         continue;
777                 } else
778                         best_good_sectors = sectors;
779
780                 if (!do_balance)
781                         break;
782
783                 /* This optimisation is debatable, and completely destroys
784                  * sequential read speed for 'far copies' arrays.  So only
785                  * keep it for 'near' arrays, and review those later.
786                  */
787                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
788                         break;
789
790                 /* for far > 1 always use the lowest address */
791                 if (geo->far_copies > 1)
792                         new_distance = r10_bio->devs[slot].addr;
793                 else
794                         new_distance = abs(r10_bio->devs[slot].addr -
795                                            conf->mirrors[disk].head_position);
796                 if (new_distance < best_dist) {
797                         best_dist = new_distance;
798                         best_slot = slot;
799                         best_rdev = rdev;
800                 }
801         }
802         if (slot >= conf->copies) {
803                 slot = best_slot;
804                 rdev = best_rdev;
805         }
806
807         if (slot >= 0) {
808                 atomic_inc(&rdev->nr_pending);
809                 r10_bio->read_slot = slot;
810         } else
811                 rdev = NULL;
812         rcu_read_unlock();
813         *max_sectors = best_good_sectors;
814
815         return rdev;
816 }
817
818 static int raid10_congested(struct mddev *mddev, int bits)
819 {
820         struct r10conf *conf = mddev->private;
821         int i, ret = 0;
822
823         if ((bits & (1 << WB_async_congested)) &&
824             conf->pending_count >= max_queued_requests)
825                 return 1;
826
827         rcu_read_lock();
828         for (i = 0;
829              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
830                      && ret == 0;
831              i++) {
832                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
833                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
834                         struct request_queue *q = bdev_get_queue(rdev->bdev);
835
836                         ret |= bdi_congested(&q->backing_dev_info, bits);
837                 }
838         }
839         rcu_read_unlock();
840         return ret;
841 }
842
843 static void flush_pending_writes(struct r10conf *conf)
844 {
845         /* Any writes that have been queued but are awaiting
846          * bitmap updates get flushed here.
847          */
848         spin_lock_irq(&conf->device_lock);
849
850         if (conf->pending_bio_list.head) {
851                 struct bio *bio;
852                 bio = bio_list_get(&conf->pending_bio_list);
853                 conf->pending_count = 0;
854                 spin_unlock_irq(&conf->device_lock);
855                 /* flush any pending bitmap writes to disk
856                  * before proceeding w/ I/O */
857                 bitmap_unplug(conf->mddev->bitmap);
858                 wake_up(&conf->wait_barrier);
859
860                 while (bio) { /* submit pending writes */
861                         struct bio *next = bio->bi_next;
862                         bio->bi_next = NULL;
863                         if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
864                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
865                                 /* Just ignore it */
866                                 bio_endio(bio);
867                         else
868                                 generic_make_request(bio);
869                         bio = next;
870                 }
871         } else
872                 spin_unlock_irq(&conf->device_lock);
873 }
874
875 /* Barriers....
876  * Sometimes we need to suspend IO while we do something else,
877  * either some resync/recovery, or reconfigure the array.
878  * To do this we raise a 'barrier'.
879  * The 'barrier' is a counter that can be raised multiple times
880  * to count how many activities are happening which preclude
881  * normal IO.
882  * We can only raise the barrier if there is no pending IO.
883  * i.e. if nr_pending == 0.
884  * We choose only to raise the barrier if no-one is waiting for the
885  * barrier to go down.  This means that as soon as an IO request
886  * is ready, no other operations which require a barrier will start
887  * until the IO request has had a chance.
888  *
889  * So: regular IO calls 'wait_barrier'.  When that returns there
890  *    is no backgroup IO happening,  It must arrange to call
891  *    allow_barrier when it has finished its IO.
892  * backgroup IO calls must call raise_barrier.  Once that returns
893  *    there is no normal IO happeing.  It must arrange to call
894  *    lower_barrier when the particular background IO completes.
895  */
896
897 static void raise_barrier(struct r10conf *conf, int force)
898 {
899         BUG_ON(force && !conf->barrier);
900         spin_lock_irq(&conf->resync_lock);
901
902         /* Wait until no block IO is waiting (unless 'force') */
903         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
904                             conf->resync_lock);
905
906         /* block any new IO from starting */
907         conf->barrier++;
908
909         /* Now wait for all pending IO to complete */
910         wait_event_lock_irq(conf->wait_barrier,
911                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
912                             conf->resync_lock);
913
914         spin_unlock_irq(&conf->resync_lock);
915 }
916
917 static void lower_barrier(struct r10conf *conf)
918 {
919         unsigned long flags;
920         spin_lock_irqsave(&conf->resync_lock, flags);
921         conf->barrier--;
922         spin_unlock_irqrestore(&conf->resync_lock, flags);
923         wake_up(&conf->wait_barrier);
924 }
925
926 static void wait_barrier(struct r10conf *conf)
927 {
928         spin_lock_irq(&conf->resync_lock);
929         if (conf->barrier) {
930                 conf->nr_waiting++;
931                 /* Wait for the barrier to drop.
932                  * However if there are already pending
933                  * requests (preventing the barrier from
934                  * rising completely), and the
935                  * pre-process bio queue isn't empty,
936                  * then don't wait, as we need to empty
937                  * that queue to get the nr_pending
938                  * count down.
939                  */
940                 wait_event_lock_irq(conf->wait_barrier,
941                                     !conf->barrier ||
942                                     (atomic_read(&conf->nr_pending) &&
943                                      current->bio_list &&
944                                      !bio_list_empty(current->bio_list)),
945                                     conf->resync_lock);
946                 conf->nr_waiting--;
947                 if (!conf->nr_waiting)
948                         wake_up(&conf->wait_barrier);
949         }
950         atomic_inc(&conf->nr_pending);
951         spin_unlock_irq(&conf->resync_lock);
952 }
953
954 static void allow_barrier(struct r10conf *conf)
955 {
956         if ((atomic_dec_and_test(&conf->nr_pending)) ||
957                         (conf->array_freeze_pending))
958                 wake_up(&conf->wait_barrier);
959 }
960
961 static void freeze_array(struct r10conf *conf, int extra)
962 {
963         /* stop syncio and normal IO and wait for everything to
964          * go quiet.
965          * We increment barrier and nr_waiting, and then
966          * wait until nr_pending match nr_queued+extra
967          * This is called in the context of one normal IO request
968          * that has failed. Thus any sync request that might be pending
969          * will be blocked by nr_pending, and we need to wait for
970          * pending IO requests to complete or be queued for re-try.
971          * Thus the number queued (nr_queued) plus this request (extra)
972          * must match the number of pending IOs (nr_pending) before
973          * we continue.
974          */
975         spin_lock_irq(&conf->resync_lock);
976         conf->array_freeze_pending++;
977         conf->barrier++;
978         conf->nr_waiting++;
979         wait_event_lock_irq_cmd(conf->wait_barrier,
980                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
981                                 conf->resync_lock,
982                                 flush_pending_writes(conf));
983
984         conf->array_freeze_pending--;
985         spin_unlock_irq(&conf->resync_lock);
986 }
987
988 static void unfreeze_array(struct r10conf *conf)
989 {
990         /* reverse the effect of the freeze */
991         spin_lock_irq(&conf->resync_lock);
992         conf->barrier--;
993         conf->nr_waiting--;
994         wake_up(&conf->wait_barrier);
995         spin_unlock_irq(&conf->resync_lock);
996 }
997
998 static sector_t choose_data_offset(struct r10bio *r10_bio,
999                                    struct md_rdev *rdev)
1000 {
1001         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1002             test_bit(R10BIO_Previous, &r10_bio->state))
1003                 return rdev->data_offset;
1004         else
1005                 return rdev->new_data_offset;
1006 }
1007
1008 struct raid10_plug_cb {
1009         struct blk_plug_cb      cb;
1010         struct bio_list         pending;
1011         int                     pending_cnt;
1012 };
1013
1014 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1015 {
1016         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1017                                                    cb);
1018         struct mddev *mddev = plug->cb.data;
1019         struct r10conf *conf = mddev->private;
1020         struct bio *bio;
1021
1022         if (from_schedule || current->bio_list) {
1023                 spin_lock_irq(&conf->device_lock);
1024                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1025                 conf->pending_count += plug->pending_cnt;
1026                 spin_unlock_irq(&conf->device_lock);
1027                 wake_up(&conf->wait_barrier);
1028                 md_wakeup_thread(mddev->thread);
1029                 kfree(plug);
1030                 return;
1031         }
1032
1033         /* we aren't scheduling, so we can do the write-out directly. */
1034         bio = bio_list_get(&plug->pending);
1035         bitmap_unplug(mddev->bitmap);
1036         wake_up(&conf->wait_barrier);
1037
1038         while (bio) { /* submit pending writes */
1039                 struct bio *next = bio->bi_next;
1040                 bio->bi_next = NULL;
1041                 if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1042                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1043                         /* Just ignore it */
1044                         bio_endio(bio);
1045                 else
1046                         generic_make_request(bio);
1047                 bio = next;
1048         }
1049         kfree(plug);
1050 }
1051
1052 static void __make_request(struct mddev *mddev, struct bio *bio)
1053 {
1054         struct r10conf *conf = mddev->private;
1055         struct r10bio *r10_bio;
1056         struct bio *read_bio;
1057         int i;
1058         const int op = bio_op(bio);
1059         const int rw = bio_data_dir(bio);
1060         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1061         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1062         unsigned long flags;
1063         struct md_rdev *blocked_rdev;
1064         struct blk_plug_cb *cb;
1065         struct raid10_plug_cb *plug = NULL;
1066         int sectors_handled;
1067         int max_sectors;
1068         int sectors;
1069
1070         md_write_start(mddev, bio);
1071
1072         /*
1073          * Register the new request and wait if the reconstruction
1074          * thread has put up a bar for new requests.
1075          * Continue immediately if no resync is active currently.
1076          */
1077         wait_barrier(conf);
1078
1079         sectors = bio_sectors(bio);
1080         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1081             bio->bi_iter.bi_sector < conf->reshape_progress &&
1082             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1083                 /* IO spans the reshape position.  Need to wait for
1084                  * reshape to pass
1085                  */
1086                 allow_barrier(conf);
1087                 wait_event(conf->wait_barrier,
1088                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1089                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1090                            sectors);
1091                 wait_barrier(conf);
1092         }
1093         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1094             bio_data_dir(bio) == WRITE &&
1095             (mddev->reshape_backwards
1096              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1097                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1098              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1099                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1100                 /* Need to update reshape_position in metadata */
1101                 mddev->reshape_position = conf->reshape_progress;
1102                 set_mask_bits(&mddev->flags, 0,
1103                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1104                 md_wakeup_thread(mddev->thread);
1105                 wait_event(mddev->sb_wait,
1106                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1107
1108                 conf->reshape_safe = mddev->reshape_position;
1109         }
1110
1111         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1112
1113         r10_bio->master_bio = bio;
1114         r10_bio->sectors = sectors;
1115
1116         r10_bio->mddev = mddev;
1117         r10_bio->sector = bio->bi_iter.bi_sector;
1118         r10_bio->state = 0;
1119
1120         /* We might need to issue multiple reads to different
1121          * devices if there are bad blocks around, so we keep
1122          * track of the number of reads in bio->bi_phys_segments.
1123          * If this is 0, there is only one r10_bio and no locking
1124          * will be needed when the request completes.  If it is
1125          * non-zero, then it is the number of not-completed requests.
1126          */
1127         bio->bi_phys_segments = 0;
1128         bio_clear_flag(bio, BIO_SEG_VALID);
1129
1130         if (rw == READ) {
1131                 /*
1132                  * read balancing logic:
1133                  */
1134                 struct md_rdev *rdev;
1135                 int slot;
1136
1137 read_again:
1138                 rdev = read_balance(conf, r10_bio, &max_sectors);
1139                 if (!rdev) {
1140                         raid_end_bio_io(r10_bio);
1141                         return;
1142                 }
1143                 slot = r10_bio->read_slot;
1144
1145                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1146                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1147                          max_sectors);
1148
1149                 r10_bio->devs[slot].bio = read_bio;
1150                 r10_bio->devs[slot].rdev = rdev;
1151
1152                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1153                         choose_data_offset(r10_bio, rdev);
1154                 read_bio->bi_bdev = rdev->bdev;
1155                 read_bio->bi_end_io = raid10_end_read_request;
1156                 bio_set_op_attrs(read_bio, op, do_sync);
1157                 read_bio->bi_private = r10_bio;
1158
1159                 if (max_sectors < r10_bio->sectors) {
1160                         /* Could not read all from this device, so we will
1161                          * need another r10_bio.
1162                          */
1163                         sectors_handled = (r10_bio->sector + max_sectors
1164                                            - bio->bi_iter.bi_sector);
1165                         r10_bio->sectors = max_sectors;
1166                         spin_lock_irq(&conf->device_lock);
1167                         if (bio->bi_phys_segments == 0)
1168                                 bio->bi_phys_segments = 2;
1169                         else
1170                                 bio->bi_phys_segments++;
1171                         spin_unlock_irq(&conf->device_lock);
1172                         /* Cannot call generic_make_request directly
1173                          * as that will be queued in __generic_make_request
1174                          * and subsequent mempool_alloc might block
1175                          * waiting for it.  so hand bio over to raid10d.
1176                          */
1177                         reschedule_retry(r10_bio);
1178
1179                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1180
1181                         r10_bio->master_bio = bio;
1182                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183                         r10_bio->state = 0;
1184                         r10_bio->mddev = mddev;
1185                         r10_bio->sector = bio->bi_iter.bi_sector +
1186                                 sectors_handled;
1187                         goto read_again;
1188                 } else
1189                         generic_make_request(read_bio);
1190                 return;
1191         }
1192
1193         /*
1194          * WRITE:
1195          */
1196         if (conf->pending_count >= max_queued_requests) {
1197                 md_wakeup_thread(mddev->thread);
1198                 wait_event(conf->wait_barrier,
1199                            conf->pending_count < max_queued_requests);
1200         }
1201         /* first select target devices under rcu_lock and
1202          * inc refcount on their rdev.  Record them by setting
1203          * bios[x] to bio
1204          * If there are known/acknowledged bad blocks on any device
1205          * on which we have seen a write error, we want to avoid
1206          * writing to those blocks.  This potentially requires several
1207          * writes to write around the bad blocks.  Each set of writes
1208          * gets its own r10_bio with a set of bios attached.  The number
1209          * of r10_bios is recored in bio->bi_phys_segments just as with
1210          * the read case.
1211          */
1212
1213         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1214         raid10_find_phys(conf, r10_bio);
1215 retry_write:
1216         blocked_rdev = NULL;
1217         rcu_read_lock();
1218         max_sectors = r10_bio->sectors;
1219
1220         for (i = 0;  i < conf->copies; i++) {
1221                 int d = r10_bio->devs[i].devnum;
1222                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1223                 struct md_rdev *rrdev = rcu_dereference(
1224                         conf->mirrors[d].replacement);
1225                 if (rdev == rrdev)
1226                         rrdev = NULL;
1227                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228                         atomic_inc(&rdev->nr_pending);
1229                         blocked_rdev = rdev;
1230                         break;
1231                 }
1232                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1233                         atomic_inc(&rrdev->nr_pending);
1234                         blocked_rdev = rrdev;
1235                         break;
1236                 }
1237                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1238                         rdev = NULL;
1239                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1240                         rrdev = NULL;
1241
1242                 r10_bio->devs[i].bio = NULL;
1243                 r10_bio->devs[i].repl_bio = NULL;
1244
1245                 if (!rdev && !rrdev) {
1246                         set_bit(R10BIO_Degraded, &r10_bio->state);
1247                         continue;
1248                 }
1249                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1250                         sector_t first_bad;
1251                         sector_t dev_sector = r10_bio->devs[i].addr;
1252                         int bad_sectors;
1253                         int is_bad;
1254
1255                         is_bad = is_badblock(rdev, dev_sector,
1256                                              max_sectors,
1257                                              &first_bad, &bad_sectors);
1258                         if (is_bad < 0) {
1259                                 /* Mustn't write here until the bad block
1260                                  * is acknowledged
1261                                  */
1262                                 atomic_inc(&rdev->nr_pending);
1263                                 set_bit(BlockedBadBlocks, &rdev->flags);
1264                                 blocked_rdev = rdev;
1265                                 break;
1266                         }
1267                         if (is_bad && first_bad <= dev_sector) {
1268                                 /* Cannot write here at all */
1269                                 bad_sectors -= (dev_sector - first_bad);
1270                                 if (bad_sectors < max_sectors)
1271                                         /* Mustn't write more than bad_sectors
1272                                          * to other devices yet
1273                                          */
1274                                         max_sectors = bad_sectors;
1275                                 /* We don't set R10BIO_Degraded as that
1276                                  * only applies if the disk is missing,
1277                                  * so it might be re-added, and we want to
1278                                  * know to recover this chunk.
1279                                  * In this case the device is here, and the
1280                                  * fact that this chunk is not in-sync is
1281                                  * recorded in the bad block log.
1282                                  */
1283                                 continue;
1284                         }
1285                         if (is_bad) {
1286                                 int good_sectors = first_bad - dev_sector;
1287                                 if (good_sectors < max_sectors)
1288                                         max_sectors = good_sectors;
1289                         }
1290                 }
1291                 if (rdev) {
1292                         r10_bio->devs[i].bio = bio;
1293                         atomic_inc(&rdev->nr_pending);
1294                 }
1295                 if (rrdev) {
1296                         r10_bio->devs[i].repl_bio = bio;
1297                         atomic_inc(&rrdev->nr_pending);
1298                 }
1299         }
1300         rcu_read_unlock();
1301
1302         if (unlikely(blocked_rdev)) {
1303                 /* Have to wait for this device to get unblocked, then retry */
1304                 int j;
1305                 int d;
1306
1307                 for (j = 0; j < i; j++) {
1308                         if (r10_bio->devs[j].bio) {
1309                                 d = r10_bio->devs[j].devnum;
1310                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1311                         }
1312                         if (r10_bio->devs[j].repl_bio) {
1313                                 struct md_rdev *rdev;
1314                                 d = r10_bio->devs[j].devnum;
1315                                 rdev = conf->mirrors[d].replacement;
1316                                 if (!rdev) {
1317                                         /* Race with remove_disk */
1318                                         smp_mb();
1319                                         rdev = conf->mirrors[d].rdev;
1320                                 }
1321                                 rdev_dec_pending(rdev, mddev);
1322                         }
1323                 }
1324                 allow_barrier(conf);
1325                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326                 wait_barrier(conf);
1327                 goto retry_write;
1328         }
1329
1330         if (max_sectors < r10_bio->sectors) {
1331                 /* We are splitting this into multiple parts, so
1332                  * we need to prepare for allocating another r10_bio.
1333                  */
1334                 r10_bio->sectors = max_sectors;
1335                 spin_lock_irq(&conf->device_lock);
1336                 if (bio->bi_phys_segments == 0)
1337                         bio->bi_phys_segments = 2;
1338                 else
1339                         bio->bi_phys_segments++;
1340                 spin_unlock_irq(&conf->device_lock);
1341         }
1342         sectors_handled = r10_bio->sector + max_sectors -
1343                 bio->bi_iter.bi_sector;
1344
1345         atomic_set(&r10_bio->remaining, 1);
1346         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1347
1348         for (i = 0; i < conf->copies; i++) {
1349                 struct bio *mbio;
1350                 int d = r10_bio->devs[i].devnum;
1351                 if (r10_bio->devs[i].bio) {
1352                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1353                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1354                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1355                                  max_sectors);
1356                         r10_bio->devs[i].bio = mbio;
1357
1358                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1359                                            choose_data_offset(r10_bio,
1360                                                               rdev));
1361                         mbio->bi_bdev = rdev->bdev;
1362                         mbio->bi_end_io = raid10_end_write_request;
1363                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1364                         mbio->bi_private = r10_bio;
1365
1366                         atomic_inc(&r10_bio->remaining);
1367
1368                         cb = blk_check_plugged(raid10_unplug, mddev,
1369                                                sizeof(*plug));
1370                         if (cb)
1371                                 plug = container_of(cb, struct raid10_plug_cb,
1372                                                     cb);
1373                         else
1374                                 plug = NULL;
1375                         spin_lock_irqsave(&conf->device_lock, flags);
1376                         if (plug) {
1377                                 bio_list_add(&plug->pending, mbio);
1378                                 plug->pending_cnt++;
1379                         } else {
1380                                 bio_list_add(&conf->pending_bio_list, mbio);
1381                                 conf->pending_count++;
1382                         }
1383                         spin_unlock_irqrestore(&conf->device_lock, flags);
1384                         if (!plug)
1385                                 md_wakeup_thread(mddev->thread);
1386                 }
1387
1388                 if (r10_bio->devs[i].repl_bio) {
1389                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1390                         if (rdev == NULL) {
1391                                 /* Replacement just got moved to main 'rdev' */
1392                                 smp_mb();
1393                                 rdev = conf->mirrors[d].rdev;
1394                         }
1395                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1396                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1397                                  max_sectors);
1398                         r10_bio->devs[i].repl_bio = mbio;
1399
1400                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1401                                            choose_data_offset(
1402                                                    r10_bio, rdev));
1403                         mbio->bi_bdev = rdev->bdev;
1404                         mbio->bi_end_io = raid10_end_write_request;
1405                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1406                         mbio->bi_private = r10_bio;
1407
1408                         atomic_inc(&r10_bio->remaining);
1409                         spin_lock_irqsave(&conf->device_lock, flags);
1410                         bio_list_add(&conf->pending_bio_list, mbio);
1411                         conf->pending_count++;
1412                         spin_unlock_irqrestore(&conf->device_lock, flags);
1413                         if (!mddev_check_plugged(mddev))
1414                                 md_wakeup_thread(mddev->thread);
1415                 }
1416         }
1417
1418         /* Don't remove the bias on 'remaining' (one_write_done) until
1419          * after checking if we need to go around again.
1420          */
1421
1422         if (sectors_handled < bio_sectors(bio)) {
1423                 one_write_done(r10_bio);
1424                 /* We need another r10_bio.  It has already been counted
1425                  * in bio->bi_phys_segments.
1426                  */
1427                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1428
1429                 r10_bio->master_bio = bio;
1430                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1431
1432                 r10_bio->mddev = mddev;
1433                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1434                 r10_bio->state = 0;
1435                 goto retry_write;
1436         }
1437         one_write_done(r10_bio);
1438 }
1439
1440 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1441 {
1442         struct r10conf *conf = mddev->private;
1443         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1444         int chunk_sects = chunk_mask + 1;
1445
1446         struct bio *split;
1447
1448         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1449                 md_flush_request(mddev, bio);
1450                 return;
1451         }
1452
1453         do {
1454
1455                 /*
1456                  * If this request crosses a chunk boundary, we need to split
1457                  * it.
1458                  */
1459                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1460                              bio_sectors(bio) > chunk_sects
1461                              && (conf->geo.near_copies < conf->geo.raid_disks
1462                                  || conf->prev.near_copies <
1463                                  conf->prev.raid_disks))) {
1464                         split = bio_split(bio, chunk_sects -
1465                                           (bio->bi_iter.bi_sector &
1466                                            (chunk_sects - 1)),
1467                                           GFP_NOIO, fs_bio_set);
1468                         bio_chain(split, bio);
1469                 } else {
1470                         split = bio;
1471                 }
1472
1473                 __make_request(mddev, split);
1474         } while (split != bio);
1475
1476         /* In case raid10d snuck in to freeze_array */
1477         wake_up(&conf->wait_barrier);
1478 }
1479
1480 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1481 {
1482         struct r10conf *conf = mddev->private;
1483         int i;
1484
1485         if (conf->geo.near_copies < conf->geo.raid_disks)
1486                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1487         if (conf->geo.near_copies > 1)
1488                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1489         if (conf->geo.far_copies > 1) {
1490                 if (conf->geo.far_offset)
1491                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1492                 else
1493                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1494                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1495                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1496         }
1497         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1498                                         conf->geo.raid_disks - mddev->degraded);
1499         rcu_read_lock();
1500         for (i = 0; i < conf->geo.raid_disks; i++) {
1501                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1503         }
1504         rcu_read_unlock();
1505         seq_printf(seq, "]");
1506 }
1507
1508 /* check if there are enough drives for
1509  * every block to appear on atleast one.
1510  * Don't consider the device numbered 'ignore'
1511  * as we might be about to remove it.
1512  */
1513 static int _enough(struct r10conf *conf, int previous, int ignore)
1514 {
1515         int first = 0;
1516         int has_enough = 0;
1517         int disks, ncopies;
1518         if (previous) {
1519                 disks = conf->prev.raid_disks;
1520                 ncopies = conf->prev.near_copies;
1521         } else {
1522                 disks = conf->geo.raid_disks;
1523                 ncopies = conf->geo.near_copies;
1524         }
1525
1526         rcu_read_lock();
1527         do {
1528                 int n = conf->copies;
1529                 int cnt = 0;
1530                 int this = first;
1531                 while (n--) {
1532                         struct md_rdev *rdev;
1533                         if (this != ignore &&
1534                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1535                             test_bit(In_sync, &rdev->flags))
1536                                 cnt++;
1537                         this = (this+1) % disks;
1538                 }
1539                 if (cnt == 0)
1540                         goto out;
1541                 first = (first + ncopies) % disks;
1542         } while (first != 0);
1543         has_enough = 1;
1544 out:
1545         rcu_read_unlock();
1546         return has_enough;
1547 }
1548
1549 static int enough(struct r10conf *conf, int ignore)
1550 {
1551         /* when calling 'enough', both 'prev' and 'geo' must
1552          * be stable.
1553          * This is ensured if ->reconfig_mutex or ->device_lock
1554          * is held.
1555          */
1556         return _enough(conf, 0, ignore) &&
1557                 _enough(conf, 1, ignore);
1558 }
1559
1560 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1561 {
1562         char b[BDEVNAME_SIZE];
1563         struct r10conf *conf = mddev->private;
1564         unsigned long flags;
1565
1566         /*
1567          * If it is not operational, then we have already marked it as dead
1568          * else if it is the last working disks, ignore the error, let the
1569          * next level up know.
1570          * else mark the drive as failed
1571          */
1572         spin_lock_irqsave(&conf->device_lock, flags);
1573         if (test_bit(In_sync, &rdev->flags)
1574             && !enough(conf, rdev->raid_disk)) {
1575                 /*
1576                  * Don't fail the drive, just return an IO error.
1577                  */
1578                 spin_unlock_irqrestore(&conf->device_lock, flags);
1579                 return;
1580         }
1581         if (test_and_clear_bit(In_sync, &rdev->flags))
1582                 mddev->degraded++;
1583         /*
1584          * If recovery is running, make sure it aborts.
1585          */
1586         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1587         set_bit(Blocked, &rdev->flags);
1588         set_bit(Faulty, &rdev->flags);
1589         set_mask_bits(&mddev->flags, 0,
1590                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1591         spin_unlock_irqrestore(&conf->device_lock, flags);
1592         printk(KERN_ALERT
1593                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1594                "md/raid10:%s: Operation continuing on %d devices.\n",
1595                mdname(mddev), bdevname(rdev->bdev, b),
1596                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1597 }
1598
1599 static void print_conf(struct r10conf *conf)
1600 {
1601         int i;
1602         struct md_rdev *rdev;
1603
1604         printk(KERN_DEBUG "RAID10 conf printout:\n");
1605         if (!conf) {
1606                 printk(KERN_DEBUG "(!conf)\n");
1607                 return;
1608         }
1609         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1610                 conf->geo.raid_disks);
1611
1612         /* This is only called with ->reconfix_mutex held, so
1613          * rcu protection of rdev is not needed */
1614         for (i = 0; i < conf->geo.raid_disks; i++) {
1615                 char b[BDEVNAME_SIZE];
1616                 rdev = conf->mirrors[i].rdev;
1617                 if (rdev)
1618                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619                                 i, !test_bit(In_sync, &rdev->flags),
1620                                 !test_bit(Faulty, &rdev->flags),
1621                                 bdevname(rdev->bdev,b));
1622         }
1623 }
1624
1625 static void close_sync(struct r10conf *conf)
1626 {
1627         wait_barrier(conf);
1628         allow_barrier(conf);
1629
1630         mempool_destroy(conf->r10buf_pool);
1631         conf->r10buf_pool = NULL;
1632 }
1633
1634 static int raid10_spare_active(struct mddev *mddev)
1635 {
1636         int i;
1637         struct r10conf *conf = mddev->private;
1638         struct raid10_info *tmp;
1639         int count = 0;
1640         unsigned long flags;
1641
1642         /*
1643          * Find all non-in_sync disks within the RAID10 configuration
1644          * and mark them in_sync
1645          */
1646         for (i = 0; i < conf->geo.raid_disks; i++) {
1647                 tmp = conf->mirrors + i;
1648                 if (tmp->replacement
1649                     && tmp->replacement->recovery_offset == MaxSector
1650                     && !test_bit(Faulty, &tmp->replacement->flags)
1651                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652                         /* Replacement has just become active */
1653                         if (!tmp->rdev
1654                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655                                 count++;
1656                         if (tmp->rdev) {
1657                                 /* Replaced device not technically faulty,
1658                                  * but we need to be sure it gets removed
1659                                  * and never re-added.
1660                                  */
1661                                 set_bit(Faulty, &tmp->rdev->flags);
1662                                 sysfs_notify_dirent_safe(
1663                                         tmp->rdev->sysfs_state);
1664                         }
1665                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666                 } else if (tmp->rdev
1667                            && tmp->rdev->recovery_offset == MaxSector
1668                            && !test_bit(Faulty, &tmp->rdev->flags)
1669                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670                         count++;
1671                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672                 }
1673         }
1674         spin_lock_irqsave(&conf->device_lock, flags);
1675         mddev->degraded -= count;
1676         spin_unlock_irqrestore(&conf->device_lock, flags);
1677
1678         print_conf(conf);
1679         return count;
1680 }
1681
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct r10conf *conf = mddev->private;
1685         int err = -EEXIST;
1686         int mirror;
1687         int first = 0;
1688         int last = conf->geo.raid_disks - 1;
1689
1690         if (mddev->recovery_cp < MaxSector)
1691                 /* only hot-add to in-sync arrays, as recovery is
1692                  * very different from resync
1693                  */
1694                 return -EBUSY;
1695         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696                 return -EINVAL;
1697
1698         if (md_integrity_add_rdev(rdev, mddev))
1699                 return -ENXIO;
1700
1701         if (rdev->raid_disk >= 0)
1702                 first = last = rdev->raid_disk;
1703
1704         if (rdev->saved_raid_disk >= first &&
1705             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706                 mirror = rdev->saved_raid_disk;
1707         else
1708                 mirror = first;
1709         for ( ; mirror <= last ; mirror++) {
1710                 struct raid10_info *p = &conf->mirrors[mirror];
1711                 if (p->recovery_disabled == mddev->recovery_disabled)
1712                         continue;
1713                 if (p->rdev) {
1714                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715                             p->replacement != NULL)
1716                                 continue;
1717                         clear_bit(In_sync, &rdev->flags);
1718                         set_bit(Replacement, &rdev->flags);
1719                         rdev->raid_disk = mirror;
1720                         err = 0;
1721                         if (mddev->gendisk)
1722                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723                                                   rdev->data_offset << 9);
1724                         conf->fullsync = 1;
1725                         rcu_assign_pointer(p->replacement, rdev);
1726                         break;
1727                 }
1728
1729                 if (mddev->gendisk)
1730                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1731                                           rdev->data_offset << 9);
1732
1733                 p->head_position = 0;
1734                 p->recovery_disabled = mddev->recovery_disabled - 1;
1735                 rdev->raid_disk = mirror;
1736                 err = 0;
1737                 if (rdev->saved_raid_disk != mirror)
1738                         conf->fullsync = 1;
1739                 rcu_assign_pointer(p->rdev, rdev);
1740                 break;
1741         }
1742         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1743                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1744
1745         print_conf(conf);
1746         return err;
1747 }
1748
1749 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1750 {
1751         struct r10conf *conf = mddev->private;
1752         int err = 0;
1753         int number = rdev->raid_disk;
1754         struct md_rdev **rdevp;
1755         struct raid10_info *p = conf->mirrors + number;
1756
1757         print_conf(conf);
1758         if (rdev == p->rdev)
1759                 rdevp = &p->rdev;
1760         else if (rdev == p->replacement)
1761                 rdevp = &p->replacement;
1762         else
1763                 return 0;
1764
1765         if (test_bit(In_sync, &rdev->flags) ||
1766             atomic_read(&rdev->nr_pending)) {
1767                 err = -EBUSY;
1768                 goto abort;
1769         }
1770         /* Only remove non-faulty devices if recovery
1771          * is not possible.
1772          */
1773         if (!test_bit(Faulty, &rdev->flags) &&
1774             mddev->recovery_disabled != p->recovery_disabled &&
1775             (!p->replacement || p->replacement == rdev) &&
1776             number < conf->geo.raid_disks &&
1777             enough(conf, -1)) {
1778                 err = -EBUSY;
1779                 goto abort;
1780         }
1781         *rdevp = NULL;
1782         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1783                 synchronize_rcu();
1784                 if (atomic_read(&rdev->nr_pending)) {
1785                         /* lost the race, try later */
1786                         err = -EBUSY;
1787                         *rdevp = rdev;
1788                         goto abort;
1789                 }
1790         }
1791         if (p->replacement) {
1792                 /* We must have just cleared 'rdev' */
1793                 p->rdev = p->replacement;
1794                 clear_bit(Replacement, &p->replacement->flags);
1795                 smp_mb(); /* Make sure other CPUs may see both as identical
1796                            * but will never see neither -- if they are careful.
1797                            */
1798                 p->replacement = NULL;
1799                 clear_bit(WantReplacement, &rdev->flags);
1800         } else
1801                 /* We might have just remove the Replacement as faulty
1802                  * Clear the flag just in case
1803                  */
1804                 clear_bit(WantReplacement, &rdev->flags);
1805
1806         err = md_integrity_register(mddev);
1807
1808 abort:
1809
1810         print_conf(conf);
1811         return err;
1812 }
1813
1814 static void end_sync_read(struct bio *bio)
1815 {
1816         struct r10bio *r10_bio = bio->bi_private;
1817         struct r10conf *conf = r10_bio->mddev->private;
1818         int d;
1819
1820         if (bio == r10_bio->master_bio) {
1821                 /* this is a reshape read */
1822                 d = r10_bio->read_slot; /* really the read dev */
1823         } else
1824                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826         if (!bio->bi_error)
1827                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1828         else
1829                 /* The write handler will notice the lack of
1830                  * R10BIO_Uptodate and record any errors etc
1831                  */
1832                 atomic_add(r10_bio->sectors,
1833                            &conf->mirrors[d].rdev->corrected_errors);
1834
1835         /* for reconstruct, we always reschedule after a read.
1836          * for resync, only after all reads
1837          */
1838         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840             atomic_dec_and_test(&r10_bio->remaining)) {
1841                 /* we have read all the blocks,
1842                  * do the comparison in process context in raid10d
1843                  */
1844                 reschedule_retry(r10_bio);
1845         }
1846 }
1847
1848 static void end_sync_request(struct r10bio *r10_bio)
1849 {
1850         struct mddev *mddev = r10_bio->mddev;
1851
1852         while (atomic_dec_and_test(&r10_bio->remaining)) {
1853                 if (r10_bio->master_bio == NULL) {
1854                         /* the primary of several recovery bios */
1855                         sector_t s = r10_bio->sectors;
1856                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857                             test_bit(R10BIO_WriteError, &r10_bio->state))
1858                                 reschedule_retry(r10_bio);
1859                         else
1860                                 put_buf(r10_bio);
1861                         md_done_sync(mddev, s, 1);
1862                         break;
1863                 } else {
1864                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866                             test_bit(R10BIO_WriteError, &r10_bio->state))
1867                                 reschedule_retry(r10_bio);
1868                         else
1869                                 put_buf(r10_bio);
1870                         r10_bio = r10_bio2;
1871                 }
1872         }
1873 }
1874
1875 static void end_sync_write(struct bio *bio)
1876 {
1877         struct r10bio *r10_bio = bio->bi_private;
1878         struct mddev *mddev = r10_bio->mddev;
1879         struct r10conf *conf = mddev->private;
1880         int d;
1881         sector_t first_bad;
1882         int bad_sectors;
1883         int slot;
1884         int repl;
1885         struct md_rdev *rdev = NULL;
1886
1887         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888         if (repl)
1889                 rdev = conf->mirrors[d].replacement;
1890         else
1891                 rdev = conf->mirrors[d].rdev;
1892
1893         if (bio->bi_error) {
1894                 if (repl)
1895                         md_error(mddev, rdev);
1896                 else {
1897                         set_bit(WriteErrorSeen, &rdev->flags);
1898                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899                                 set_bit(MD_RECOVERY_NEEDED,
1900                                         &rdev->mddev->recovery);
1901                         set_bit(R10BIO_WriteError, &r10_bio->state);
1902                 }
1903         } else if (is_badblock(rdev,
1904                              r10_bio->devs[slot].addr,
1905                              r10_bio->sectors,
1906                              &first_bad, &bad_sectors))
1907                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909         rdev_dec_pending(rdev, mddev);
1910
1911         end_sync_request(r10_bio);
1912 }
1913
1914 /*
1915  * Note: sync and recover and handled very differently for raid10
1916  * This code is for resync.
1917  * For resync, we read through virtual addresses and read all blocks.
1918  * If there is any error, we schedule a write.  The lowest numbered
1919  * drive is authoritative.
1920  * However requests come for physical address, so we need to map.
1921  * For every physical address there are raid_disks/copies virtual addresses,
1922  * which is always are least one, but is not necessarly an integer.
1923  * This means that a physical address can span multiple chunks, so we may
1924  * have to submit multiple io requests for a single sync request.
1925  */
1926 /*
1927  * We check if all blocks are in-sync and only write to blocks that
1928  * aren't in sync
1929  */
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931 {
1932         struct r10conf *conf = mddev->private;
1933         int i, first;
1934         struct bio *tbio, *fbio;
1935         int vcnt;
1936
1937         atomic_set(&r10_bio->remaining, 1);
1938
1939         /* find the first device with a block */
1940         for (i=0; i<conf->copies; i++)
1941                 if (!r10_bio->devs[i].bio->bi_error)
1942                         break;
1943
1944         if (i == conf->copies)
1945                 goto done;
1946
1947         first = i;
1948         fbio = r10_bio->devs[i].bio;
1949         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950         fbio->bi_iter.bi_idx = 0;
1951
1952         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953         /* now find blocks with errors */
1954         for (i=0 ; i < conf->copies ; i++) {
1955                 int  j, d;
1956
1957                 tbio = r10_bio->devs[i].bio;
1958
1959                 if (tbio->bi_end_io != end_sync_read)
1960                         continue;
1961                 if (i == first)
1962                         continue;
1963                 if (!r10_bio->devs[i].bio->bi_error) {
1964                         /* We know that the bi_io_vec layout is the same for
1965                          * both 'first' and 'i', so we just compare them.
1966                          * All vec entries are PAGE_SIZE;
1967                          */
1968                         int sectors = r10_bio->sectors;
1969                         for (j = 0; j < vcnt; j++) {
1970                                 int len = PAGE_SIZE;
1971                                 if (sectors < (len / 512))
1972                                         len = sectors * 512;
1973                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974                                            page_address(tbio->bi_io_vec[j].bv_page),
1975                                            len))
1976                                         break;
1977                                 sectors -= len/512;
1978                         }
1979                         if (j == vcnt)
1980                                 continue;
1981                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983                                 /* Don't fix anything. */
1984                                 continue;
1985                 }
1986                 /* Ok, we need to write this bio, either to correct an
1987                  * inconsistency or to correct an unreadable block.
1988                  * First we need to fixup bv_offset, bv_len and
1989                  * bi_vecs, as the read request might have corrupted these
1990                  */
1991                 bio_reset(tbio);
1992
1993                 tbio->bi_vcnt = vcnt;
1994                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995                 tbio->bi_private = r10_bio;
1996                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1997                 tbio->bi_end_io = end_sync_write;
1998                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1999
2000                 bio_copy_data(tbio, fbio);
2001
2002                 d = r10_bio->devs[i].devnum;
2003                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004                 atomic_inc(&r10_bio->remaining);
2005                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009                 generic_make_request(tbio);
2010         }
2011
2012         /* Now write out to any replacement devices
2013          * that are active
2014          */
2015         for (i = 0; i < conf->copies; i++) {
2016                 int d;
2017
2018                 tbio = r10_bio->devs[i].repl_bio;
2019                 if (!tbio || !tbio->bi_end_io)
2020                         continue;
2021                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022                     && r10_bio->devs[i].bio != fbio)
2023                         bio_copy_data(tbio, fbio);
2024                 d = r10_bio->devs[i].devnum;
2025                 atomic_inc(&r10_bio->remaining);
2026                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2027                              bio_sectors(tbio));
2028                 generic_make_request(tbio);
2029         }
2030
2031 done:
2032         if (atomic_dec_and_test(&r10_bio->remaining)) {
2033                 md_done_sync(mddev, r10_bio->sectors, 1);
2034                 put_buf(r10_bio);
2035         }
2036 }
2037
2038 /*
2039  * Now for the recovery code.
2040  * Recovery happens across physical sectors.
2041  * We recover all non-is_sync drives by finding the virtual address of
2042  * each, and then choose a working drive that also has that virt address.
2043  * There is a separate r10_bio for each non-in_sync drive.
2044  * Only the first two slots are in use. The first for reading,
2045  * The second for writing.
2046  *
2047  */
2048 static void fix_recovery_read_error(struct r10bio *r10_bio)
2049 {
2050         /* We got a read error during recovery.
2051          * We repeat the read in smaller page-sized sections.
2052          * If a read succeeds, write it to the new device or record
2053          * a bad block if we cannot.
2054          * If a read fails, record a bad block on both old and
2055          * new devices.
2056          */
2057         struct mddev *mddev = r10_bio->mddev;
2058         struct r10conf *conf = mddev->private;
2059         struct bio *bio = r10_bio->devs[0].bio;
2060         sector_t sect = 0;
2061         int sectors = r10_bio->sectors;
2062         int idx = 0;
2063         int dr = r10_bio->devs[0].devnum;
2064         int dw = r10_bio->devs[1].devnum;
2065
2066         while (sectors) {
2067                 int s = sectors;
2068                 struct md_rdev *rdev;
2069                 sector_t addr;
2070                 int ok;
2071
2072                 if (s > (PAGE_SIZE>>9))
2073                         s = PAGE_SIZE >> 9;
2074
2075                 rdev = conf->mirrors[dr].rdev;
2076                 addr = r10_bio->devs[0].addr + sect,
2077                 ok = sync_page_io(rdev,
2078                                   addr,
2079                                   s << 9,
2080                                   bio->bi_io_vec[idx].bv_page,
2081                                   REQ_OP_READ, 0, false);
2082                 if (ok) {
2083                         rdev = conf->mirrors[dw].rdev;
2084                         addr = r10_bio->devs[1].addr + sect;
2085                         ok = sync_page_io(rdev,
2086                                           addr,
2087                                           s << 9,
2088                                           bio->bi_io_vec[idx].bv_page,
2089                                           REQ_OP_WRITE, 0, false);
2090                         if (!ok) {
2091                                 set_bit(WriteErrorSeen, &rdev->flags);
2092                                 if (!test_and_set_bit(WantReplacement,
2093                                                       &rdev->flags))
2094                                         set_bit(MD_RECOVERY_NEEDED,
2095                                                 &rdev->mddev->recovery);
2096                         }
2097                 }
2098                 if (!ok) {
2099                         /* We don't worry if we cannot set a bad block -
2100                          * it really is bad so there is no loss in not
2101                          * recording it yet
2102                          */
2103                         rdev_set_badblocks(rdev, addr, s, 0);
2104
2105                         if (rdev != conf->mirrors[dw].rdev) {
2106                                 /* need bad block on destination too */
2107                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108                                 addr = r10_bio->devs[1].addr + sect;
2109                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110                                 if (!ok) {
2111                                         /* just abort the recovery */
2112                                         printk(KERN_NOTICE
2113                                                "md/raid10:%s: recovery aborted"
2114                                                " due to read error\n",
2115                                                mdname(mddev));
2116
2117                                         conf->mirrors[dw].recovery_disabled
2118                                                 = mddev->recovery_disabled;
2119                                         set_bit(MD_RECOVERY_INTR,
2120                                                 &mddev->recovery);
2121                                         break;
2122                                 }
2123                         }
2124                 }
2125
2126                 sectors -= s;
2127                 sect += s;
2128                 idx++;
2129         }
2130 }
2131
2132 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133 {
2134         struct r10conf *conf = mddev->private;
2135         int d;
2136         struct bio *wbio, *wbio2;
2137
2138         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139                 fix_recovery_read_error(r10_bio);
2140                 end_sync_request(r10_bio);
2141                 return;
2142         }
2143
2144         /*
2145          * share the pages with the first bio
2146          * and submit the write request
2147          */
2148         d = r10_bio->devs[1].devnum;
2149         wbio = r10_bio->devs[1].bio;
2150         wbio2 = r10_bio->devs[1].repl_bio;
2151         /* Need to test wbio2->bi_end_io before we call
2152          * generic_make_request as if the former is NULL,
2153          * the latter is free to free wbio2.
2154          */
2155         if (wbio2 && !wbio2->bi_end_io)
2156                 wbio2 = NULL;
2157         if (wbio->bi_end_io) {
2158                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160                 generic_make_request(wbio);
2161         }
2162         if (wbio2) {
2163                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2165                              bio_sectors(wbio2));
2166                 generic_make_request(wbio2);
2167         }
2168 }
2169
2170 /*
2171  * Used by fix_read_error() to decay the per rdev read_errors.
2172  * We halve the read error count for every hour that has elapsed
2173  * since the last recorded read error.
2174  *
2175  */
2176 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177 {
2178         long cur_time_mon;
2179         unsigned long hours_since_last;
2180         unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182         cur_time_mon = ktime_get_seconds();
2183
2184         if (rdev->last_read_error == 0) {
2185                 /* first time we've seen a read error */
2186                 rdev->last_read_error = cur_time_mon;
2187                 return;
2188         }
2189
2190         hours_since_last = (long)(cur_time_mon -
2191                             rdev->last_read_error) / 3600;
2192
2193         rdev->last_read_error = cur_time_mon;
2194
2195         /*
2196          * if hours_since_last is > the number of bits in read_errors
2197          * just set read errors to 0. We do this to avoid
2198          * overflowing the shift of read_errors by hours_since_last.
2199          */
2200         if (hours_since_last >= 8 * sizeof(read_errors))
2201                 atomic_set(&rdev->read_errors, 0);
2202         else
2203                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2204 }
2205
2206 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2207                             int sectors, struct page *page, int rw)
2208 {
2209         sector_t first_bad;
2210         int bad_sectors;
2211
2212         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2213             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2214                 return -1;
2215         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2216                 /* success */
2217                 return 1;
2218         if (rw == WRITE) {
2219                 set_bit(WriteErrorSeen, &rdev->flags);
2220                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2221                         set_bit(MD_RECOVERY_NEEDED,
2222                                 &rdev->mddev->recovery);
2223         }
2224         /* need to record an error - either for the block or the device */
2225         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2226                 md_error(rdev->mddev, rdev);
2227         return 0;
2228 }
2229
2230 /*
2231  * This is a kernel thread which:
2232  *
2233  *      1.      Retries failed read operations on working mirrors.
2234  *      2.      Updates the raid superblock when problems encounter.
2235  *      3.      Performs writes following reads for array synchronising.
2236  */
2237
2238 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2239 {
2240         int sect = 0; /* Offset from r10_bio->sector */
2241         int sectors = r10_bio->sectors;
2242         struct md_rdev*rdev;
2243         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2244         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2245
2246         /* still own a reference to this rdev, so it cannot
2247          * have been cleared recently.
2248          */
2249         rdev = conf->mirrors[d].rdev;
2250
2251         if (test_bit(Faulty, &rdev->flags))
2252                 /* drive has already been failed, just ignore any
2253                    more fix_read_error() attempts */
2254                 return;
2255
2256         check_decay_read_errors(mddev, rdev);
2257         atomic_inc(&rdev->read_errors);
2258         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2259                 char b[BDEVNAME_SIZE];
2260                 bdevname(rdev->bdev, b);
2261
2262                 printk(KERN_NOTICE
2263                        "md/raid10:%s: %s: Raid device exceeded "
2264                        "read_error threshold [cur %d:max %d]\n",
2265                        mdname(mddev), b,
2266                        atomic_read(&rdev->read_errors), max_read_errors);
2267                 printk(KERN_NOTICE
2268                        "md/raid10:%s: %s: Failing raid device\n",
2269                        mdname(mddev), b);
2270                 md_error(mddev, rdev);
2271                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2272                 return;
2273         }
2274
2275         while(sectors) {
2276                 int s = sectors;
2277                 int sl = r10_bio->read_slot;
2278                 int success = 0;
2279                 int start;
2280
2281                 if (s > (PAGE_SIZE>>9))
2282                         s = PAGE_SIZE >> 9;
2283
2284                 rcu_read_lock();
2285                 do {
2286                         sector_t first_bad;
2287                         int bad_sectors;
2288
2289                         d = r10_bio->devs[sl].devnum;
2290                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2291                         if (rdev &&
2292                             test_bit(In_sync, &rdev->flags) &&
2293                             !test_bit(Faulty, &rdev->flags) &&
2294                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295                                         &first_bad, &bad_sectors) == 0) {
2296                                 atomic_inc(&rdev->nr_pending);
2297                                 rcu_read_unlock();
2298                                 success = sync_page_io(rdev,
2299                                                        r10_bio->devs[sl].addr +
2300                                                        sect,
2301                                                        s<<9,
2302                                                        conf->tmppage,
2303                                                        REQ_OP_READ, 0, false);
2304                                 rdev_dec_pending(rdev, mddev);
2305                                 rcu_read_lock();
2306                                 if (success)
2307                                         break;
2308                         }
2309                         sl++;
2310                         if (sl == conf->copies)
2311                                 sl = 0;
2312                 } while (!success && sl != r10_bio->read_slot);
2313                 rcu_read_unlock();
2314
2315                 if (!success) {
2316                         /* Cannot read from anywhere, just mark the block
2317                          * as bad on the first device to discourage future
2318                          * reads.
2319                          */
2320                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2321                         rdev = conf->mirrors[dn].rdev;
2322
2323                         if (!rdev_set_badblocks(
2324                                     rdev,
2325                                     r10_bio->devs[r10_bio->read_slot].addr
2326                                     + sect,
2327                                     s, 0)) {
2328                                 md_error(mddev, rdev);
2329                                 r10_bio->devs[r10_bio->read_slot].bio
2330                                         = IO_BLOCKED;
2331                         }
2332                         break;
2333                 }
2334
2335                 start = sl;
2336                 /* write it back and re-read */
2337                 rcu_read_lock();
2338                 while (sl != r10_bio->read_slot) {
2339                         char b[BDEVNAME_SIZE];
2340
2341                         if (sl==0)
2342                                 sl = conf->copies;
2343                         sl--;
2344                         d = r10_bio->devs[sl].devnum;
2345                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2346                         if (!rdev ||
2347                             test_bit(Faulty, &rdev->flags) ||
2348                             !test_bit(In_sync, &rdev->flags))
2349                                 continue;
2350
2351                         atomic_inc(&rdev->nr_pending);
2352                         rcu_read_unlock();
2353                         if (r10_sync_page_io(rdev,
2354                                              r10_bio->devs[sl].addr +
2355                                              sect,
2356                                              s, conf->tmppage, WRITE)
2357                             == 0) {
2358                                 /* Well, this device is dead */
2359                                 printk(KERN_NOTICE
2360                                        "md/raid10:%s: read correction "
2361                                        "write failed"
2362                                        " (%d sectors at %llu on %s)\n",
2363                                        mdname(mddev), s,
2364                                        (unsigned long long)(
2365                                                sect +
2366                                                choose_data_offset(r10_bio,
2367                                                                   rdev)),
2368                                        bdevname(rdev->bdev, b));
2369                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2370                                        "drive\n",
2371                                        mdname(mddev),
2372                                        bdevname(rdev->bdev, b));
2373                         }
2374                         rdev_dec_pending(rdev, mddev);
2375                         rcu_read_lock();
2376                 }
2377                 sl = start;
2378                 while (sl != r10_bio->read_slot) {
2379                         char b[BDEVNAME_SIZE];
2380
2381                         if (sl==0)
2382                                 sl = conf->copies;
2383                         sl--;
2384                         d = r10_bio->devs[sl].devnum;
2385                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2386                         if (!rdev ||
2387                             test_bit(Faulty, &rdev->flags) ||
2388                             !test_bit(In_sync, &rdev->flags))
2389                                 continue;
2390
2391                         atomic_inc(&rdev->nr_pending);
2392                         rcu_read_unlock();
2393                         switch (r10_sync_page_io(rdev,
2394                                              r10_bio->devs[sl].addr +
2395                                              sect,
2396                                              s, conf->tmppage,
2397                                                  READ)) {
2398                         case 0:
2399                                 /* Well, this device is dead */
2400                                 printk(KERN_NOTICE
2401                                        "md/raid10:%s: unable to read back "
2402                                        "corrected sectors"
2403                                        " (%d sectors at %llu on %s)\n",
2404                                        mdname(mddev), s,
2405                                        (unsigned long long)(
2406                                                sect +
2407                                                choose_data_offset(r10_bio, rdev)),
2408                                        bdevname(rdev->bdev, b));
2409                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2410                                        "drive\n",
2411                                        mdname(mddev),
2412                                        bdevname(rdev->bdev, b));
2413                                 break;
2414                         case 1:
2415                                 printk(KERN_INFO
2416                                        "md/raid10:%s: read error corrected"
2417                                        " (%d sectors at %llu on %s)\n",
2418                                        mdname(mddev), s,
2419                                        (unsigned long long)(
2420                                                sect +
2421                                                choose_data_offset(r10_bio, rdev)),
2422                                        bdevname(rdev->bdev, b));
2423                                 atomic_add(s, &rdev->corrected_errors);
2424                         }
2425
2426                         rdev_dec_pending(rdev, mddev);
2427                         rcu_read_lock();
2428                 }
2429                 rcu_read_unlock();
2430
2431                 sectors -= s;
2432                 sect += s;
2433         }
2434 }
2435
2436 static int narrow_write_error(struct r10bio *r10_bio, int i)
2437 {
2438         struct bio *bio = r10_bio->master_bio;
2439         struct mddev *mddev = r10_bio->mddev;
2440         struct r10conf *conf = mddev->private;
2441         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442         /* bio has the data to be written to slot 'i' where
2443          * we just recently had a write error.
2444          * We repeatedly clone the bio and trim down to one block,
2445          * then try the write.  Where the write fails we record
2446          * a bad block.
2447          * It is conceivable that the bio doesn't exactly align with
2448          * blocks.  We must handle this.
2449          *
2450          * We currently own a reference to the rdev.
2451          */
2452
2453         int block_sectors;
2454         sector_t sector;
2455         int sectors;
2456         int sect_to_write = r10_bio->sectors;
2457         int ok = 1;
2458
2459         if (rdev->badblocks.shift < 0)
2460                 return 0;
2461
2462         block_sectors = roundup(1 << rdev->badblocks.shift,
2463                                 bdev_logical_block_size(rdev->bdev) >> 9);
2464         sector = r10_bio->sector;
2465         sectors = ((r10_bio->sector + block_sectors)
2466                    & ~(sector_t)(block_sectors - 1))
2467                 - sector;
2468
2469         while (sect_to_write) {
2470                 struct bio *wbio;
2471                 sector_t wsector;
2472                 if (sectors > sect_to_write)
2473                         sectors = sect_to_write;
2474                 /* Write at 'sector' for 'sectors' */
2475                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2476                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2477                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2478                 wbio->bi_iter.bi_sector = wsector +
2479                                    choose_data_offset(r10_bio, rdev);
2480                 wbio->bi_bdev = rdev->bdev;
2481                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2482
2483                 if (submit_bio_wait(wbio) < 0)
2484                         /* Failure! */
2485                         ok = rdev_set_badblocks(rdev, wsector,
2486                                                 sectors, 0)
2487                                 && ok;
2488
2489                 bio_put(wbio);
2490                 sect_to_write -= sectors;
2491                 sector += sectors;
2492                 sectors = block_sectors;
2493         }
2494         return ok;
2495 }
2496
2497 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2498 {
2499         int slot = r10_bio->read_slot;
2500         struct bio *bio;
2501         struct r10conf *conf = mddev->private;
2502         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2503         char b[BDEVNAME_SIZE];
2504         unsigned long do_sync;
2505         int max_sectors;
2506
2507         /* we got a read error. Maybe the drive is bad.  Maybe just
2508          * the block and we can fix it.
2509          * We freeze all other IO, and try reading the block from
2510          * other devices.  When we find one, we re-write
2511          * and check it that fixes the read error.
2512          * This is all done synchronously while the array is
2513          * frozen.
2514          */
2515         bio = r10_bio->devs[slot].bio;
2516         bdevname(bio->bi_bdev, b);
2517         bio_put(bio);
2518         r10_bio->devs[slot].bio = NULL;
2519
2520         if (mddev->ro == 0) {
2521                 freeze_array(conf, 1);
2522                 fix_read_error(conf, mddev, r10_bio);
2523                 unfreeze_array(conf);
2524         } else
2525                 r10_bio->devs[slot].bio = IO_BLOCKED;
2526
2527         rdev_dec_pending(rdev, mddev);
2528
2529 read_more:
2530         rdev = read_balance(conf, r10_bio, &max_sectors);
2531         if (rdev == NULL) {
2532                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2533                        " read error for block %llu\n",
2534                        mdname(mddev), b,
2535                        (unsigned long long)r10_bio->sector);
2536                 raid_end_bio_io(r10_bio);
2537                 return;
2538         }
2539
2540         do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2541         slot = r10_bio->read_slot;
2542         printk_ratelimited(
2543                 KERN_ERR
2544                 "md/raid10:%s: %s: redirecting "
2545                 "sector %llu to another mirror\n",
2546                 mdname(mddev),
2547                 bdevname(rdev->bdev, b),
2548                 (unsigned long long)r10_bio->sector);
2549         bio = bio_clone_mddev(r10_bio->master_bio,
2550                               GFP_NOIO, mddev);
2551         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2552         r10_bio->devs[slot].bio = bio;
2553         r10_bio->devs[slot].rdev = rdev;
2554         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2555                 + choose_data_offset(r10_bio, rdev);
2556         bio->bi_bdev = rdev->bdev;
2557         bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2558         bio->bi_private = r10_bio;
2559         bio->bi_end_io = raid10_end_read_request;
2560         if (max_sectors < r10_bio->sectors) {
2561                 /* Drat - have to split this up more */
2562                 struct bio *mbio = r10_bio->master_bio;
2563                 int sectors_handled =
2564                         r10_bio->sector + max_sectors
2565                         - mbio->bi_iter.bi_sector;
2566                 r10_bio->sectors = max_sectors;
2567                 spin_lock_irq(&conf->device_lock);
2568                 if (mbio->bi_phys_segments == 0)
2569                         mbio->bi_phys_segments = 2;
2570                 else
2571                         mbio->bi_phys_segments++;
2572                 spin_unlock_irq(&conf->device_lock);
2573                 generic_make_request(bio);
2574
2575                 r10_bio = mempool_alloc(conf->r10bio_pool,
2576                                         GFP_NOIO);
2577                 r10_bio->master_bio = mbio;
2578                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2579                 r10_bio->state = 0;
2580                 set_bit(R10BIO_ReadError,
2581                         &r10_bio->state);
2582                 r10_bio->mddev = mddev;
2583                 r10_bio->sector = mbio->bi_iter.bi_sector
2584                         + sectors_handled;
2585
2586                 goto read_more;
2587         } else
2588                 generic_make_request(bio);
2589 }
2590
2591 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2592 {
2593         /* Some sort of write request has finished and it
2594          * succeeded in writing where we thought there was a
2595          * bad block.  So forget the bad block.
2596          * Or possibly if failed and we need to record
2597          * a bad block.
2598          */
2599         int m;
2600         struct md_rdev *rdev;
2601
2602         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2603             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2604                 for (m = 0; m < conf->copies; m++) {
2605                         int dev = r10_bio->devs[m].devnum;
2606                         rdev = conf->mirrors[dev].rdev;
2607                         if (r10_bio->devs[m].bio == NULL)
2608                                 continue;
2609                         if (!r10_bio->devs[m].bio->bi_error) {
2610                                 rdev_clear_badblocks(
2611                                         rdev,
2612                                         r10_bio->devs[m].addr,
2613                                         r10_bio->sectors, 0);
2614                         } else {
2615                                 if (!rdev_set_badblocks(
2616                                             rdev,
2617                                             r10_bio->devs[m].addr,
2618                                             r10_bio->sectors, 0))
2619                                         md_error(conf->mddev, rdev);
2620                         }
2621                         rdev = conf->mirrors[dev].replacement;
2622                         if (r10_bio->devs[m].repl_bio == NULL)
2623                                 continue;
2624
2625                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2626                                 rdev_clear_badblocks(
2627                                         rdev,
2628                                         r10_bio->devs[m].addr,
2629                                         r10_bio->sectors, 0);
2630                         } else {
2631                                 if (!rdev_set_badblocks(
2632                                             rdev,
2633                                             r10_bio->devs[m].addr,
2634                                             r10_bio->sectors, 0))
2635                                         md_error(conf->mddev, rdev);
2636                         }
2637                 }
2638                 put_buf(r10_bio);
2639         } else {
2640                 bool fail = false;
2641                 for (m = 0; m < conf->copies; m++) {
2642                         int dev = r10_bio->devs[m].devnum;
2643                         struct bio *bio = r10_bio->devs[m].bio;
2644                         rdev = conf->mirrors[dev].rdev;
2645                         if (bio == IO_MADE_GOOD) {
2646                                 rdev_clear_badblocks(
2647                                         rdev,
2648                                         r10_bio->devs[m].addr,
2649                                         r10_bio->sectors, 0);
2650                                 rdev_dec_pending(rdev, conf->mddev);
2651                         } else if (bio != NULL && bio->bi_error) {
2652                                 fail = true;
2653                                 if (!narrow_write_error(r10_bio, m)) {
2654                                         md_error(conf->mddev, rdev);
2655                                         set_bit(R10BIO_Degraded,
2656                                                 &r10_bio->state);
2657                                 }
2658                                 rdev_dec_pending(rdev, conf->mddev);
2659                         }
2660                         bio = r10_bio->devs[m].repl_bio;
2661                         rdev = conf->mirrors[dev].replacement;
2662                         if (rdev && bio == IO_MADE_GOOD) {
2663                                 rdev_clear_badblocks(
2664                                         rdev,
2665                                         r10_bio->devs[m].addr,
2666                                         r10_bio->sectors, 0);
2667                                 rdev_dec_pending(rdev, conf->mddev);
2668                         }
2669                 }
2670                 if (fail) {
2671                         spin_lock_irq(&conf->device_lock);
2672                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2673                         conf->nr_queued++;
2674                         spin_unlock_irq(&conf->device_lock);
2675                         md_wakeup_thread(conf->mddev->thread);
2676                 } else {
2677                         if (test_bit(R10BIO_WriteError,
2678                                      &r10_bio->state))
2679                                 close_write(r10_bio);
2680                         raid_end_bio_io(r10_bio);
2681                 }
2682         }
2683 }
2684
2685 static void raid10d(struct md_thread *thread)
2686 {
2687         struct mddev *mddev = thread->mddev;
2688         struct r10bio *r10_bio;
2689         unsigned long flags;
2690         struct r10conf *conf = mddev->private;
2691         struct list_head *head = &conf->retry_list;
2692         struct blk_plug plug;
2693
2694         md_check_recovery(mddev);
2695
2696         if (!list_empty_careful(&conf->bio_end_io_list) &&
2697             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698                 LIST_HEAD(tmp);
2699                 spin_lock_irqsave(&conf->device_lock, flags);
2700                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2701                         while (!list_empty(&conf->bio_end_io_list)) {
2702                                 list_move(conf->bio_end_io_list.prev, &tmp);
2703                                 conf->nr_queued--;
2704                         }
2705                 }
2706                 spin_unlock_irqrestore(&conf->device_lock, flags);
2707                 while (!list_empty(&tmp)) {
2708                         r10_bio = list_first_entry(&tmp, struct r10bio,
2709                                                    retry_list);
2710                         list_del(&r10_bio->retry_list);
2711                         if (mddev->degraded)
2712                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2713
2714                         if (test_bit(R10BIO_WriteError,
2715                                      &r10_bio->state))
2716                                 close_write(r10_bio);
2717                         raid_end_bio_io(r10_bio);
2718                 }
2719         }
2720
2721         blk_start_plug(&plug);
2722         for (;;) {
2723
2724                 flush_pending_writes(conf);
2725
2726                 spin_lock_irqsave(&conf->device_lock, flags);
2727                 if (list_empty(head)) {
2728                         spin_unlock_irqrestore(&conf->device_lock, flags);
2729                         break;
2730                 }
2731                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2732                 list_del(head->prev);
2733                 conf->nr_queued--;
2734                 spin_unlock_irqrestore(&conf->device_lock, flags);
2735
2736                 mddev = r10_bio->mddev;
2737                 conf = mddev->private;
2738                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2739                     test_bit(R10BIO_WriteError, &r10_bio->state))
2740                         handle_write_completed(conf, r10_bio);
2741                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2742                         reshape_request_write(mddev, r10_bio);
2743                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2744                         sync_request_write(mddev, r10_bio);
2745                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2746                         recovery_request_write(mddev, r10_bio);
2747                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2748                         handle_read_error(mddev, r10_bio);
2749                 else {
2750                         /* just a partial read to be scheduled from a
2751                          * separate context
2752                          */
2753                         int slot = r10_bio->read_slot;
2754                         generic_make_request(r10_bio->devs[slot].bio);
2755                 }
2756
2757                 cond_resched();
2758                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2759                         md_check_recovery(mddev);
2760         }
2761         blk_finish_plug(&plug);
2762 }
2763
2764 static int init_resync(struct r10conf *conf)
2765 {
2766         int buffs;
2767         int i;
2768
2769         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2770         BUG_ON(conf->r10buf_pool);
2771         conf->have_replacement = 0;
2772         for (i = 0; i < conf->geo.raid_disks; i++)
2773                 if (conf->mirrors[i].replacement)
2774                         conf->have_replacement = 1;
2775         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2776         if (!conf->r10buf_pool)
2777                 return -ENOMEM;
2778         conf->next_resync = 0;
2779         return 0;
2780 }
2781
2782 /*
2783  * perform a "sync" on one "block"
2784  *
2785  * We need to make sure that no normal I/O request - particularly write
2786  * requests - conflict with active sync requests.
2787  *
2788  * This is achieved by tracking pending requests and a 'barrier' concept
2789  * that can be installed to exclude normal IO requests.
2790  *
2791  * Resync and recovery are handled very differently.
2792  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2793  *
2794  * For resync, we iterate over virtual addresses, read all copies,
2795  * and update if there are differences.  If only one copy is live,
2796  * skip it.
2797  * For recovery, we iterate over physical addresses, read a good
2798  * value for each non-in_sync drive, and over-write.
2799  *
2800  * So, for recovery we may have several outstanding complex requests for a
2801  * given address, one for each out-of-sync device.  We model this by allocating
2802  * a number of r10_bio structures, one for each out-of-sync device.
2803  * As we setup these structures, we collect all bio's together into a list
2804  * which we then process collectively to add pages, and then process again
2805  * to pass to generic_make_request.
2806  *
2807  * The r10_bio structures are linked using a borrowed master_bio pointer.
2808  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2809  * has its remaining count decremented to 0, the whole complex operation
2810  * is complete.
2811  *
2812  */
2813
2814 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2815                              int *skipped)
2816 {
2817         struct r10conf *conf = mddev->private;
2818         struct r10bio *r10_bio;
2819         struct bio *biolist = NULL, *bio;
2820         sector_t max_sector, nr_sectors;
2821         int i;
2822         int max_sync;
2823         sector_t sync_blocks;
2824         sector_t sectors_skipped = 0;
2825         int chunks_skipped = 0;
2826         sector_t chunk_mask = conf->geo.chunk_mask;
2827
2828         if (!conf->r10buf_pool)
2829                 if (init_resync(conf))
2830                         return 0;
2831
2832         /*
2833          * Allow skipping a full rebuild for incremental assembly
2834          * of a clean array, like RAID1 does.
2835          */
2836         if (mddev->bitmap == NULL &&
2837             mddev->recovery_cp == MaxSector &&
2838             mddev->reshape_position == MaxSector &&
2839             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2840             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2841             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2842             conf->fullsync == 0) {
2843                 *skipped = 1;
2844                 return mddev->dev_sectors - sector_nr;
2845         }
2846
2847  skipped:
2848         max_sector = mddev->dev_sectors;
2849         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2850             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851                 max_sector = mddev->resync_max_sectors;
2852         if (sector_nr >= max_sector) {
2853                 /* If we aborted, we need to abort the
2854                  * sync on the 'current' bitmap chucks (there can
2855                  * be several when recovering multiple devices).
2856                  * as we may have started syncing it but not finished.
2857                  * We can find the current address in
2858                  * mddev->curr_resync, but for recovery,
2859                  * we need to convert that to several
2860                  * virtual addresses.
2861                  */
2862                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2863                         end_reshape(conf);
2864                         close_sync(conf);
2865                         return 0;
2866                 }
2867
2868                 if (mddev->curr_resync < max_sector) { /* aborted */
2869                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2870                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2871                                                 &sync_blocks, 1);
2872                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2873                                 sector_t sect =
2874                                         raid10_find_virt(conf, mddev->curr_resync, i);
2875                                 bitmap_end_sync(mddev->bitmap, sect,
2876                                                 &sync_blocks, 1);
2877                         }
2878                 } else {
2879                         /* completed sync */
2880                         if ((!mddev->bitmap || conf->fullsync)
2881                             && conf->have_replacement
2882                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2883                                 /* Completed a full sync so the replacements
2884                                  * are now fully recovered.
2885                                  */
2886                                 rcu_read_lock();
2887                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2888                                         struct md_rdev *rdev =
2889                                                 rcu_dereference(conf->mirrors[i].replacement);
2890                                         if (rdev)
2891                                                 rdev->recovery_offset = MaxSector;
2892                                 }
2893                                 rcu_read_unlock();
2894                         }
2895                         conf->fullsync = 0;
2896                 }
2897                 bitmap_close_sync(mddev->bitmap);
2898                 close_sync(conf);
2899                 *skipped = 1;
2900                 return sectors_skipped;
2901         }
2902
2903         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2904                 return reshape_request(mddev, sector_nr, skipped);
2905
2906         if (chunks_skipped >= conf->geo.raid_disks) {
2907                 /* if there has been nothing to do on any drive,
2908                  * then there is nothing to do at all..
2909                  */
2910                 *skipped = 1;
2911                 return (max_sector - sector_nr) + sectors_skipped;
2912         }
2913
2914         if (max_sector > mddev->resync_max)
2915                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2916
2917         /* make sure whole request will fit in a chunk - if chunks
2918          * are meaningful
2919          */
2920         if (conf->geo.near_copies < conf->geo.raid_disks &&
2921             max_sector > (sector_nr | chunk_mask))
2922                 max_sector = (sector_nr | chunk_mask) + 1;
2923
2924         /*
2925          * If there is non-resync activity waiting for a turn, then let it
2926          * though before starting on this new sync request.
2927          */
2928         if (conf->nr_waiting)
2929                 schedule_timeout_uninterruptible(1);
2930
2931         /* Again, very different code for resync and recovery.
2932          * Both must result in an r10bio with a list of bios that
2933          * have bi_end_io, bi_sector, bi_bdev set,
2934          * and bi_private set to the r10bio.
2935          * For recovery, we may actually create several r10bios
2936          * with 2 bios in each, that correspond to the bios in the main one.
2937          * In this case, the subordinate r10bios link back through a
2938          * borrowed master_bio pointer, and the counter in the master
2939          * includes a ref from each subordinate.
2940          */
2941         /* First, we decide what to do and set ->bi_end_io
2942          * To end_sync_read if we want to read, and
2943          * end_sync_write if we will want to write.
2944          */
2945
2946         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2947         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2948                 /* recovery... the complicated one */
2949                 int j;
2950                 r10_bio = NULL;
2951
2952                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2953                         int still_degraded;
2954                         struct r10bio *rb2;
2955                         sector_t sect;
2956                         int must_sync;
2957                         int any_working;
2958                         struct raid10_info *mirror = &conf->mirrors[i];
2959                         struct md_rdev *mrdev, *mreplace;
2960
2961                         rcu_read_lock();
2962                         mrdev = rcu_dereference(mirror->rdev);
2963                         mreplace = rcu_dereference(mirror->replacement);
2964
2965                         if ((mrdev == NULL ||
2966                              test_bit(Faulty, &mrdev->flags) ||
2967                              test_bit(In_sync, &mrdev->flags)) &&
2968                             (mreplace == NULL ||
2969                              test_bit(Faulty, &mreplace->flags))) {
2970                                 rcu_read_unlock();
2971                                 continue;
2972                         }
2973
2974                         still_degraded = 0;
2975                         /* want to reconstruct this device */
2976                         rb2 = r10_bio;
2977                         sect = raid10_find_virt(conf, sector_nr, i);
2978                         if (sect >= mddev->resync_max_sectors) {
2979                                 /* last stripe is not complete - don't
2980                                  * try to recover this sector.
2981                                  */
2982                                 rcu_read_unlock();
2983                                 continue;
2984                         }
2985                         if (mreplace && test_bit(Faulty, &mreplace->flags))
2986                                 mreplace = NULL;
2987                         /* Unless we are doing a full sync, or a replacement
2988                          * we only need to recover the block if it is set in
2989                          * the bitmap
2990                          */
2991                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2992                                                       &sync_blocks, 1);
2993                         if (sync_blocks < max_sync)
2994                                 max_sync = sync_blocks;
2995                         if (!must_sync &&
2996                             mreplace == NULL &&
2997                             !conf->fullsync) {
2998                                 /* yep, skip the sync_blocks here, but don't assume
2999                                  * that there will never be anything to do here
3000                                  */
3001                                 chunks_skipped = -1;
3002                                 rcu_read_unlock();
3003                                 continue;
3004                         }
3005                         atomic_inc(&mrdev->nr_pending);
3006                         if (mreplace)
3007                                 atomic_inc(&mreplace->nr_pending);
3008                         rcu_read_unlock();
3009
3010                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011                         r10_bio->state = 0;
3012                         raise_barrier(conf, rb2 != NULL);
3013                         atomic_set(&r10_bio->remaining, 0);
3014
3015                         r10_bio->master_bio = (struct bio*)rb2;
3016                         if (rb2)
3017                                 atomic_inc(&rb2->remaining);
3018                         r10_bio->mddev = mddev;
3019                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3020                         r10_bio->sector = sect;
3021
3022                         raid10_find_phys(conf, r10_bio);
3023
3024                         /* Need to check if the array will still be
3025                          * degraded
3026                          */
3027                         rcu_read_lock();
3028                         for (j = 0; j < conf->geo.raid_disks; j++) {
3029                                 struct md_rdev *rdev = rcu_dereference(
3030                                         conf->mirrors[j].rdev);
3031                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3032                                         still_degraded = 1;
3033                                         break;
3034                                 }
3035                         }
3036
3037                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3038                                                       &sync_blocks, still_degraded);
3039
3040                         any_working = 0;
3041                         for (j=0; j<conf->copies;j++) {
3042                                 int k;
3043                                 int d = r10_bio->devs[j].devnum;
3044                                 sector_t from_addr, to_addr;
3045                                 struct md_rdev *rdev =
3046                                         rcu_dereference(conf->mirrors[d].rdev);
3047                                 sector_t sector, first_bad;
3048                                 int bad_sectors;
3049                                 if (!rdev ||
3050                                     !test_bit(In_sync, &rdev->flags))
3051                                         continue;
3052                                 /* This is where we read from */
3053                                 any_working = 1;
3054                                 sector = r10_bio->devs[j].addr;
3055
3056                                 if (is_badblock(rdev, sector, max_sync,
3057                                                 &first_bad, &bad_sectors)) {
3058                                         if (first_bad > sector)
3059                                                 max_sync = first_bad - sector;
3060                                         else {
3061                                                 bad_sectors -= (sector
3062                                                                 - first_bad);
3063                                                 if (max_sync > bad_sectors)
3064                                                         max_sync = bad_sectors;
3065                                                 continue;
3066                                         }
3067                                 }
3068                                 bio = r10_bio->devs[0].bio;
3069                                 bio_reset(bio);
3070                                 bio->bi_next = biolist;
3071                                 biolist = bio;
3072                                 bio->bi_private = r10_bio;
3073                                 bio->bi_end_io = end_sync_read;
3074                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3075                                 from_addr = r10_bio->devs[j].addr;
3076                                 bio->bi_iter.bi_sector = from_addr +
3077                                         rdev->data_offset;
3078                                 bio->bi_bdev = rdev->bdev;
3079                                 atomic_inc(&rdev->nr_pending);
3080                                 /* and we write to 'i' (if not in_sync) */
3081
3082                                 for (k=0; k<conf->copies; k++)
3083                                         if (r10_bio->devs[k].devnum == i)
3084                                                 break;
3085                                 BUG_ON(k == conf->copies);
3086                                 to_addr = r10_bio->devs[k].addr;
3087                                 r10_bio->devs[0].devnum = d;
3088                                 r10_bio->devs[0].addr = from_addr;
3089                                 r10_bio->devs[1].devnum = i;
3090                                 r10_bio->devs[1].addr = to_addr;
3091
3092                                 if (!test_bit(In_sync, &mrdev->flags)) {
3093                                         bio = r10_bio->devs[1].bio;
3094                                         bio_reset(bio);
3095                                         bio->bi_next = biolist;
3096                                         biolist = bio;
3097                                         bio->bi_private = r10_bio;
3098                                         bio->bi_end_io = end_sync_write;
3099                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3100                                         bio->bi_iter.bi_sector = to_addr
3101                                                 + mrdev->data_offset;
3102                                         bio->bi_bdev = mrdev->bdev;
3103                                         atomic_inc(&r10_bio->remaining);
3104                                 } else
3105                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3106
3107                                 /* and maybe write to replacement */
3108                                 bio = r10_bio->devs[1].repl_bio;
3109                                 if (bio)
3110                                         bio->bi_end_io = NULL;
3111                                 /* Note: if mreplace != NULL, then bio
3112                                  * cannot be NULL as r10buf_pool_alloc will
3113                                  * have allocated it.
3114                                  * So the second test here is pointless.
3115                                  * But it keeps semantic-checkers happy, and
3116                                  * this comment keeps human reviewers
3117                                  * happy.
3118                                  */
3119                                 if (mreplace == NULL || bio == NULL ||
3120                                     test_bit(Faulty, &mreplace->flags))
3121                                         break;
3122                                 bio_reset(bio);
3123                                 bio->bi_next = biolist;
3124                                 biolist = bio;
3125                                 bio->bi_private = r10_bio;
3126                                 bio->bi_end_io = end_sync_write;
3127                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3128                                 bio->bi_iter.bi_sector = to_addr +
3129                                         mreplace->data_offset;
3130                                 bio->bi_bdev = mreplace->bdev;
3131                                 atomic_inc(&r10_bio->remaining);
3132                                 break;
3133                         }
3134                         rcu_read_unlock();
3135                         if (j == conf->copies) {
3136                                 /* Cannot recover, so abort the recovery or
3137                                  * record a bad block */
3138                                 if (any_working) {
3139                                         /* problem is that there are bad blocks
3140                                          * on other device(s)
3141                                          */
3142                                         int k;
3143                                         for (k = 0; k < conf->copies; k++)
3144                                                 if (r10_bio->devs[k].devnum == i)
3145                                                         break;
3146                                         if (!test_bit(In_sync,
3147                                                       &mrdev->flags)
3148                                             && !rdev_set_badblocks(
3149                                                     mrdev,
3150                                                     r10_bio->devs[k].addr,
3151                                                     max_sync, 0))
3152                                                 any_working = 0;
3153                                         if (mreplace &&
3154                                             !rdev_set_badblocks(
3155                                                     mreplace,
3156                                                     r10_bio->devs[k].addr,
3157                                                     max_sync, 0))
3158                                                 any_working = 0;
3159                                 }
3160                                 if (!any_working)  {
3161                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3162                                                               &mddev->recovery))
3163                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3164                                                        "working devices for recovery.\n",
3165                                                        mdname(mddev));
3166                                         mirror->recovery_disabled
3167                                                 = mddev->recovery_disabled;
3168                                 }
3169                                 put_buf(r10_bio);
3170                                 if (rb2)
3171                                         atomic_dec(&rb2->remaining);
3172                                 r10_bio = rb2;
3173                                 rdev_dec_pending(mrdev, mddev);
3174                                 if (mreplace)
3175                                         rdev_dec_pending(mreplace, mddev);
3176                                 break;
3177                         }
3178                         rdev_dec_pending(mrdev, mddev);
3179                         if (mreplace)
3180                                 rdev_dec_pending(mreplace, mddev);
3181                 }
3182                 if (biolist == NULL) {
3183                         while (r10_bio) {
3184                                 struct r10bio *rb2 = r10_bio;
3185                                 r10_bio = (struct r10bio*) rb2->master_bio;
3186                                 rb2->master_bio = NULL;
3187                                 put_buf(rb2);
3188                         }
3189                         goto giveup;
3190                 }
3191         } else {
3192                 /* resync. Schedule a read for every block at this virt offset */
3193                 int count = 0;
3194
3195                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3196
3197                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3198                                        &sync_blocks, mddev->degraded) &&
3199                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3200                                                  &mddev->recovery)) {
3201                         /* We can skip this block */
3202                         *skipped = 1;
3203                         return sync_blocks + sectors_skipped;
3204                 }
3205                 if (sync_blocks < max_sync)
3206                         max_sync = sync_blocks;
3207                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3208                 r10_bio->state = 0;
3209
3210                 r10_bio->mddev = mddev;
3211                 atomic_set(&r10_bio->remaining, 0);
3212                 raise_barrier(conf, 0);
3213                 conf->next_resync = sector_nr;
3214
3215                 r10_bio->master_bio = NULL;
3216                 r10_bio->sector = sector_nr;
3217                 set_bit(R10BIO_IsSync, &r10_bio->state);
3218                 raid10_find_phys(conf, r10_bio);
3219                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3220
3221                 for (i = 0; i < conf->copies; i++) {
3222                         int d = r10_bio->devs[i].devnum;
3223                         sector_t first_bad, sector;
3224                         int bad_sectors;
3225                         struct md_rdev *rdev;
3226
3227                         if (r10_bio->devs[i].repl_bio)
3228                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3229
3230                         bio = r10_bio->devs[i].bio;
3231                         bio_reset(bio);
3232                         bio->bi_error = -EIO;
3233                         rcu_read_lock();
3234                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3235                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3236                                 rcu_read_unlock();
3237                                 continue;
3238                         }
3239                         sector = r10_bio->devs[i].addr;
3240                         if (is_badblock(rdev, sector, max_sync,
3241                                         &first_bad, &bad_sectors)) {
3242                                 if (first_bad > sector)
3243                                         max_sync = first_bad - sector;
3244                                 else {
3245                                         bad_sectors -= (sector - first_bad);
3246                                         if (max_sync > bad_sectors)
3247                                                 max_sync = bad_sectors;
3248                                         rcu_read_unlock();
3249                                         continue;
3250                                 }
3251                         }
3252                         atomic_inc(&rdev->nr_pending);
3253                         atomic_inc(&r10_bio->remaining);
3254                         bio->bi_next = biolist;
3255                         biolist = bio;
3256                         bio->bi_private = r10_bio;
3257                         bio->bi_end_io = end_sync_read;
3258                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3259                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3260                         bio->bi_bdev = rdev->bdev;
3261                         count++;
3262
3263                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3264                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3265                                 rcu_read_unlock();
3266                                 continue;
3267                         }
3268                         atomic_inc(&rdev->nr_pending);
3269                         rcu_read_unlock();
3270
3271                         /* Need to set up for writing to the replacement */
3272                         bio = r10_bio->devs[i].repl_bio;
3273                         bio_reset(bio);
3274                         bio->bi_error = -EIO;
3275
3276                         sector = r10_bio->devs[i].addr;
3277                         bio->bi_next = biolist;
3278                         biolist = bio;
3279                         bio->bi_private = r10_bio;
3280                         bio->bi_end_io = end_sync_write;
3281                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3282                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3283                         bio->bi_bdev = rdev->bdev;
3284                         count++;
3285                 }
3286
3287                 if (count < 2) {
3288                         for (i=0; i<conf->copies; i++) {
3289                                 int d = r10_bio->devs[i].devnum;
3290                                 if (r10_bio->devs[i].bio->bi_end_io)
3291                                         rdev_dec_pending(conf->mirrors[d].rdev,
3292                                                          mddev);
3293                                 if (r10_bio->devs[i].repl_bio &&
3294                                     r10_bio->devs[i].repl_bio->bi_end_io)
3295                                         rdev_dec_pending(
3296                                                 conf->mirrors[d].replacement,
3297                                                 mddev);
3298                         }
3299                         put_buf(r10_bio);
3300                         biolist = NULL;
3301                         goto giveup;
3302                 }
3303         }
3304
3305         nr_sectors = 0;
3306         if (sector_nr + max_sync < max_sector)
3307                 max_sector = sector_nr + max_sync;
3308         do {
3309                 struct page *page;
3310                 int len = PAGE_SIZE;
3311                 if (sector_nr + (len>>9) > max_sector)
3312                         len = (max_sector - sector_nr) << 9;
3313                 if (len == 0)
3314                         break;
3315                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3316                         struct bio *bio2;
3317                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3318                         if (bio_add_page(bio, page, len, 0))
3319                                 continue;
3320
3321                         /* stop here */
3322                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3323                         for (bio2 = biolist;
3324                              bio2 && bio2 != bio;
3325                              bio2 = bio2->bi_next) {
3326                                 /* remove last page from this bio */
3327                                 bio2->bi_vcnt--;
3328                                 bio2->bi_iter.bi_size -= len;
3329                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3330                         }
3331                         goto bio_full;
3332                 }
3333                 nr_sectors += len>>9;
3334                 sector_nr += len>>9;
3335         } while (biolist->bi_vcnt < RESYNC_PAGES);
3336  bio_full:
3337         r10_bio->sectors = nr_sectors;
3338
3339         while (biolist) {
3340                 bio = biolist;
3341                 biolist = biolist->bi_next;
3342
3343                 bio->bi_next = NULL;
3344                 r10_bio = bio->bi_private;
3345                 r10_bio->sectors = nr_sectors;
3346
3347                 if (bio->bi_end_io == end_sync_read) {
3348                         md_sync_acct(bio->bi_bdev, nr_sectors);
3349                         bio->bi_error = 0;
3350                         generic_make_request(bio);
3351                 }
3352         }
3353
3354         if (sectors_skipped)
3355                 /* pretend they weren't skipped, it makes
3356                  * no important difference in this case
3357                  */
3358                 md_done_sync(mddev, sectors_skipped, 1);
3359
3360         return sectors_skipped + nr_sectors;
3361  giveup:
3362         /* There is nowhere to write, so all non-sync
3363          * drives must be failed or in resync, all drives
3364          * have a bad block, so try the next chunk...
3365          */
3366         if (sector_nr + max_sync < max_sector)
3367                 max_sector = sector_nr + max_sync;
3368
3369         sectors_skipped += (max_sector - sector_nr);
3370         chunks_skipped ++;
3371         sector_nr = max_sector;
3372         goto skipped;
3373 }
3374
3375 static sector_t
3376 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3377 {
3378         sector_t size;
3379         struct r10conf *conf = mddev->private;
3380
3381         if (!raid_disks)
3382                 raid_disks = min(conf->geo.raid_disks,
3383                                  conf->prev.raid_disks);
3384         if (!sectors)
3385                 sectors = conf->dev_sectors;
3386
3387         size = sectors >> conf->geo.chunk_shift;
3388         sector_div(size, conf->geo.far_copies);
3389         size = size * raid_disks;
3390         sector_div(size, conf->geo.near_copies);
3391
3392         return size << conf->geo.chunk_shift;
3393 }
3394
3395 static void calc_sectors(struct r10conf *conf, sector_t size)
3396 {
3397         /* Calculate the number of sectors-per-device that will
3398          * actually be used, and set conf->dev_sectors and
3399          * conf->stride
3400          */
3401
3402         size = size >> conf->geo.chunk_shift;
3403         sector_div(size, conf->geo.far_copies);
3404         size = size * conf->geo.raid_disks;
3405         sector_div(size, conf->geo.near_copies);
3406         /* 'size' is now the number of chunks in the array */
3407         /* calculate "used chunks per device" */
3408         size = size * conf->copies;
3409
3410         /* We need to round up when dividing by raid_disks to
3411          * get the stride size.
3412          */
3413         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3414
3415         conf->dev_sectors = size << conf->geo.chunk_shift;
3416
3417         if (conf->geo.far_offset)
3418                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3419         else {
3420                 sector_div(size, conf->geo.far_copies);
3421                 conf->geo.stride = size << conf->geo.chunk_shift;
3422         }
3423 }
3424
3425 enum geo_type {geo_new, geo_old, geo_start};
3426 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3427 {
3428         int nc, fc, fo;
3429         int layout, chunk, disks;
3430         switch (new) {
3431         case geo_old:
3432                 layout = mddev->layout;
3433                 chunk = mddev->chunk_sectors;
3434                 disks = mddev->raid_disks - mddev->delta_disks;
3435                 break;
3436         case geo_new:
3437                 layout = mddev->new_layout;
3438                 chunk = mddev->new_chunk_sectors;
3439                 disks = mddev->raid_disks;
3440                 break;
3441         default: /* avoid 'may be unused' warnings */
3442         case geo_start: /* new when starting reshape - raid_disks not
3443                          * updated yet. */
3444                 layout = mddev->new_layout;
3445                 chunk = mddev->new_chunk_sectors;
3446                 disks = mddev->raid_disks + mddev->delta_disks;
3447                 break;
3448         }
3449         if (layout >> 19)
3450                 return -1;
3451         if (chunk < (PAGE_SIZE >> 9) ||
3452             !is_power_of_2(chunk))
3453                 return -2;
3454         nc = layout & 255;
3455         fc = (layout >> 8) & 255;
3456         fo = layout & (1<<16);
3457         geo->raid_disks = disks;
3458         geo->near_copies = nc;
3459         geo->far_copies = fc;
3460         geo->far_offset = fo;
3461         switch (layout >> 17) {
3462         case 0: /* original layout.  simple but not always optimal */
3463                 geo->far_set_size = disks;
3464                 break;
3465         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3466                  * actually using this, but leave code here just in case.*/
3467                 geo->far_set_size = disks/fc;
3468                 WARN(geo->far_set_size < fc,
3469                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3470                 break;
3471         case 2: /* "improved" layout fixed to match documentation */
3472                 geo->far_set_size = fc * nc;
3473                 break;
3474         default: /* Not a valid layout */
3475                 return -1;
3476         }
3477         geo->chunk_mask = chunk - 1;
3478         geo->chunk_shift = ffz(~chunk);
3479         return nc*fc;
3480 }
3481
3482 static struct r10conf *setup_conf(struct mddev *mddev)
3483 {
3484         struct r10conf *conf = NULL;
3485         int err = -EINVAL;
3486         struct geom geo;
3487         int copies;
3488
3489         copies = setup_geo(&geo, mddev, geo_new);
3490
3491         if (copies == -2) {
3492                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3493                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3494                        mdname(mddev), PAGE_SIZE);
3495                 goto out;
3496         }
3497
3498         if (copies < 2 || copies > mddev->raid_disks) {
3499                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3500                        mdname(mddev), mddev->new_layout);
3501                 goto out;
3502         }
3503
3504         err = -ENOMEM;
3505         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3506         if (!conf)
3507                 goto out;
3508
3509         /* FIXME calc properly */
3510         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3511                                                             max(0,-mddev->delta_disks)),
3512                                 GFP_KERNEL);
3513         if (!conf->mirrors)
3514                 goto out;
3515
3516         conf->tmppage = alloc_page(GFP_KERNEL);
3517         if (!conf->tmppage)
3518                 goto out;
3519
3520         conf->geo = geo;
3521         conf->copies = copies;
3522         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3523                                            r10bio_pool_free, conf);
3524         if (!conf->r10bio_pool)
3525                 goto out;
3526
3527         calc_sectors(conf, mddev->dev_sectors);
3528         if (mddev->reshape_position == MaxSector) {
3529                 conf->prev = conf->geo;
3530                 conf->reshape_progress = MaxSector;
3531         } else {
3532                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3533                         err = -EINVAL;
3534                         goto out;
3535                 }
3536                 conf->reshape_progress = mddev->reshape_position;
3537                 if (conf->prev.far_offset)
3538                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3539                 else
3540                         /* far_copies must be 1 */
3541                         conf->prev.stride = conf->dev_sectors;
3542         }
3543         conf->reshape_safe = conf->reshape_progress;
3544         spin_lock_init(&conf->device_lock);
3545         INIT_LIST_HEAD(&conf->retry_list);
3546         INIT_LIST_HEAD(&conf->bio_end_io_list);
3547
3548         spin_lock_init(&conf->resync_lock);
3549         init_waitqueue_head(&conf->wait_barrier);
3550         atomic_set(&conf->nr_pending, 0);
3551
3552         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3553         if (!conf->thread)
3554                 goto out;
3555
3556         conf->mddev = mddev;
3557         return conf;
3558
3559  out:
3560         if (err == -ENOMEM)
3561                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3562                        mdname(mddev));
3563         if (conf) {
3564                 mempool_destroy(conf->r10bio_pool);
3565                 kfree(conf->mirrors);
3566                 safe_put_page(conf->tmppage);
3567                 kfree(conf);
3568         }
3569         return ERR_PTR(err);
3570 }
3571
3572 static int raid10_run(struct mddev *mddev)
3573 {
3574         struct r10conf *conf;
3575         int i, disk_idx, chunk_size;
3576         struct raid10_info *disk;
3577         struct md_rdev *rdev;
3578         sector_t size;
3579         sector_t min_offset_diff = 0;
3580         int first = 1;
3581         bool discard_supported = false;
3582
3583         if (mddev->private == NULL) {
3584                 conf = setup_conf(mddev);
3585                 if (IS_ERR(conf))
3586                         return PTR_ERR(conf);
3587                 mddev->private = conf;
3588         }
3589         conf = mddev->private;
3590         if (!conf)
3591                 goto out;
3592
3593         mddev->thread = conf->thread;
3594         conf->thread = NULL;
3595
3596         chunk_size = mddev->chunk_sectors << 9;
3597         if (mddev->queue) {
3598                 blk_queue_max_discard_sectors(mddev->queue,
3599                                               mddev->chunk_sectors);
3600                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3601                 blk_queue_io_min(mddev->queue, chunk_size);
3602                 if (conf->geo.raid_disks % conf->geo.near_copies)
3603                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3604                 else
3605                         blk_queue_io_opt(mddev->queue, chunk_size *
3606                                          (conf->geo.raid_disks / conf->geo.near_copies));
3607         }
3608
3609         rdev_for_each(rdev, mddev) {
3610                 long long diff;
3611                 struct request_queue *q;
3612
3613                 disk_idx = rdev->raid_disk;
3614                 if (disk_idx < 0)
3615                         continue;
3616                 if (disk_idx >= conf->geo.raid_disks &&
3617                     disk_idx >= conf->prev.raid_disks)
3618                         continue;
3619                 disk = conf->mirrors + disk_idx;
3620
3621                 if (test_bit(Replacement, &rdev->flags)) {
3622                         if (disk->replacement)
3623                                 goto out_free_conf;
3624                         disk->replacement = rdev;
3625                 } else {
3626                         if (disk->rdev)
3627                                 goto out_free_conf;
3628                         disk->rdev = rdev;
3629                 }
3630                 q = bdev_get_queue(rdev->bdev);
3631                 diff = (rdev->new_data_offset - rdev->data_offset);
3632                 if (!mddev->reshape_backwards)
3633                         diff = -diff;
3634                 if (diff < 0)
3635                         diff = 0;
3636                 if (first || diff < min_offset_diff)
3637                         min_offset_diff = diff;
3638
3639                 if (mddev->gendisk)
3640                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3641                                           rdev->data_offset << 9);
3642
3643                 disk->head_position = 0;
3644
3645                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3646                         discard_supported = true;
3647         }
3648
3649         if (mddev->queue) {
3650                 if (discard_supported)
3651                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3652                                                 mddev->queue);
3653                 else
3654                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3655                                                   mddev->queue);
3656         }
3657         /* need to check that every block has at least one working mirror */
3658         if (!enough(conf, -1)) {
3659                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3660                        mdname(mddev));
3661                 goto out_free_conf;
3662         }
3663
3664         if (conf->reshape_progress != MaxSector) {
3665                 /* must ensure that shape change is supported */
3666                 if (conf->geo.far_copies != 1 &&
3667                     conf->geo.far_offset == 0)
3668                         goto out_free_conf;
3669                 if (conf->prev.far_copies != 1 &&
3670                     conf->prev.far_offset == 0)
3671                         goto out_free_conf;
3672         }
3673
3674         mddev->degraded = 0;
3675         for (i = 0;
3676              i < conf->geo.raid_disks
3677                      || i < conf->prev.raid_disks;
3678              i++) {
3679
3680                 disk = conf->mirrors + i;
3681
3682                 if (!disk->rdev && disk->replacement) {
3683                         /* The replacement is all we have - use it */
3684                         disk->rdev = disk->replacement;
3685                         disk->replacement = NULL;
3686                         clear_bit(Replacement, &disk->rdev->flags);
3687                 }
3688
3689                 if (!disk->rdev ||
3690                     !test_bit(In_sync, &disk->rdev->flags)) {
3691                         disk->head_position = 0;
3692                         mddev->degraded++;
3693                         if (disk->rdev &&
3694                             disk->rdev->saved_raid_disk < 0)
3695                                 conf->fullsync = 1;
3696                 }
3697                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3698         }
3699
3700         if (mddev->recovery_cp != MaxSector)
3701                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3702                        " -- starting background reconstruction\n",
3703                        mdname(mddev));
3704         printk(KERN_INFO
3705                 "md/raid10:%s: active with %d out of %d devices\n",
3706                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3707                 conf->geo.raid_disks);
3708         /*
3709          * Ok, everything is just fine now
3710          */
3711         mddev->dev_sectors = conf->dev_sectors;
3712         size = raid10_size(mddev, 0, 0);
3713         md_set_array_sectors(mddev, size);
3714         mddev->resync_max_sectors = size;
3715
3716         if (mddev->queue) {
3717                 int stripe = conf->geo.raid_disks *
3718                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3719
3720                 /* Calculate max read-ahead size.
3721                  * We need to readahead at least twice a whole stripe....
3722                  * maybe...
3723                  */
3724                 stripe /= conf->geo.near_copies;
3725                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3726                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3727         }
3728
3729         if (md_integrity_register(mddev))
3730                 goto out_free_conf;
3731
3732         if (conf->reshape_progress != MaxSector) {
3733                 unsigned long before_length, after_length;
3734
3735                 before_length = ((1 << conf->prev.chunk_shift) *
3736                                  conf->prev.far_copies);
3737                 after_length = ((1 << conf->geo.chunk_shift) *
3738                                 conf->geo.far_copies);
3739
3740                 if (max(before_length, after_length) > min_offset_diff) {
3741                         /* This cannot work */
3742                         printk("md/raid10: offset difference not enough to continue reshape\n");
3743                         goto out_free_conf;
3744                 }
3745                 conf->offset_diff = min_offset_diff;
3746
3747                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3748                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3749                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3750                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3751                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3752                                                         "reshape");
3753         }
3754
3755         return 0;
3756
3757 out_free_conf:
3758         md_unregister_thread(&mddev->thread);
3759         mempool_destroy(conf->r10bio_pool);
3760         safe_put_page(conf->tmppage);
3761         kfree(conf->mirrors);
3762         kfree(conf);
3763         mddev->private = NULL;
3764 out:
3765         return -EIO;
3766 }
3767
3768 static void raid10_free(struct mddev *mddev, void *priv)
3769 {
3770         struct r10conf *conf = priv;
3771
3772         mempool_destroy(conf->r10bio_pool);
3773         safe_put_page(conf->tmppage);
3774         kfree(conf->mirrors);
3775         kfree(conf->mirrors_old);
3776         kfree(conf->mirrors_new);
3777         kfree(conf);
3778 }
3779
3780 static void raid10_quiesce(struct mddev *mddev, int state)
3781 {
3782         struct r10conf *conf = mddev->private;
3783
3784         switch(state) {
3785         case 1:
3786                 raise_barrier(conf, 0);
3787                 break;
3788         case 0:
3789                 lower_barrier(conf);
3790                 break;
3791         }
3792 }
3793
3794 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3795 {
3796         /* Resize of 'far' arrays is not supported.
3797          * For 'near' and 'offset' arrays we can set the
3798          * number of sectors used to be an appropriate multiple
3799          * of the chunk size.
3800          * For 'offset', this is far_copies*chunksize.
3801          * For 'near' the multiplier is the LCM of
3802          * near_copies and raid_disks.
3803          * So if far_copies > 1 && !far_offset, fail.
3804          * Else find LCM(raid_disks, near_copy)*far_copies and
3805          * multiply by chunk_size.  Then round to this number.
3806          * This is mostly done by raid10_size()
3807          */
3808         struct r10conf *conf = mddev->private;
3809         sector_t oldsize, size;
3810
3811         if (mddev->reshape_position != MaxSector)
3812                 return -EBUSY;
3813
3814         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3815                 return -EINVAL;
3816
3817         oldsize = raid10_size(mddev, 0, 0);
3818         size = raid10_size(mddev, sectors, 0);
3819         if (mddev->external_size &&
3820             mddev->array_sectors > size)
3821                 return -EINVAL;
3822         if (mddev->bitmap) {
3823                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3824                 if (ret)
3825                         return ret;
3826         }
3827         md_set_array_sectors(mddev, size);
3828         if (mddev->queue) {
3829                 set_capacity(mddev->gendisk, mddev->array_sectors);
3830                 revalidate_disk(mddev->gendisk);
3831         }
3832         if (sectors > mddev->dev_sectors &&
3833             mddev->recovery_cp > oldsize) {
3834                 mddev->recovery_cp = oldsize;
3835                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3836         }
3837         calc_sectors(conf, sectors);
3838         mddev->dev_sectors = conf->dev_sectors;
3839         mddev->resync_max_sectors = size;
3840         return 0;
3841 }
3842
3843 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3844 {
3845         struct md_rdev *rdev;
3846         struct r10conf *conf;
3847
3848         if (mddev->degraded > 0) {
3849                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3850                        mdname(mddev));
3851                 return ERR_PTR(-EINVAL);
3852         }
3853         sector_div(size, devs);
3854
3855         /* Set new parameters */
3856         mddev->new_level = 10;
3857         /* new layout: far_copies = 1, near_copies = 2 */
3858         mddev->new_layout = (1<<8) + 2;
3859         mddev->new_chunk_sectors = mddev->chunk_sectors;
3860         mddev->delta_disks = mddev->raid_disks;
3861         mddev->raid_disks *= 2;
3862         /* make sure it will be not marked as dirty */
3863         mddev->recovery_cp = MaxSector;
3864         mddev->dev_sectors = size;
3865
3866         conf = setup_conf(mddev);
3867         if (!IS_ERR(conf)) {
3868                 rdev_for_each(rdev, mddev)
3869                         if (rdev->raid_disk >= 0) {
3870                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3871                                 rdev->sectors = size;
3872                         }
3873                 conf->barrier = 1;
3874         }
3875
3876         return conf;
3877 }
3878
3879 static void *raid10_takeover(struct mddev *mddev)
3880 {
3881         struct r0conf *raid0_conf;
3882
3883         /* raid10 can take over:
3884          *  raid0 - providing it has only two drives
3885          */
3886         if (mddev->level == 0) {
3887                 /* for raid0 takeover only one zone is supported */
3888                 raid0_conf = mddev->private;
3889                 if (raid0_conf->nr_strip_zones > 1) {
3890                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3891                                " with more than one zone.\n",
3892                                mdname(mddev));
3893                         return ERR_PTR(-EINVAL);
3894                 }
3895                 return raid10_takeover_raid0(mddev,
3896                         raid0_conf->strip_zone->zone_end,
3897                         raid0_conf->strip_zone->nb_dev);
3898         }
3899         return ERR_PTR(-EINVAL);
3900 }
3901
3902 static int raid10_check_reshape(struct mddev *mddev)
3903 {
3904         /* Called when there is a request to change
3905          * - layout (to ->new_layout)
3906          * - chunk size (to ->new_chunk_sectors)
3907          * - raid_disks (by delta_disks)
3908          * or when trying to restart a reshape that was ongoing.
3909          *
3910          * We need to validate the request and possibly allocate
3911          * space if that might be an issue later.
3912          *
3913          * Currently we reject any reshape of a 'far' mode array,
3914          * allow chunk size to change if new is generally acceptable,
3915          * allow raid_disks to increase, and allow
3916          * a switch between 'near' mode and 'offset' mode.
3917          */
3918         struct r10conf *conf = mddev->private;
3919         struct geom geo;
3920
3921         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3922                 return -EINVAL;
3923
3924         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3925                 /* mustn't change number of copies */
3926                 return -EINVAL;
3927         if (geo.far_copies > 1 && !geo.far_offset)
3928                 /* Cannot switch to 'far' mode */
3929                 return -EINVAL;
3930
3931         if (mddev->array_sectors & geo.chunk_mask)
3932                         /* not factor of array size */
3933                         return -EINVAL;
3934
3935         if (!enough(conf, -1))
3936                 return -EINVAL;
3937
3938         kfree(conf->mirrors_new);
3939         conf->mirrors_new = NULL;
3940         if (mddev->delta_disks > 0) {
3941                 /* allocate new 'mirrors' list */
3942                 conf->mirrors_new = kzalloc(
3943                         sizeof(struct raid10_info)
3944                         *(mddev->raid_disks +
3945                           mddev->delta_disks),
3946                         GFP_KERNEL);
3947                 if (!conf->mirrors_new)
3948                         return -ENOMEM;
3949         }
3950         return 0;
3951 }
3952
3953 /*
3954  * Need to check if array has failed when deciding whether to:
3955  *  - start an array
3956  *  - remove non-faulty devices
3957  *  - add a spare
3958  *  - allow a reshape
3959  * This determination is simple when no reshape is happening.
3960  * However if there is a reshape, we need to carefully check
3961  * both the before and after sections.
3962  * This is because some failed devices may only affect one
3963  * of the two sections, and some non-in_sync devices may
3964  * be insync in the section most affected by failed devices.
3965  */
3966 static int calc_degraded(struct r10conf *conf)
3967 {
3968         int degraded, degraded2;
3969         int i;
3970
3971         rcu_read_lock();
3972         degraded = 0;
3973         /* 'prev' section first */
3974         for (i = 0; i < conf->prev.raid_disks; i++) {
3975                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3976                 if (!rdev || test_bit(Faulty, &rdev->flags))
3977                         degraded++;
3978                 else if (!test_bit(In_sync, &rdev->flags))
3979                         /* When we can reduce the number of devices in
3980                          * an array, this might not contribute to
3981                          * 'degraded'.  It does now.
3982                          */
3983                         degraded++;
3984         }
3985         rcu_read_unlock();
3986         if (conf->geo.raid_disks == conf->prev.raid_disks)
3987                 return degraded;
3988         rcu_read_lock();
3989         degraded2 = 0;
3990         for (i = 0; i < conf->geo.raid_disks; i++) {
3991                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3992                 if (!rdev || test_bit(Faulty, &rdev->flags))
3993                         degraded2++;
3994                 else if (!test_bit(In_sync, &rdev->flags)) {
3995                         /* If reshape is increasing the number of devices,
3996                          * this section has already been recovered, so
3997                          * it doesn't contribute to degraded.
3998                          * else it does.
3999                          */
4000                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4001                                 degraded2++;
4002                 }
4003         }
4004         rcu_read_unlock();
4005         if (degraded2 > degraded)
4006                 return degraded2;
4007         return degraded;
4008 }
4009
4010 static int raid10_start_reshape(struct mddev *mddev)
4011 {
4012         /* A 'reshape' has been requested. This commits
4013          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4014          * This also checks if there are enough spares and adds them
4015          * to the array.
4016          * We currently require enough spares to make the final
4017          * array non-degraded.  We also require that the difference
4018          * between old and new data_offset - on each device - is
4019          * enough that we never risk over-writing.
4020          */
4021
4022         unsigned long before_length, after_length;
4023         sector_t min_offset_diff = 0;
4024         int first = 1;
4025         struct geom new;
4026         struct r10conf *conf = mddev->private;
4027         struct md_rdev *rdev;
4028         int spares = 0;
4029         int ret;
4030
4031         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4032                 return -EBUSY;
4033
4034         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4035                 return -EINVAL;
4036
4037         before_length = ((1 << conf->prev.chunk_shift) *
4038                          conf->prev.far_copies);
4039         after_length = ((1 << conf->geo.chunk_shift) *
4040                         conf->geo.far_copies);
4041
4042         rdev_for_each(rdev, mddev) {
4043                 if (!test_bit(In_sync, &rdev->flags)
4044                     && !test_bit(Faulty, &rdev->flags))
4045                         spares++;
4046                 if (rdev->raid_disk >= 0) {
4047                         long long diff = (rdev->new_data_offset
4048                                           - rdev->data_offset);
4049                         if (!mddev->reshape_backwards)
4050                                 diff = -diff;
4051                         if (diff < 0)
4052                                 diff = 0;
4053                         if (first || diff < min_offset_diff)
4054                                 min_offset_diff = diff;
4055                 }
4056         }
4057
4058         if (max(before_length, after_length) > min_offset_diff)
4059                 return -EINVAL;
4060
4061         if (spares < mddev->delta_disks)
4062                 return -EINVAL;
4063
4064         conf->offset_diff = min_offset_diff;
4065         spin_lock_irq(&conf->device_lock);
4066         if (conf->mirrors_new) {
4067                 memcpy(conf->mirrors_new, conf->mirrors,
4068                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4069                 smp_mb();
4070                 kfree(conf->mirrors_old);
4071                 conf->mirrors_old = conf->mirrors;
4072                 conf->mirrors = conf->mirrors_new;
4073                 conf->mirrors_new = NULL;
4074         }
4075         setup_geo(&conf->geo, mddev, geo_start);
4076         smp_mb();
4077         if (mddev->reshape_backwards) {
4078                 sector_t size = raid10_size(mddev, 0, 0);
4079                 if (size < mddev->array_sectors) {
4080                         spin_unlock_irq(&conf->device_lock);
4081                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4082                                mdname(mddev));
4083                         return -EINVAL;
4084                 }
4085                 mddev->resync_max_sectors = size;
4086                 conf->reshape_progress = size;
4087         } else
4088                 conf->reshape_progress = 0;
4089         conf->reshape_safe = conf->reshape_progress;
4090         spin_unlock_irq(&conf->device_lock);
4091
4092         if (mddev->delta_disks && mddev->bitmap) {
4093                 ret = bitmap_resize(mddev->bitmap,
4094                                     raid10_size(mddev, 0,
4095                                                 conf->geo.raid_disks),
4096                                     0, 0);
4097                 if (ret)
4098                         goto abort;
4099         }
4100         if (mddev->delta_disks > 0) {
4101                 rdev_for_each(rdev, mddev)
4102                         if (rdev->raid_disk < 0 &&
4103                             !test_bit(Faulty, &rdev->flags)) {
4104                                 if (raid10_add_disk(mddev, rdev) == 0) {
4105                                         if (rdev->raid_disk >=
4106                                             conf->prev.raid_disks)
4107                                                 set_bit(In_sync, &rdev->flags);
4108                                         else
4109                                                 rdev->recovery_offset = 0;
4110
4111                                         if (sysfs_link_rdev(mddev, rdev))
4112                                                 /* Failure here  is OK */;
4113                                 }
4114                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4115                                    && !test_bit(Faulty, &rdev->flags)) {
4116                                 /* This is a spare that was manually added */
4117                                 set_bit(In_sync, &rdev->flags);
4118                         }
4119         }
4120         /* When a reshape changes the number of devices,
4121          * ->degraded is measured against the larger of the
4122          * pre and  post numbers.
4123          */
4124         spin_lock_irq(&conf->device_lock);
4125         mddev->degraded = calc_degraded(conf);
4126         spin_unlock_irq(&conf->device_lock);
4127         mddev->raid_disks = conf->geo.raid_disks;
4128         mddev->reshape_position = conf->reshape_progress;
4129         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4130
4131         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4132         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4134         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4135         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4136
4137         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4138                                                 "reshape");
4139         if (!mddev->sync_thread) {
4140                 ret = -EAGAIN;
4141                 goto abort;
4142         }
4143         conf->reshape_checkpoint = jiffies;
4144         md_wakeup_thread(mddev->sync_thread);
4145         md_new_event(mddev);
4146         return 0;
4147
4148 abort:
4149         mddev->recovery = 0;
4150         spin_lock_irq(&conf->device_lock);
4151         conf->geo = conf->prev;
4152         mddev->raid_disks = conf->geo.raid_disks;
4153         rdev_for_each(rdev, mddev)
4154                 rdev->new_data_offset = rdev->data_offset;
4155         smp_wmb();
4156         conf->reshape_progress = MaxSector;
4157         conf->reshape_safe = MaxSector;
4158         mddev->reshape_position = MaxSector;
4159         spin_unlock_irq(&conf->device_lock);
4160         return ret;
4161 }
4162
4163 /* Calculate the last device-address that could contain
4164  * any block from the chunk that includes the array-address 's'
4165  * and report the next address.
4166  * i.e. the address returned will be chunk-aligned and after
4167  * any data that is in the chunk containing 's'.
4168  */
4169 static sector_t last_dev_address(sector_t s, struct geom *geo)
4170 {
4171         s = (s | geo->chunk_mask) + 1;
4172         s >>= geo->chunk_shift;
4173         s *= geo->near_copies;
4174         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4175         s *= geo->far_copies;
4176         s <<= geo->chunk_shift;
4177         return s;
4178 }
4179
4180 /* Calculate the first device-address that could contain
4181  * any block from the chunk that includes the array-address 's'.
4182  * This too will be the start of a chunk
4183  */
4184 static sector_t first_dev_address(sector_t s, struct geom *geo)
4185 {
4186         s >>= geo->chunk_shift;
4187         s *= geo->near_copies;
4188         sector_div(s, geo->raid_disks);
4189         s *= geo->far_copies;
4190         s <<= geo->chunk_shift;
4191         return s;
4192 }
4193
4194 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4195                                 int *skipped)
4196 {
4197         /* We simply copy at most one chunk (smallest of old and new)
4198          * at a time, possibly less if that exceeds RESYNC_PAGES,
4199          * or we hit a bad block or something.
4200          * This might mean we pause for normal IO in the middle of
4201          * a chunk, but that is not a problem as mddev->reshape_position
4202          * can record any location.
4203          *
4204          * If we will want to write to a location that isn't
4205          * yet recorded as 'safe' (i.e. in metadata on disk) then
4206          * we need to flush all reshape requests and update the metadata.
4207          *
4208          * When reshaping forwards (e.g. to more devices), we interpret
4209          * 'safe' as the earliest block which might not have been copied
4210          * down yet.  We divide this by previous stripe size and multiply
4211          * by previous stripe length to get lowest device offset that we
4212          * cannot write to yet.
4213          * We interpret 'sector_nr' as an address that we want to write to.
4214          * From this we use last_device_address() to find where we might
4215          * write to, and first_device_address on the  'safe' position.
4216          * If this 'next' write position is after the 'safe' position,
4217          * we must update the metadata to increase the 'safe' position.
4218          *
4219          * When reshaping backwards, we round in the opposite direction
4220          * and perform the reverse test:  next write position must not be
4221          * less than current safe position.
4222          *
4223          * In all this the minimum difference in data offsets
4224          * (conf->offset_diff - always positive) allows a bit of slack,
4225          * so next can be after 'safe', but not by more than offset_diff
4226          *
4227          * We need to prepare all the bios here before we start any IO
4228          * to ensure the size we choose is acceptable to all devices.
4229          * The means one for each copy for write-out and an extra one for
4230          * read-in.
4231          * We store the read-in bio in ->master_bio and the others in
4232          * ->devs[x].bio and ->devs[x].repl_bio.
4233          */
4234         struct r10conf *conf = mddev->private;
4235         struct r10bio *r10_bio;
4236         sector_t next, safe, last;
4237         int max_sectors;
4238         int nr_sectors;
4239         int s;
4240         struct md_rdev *rdev;
4241         int need_flush = 0;
4242         struct bio *blist;
4243         struct bio *bio, *read_bio;
4244         int sectors_done = 0;
4245
4246         if (sector_nr == 0) {
4247                 /* If restarting in the middle, skip the initial sectors */
4248                 if (mddev->reshape_backwards &&
4249                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4250                         sector_nr = (raid10_size(mddev, 0, 0)
4251                                      - conf->reshape_progress);
4252                 } else if (!mddev->reshape_backwards &&
4253                            conf->reshape_progress > 0)
4254                         sector_nr = conf->reshape_progress;
4255                 if (sector_nr) {
4256                         mddev->curr_resync_completed = sector_nr;
4257                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258                         *skipped = 1;
4259                         return sector_nr;
4260                 }
4261         }
4262
4263         /* We don't use sector_nr to track where we are up to
4264          * as that doesn't work well for ->reshape_backwards.
4265          * So just use ->reshape_progress.
4266          */
4267         if (mddev->reshape_backwards) {
4268                 /* 'next' is the earliest device address that we might
4269                  * write to for this chunk in the new layout
4270                  */
4271                 next = first_dev_address(conf->reshape_progress - 1,
4272                                          &conf->geo);
4273
4274                 /* 'safe' is the last device address that we might read from
4275                  * in the old layout after a restart
4276                  */
4277                 safe = last_dev_address(conf->reshape_safe - 1,
4278                                         &conf->prev);
4279
4280                 if (next + conf->offset_diff < safe)
4281                         need_flush = 1;
4282
4283                 last = conf->reshape_progress - 1;
4284                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4285                                                & conf->prev.chunk_mask);
4286                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4287                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4288         } else {
4289                 /* 'next' is after the last device address that we
4290                  * might write to for this chunk in the new layout
4291                  */
4292                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4293
4294                 /* 'safe' is the earliest device address that we might
4295                  * read from in the old layout after a restart
4296                  */
4297                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4298
4299                 /* Need to update metadata if 'next' might be beyond 'safe'
4300                  * as that would possibly corrupt data
4301                  */
4302                 if (next > safe + conf->offset_diff)
4303                         need_flush = 1;
4304
4305                 sector_nr = conf->reshape_progress;
4306                 last  = sector_nr | (conf->geo.chunk_mask
4307                                      & conf->prev.chunk_mask);
4308
4309                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4310                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4311         }
4312
4313         if (need_flush ||
4314             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4315                 /* Need to update reshape_position in metadata */
4316                 wait_barrier(conf);
4317                 mddev->reshape_position = conf->reshape_progress;
4318                 if (mddev->reshape_backwards)
4319                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4320                                 - conf->reshape_progress;
4321                 else
4322                         mddev->curr_resync_completed = conf->reshape_progress;
4323                 conf->reshape_checkpoint = jiffies;
4324                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325                 md_wakeup_thread(mddev->thread);
4326                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4327                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4328                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4329                         allow_barrier(conf);
4330                         return sectors_done;
4331                 }
4332                 conf->reshape_safe = mddev->reshape_position;
4333                 allow_barrier(conf);
4334         }
4335
4336 read_more:
4337         /* Now schedule reads for blocks from sector_nr to last */
4338         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4339         r10_bio->state = 0;
4340         raise_barrier(conf, sectors_done != 0);
4341         atomic_set(&r10_bio->remaining, 0);
4342         r10_bio->mddev = mddev;
4343         r10_bio->sector = sector_nr;
4344         set_bit(R10BIO_IsReshape, &r10_bio->state);
4345         r10_bio->sectors = last - sector_nr + 1;
4346         rdev = read_balance(conf, r10_bio, &max_sectors);
4347         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4348
4349         if (!rdev) {
4350                 /* Cannot read from here, so need to record bad blocks
4351                  * on all the target devices.
4352                  */
4353                 // FIXME
4354                 mempool_free(r10_bio, conf->r10buf_pool);
4355                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4356                 return sectors_done;
4357         }
4358
4359         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4360
4361         read_bio->bi_bdev = rdev->bdev;
4362         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4363                                + rdev->data_offset);
4364         read_bio->bi_private = r10_bio;
4365         read_bio->bi_end_io = end_sync_read;
4366         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4367         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4368         read_bio->bi_error = 0;
4369         read_bio->bi_vcnt = 0;
4370         read_bio->bi_iter.bi_size = 0;
4371         r10_bio->master_bio = read_bio;
4372         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4373
4374         /* Now find the locations in the new layout */
4375         __raid10_find_phys(&conf->geo, r10_bio);
4376
4377         blist = read_bio;
4378         read_bio->bi_next = NULL;
4379
4380         rcu_read_lock();
4381         for (s = 0; s < conf->copies*2; s++) {
4382                 struct bio *b;
4383                 int d = r10_bio->devs[s/2].devnum;
4384                 struct md_rdev *rdev2;
4385                 if (s&1) {
4386                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4387                         b = r10_bio->devs[s/2].repl_bio;
4388                 } else {
4389                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4390                         b = r10_bio->devs[s/2].bio;
4391                 }
4392                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4393                         continue;
4394
4395                 bio_reset(b);
4396                 b->bi_bdev = rdev2->bdev;
4397                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4398                         rdev2->new_data_offset;
4399                 b->bi_private = r10_bio;
4400                 b->bi_end_io = end_reshape_write;
4401                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4402                 b->bi_next = blist;
4403                 blist = b;
4404         }
4405
4406         /* Now add as many pages as possible to all of these bios. */
4407
4408         nr_sectors = 0;
4409         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4410                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4411                 int len = (max_sectors - s) << 9;
4412                 if (len > PAGE_SIZE)
4413                         len = PAGE_SIZE;
4414                 for (bio = blist; bio ; bio = bio->bi_next) {
4415                         struct bio *bio2;
4416                         if (bio_add_page(bio, page, len, 0))
4417                                 continue;
4418
4419                         /* Didn't fit, must stop */
4420                         for (bio2 = blist;
4421                              bio2 && bio2 != bio;
4422                              bio2 = bio2->bi_next) {
4423                                 /* Remove last page from this bio */
4424                                 bio2->bi_vcnt--;
4425                                 bio2->bi_iter.bi_size -= len;
4426                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4427                         }
4428                         goto bio_full;
4429                 }
4430                 sector_nr += len >> 9;
4431                 nr_sectors += len >> 9;
4432         }
4433 bio_full:
4434         rcu_read_unlock();
4435         r10_bio->sectors = nr_sectors;
4436
4437         /* Now submit the read */
4438         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4439         atomic_inc(&r10_bio->remaining);
4440         read_bio->bi_next = NULL;
4441         generic_make_request(read_bio);
4442         sector_nr += nr_sectors;
4443         sectors_done += nr_sectors;
4444         if (sector_nr <= last)
4445                 goto read_more;
4446
4447         /* Now that we have done the whole section we can
4448          * update reshape_progress
4449          */
4450         if (mddev->reshape_backwards)
4451                 conf->reshape_progress -= sectors_done;
4452         else
4453                 conf->reshape_progress += sectors_done;
4454
4455         return sectors_done;
4456 }
4457
4458 static void end_reshape_request(struct r10bio *r10_bio);
4459 static int handle_reshape_read_error(struct mddev *mddev,
4460                                      struct r10bio *r10_bio);
4461 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4462 {
4463         /* Reshape read completed.  Hopefully we have a block
4464          * to write out.
4465          * If we got a read error then we do sync 1-page reads from
4466          * elsewhere until we find the data - or give up.
4467          */
4468         struct r10conf *conf = mddev->private;
4469         int s;
4470
4471         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4472                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4473                         /* Reshape has been aborted */
4474                         md_done_sync(mddev, r10_bio->sectors, 0);
4475                         return;
4476                 }
4477
4478         /* We definitely have the data in the pages, schedule the
4479          * writes.
4480          */
4481         atomic_set(&r10_bio->remaining, 1);
4482         for (s = 0; s < conf->copies*2; s++) {
4483                 struct bio *b;
4484                 int d = r10_bio->devs[s/2].devnum;
4485                 struct md_rdev *rdev;
4486                 rcu_read_lock();
4487                 if (s&1) {
4488                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4489                         b = r10_bio->devs[s/2].repl_bio;
4490                 } else {
4491                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4492                         b = r10_bio->devs[s/2].bio;
4493                 }
4494                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4495                         rcu_read_unlock();
4496                         continue;
4497                 }
4498                 atomic_inc(&rdev->nr_pending);
4499                 rcu_read_unlock();
4500                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4501                 atomic_inc(&r10_bio->remaining);
4502                 b->bi_next = NULL;
4503                 generic_make_request(b);
4504         }
4505         end_reshape_request(r10_bio);
4506 }
4507
4508 static void end_reshape(struct r10conf *conf)
4509 {
4510         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4511                 return;
4512
4513         spin_lock_irq(&conf->device_lock);
4514         conf->prev = conf->geo;
4515         md_finish_reshape(conf->mddev);
4516         smp_wmb();
4517         conf->reshape_progress = MaxSector;
4518         conf->reshape_safe = MaxSector;
4519         spin_unlock_irq(&conf->device_lock);
4520
4521         /* read-ahead size must cover two whole stripes, which is
4522          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4523          */
4524         if (conf->mddev->queue) {
4525                 int stripe = conf->geo.raid_disks *
4526                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4527                 stripe /= conf->geo.near_copies;
4528                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4529                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4530         }
4531         conf->fullsync = 0;
4532 }
4533
4534 static int handle_reshape_read_error(struct mddev *mddev,
4535                                      struct r10bio *r10_bio)
4536 {
4537         /* Use sync reads to get the blocks from somewhere else */
4538         int sectors = r10_bio->sectors;
4539         struct r10conf *conf = mddev->private;
4540         struct {
4541                 struct r10bio r10_bio;
4542                 struct r10dev devs[conf->copies];
4543         } on_stack;
4544         struct r10bio *r10b = &on_stack.r10_bio;
4545         int slot = 0;
4546         int idx = 0;
4547         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4548
4549         r10b->sector = r10_bio->sector;
4550         __raid10_find_phys(&conf->prev, r10b);
4551
4552         while (sectors) {
4553                 int s = sectors;
4554                 int success = 0;
4555                 int first_slot = slot;
4556
4557                 if (s > (PAGE_SIZE >> 9))
4558                         s = PAGE_SIZE >> 9;
4559
4560                 rcu_read_lock();
4561                 while (!success) {
4562                         int d = r10b->devs[slot].devnum;
4563                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4564                         sector_t addr;
4565                         if (rdev == NULL ||
4566                             test_bit(Faulty, &rdev->flags) ||
4567                             !test_bit(In_sync, &rdev->flags))
4568                                 goto failed;
4569
4570                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4571                         atomic_inc(&rdev->nr_pending);
4572                         rcu_read_unlock();
4573                         success = sync_page_io(rdev,
4574                                                addr,
4575                                                s << 9,
4576                                                bvec[idx].bv_page,
4577                                                REQ_OP_READ, 0, false);
4578                         rdev_dec_pending(rdev, mddev);
4579                         rcu_read_lock();
4580                         if (success)
4581                                 break;
4582                 failed:
4583                         slot++;
4584                         if (slot >= conf->copies)
4585                                 slot = 0;
4586                         if (slot == first_slot)
4587                                 break;
4588                 }
4589                 rcu_read_unlock();
4590                 if (!success) {
4591                         /* couldn't read this block, must give up */
4592                         set_bit(MD_RECOVERY_INTR,
4593                                 &mddev->recovery);
4594                         return -EIO;
4595                 }
4596                 sectors -= s;
4597                 idx++;
4598         }
4599         return 0;
4600 }
4601
4602 static void end_reshape_write(struct bio *bio)
4603 {
4604         struct r10bio *r10_bio = bio->bi_private;
4605         struct mddev *mddev = r10_bio->mddev;
4606         struct r10conf *conf = mddev->private;
4607         int d;
4608         int slot;
4609         int repl;
4610         struct md_rdev *rdev = NULL;
4611
4612         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4613         if (repl)
4614                 rdev = conf->mirrors[d].replacement;
4615         if (!rdev) {
4616                 smp_mb();
4617                 rdev = conf->mirrors[d].rdev;
4618         }
4619
4620         if (bio->bi_error) {
4621                 /* FIXME should record badblock */
4622                 md_error(mddev, rdev);
4623         }
4624
4625         rdev_dec_pending(rdev, mddev);
4626         end_reshape_request(r10_bio);
4627 }
4628
4629 static void end_reshape_request(struct r10bio *r10_bio)
4630 {
4631         if (!atomic_dec_and_test(&r10_bio->remaining))
4632                 return;
4633         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4634         bio_put(r10_bio->master_bio);
4635         put_buf(r10_bio);
4636 }
4637
4638 static void raid10_finish_reshape(struct mddev *mddev)
4639 {
4640         struct r10conf *conf = mddev->private;
4641
4642         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4643                 return;
4644
4645         if (mddev->delta_disks > 0) {
4646                 sector_t size = raid10_size(mddev, 0, 0);
4647                 md_set_array_sectors(mddev, size);
4648                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4649                         mddev->recovery_cp = mddev->resync_max_sectors;
4650                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4651                 }
4652                 mddev->resync_max_sectors = size;
4653                 if (mddev->queue) {
4654                         set_capacity(mddev->gendisk, mddev->array_sectors);
4655                         revalidate_disk(mddev->gendisk);
4656                 }
4657         } else {
4658                 int d;
4659                 rcu_read_lock();
4660                 for (d = conf->geo.raid_disks ;
4661                      d < conf->geo.raid_disks - mddev->delta_disks;
4662                      d++) {
4663                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4664                         if (rdev)
4665                                 clear_bit(In_sync, &rdev->flags);
4666                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4667                         if (rdev)
4668                                 clear_bit(In_sync, &rdev->flags);
4669                 }
4670                 rcu_read_unlock();
4671         }
4672         mddev->layout = mddev->new_layout;
4673         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4674         mddev->reshape_position = MaxSector;
4675         mddev->delta_disks = 0;
4676         mddev->reshape_backwards = 0;
4677 }
4678
4679 static struct md_personality raid10_personality =
4680 {
4681         .name           = "raid10",
4682         .level          = 10,
4683         .owner          = THIS_MODULE,
4684         .make_request   = raid10_make_request,
4685         .run            = raid10_run,
4686         .free           = raid10_free,
4687         .status         = raid10_status,
4688         .error_handler  = raid10_error,
4689         .hot_add_disk   = raid10_add_disk,
4690         .hot_remove_disk= raid10_remove_disk,
4691         .spare_active   = raid10_spare_active,
4692         .sync_request   = raid10_sync_request,
4693         .quiesce        = raid10_quiesce,
4694         .size           = raid10_size,
4695         .resize         = raid10_resize,
4696         .takeover       = raid10_takeover,
4697         .check_reshape  = raid10_check_reshape,
4698         .start_reshape  = raid10_start_reshape,
4699         .finish_reshape = raid10_finish_reshape,
4700         .congested      = raid10_congested,
4701 };
4702
4703 static int __init raid_init(void)
4704 {
4705         return register_md_personality(&raid10_personality);
4706 }
4707
4708 static void raid_exit(void)
4709 {
4710         unregister_md_personality(&raid10_personality);
4711 }
4712
4713 module_init(raid_init);
4714 module_exit(raid_exit);
4715 MODULE_LICENSE("GPL");
4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4718 MODULE_ALIAS("md-raid10");
4719 MODULE_ALIAS("md-level-10");
4720
4721 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);