GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          */
474                         if (!test_bit(Faulty, &rdev->flags))
475                                 set_bit(R10BIO_WriteError, &r10_bio->state);
476                         else {
477                                 /* Fail the request */
478                                 set_bit(R10BIO_Degraded, &r10_bio->state);
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
756                 if (rdev == NULL ||
757                     test_bit(Faulty, &rdev->flags))
758                         continue;
759                 if (!test_bit(In_sync, &rdev->flags) &&
760                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761                         continue;
762
763                 dev_sector = r10_bio->devs[slot].addr;
764                 if (is_badblock(rdev, dev_sector, sectors,
765                                 &first_bad, &bad_sectors)) {
766                         if (best_dist < MaxSector)
767                                 /* Already have a better slot */
768                                 continue;
769                         if (first_bad <= dev_sector) {
770                                 /* Cannot read here.  If this is the
771                                  * 'primary' device, then we must not read
772                                  * beyond 'bad_sectors' from another device.
773                                  */
774                                 bad_sectors -= (dev_sector - first_bad);
775                                 if (!do_balance && sectors > bad_sectors)
776                                         sectors = bad_sectors;
777                                 if (best_good_sectors > sectors)
778                                         best_good_sectors = sectors;
779                         } else {
780                                 sector_t good_sectors =
781                                         first_bad - dev_sector;
782                                 if (good_sectors > best_good_sectors) {
783                                         best_good_sectors = good_sectors;
784                                         best_dist_slot = slot;
785                                         best_dist_rdev = rdev;
786                                 }
787                                 if (!do_balance)
788                                         /* Must read from here */
789                                         break;
790                         }
791                         continue;
792                 } else
793                         best_good_sectors = sectors;
794
795                 if (!do_balance)
796                         break;
797
798                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799                 has_nonrot_disk |= nonrot;
800                 pending = atomic_read(&rdev->nr_pending);
801                 if (min_pending > pending && nonrot) {
802                         min_pending = pending;
803                         best_pending_slot = slot;
804                         best_pending_rdev = rdev;
805                 }
806
807                 if (best_dist_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !pending)
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823
824                 if (new_distance < best_dist) {
825                         best_dist = new_distance;
826                         best_dist_slot = slot;
827                         best_dist_rdev = rdev;
828                 }
829         }
830         if (slot >= conf->copies) {
831                 if (has_nonrot_disk) {
832                         slot = best_pending_slot;
833                         rdev = best_pending_rdev;
834                 } else {
835                         slot = best_dist_slot;
836                         rdev = best_dist_rdev;
837                 }
838         }
839
840         if (slot >= 0) {
841                 atomic_inc(&rdev->nr_pending);
842                 r10_bio->read_slot = slot;
843         } else
844                 rdev = NULL;
845         rcu_read_unlock();
846         *max_sectors = best_good_sectors;
847
848         return rdev;
849 }
850
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853         /* Any writes that have been queued but are awaiting
854          * bitmap updates get flushed here.
855          */
856         spin_lock_irq(&conf->device_lock);
857
858         if (conf->pending_bio_list.head) {
859                 struct blk_plug plug;
860                 struct bio *bio;
861
862                 bio = bio_list_get(&conf->pending_bio_list);
863                 conf->pending_count = 0;
864                 spin_unlock_irq(&conf->device_lock);
865
866                 /*
867                  * As this is called in a wait_event() loop (see freeze_array),
868                  * current->state might be TASK_UNINTERRUPTIBLE which will
869                  * cause a warning when we prepare to wait again.  As it is
870                  * rare that this path is taken, it is perfectly safe to force
871                  * us to go around the wait_event() loop again, so the warning
872                  * is a false-positive. Silence the warning by resetting
873                  * thread state
874                  */
875                 __set_current_state(TASK_RUNNING);
876
877                 blk_start_plug(&plug);
878                 /* flush any pending bitmap writes to disk
879                  * before proceeding w/ I/O */
880                 md_bitmap_unplug(conf->mddev->bitmap);
881                 wake_up(&conf->wait_barrier);
882
883                 while (bio) { /* submit pending writes */
884                         struct bio *next = bio->bi_next;
885                         struct md_rdev *rdev = (void*)bio->bi_disk;
886                         bio->bi_next = NULL;
887                         bio_set_dev(bio, rdev->bdev);
888                         if (test_bit(Faulty, &rdev->flags)) {
889                                 bio_io_error(bio);
890                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891                                             !blk_queue_discard(bio->bi_disk->queue)))
892                                 /* Just ignore it */
893                                 bio_endio(bio);
894                         else
895                                 submit_bio_noacct(bio);
896                         bio = next;
897                 }
898                 blk_finish_plug(&plug);
899         } else
900                 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927         BUG_ON(force && !conf->barrier);
928         spin_lock_irq(&conf->resync_lock);
929
930         /* Wait until no block IO is waiting (unless 'force') */
931         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932                             conf->resync_lock);
933
934         /* block any new IO from starting */
935         conf->barrier++;
936
937         /* Now wait for all pending IO to complete */
938         wait_event_lock_irq(conf->wait_barrier,
939                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940                             conf->resync_lock);
941
942         spin_unlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947         unsigned long flags;
948         spin_lock_irqsave(&conf->resync_lock, flags);
949         conf->barrier--;
950         spin_unlock_irqrestore(&conf->resync_lock, flags);
951         wake_up(&conf->wait_barrier);
952 }
953
954 static void wait_barrier(struct r10conf *conf)
955 {
956         spin_lock_irq(&conf->resync_lock);
957         if (conf->barrier) {
958                 struct bio_list *bio_list = current->bio_list;
959                 conf->nr_waiting++;
960                 /* Wait for the barrier to drop.
961                  * However if there are already pending
962                  * requests (preventing the barrier from
963                  * rising completely), and the
964                  * pre-process bio queue isn't empty,
965                  * then don't wait, as we need to empty
966                  * that queue to get the nr_pending
967                  * count down.
968                  */
969                 raid10_log(conf->mddev, "wait barrier");
970                 wait_event_lock_irq(conf->wait_barrier,
971                                     !conf->barrier ||
972                                     (atomic_read(&conf->nr_pending) &&
973                                      bio_list &&
974                                      (!bio_list_empty(&bio_list[0]) ||
975                                       !bio_list_empty(&bio_list[1]))) ||
976                                      /* move on if recovery thread is
977                                       * blocked by us
978                                       */
979                                      (conf->mddev->thread->tsk == current &&
980                                       test_bit(MD_RECOVERY_RUNNING,
981                                                &conf->mddev->recovery) &&
982                                       conf->nr_queued > 0),
983                                     conf->resync_lock);
984                 conf->nr_waiting--;
985                 if (!conf->nr_waiting)
986                         wake_up(&conf->wait_barrier);
987         }
988         atomic_inc(&conf->nr_pending);
989         spin_unlock_irq(&conf->resync_lock);
990 }
991
992 static void allow_barrier(struct r10conf *conf)
993 {
994         if ((atomic_dec_and_test(&conf->nr_pending)) ||
995                         (conf->array_freeze_pending))
996                 wake_up(&conf->wait_barrier);
997 }
998
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001         /* stop syncio and normal IO and wait for everything to
1002          * go quiet.
1003          * We increment barrier and nr_waiting, and then
1004          * wait until nr_pending match nr_queued+extra
1005          * This is called in the context of one normal IO request
1006          * that has failed. Thus any sync request that might be pending
1007          * will be blocked by nr_pending, and we need to wait for
1008          * pending IO requests to complete or be queued for re-try.
1009          * Thus the number queued (nr_queued) plus this request (extra)
1010          * must match the number of pending IOs (nr_pending) before
1011          * we continue.
1012          */
1013         spin_lock_irq(&conf->resync_lock);
1014         conf->array_freeze_pending++;
1015         conf->barrier++;
1016         conf->nr_waiting++;
1017         wait_event_lock_irq_cmd(conf->wait_barrier,
1018                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019                                 conf->resync_lock,
1020                                 flush_pending_writes(conf));
1021
1022         conf->array_freeze_pending--;
1023         spin_unlock_irq(&conf->resync_lock);
1024 }
1025
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028         /* reverse the effect of the freeze */
1029         spin_lock_irq(&conf->resync_lock);
1030         conf->barrier--;
1031         conf->nr_waiting--;
1032         wake_up(&conf->wait_barrier);
1033         spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037                                    struct md_rdev *rdev)
1038 {
1039         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040             test_bit(R10BIO_Previous, &r10_bio->state))
1041                 return rdev->data_offset;
1042         else
1043                 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047         struct blk_plug_cb      cb;
1048         struct bio_list         pending;
1049         int                     pending_cnt;
1050 };
1051
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055                                                    cb);
1056         struct mddev *mddev = plug->cb.data;
1057         struct r10conf *conf = mddev->private;
1058         struct bio *bio;
1059
1060         if (from_schedule || current->bio_list) {
1061                 spin_lock_irq(&conf->device_lock);
1062                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063                 conf->pending_count += plug->pending_cnt;
1064                 spin_unlock_irq(&conf->device_lock);
1065                 wake_up(&conf->wait_barrier);
1066                 md_wakeup_thread(mddev->thread);
1067                 kfree(plug);
1068                 return;
1069         }
1070
1071         /* we aren't scheduling, so we can do the write-out directly. */
1072         bio = bio_list_get(&plug->pending);
1073         md_bitmap_unplug(mddev->bitmap);
1074         wake_up(&conf->wait_barrier);
1075
1076         while (bio) { /* submit pending writes */
1077                 struct bio *next = bio->bi_next;
1078                 struct md_rdev *rdev = (void*)bio->bi_disk;
1079                 bio->bi_next = NULL;
1080                 bio_set_dev(bio, rdev->bdev);
1081                 if (test_bit(Faulty, &rdev->flags)) {
1082                         bio_io_error(bio);
1083                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084                                     !blk_queue_discard(bio->bi_disk->queue)))
1085                         /* Just ignore it */
1086                         bio_endio(bio);
1087                 else
1088                         submit_bio_noacct(bio);
1089                 bio = next;
1090         }
1091         kfree(plug);
1092 }
1093
1094 /*
1095  * 1. Register the new request and wait if the reconstruction thread has put
1096  * up a bar for new requests. Continue immediately if no resync is active
1097  * currently.
1098  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099  */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101                                  struct bio *bio, sector_t sectors)
1102 {
1103         wait_barrier(conf);
1104         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105             bio->bi_iter.bi_sector < conf->reshape_progress &&
1106             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107                 raid10_log(conf->mddev, "wait reshape");
1108                 allow_barrier(conf);
1109                 wait_event(conf->wait_barrier,
1110                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1112                            sectors);
1113                 wait_barrier(conf);
1114         }
1115 }
1116
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118                                 struct r10bio *r10_bio)
1119 {
1120         struct r10conf *conf = mddev->private;
1121         struct bio *read_bio;
1122         const int op = bio_op(bio);
1123         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124         int max_sectors;
1125         struct md_rdev *rdev;
1126         char b[BDEVNAME_SIZE];
1127         int slot = r10_bio->read_slot;
1128         struct md_rdev *err_rdev = NULL;
1129         gfp_t gfp = GFP_NOIO;
1130
1131         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1132                 /*
1133                  * This is an error retry, but we cannot
1134                  * safely dereference the rdev in the r10_bio,
1135                  * we must use the one in conf.
1136                  * If it has already been disconnected (unlikely)
1137                  * we lose the device name in error messages.
1138                  */
1139                 int disk;
1140                 /*
1141                  * As we are blocking raid10, it is a little safer to
1142                  * use __GFP_HIGH.
1143                  */
1144                 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146                 rcu_read_lock();
1147                 disk = r10_bio->devs[slot].devnum;
1148                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149                 if (err_rdev)
1150                         bdevname(err_rdev->bdev, b);
1151                 else {
1152                         strcpy(b, "???");
1153                         /* This never gets dereferenced */
1154                         err_rdev = r10_bio->devs[slot].rdev;
1155                 }
1156                 rcu_read_unlock();
1157         }
1158
1159         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160         rdev = read_balance(conf, r10_bio, &max_sectors);
1161         if (!rdev) {
1162                 if (err_rdev) {
1163                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164                                             mdname(mddev), b,
1165                                             (unsigned long long)r10_bio->sector);
1166                 }
1167                 raid_end_bio_io(r10_bio);
1168                 return;
1169         }
1170         if (err_rdev)
1171                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172                                    mdname(mddev),
1173                                    bdevname(rdev->bdev, b),
1174                                    (unsigned long long)r10_bio->sector);
1175         if (max_sectors < bio_sectors(bio)) {
1176                 struct bio *split = bio_split(bio, max_sectors,
1177                                               gfp, &conf->bio_split);
1178                 bio_chain(split, bio);
1179                 allow_barrier(conf);
1180                 submit_bio_noacct(bio);
1181                 wait_barrier(conf);
1182                 bio = split;
1183                 r10_bio->master_bio = bio;
1184                 r10_bio->sectors = max_sectors;
1185         }
1186         slot = r10_bio->read_slot;
1187
1188         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190         r10_bio->devs[slot].bio = read_bio;
1191         r10_bio->devs[slot].rdev = rdev;
1192
1193         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194                 choose_data_offset(r10_bio, rdev);
1195         bio_set_dev(read_bio, rdev->bdev);
1196         read_bio->bi_end_io = raid10_end_read_request;
1197         bio_set_op_attrs(read_bio, op, do_sync);
1198         if (test_bit(FailFast, &rdev->flags) &&
1199             test_bit(R10BIO_FailFast, &r10_bio->state))
1200                 read_bio->bi_opf |= MD_FAILFAST;
1201         read_bio->bi_private = r10_bio;
1202
1203         if (mddev->gendisk)
1204                 trace_block_bio_remap(read_bio->bi_disk->queue,
1205                                       read_bio, disk_devt(mddev->gendisk),
1206                                       r10_bio->sector);
1207         submit_bio_noacct(read_bio);
1208         return;
1209 }
1210
1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212                                   struct bio *bio, bool replacement,
1213                                   int n_copy)
1214 {
1215         const int op = bio_op(bio);
1216         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218         unsigned long flags;
1219         struct blk_plug_cb *cb;
1220         struct raid10_plug_cb *plug = NULL;
1221         struct r10conf *conf = mddev->private;
1222         struct md_rdev *rdev;
1223         int devnum = r10_bio->devs[n_copy].devnum;
1224         struct bio *mbio;
1225
1226         if (replacement) {
1227                 rdev = conf->mirrors[devnum].replacement;
1228                 if (rdev == NULL) {
1229                         /* Replacement just got moved to main 'rdev' */
1230                         smp_mb();
1231                         rdev = conf->mirrors[devnum].rdev;
1232                 }
1233         } else
1234                 rdev = conf->mirrors[devnum].rdev;
1235
1236         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237         if (replacement)
1238                 r10_bio->devs[n_copy].repl_bio = mbio;
1239         else
1240                 r10_bio->devs[n_copy].bio = mbio;
1241
1242         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1243                                    choose_data_offset(r10_bio, rdev));
1244         bio_set_dev(mbio, rdev->bdev);
1245         mbio->bi_end_io = raid10_end_write_request;
1246         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247         if (!replacement && test_bit(FailFast,
1248                                      &conf->mirrors[devnum].rdev->flags)
1249                          && enough(conf, devnum))
1250                 mbio->bi_opf |= MD_FAILFAST;
1251         mbio->bi_private = r10_bio;
1252
1253         if (conf->mddev->gendisk)
1254                 trace_block_bio_remap(mbio->bi_disk->queue,
1255                                       mbio, disk_devt(conf->mddev->gendisk),
1256                                       r10_bio->sector);
1257         /* flush_pending_writes() needs access to the rdev so...*/
1258         mbio->bi_disk = (void *)rdev;
1259
1260         atomic_inc(&r10_bio->remaining);
1261
1262         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263         if (cb)
1264                 plug = container_of(cb, struct raid10_plug_cb, cb);
1265         else
1266                 plug = NULL;
1267         if (plug) {
1268                 bio_list_add(&plug->pending, mbio);
1269                 plug->pending_cnt++;
1270         } else {
1271                 spin_lock_irqsave(&conf->device_lock, flags);
1272                 bio_list_add(&conf->pending_bio_list, mbio);
1273                 conf->pending_count++;
1274                 spin_unlock_irqrestore(&conf->device_lock, flags);
1275                 md_wakeup_thread(mddev->thread);
1276         }
1277 }
1278
1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280                                  struct r10bio *r10_bio)
1281 {
1282         struct r10conf *conf = mddev->private;
1283         int i;
1284         struct md_rdev *blocked_rdev;
1285         sector_t sectors;
1286         int max_sectors;
1287
1288         if ((mddev_is_clustered(mddev) &&
1289              md_cluster_ops->area_resyncing(mddev, WRITE,
1290                                             bio->bi_iter.bi_sector,
1291                                             bio_end_sector(bio)))) {
1292                 DEFINE_WAIT(w);
1293                 for (;;) {
1294                         prepare_to_wait(&conf->wait_barrier,
1295                                         &w, TASK_IDLE);
1296                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298                                 break;
1299                         schedule();
1300                 }
1301                 finish_wait(&conf->wait_barrier, &w);
1302         }
1303
1304         sectors = r10_bio->sectors;
1305         regular_request_wait(mddev, conf, bio, sectors);
1306         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307             (mddev->reshape_backwards
1308              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312                 /* Need to update reshape_position in metadata */
1313                 mddev->reshape_position = conf->reshape_progress;
1314                 set_mask_bits(&mddev->sb_flags, 0,
1315                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316                 md_wakeup_thread(mddev->thread);
1317                 raid10_log(conf->mddev, "wait reshape metadata");
1318                 wait_event(mddev->sb_wait,
1319                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321                 conf->reshape_safe = mddev->reshape_position;
1322         }
1323
1324         if (conf->pending_count >= max_queued_requests) {
1325                 md_wakeup_thread(mddev->thread);
1326                 raid10_log(mddev, "wait queued");
1327                 wait_event(conf->wait_barrier,
1328                            conf->pending_count < max_queued_requests);
1329         }
1330         /* first select target devices under rcu_lock and
1331          * inc refcount on their rdev.  Record them by setting
1332          * bios[x] to bio
1333          * If there are known/acknowledged bad blocks on any device
1334          * on which we have seen a write error, we want to avoid
1335          * writing to those blocks.  This potentially requires several
1336          * writes to write around the bad blocks.  Each set of writes
1337          * gets its own r10_bio with a set of bios attached.
1338          */
1339
1340         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341         raid10_find_phys(conf, r10_bio);
1342 retry_write:
1343         blocked_rdev = NULL;
1344         rcu_read_lock();
1345         max_sectors = r10_bio->sectors;
1346
1347         for (i = 0;  i < conf->copies; i++) {
1348                 int d = r10_bio->devs[i].devnum;
1349                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350                 struct md_rdev *rrdev = rcu_dereference(
1351                         conf->mirrors[d].replacement);
1352                 if (rdev == rrdev)
1353                         rrdev = NULL;
1354                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355                         atomic_inc(&rdev->nr_pending);
1356                         blocked_rdev = rdev;
1357                         break;
1358                 }
1359                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360                         atomic_inc(&rrdev->nr_pending);
1361                         blocked_rdev = rrdev;
1362                         break;
1363                 }
1364                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1365                         rdev = NULL;
1366                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367                         rrdev = NULL;
1368
1369                 r10_bio->devs[i].bio = NULL;
1370                 r10_bio->devs[i].repl_bio = NULL;
1371
1372                 if (!rdev && !rrdev) {
1373                         set_bit(R10BIO_Degraded, &r10_bio->state);
1374                         continue;
1375                 }
1376                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377                         sector_t first_bad;
1378                         sector_t dev_sector = r10_bio->devs[i].addr;
1379                         int bad_sectors;
1380                         int is_bad;
1381
1382                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383                                              &first_bad, &bad_sectors);
1384                         if (is_bad < 0) {
1385                                 /* Mustn't write here until the bad block
1386                                  * is acknowledged
1387                                  */
1388                                 atomic_inc(&rdev->nr_pending);
1389                                 set_bit(BlockedBadBlocks, &rdev->flags);
1390                                 blocked_rdev = rdev;
1391                                 break;
1392                         }
1393                         if (is_bad && first_bad <= dev_sector) {
1394                                 /* Cannot write here at all */
1395                                 bad_sectors -= (dev_sector - first_bad);
1396                                 if (bad_sectors < max_sectors)
1397                                         /* Mustn't write more than bad_sectors
1398                                          * to other devices yet
1399                                          */
1400                                         max_sectors = bad_sectors;
1401                                 /* We don't set R10BIO_Degraded as that
1402                                  * only applies if the disk is missing,
1403                                  * so it might be re-added, and we want to
1404                                  * know to recover this chunk.
1405                                  * In this case the device is here, and the
1406                                  * fact that this chunk is not in-sync is
1407                                  * recorded in the bad block log.
1408                                  */
1409                                 continue;
1410                         }
1411                         if (is_bad) {
1412                                 int good_sectors = first_bad - dev_sector;
1413                                 if (good_sectors < max_sectors)
1414                                         max_sectors = good_sectors;
1415                         }
1416                 }
1417                 if (rdev) {
1418                         r10_bio->devs[i].bio = bio;
1419                         atomic_inc(&rdev->nr_pending);
1420                 }
1421                 if (rrdev) {
1422                         r10_bio->devs[i].repl_bio = bio;
1423                         atomic_inc(&rrdev->nr_pending);
1424                 }
1425         }
1426         rcu_read_unlock();
1427
1428         if (unlikely(blocked_rdev)) {
1429                 /* Have to wait for this device to get unblocked, then retry */
1430                 int j;
1431                 int d;
1432
1433                 for (j = 0; j < i; j++) {
1434                         if (r10_bio->devs[j].bio) {
1435                                 d = r10_bio->devs[j].devnum;
1436                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437                         }
1438                         if (r10_bio->devs[j].repl_bio) {
1439                                 struct md_rdev *rdev;
1440                                 d = r10_bio->devs[j].devnum;
1441                                 rdev = conf->mirrors[d].replacement;
1442                                 if (!rdev) {
1443                                         /* Race with remove_disk */
1444                                         smp_mb();
1445                                         rdev = conf->mirrors[d].rdev;
1446                                 }
1447                                 rdev_dec_pending(rdev, mddev);
1448                         }
1449                 }
1450                 allow_barrier(conf);
1451                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453                 wait_barrier(conf);
1454                 goto retry_write;
1455         }
1456
1457         if (max_sectors < r10_bio->sectors)
1458                 r10_bio->sectors = max_sectors;
1459
1460         if (r10_bio->sectors < bio_sectors(bio)) {
1461                 struct bio *split = bio_split(bio, r10_bio->sectors,
1462                                               GFP_NOIO, &conf->bio_split);
1463                 bio_chain(split, bio);
1464                 allow_barrier(conf);
1465                 submit_bio_noacct(bio);
1466                 wait_barrier(conf);
1467                 bio = split;
1468                 r10_bio->master_bio = bio;
1469         }
1470
1471         atomic_set(&r10_bio->remaining, 1);
1472         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474         for (i = 0; i < conf->copies; i++) {
1475                 if (r10_bio->devs[i].bio)
1476                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477                 if (r10_bio->devs[i].repl_bio)
1478                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479         }
1480         one_write_done(r10_bio);
1481 }
1482
1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484 {
1485         struct r10conf *conf = mddev->private;
1486         struct r10bio *r10_bio;
1487
1488         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489
1490         r10_bio->master_bio = bio;
1491         r10_bio->sectors = sectors;
1492
1493         r10_bio->mddev = mddev;
1494         r10_bio->sector = bio->bi_iter.bi_sector;
1495         r10_bio->state = 0;
1496         r10_bio->read_slot = -1;
1497         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1498
1499         if (bio_data_dir(bio) == READ)
1500                 raid10_read_request(mddev, bio, r10_bio);
1501         else
1502                 raid10_write_request(mddev, bio, r10_bio);
1503 }
1504
1505 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1506 {
1507         struct r10conf *conf = mddev->private;
1508         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1509         int chunk_sects = chunk_mask + 1;
1510         int sectors = bio_sectors(bio);
1511
1512         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1513             && md_flush_request(mddev, bio))
1514                 return true;
1515
1516         if (!md_write_start(mddev, bio))
1517                 return false;
1518
1519         /*
1520          * If this request crosses a chunk boundary, we need to split
1521          * it.
1522          */
1523         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1524                      sectors > chunk_sects
1525                      && (conf->geo.near_copies < conf->geo.raid_disks
1526                          || conf->prev.near_copies <
1527                          conf->prev.raid_disks)))
1528                 sectors = chunk_sects -
1529                         (bio->bi_iter.bi_sector &
1530                          (chunk_sects - 1));
1531         __make_request(mddev, bio, sectors);
1532
1533         /* In case raid10d snuck in to freeze_array */
1534         wake_up(&conf->wait_barrier);
1535         return true;
1536 }
1537
1538 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1539 {
1540         struct r10conf *conf = mddev->private;
1541         int i;
1542
1543         if (conf->geo.near_copies < conf->geo.raid_disks)
1544                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1545         if (conf->geo.near_copies > 1)
1546                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1547         if (conf->geo.far_copies > 1) {
1548                 if (conf->geo.far_offset)
1549                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1550                 else
1551                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1552                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1553                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1554         }
1555         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1556                                         conf->geo.raid_disks - mddev->degraded);
1557         rcu_read_lock();
1558         for (i = 0; i < conf->geo.raid_disks; i++) {
1559                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1560                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1561         }
1562         rcu_read_unlock();
1563         seq_printf(seq, "]");
1564 }
1565
1566 /* check if there are enough drives for
1567  * every block to appear on atleast one.
1568  * Don't consider the device numbered 'ignore'
1569  * as we might be about to remove it.
1570  */
1571 static int _enough(struct r10conf *conf, int previous, int ignore)
1572 {
1573         int first = 0;
1574         int has_enough = 0;
1575         int disks, ncopies;
1576         if (previous) {
1577                 disks = conf->prev.raid_disks;
1578                 ncopies = conf->prev.near_copies;
1579         } else {
1580                 disks = conf->geo.raid_disks;
1581                 ncopies = conf->geo.near_copies;
1582         }
1583
1584         rcu_read_lock();
1585         do {
1586                 int n = conf->copies;
1587                 int cnt = 0;
1588                 int this = first;
1589                 while (n--) {
1590                         struct md_rdev *rdev;
1591                         if (this != ignore &&
1592                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1593                             test_bit(In_sync, &rdev->flags))
1594                                 cnt++;
1595                         this = (this+1) % disks;
1596                 }
1597                 if (cnt == 0)
1598                         goto out;
1599                 first = (first + ncopies) % disks;
1600         } while (first != 0);
1601         has_enough = 1;
1602 out:
1603         rcu_read_unlock();
1604         return has_enough;
1605 }
1606
1607 static int enough(struct r10conf *conf, int ignore)
1608 {
1609         /* when calling 'enough', both 'prev' and 'geo' must
1610          * be stable.
1611          * This is ensured if ->reconfig_mutex or ->device_lock
1612          * is held.
1613          */
1614         return _enough(conf, 0, ignore) &&
1615                 _enough(conf, 1, ignore);
1616 }
1617
1618 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1619 {
1620         char b[BDEVNAME_SIZE];
1621         struct r10conf *conf = mddev->private;
1622         unsigned long flags;
1623
1624         /*
1625          * If it is not operational, then we have already marked it as dead
1626          * else if it is the last working disks with "fail_last_dev == false",
1627          * ignore the error, let the next level up know.
1628          * else mark the drive as failed
1629          */
1630         spin_lock_irqsave(&conf->device_lock, flags);
1631         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1632             && !enough(conf, rdev->raid_disk)) {
1633                 /*
1634                  * Don't fail the drive, just return an IO error.
1635                  */
1636                 spin_unlock_irqrestore(&conf->device_lock, flags);
1637                 return;
1638         }
1639         if (test_and_clear_bit(In_sync, &rdev->flags))
1640                 mddev->degraded++;
1641         /*
1642          * If recovery is running, make sure it aborts.
1643          */
1644         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1645         set_bit(Blocked, &rdev->flags);
1646         set_bit(Faulty, &rdev->flags);
1647         set_mask_bits(&mddev->sb_flags, 0,
1648                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1649         spin_unlock_irqrestore(&conf->device_lock, flags);
1650         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1651                 "md/raid10:%s: Operation continuing on %d devices.\n",
1652                 mdname(mddev), bdevname(rdev->bdev, b),
1653                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1654 }
1655
1656 static void print_conf(struct r10conf *conf)
1657 {
1658         int i;
1659         struct md_rdev *rdev;
1660
1661         pr_debug("RAID10 conf printout:\n");
1662         if (!conf) {
1663                 pr_debug("(!conf)\n");
1664                 return;
1665         }
1666         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1667                  conf->geo.raid_disks);
1668
1669         /* This is only called with ->reconfix_mutex held, so
1670          * rcu protection of rdev is not needed */
1671         for (i = 0; i < conf->geo.raid_disks; i++) {
1672                 char b[BDEVNAME_SIZE];
1673                 rdev = conf->mirrors[i].rdev;
1674                 if (rdev)
1675                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1676                                  i, !test_bit(In_sync, &rdev->flags),
1677                                  !test_bit(Faulty, &rdev->flags),
1678                                  bdevname(rdev->bdev,b));
1679         }
1680 }
1681
1682 static void close_sync(struct r10conf *conf)
1683 {
1684         wait_barrier(conf);
1685         allow_barrier(conf);
1686
1687         mempool_exit(&conf->r10buf_pool);
1688 }
1689
1690 static int raid10_spare_active(struct mddev *mddev)
1691 {
1692         int i;
1693         struct r10conf *conf = mddev->private;
1694         struct raid10_info *tmp;
1695         int count = 0;
1696         unsigned long flags;
1697
1698         /*
1699          * Find all non-in_sync disks within the RAID10 configuration
1700          * and mark them in_sync
1701          */
1702         for (i = 0; i < conf->geo.raid_disks; i++) {
1703                 tmp = conf->mirrors + i;
1704                 if (tmp->replacement
1705                     && tmp->replacement->recovery_offset == MaxSector
1706                     && !test_bit(Faulty, &tmp->replacement->flags)
1707                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1708                         /* Replacement has just become active */
1709                         if (!tmp->rdev
1710                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1711                                 count++;
1712                         if (tmp->rdev) {
1713                                 /* Replaced device not technically faulty,
1714                                  * but we need to be sure it gets removed
1715                                  * and never re-added.
1716                                  */
1717                                 set_bit(Faulty, &tmp->rdev->flags);
1718                                 sysfs_notify_dirent_safe(
1719                                         tmp->rdev->sysfs_state);
1720                         }
1721                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1722                 } else if (tmp->rdev
1723                            && tmp->rdev->recovery_offset == MaxSector
1724                            && !test_bit(Faulty, &tmp->rdev->flags)
1725                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1726                         count++;
1727                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1728                 }
1729         }
1730         spin_lock_irqsave(&conf->device_lock, flags);
1731         mddev->degraded -= count;
1732         spin_unlock_irqrestore(&conf->device_lock, flags);
1733
1734         print_conf(conf);
1735         return count;
1736 }
1737
1738 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1739 {
1740         struct r10conf *conf = mddev->private;
1741         int err = -EEXIST;
1742         int mirror;
1743         int first = 0;
1744         int last = conf->geo.raid_disks - 1;
1745
1746         if (mddev->recovery_cp < MaxSector)
1747                 /* only hot-add to in-sync arrays, as recovery is
1748                  * very different from resync
1749                  */
1750                 return -EBUSY;
1751         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1752                 return -EINVAL;
1753
1754         if (md_integrity_add_rdev(rdev, mddev))
1755                 return -ENXIO;
1756
1757         if (rdev->raid_disk >= 0)
1758                 first = last = rdev->raid_disk;
1759
1760         if (rdev->saved_raid_disk >= first &&
1761             rdev->saved_raid_disk < conf->geo.raid_disks &&
1762             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1763                 mirror = rdev->saved_raid_disk;
1764         else
1765                 mirror = first;
1766         for ( ; mirror <= last ; mirror++) {
1767                 struct raid10_info *p = &conf->mirrors[mirror];
1768                 if (p->recovery_disabled == mddev->recovery_disabled)
1769                         continue;
1770                 if (p->rdev) {
1771                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1772                             p->replacement != NULL)
1773                                 continue;
1774                         clear_bit(In_sync, &rdev->flags);
1775                         set_bit(Replacement, &rdev->flags);
1776                         rdev->raid_disk = mirror;
1777                         err = 0;
1778                         if (mddev->gendisk)
1779                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1780                                                   rdev->data_offset << 9);
1781                         conf->fullsync = 1;
1782                         rcu_assign_pointer(p->replacement, rdev);
1783                         break;
1784                 }
1785
1786                 if (mddev->gendisk)
1787                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1788                                           rdev->data_offset << 9);
1789
1790                 p->head_position = 0;
1791                 p->recovery_disabled = mddev->recovery_disabled - 1;
1792                 rdev->raid_disk = mirror;
1793                 err = 0;
1794                 if (rdev->saved_raid_disk != mirror)
1795                         conf->fullsync = 1;
1796                 rcu_assign_pointer(p->rdev, rdev);
1797                 break;
1798         }
1799         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1800                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1801
1802         print_conf(conf);
1803         return err;
1804 }
1805
1806 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1807 {
1808         struct r10conf *conf = mddev->private;
1809         int err = 0;
1810         int number = rdev->raid_disk;
1811         struct md_rdev **rdevp;
1812         struct raid10_info *p;
1813
1814         print_conf(conf);
1815         if (unlikely(number >= mddev->raid_disks))
1816                 return 0;
1817         p = conf->mirrors + number;
1818         if (rdev == p->rdev)
1819                 rdevp = &p->rdev;
1820         else if (rdev == p->replacement)
1821                 rdevp = &p->replacement;
1822         else
1823                 return 0;
1824
1825         if (test_bit(In_sync, &rdev->flags) ||
1826             atomic_read(&rdev->nr_pending)) {
1827                 err = -EBUSY;
1828                 goto abort;
1829         }
1830         /* Only remove non-faulty devices if recovery
1831          * is not possible.
1832          */
1833         if (!test_bit(Faulty, &rdev->flags) &&
1834             mddev->recovery_disabled != p->recovery_disabled &&
1835             (!p->replacement || p->replacement == rdev) &&
1836             number < conf->geo.raid_disks &&
1837             enough(conf, -1)) {
1838                 err = -EBUSY;
1839                 goto abort;
1840         }
1841         *rdevp = NULL;
1842         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1843                 synchronize_rcu();
1844                 if (atomic_read(&rdev->nr_pending)) {
1845                         /* lost the race, try later */
1846                         err = -EBUSY;
1847                         *rdevp = rdev;
1848                         goto abort;
1849                 }
1850         }
1851         if (p->replacement) {
1852                 /* We must have just cleared 'rdev' */
1853                 p->rdev = p->replacement;
1854                 clear_bit(Replacement, &p->replacement->flags);
1855                 smp_mb(); /* Make sure other CPUs may see both as identical
1856                            * but will never see neither -- if they are careful.
1857                            */
1858                 p->replacement = NULL;
1859         }
1860
1861         clear_bit(WantReplacement, &rdev->flags);
1862         err = md_integrity_register(mddev);
1863
1864 abort:
1865
1866         print_conf(conf);
1867         return err;
1868 }
1869
1870 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1871 {
1872         struct r10conf *conf = r10_bio->mddev->private;
1873
1874         if (!bio->bi_status)
1875                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1876         else
1877                 /* The write handler will notice the lack of
1878                  * R10BIO_Uptodate and record any errors etc
1879                  */
1880                 atomic_add(r10_bio->sectors,
1881                            &conf->mirrors[d].rdev->corrected_errors);
1882
1883         /* for reconstruct, we always reschedule after a read.
1884          * for resync, only after all reads
1885          */
1886         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1887         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1888             atomic_dec_and_test(&r10_bio->remaining)) {
1889                 /* we have read all the blocks,
1890                  * do the comparison in process context in raid10d
1891                  */
1892                 reschedule_retry(r10_bio);
1893         }
1894 }
1895
1896 static void end_sync_read(struct bio *bio)
1897 {
1898         struct r10bio *r10_bio = get_resync_r10bio(bio);
1899         struct r10conf *conf = r10_bio->mddev->private;
1900         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1901
1902         __end_sync_read(r10_bio, bio, d);
1903 }
1904
1905 static void end_reshape_read(struct bio *bio)
1906 {
1907         /* reshape read bio isn't allocated from r10buf_pool */
1908         struct r10bio *r10_bio = bio->bi_private;
1909
1910         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1911 }
1912
1913 static void end_sync_request(struct r10bio *r10_bio)
1914 {
1915         struct mddev *mddev = r10_bio->mddev;
1916
1917         while (atomic_dec_and_test(&r10_bio->remaining)) {
1918                 if (r10_bio->master_bio == NULL) {
1919                         /* the primary of several recovery bios */
1920                         sector_t s = r10_bio->sectors;
1921                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1922                             test_bit(R10BIO_WriteError, &r10_bio->state))
1923                                 reschedule_retry(r10_bio);
1924                         else
1925                                 put_buf(r10_bio);
1926                         md_done_sync(mddev, s, 1);
1927                         break;
1928                 } else {
1929                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1930                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931                             test_bit(R10BIO_WriteError, &r10_bio->state))
1932                                 reschedule_retry(r10_bio);
1933                         else
1934                                 put_buf(r10_bio);
1935                         r10_bio = r10_bio2;
1936                 }
1937         }
1938 }
1939
1940 static void end_sync_write(struct bio *bio)
1941 {
1942         struct r10bio *r10_bio = get_resync_r10bio(bio);
1943         struct mddev *mddev = r10_bio->mddev;
1944         struct r10conf *conf = mddev->private;
1945         int d;
1946         sector_t first_bad;
1947         int bad_sectors;
1948         int slot;
1949         int repl;
1950         struct md_rdev *rdev = NULL;
1951
1952         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1953         if (repl)
1954                 rdev = conf->mirrors[d].replacement;
1955         else
1956                 rdev = conf->mirrors[d].rdev;
1957
1958         if (bio->bi_status) {
1959                 if (repl)
1960                         md_error(mddev, rdev);
1961                 else {
1962                         set_bit(WriteErrorSeen, &rdev->flags);
1963                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1964                                 set_bit(MD_RECOVERY_NEEDED,
1965                                         &rdev->mddev->recovery);
1966                         set_bit(R10BIO_WriteError, &r10_bio->state);
1967                 }
1968         } else if (is_badblock(rdev,
1969                              r10_bio->devs[slot].addr,
1970                              r10_bio->sectors,
1971                              &first_bad, &bad_sectors))
1972                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1973
1974         rdev_dec_pending(rdev, mddev);
1975
1976         end_sync_request(r10_bio);
1977 }
1978
1979 /*
1980  * Note: sync and recover and handled very differently for raid10
1981  * This code is for resync.
1982  * For resync, we read through virtual addresses and read all blocks.
1983  * If there is any error, we schedule a write.  The lowest numbered
1984  * drive is authoritative.
1985  * However requests come for physical address, so we need to map.
1986  * For every physical address there are raid_disks/copies virtual addresses,
1987  * which is always are least one, but is not necessarly an integer.
1988  * This means that a physical address can span multiple chunks, so we may
1989  * have to submit multiple io requests for a single sync request.
1990  */
1991 /*
1992  * We check if all blocks are in-sync and only write to blocks that
1993  * aren't in sync
1994  */
1995 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1996 {
1997         struct r10conf *conf = mddev->private;
1998         int i, first;
1999         struct bio *tbio, *fbio;
2000         int vcnt;
2001         struct page **tpages, **fpages;
2002
2003         atomic_set(&r10_bio->remaining, 1);
2004
2005         /* find the first device with a block */
2006         for (i=0; i<conf->copies; i++)
2007                 if (!r10_bio->devs[i].bio->bi_status)
2008                         break;
2009
2010         if (i == conf->copies)
2011                 goto done;
2012
2013         first = i;
2014         fbio = r10_bio->devs[i].bio;
2015         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2016         fbio->bi_iter.bi_idx = 0;
2017         fpages = get_resync_pages(fbio)->pages;
2018
2019         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2020         /* now find blocks with errors */
2021         for (i=0 ; i < conf->copies ; i++) {
2022                 int  j, d;
2023                 struct md_rdev *rdev;
2024                 struct resync_pages *rp;
2025
2026                 tbio = r10_bio->devs[i].bio;
2027
2028                 if (tbio->bi_end_io != end_sync_read)
2029                         continue;
2030                 if (i == first)
2031                         continue;
2032
2033                 tpages = get_resync_pages(tbio)->pages;
2034                 d = r10_bio->devs[i].devnum;
2035                 rdev = conf->mirrors[d].rdev;
2036                 if (!r10_bio->devs[i].bio->bi_status) {
2037                         /* We know that the bi_io_vec layout is the same for
2038                          * both 'first' and 'i', so we just compare them.
2039                          * All vec entries are PAGE_SIZE;
2040                          */
2041                         int sectors = r10_bio->sectors;
2042                         for (j = 0; j < vcnt; j++) {
2043                                 int len = PAGE_SIZE;
2044                                 if (sectors < (len / 512))
2045                                         len = sectors * 512;
2046                                 if (memcmp(page_address(fpages[j]),
2047                                            page_address(tpages[j]),
2048                                            len))
2049                                         break;
2050                                 sectors -= len/512;
2051                         }
2052                         if (j == vcnt)
2053                                 continue;
2054                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2055                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2056                                 /* Don't fix anything. */
2057                                 continue;
2058                 } else if (test_bit(FailFast, &rdev->flags)) {
2059                         /* Just give up on this device */
2060                         md_error(rdev->mddev, rdev);
2061                         continue;
2062                 }
2063                 /* Ok, we need to write this bio, either to correct an
2064                  * inconsistency or to correct an unreadable block.
2065                  * First we need to fixup bv_offset, bv_len and
2066                  * bi_vecs, as the read request might have corrupted these
2067                  */
2068                 rp = get_resync_pages(tbio);
2069                 bio_reset(tbio);
2070
2071                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2072
2073                 rp->raid_bio = r10_bio;
2074                 tbio->bi_private = rp;
2075                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2076                 tbio->bi_end_io = end_sync_write;
2077                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2078
2079                 bio_copy_data(tbio, fbio);
2080
2081                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2082                 atomic_inc(&r10_bio->remaining);
2083                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2084
2085                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2086                         tbio->bi_opf |= MD_FAILFAST;
2087                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2088                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2089                 submit_bio_noacct(tbio);
2090         }
2091
2092         /* Now write out to any replacement devices
2093          * that are active
2094          */
2095         for (i = 0; i < conf->copies; i++) {
2096                 int d;
2097
2098                 tbio = r10_bio->devs[i].repl_bio;
2099                 if (!tbio || !tbio->bi_end_io)
2100                         continue;
2101                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2102                     && r10_bio->devs[i].bio != fbio)
2103                         bio_copy_data(tbio, fbio);
2104                 d = r10_bio->devs[i].devnum;
2105                 atomic_inc(&r10_bio->remaining);
2106                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2107                              bio_sectors(tbio));
2108                 submit_bio_noacct(tbio);
2109         }
2110
2111 done:
2112         if (atomic_dec_and_test(&r10_bio->remaining)) {
2113                 md_done_sync(mddev, r10_bio->sectors, 1);
2114                 put_buf(r10_bio);
2115         }
2116 }
2117
2118 /*
2119  * Now for the recovery code.
2120  * Recovery happens across physical sectors.
2121  * We recover all non-is_sync drives by finding the virtual address of
2122  * each, and then choose a working drive that also has that virt address.
2123  * There is a separate r10_bio for each non-in_sync drive.
2124  * Only the first two slots are in use. The first for reading,
2125  * The second for writing.
2126  *
2127  */
2128 static void fix_recovery_read_error(struct r10bio *r10_bio)
2129 {
2130         /* We got a read error during recovery.
2131          * We repeat the read in smaller page-sized sections.
2132          * If a read succeeds, write it to the new device or record
2133          * a bad block if we cannot.
2134          * If a read fails, record a bad block on both old and
2135          * new devices.
2136          */
2137         struct mddev *mddev = r10_bio->mddev;
2138         struct r10conf *conf = mddev->private;
2139         struct bio *bio = r10_bio->devs[0].bio;
2140         sector_t sect = 0;
2141         int sectors = r10_bio->sectors;
2142         int idx = 0;
2143         int dr = r10_bio->devs[0].devnum;
2144         int dw = r10_bio->devs[1].devnum;
2145         struct page **pages = get_resync_pages(bio)->pages;
2146
2147         while (sectors) {
2148                 int s = sectors;
2149                 struct md_rdev *rdev;
2150                 sector_t addr;
2151                 int ok;
2152
2153                 if (s > (PAGE_SIZE>>9))
2154                         s = PAGE_SIZE >> 9;
2155
2156                 rdev = conf->mirrors[dr].rdev;
2157                 addr = r10_bio->devs[0].addr + sect,
2158                 ok = sync_page_io(rdev,
2159                                   addr,
2160                                   s << 9,
2161                                   pages[idx],
2162                                   REQ_OP_READ, 0, false);
2163                 if (ok) {
2164                         rdev = conf->mirrors[dw].rdev;
2165                         addr = r10_bio->devs[1].addr + sect;
2166                         ok = sync_page_io(rdev,
2167                                           addr,
2168                                           s << 9,
2169                                           pages[idx],
2170                                           REQ_OP_WRITE, 0, false);
2171                         if (!ok) {
2172                                 set_bit(WriteErrorSeen, &rdev->flags);
2173                                 if (!test_and_set_bit(WantReplacement,
2174                                                       &rdev->flags))
2175                                         set_bit(MD_RECOVERY_NEEDED,
2176                                                 &rdev->mddev->recovery);
2177                         }
2178                 }
2179                 if (!ok) {
2180                         /* We don't worry if we cannot set a bad block -
2181                          * it really is bad so there is no loss in not
2182                          * recording it yet
2183                          */
2184                         rdev_set_badblocks(rdev, addr, s, 0);
2185
2186                         if (rdev != conf->mirrors[dw].rdev) {
2187                                 /* need bad block on destination too */
2188                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2189                                 addr = r10_bio->devs[1].addr + sect;
2190                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2191                                 if (!ok) {
2192                                         /* just abort the recovery */
2193                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2194                                                   mdname(mddev));
2195
2196                                         conf->mirrors[dw].recovery_disabled
2197                                                 = mddev->recovery_disabled;
2198                                         set_bit(MD_RECOVERY_INTR,
2199                                                 &mddev->recovery);
2200                                         break;
2201                                 }
2202                         }
2203                 }
2204
2205                 sectors -= s;
2206                 sect += s;
2207                 idx++;
2208         }
2209 }
2210
2211 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2212 {
2213         struct r10conf *conf = mddev->private;
2214         int d;
2215         struct bio *wbio, *wbio2;
2216
2217         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2218                 fix_recovery_read_error(r10_bio);
2219                 end_sync_request(r10_bio);
2220                 return;
2221         }
2222
2223         /*
2224          * share the pages with the first bio
2225          * and submit the write request
2226          */
2227         d = r10_bio->devs[1].devnum;
2228         wbio = r10_bio->devs[1].bio;
2229         wbio2 = r10_bio->devs[1].repl_bio;
2230         /* Need to test wbio2->bi_end_io before we call
2231          * submit_bio_noacct as if the former is NULL,
2232          * the latter is free to free wbio2.
2233          */
2234         if (wbio2 && !wbio2->bi_end_io)
2235                 wbio2 = NULL;
2236         if (wbio->bi_end_io) {
2237                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2238                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2239                 submit_bio_noacct(wbio);
2240         }
2241         if (wbio2) {
2242                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2243                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2244                              bio_sectors(wbio2));
2245                 submit_bio_noacct(wbio2);
2246         }
2247 }
2248
2249 /*
2250  * Used by fix_read_error() to decay the per rdev read_errors.
2251  * We halve the read error count for every hour that has elapsed
2252  * since the last recorded read error.
2253  *
2254  */
2255 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2256 {
2257         long cur_time_mon;
2258         unsigned long hours_since_last;
2259         unsigned int read_errors = atomic_read(&rdev->read_errors);
2260
2261         cur_time_mon = ktime_get_seconds();
2262
2263         if (rdev->last_read_error == 0) {
2264                 /* first time we've seen a read error */
2265                 rdev->last_read_error = cur_time_mon;
2266                 return;
2267         }
2268
2269         hours_since_last = (long)(cur_time_mon -
2270                             rdev->last_read_error) / 3600;
2271
2272         rdev->last_read_error = cur_time_mon;
2273
2274         /*
2275          * if hours_since_last is > the number of bits in read_errors
2276          * just set read errors to 0. We do this to avoid
2277          * overflowing the shift of read_errors by hours_since_last.
2278          */
2279         if (hours_since_last >= 8 * sizeof(read_errors))
2280                 atomic_set(&rdev->read_errors, 0);
2281         else
2282                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2283 }
2284
2285 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2286                             int sectors, struct page *page, int rw)
2287 {
2288         sector_t first_bad;
2289         int bad_sectors;
2290
2291         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2292             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2293                 return -1;
2294         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2295                 /* success */
2296                 return 1;
2297         if (rw == WRITE) {
2298                 set_bit(WriteErrorSeen, &rdev->flags);
2299                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2300                         set_bit(MD_RECOVERY_NEEDED,
2301                                 &rdev->mddev->recovery);
2302         }
2303         /* need to record an error - either for the block or the device */
2304         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2305                 md_error(rdev->mddev, rdev);
2306         return 0;
2307 }
2308
2309 /*
2310  * This is a kernel thread which:
2311  *
2312  *      1.      Retries failed read operations on working mirrors.
2313  *      2.      Updates the raid superblock when problems encounter.
2314  *      3.      Performs writes following reads for array synchronising.
2315  */
2316
2317 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2318 {
2319         int sect = 0; /* Offset from r10_bio->sector */
2320         int sectors = r10_bio->sectors;
2321         struct md_rdev *rdev;
2322         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2323         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2324
2325         /* still own a reference to this rdev, so it cannot
2326          * have been cleared recently.
2327          */
2328         rdev = conf->mirrors[d].rdev;
2329
2330         if (test_bit(Faulty, &rdev->flags))
2331                 /* drive has already been failed, just ignore any
2332                    more fix_read_error() attempts */
2333                 return;
2334
2335         check_decay_read_errors(mddev, rdev);
2336         atomic_inc(&rdev->read_errors);
2337         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2338                 char b[BDEVNAME_SIZE];
2339                 bdevname(rdev->bdev, b);
2340
2341                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2342                           mdname(mddev), b,
2343                           atomic_read(&rdev->read_errors), max_read_errors);
2344                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2345                           mdname(mddev), b);
2346                 md_error(mddev, rdev);
2347                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2348                 return;
2349         }
2350
2351         while(sectors) {
2352                 int s = sectors;
2353                 int sl = r10_bio->read_slot;
2354                 int success = 0;
2355                 int start;
2356
2357                 if (s > (PAGE_SIZE>>9))
2358                         s = PAGE_SIZE >> 9;
2359
2360                 rcu_read_lock();
2361                 do {
2362                         sector_t first_bad;
2363                         int bad_sectors;
2364
2365                         d = r10_bio->devs[sl].devnum;
2366                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2367                         if (rdev &&
2368                             test_bit(In_sync, &rdev->flags) &&
2369                             !test_bit(Faulty, &rdev->flags) &&
2370                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2371                                         &first_bad, &bad_sectors) == 0) {
2372                                 atomic_inc(&rdev->nr_pending);
2373                                 rcu_read_unlock();
2374                                 success = sync_page_io(rdev,
2375                                                        r10_bio->devs[sl].addr +
2376                                                        sect,
2377                                                        s<<9,
2378                                                        conf->tmppage,
2379                                                        REQ_OP_READ, 0, false);
2380                                 rdev_dec_pending(rdev, mddev);
2381                                 rcu_read_lock();
2382                                 if (success)
2383                                         break;
2384                         }
2385                         sl++;
2386                         if (sl == conf->copies)
2387                                 sl = 0;
2388                 } while (!success && sl != r10_bio->read_slot);
2389                 rcu_read_unlock();
2390
2391                 if (!success) {
2392                         /* Cannot read from anywhere, just mark the block
2393                          * as bad on the first device to discourage future
2394                          * reads.
2395                          */
2396                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2397                         rdev = conf->mirrors[dn].rdev;
2398
2399                         if (!rdev_set_badblocks(
2400                                     rdev,
2401                                     r10_bio->devs[r10_bio->read_slot].addr
2402                                     + sect,
2403                                     s, 0)) {
2404                                 md_error(mddev, rdev);
2405                                 r10_bio->devs[r10_bio->read_slot].bio
2406                                         = IO_BLOCKED;
2407                         }
2408                         break;
2409                 }
2410
2411                 start = sl;
2412                 /* write it back and re-read */
2413                 rcu_read_lock();
2414                 while (sl != r10_bio->read_slot) {
2415                         char b[BDEVNAME_SIZE];
2416
2417                         if (sl==0)
2418                                 sl = conf->copies;
2419                         sl--;
2420                         d = r10_bio->devs[sl].devnum;
2421                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2422                         if (!rdev ||
2423                             test_bit(Faulty, &rdev->flags) ||
2424                             !test_bit(In_sync, &rdev->flags))
2425                                 continue;
2426
2427                         atomic_inc(&rdev->nr_pending);
2428                         rcu_read_unlock();
2429                         if (r10_sync_page_io(rdev,
2430                                              r10_bio->devs[sl].addr +
2431                                              sect,
2432                                              s, conf->tmppage, WRITE)
2433                             == 0) {
2434                                 /* Well, this device is dead */
2435                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2436                                           mdname(mddev), s,
2437                                           (unsigned long long)(
2438                                                   sect +
2439                                                   choose_data_offset(r10_bio,
2440                                                                      rdev)),
2441                                           bdevname(rdev->bdev, b));
2442                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2443                                           mdname(mddev),
2444                                           bdevname(rdev->bdev, b));
2445                         }
2446                         rdev_dec_pending(rdev, mddev);
2447                         rcu_read_lock();
2448                 }
2449                 sl = start;
2450                 while (sl != r10_bio->read_slot) {
2451                         char b[BDEVNAME_SIZE];
2452
2453                         if (sl==0)
2454                                 sl = conf->copies;
2455                         sl--;
2456                         d = r10_bio->devs[sl].devnum;
2457                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2458                         if (!rdev ||
2459                             test_bit(Faulty, &rdev->flags) ||
2460                             !test_bit(In_sync, &rdev->flags))
2461                                 continue;
2462
2463                         atomic_inc(&rdev->nr_pending);
2464                         rcu_read_unlock();
2465                         switch (r10_sync_page_io(rdev,
2466                                              r10_bio->devs[sl].addr +
2467                                              sect,
2468                                              s, conf->tmppage,
2469                                                  READ)) {
2470                         case 0:
2471                                 /* Well, this device is dead */
2472                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2473                                        mdname(mddev), s,
2474                                        (unsigned long long)(
2475                                                sect +
2476                                                choose_data_offset(r10_bio, rdev)),
2477                                        bdevname(rdev->bdev, b));
2478                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2479                                        mdname(mddev),
2480                                        bdevname(rdev->bdev, b));
2481                                 break;
2482                         case 1:
2483                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2484                                        mdname(mddev), s,
2485                                        (unsigned long long)(
2486                                                sect +
2487                                                choose_data_offset(r10_bio, rdev)),
2488                                        bdevname(rdev->bdev, b));
2489                                 atomic_add(s, &rdev->corrected_errors);
2490                         }
2491
2492                         rdev_dec_pending(rdev, mddev);
2493                         rcu_read_lock();
2494                 }
2495                 rcu_read_unlock();
2496
2497                 sectors -= s;
2498                 sect += s;
2499         }
2500 }
2501
2502 static int narrow_write_error(struct r10bio *r10_bio, int i)
2503 {
2504         struct bio *bio = r10_bio->master_bio;
2505         struct mddev *mddev = r10_bio->mddev;
2506         struct r10conf *conf = mddev->private;
2507         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2508         /* bio has the data to be written to slot 'i' where
2509          * we just recently had a write error.
2510          * We repeatedly clone the bio and trim down to one block,
2511          * then try the write.  Where the write fails we record
2512          * a bad block.
2513          * It is conceivable that the bio doesn't exactly align with
2514          * blocks.  We must handle this.
2515          *
2516          * We currently own a reference to the rdev.
2517          */
2518
2519         int block_sectors;
2520         sector_t sector;
2521         int sectors;
2522         int sect_to_write = r10_bio->sectors;
2523         int ok = 1;
2524
2525         if (rdev->badblocks.shift < 0)
2526                 return 0;
2527
2528         block_sectors = roundup(1 << rdev->badblocks.shift,
2529                                 bdev_logical_block_size(rdev->bdev) >> 9);
2530         sector = r10_bio->sector;
2531         sectors = ((r10_bio->sector + block_sectors)
2532                    & ~(sector_t)(block_sectors - 1))
2533                 - sector;
2534
2535         while (sect_to_write) {
2536                 struct bio *wbio;
2537                 sector_t wsector;
2538                 if (sectors > sect_to_write)
2539                         sectors = sect_to_write;
2540                 /* Write at 'sector' for 'sectors' */
2541                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2542                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2543                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2544                 wbio->bi_iter.bi_sector = wsector +
2545                                    choose_data_offset(r10_bio, rdev);
2546                 bio_set_dev(wbio, rdev->bdev);
2547                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2548
2549                 if (submit_bio_wait(wbio) < 0)
2550                         /* Failure! */
2551                         ok = rdev_set_badblocks(rdev, wsector,
2552                                                 sectors, 0)
2553                                 && ok;
2554
2555                 bio_put(wbio);
2556                 sect_to_write -= sectors;
2557                 sector += sectors;
2558                 sectors = block_sectors;
2559         }
2560         return ok;
2561 }
2562
2563 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2564 {
2565         int slot = r10_bio->read_slot;
2566         struct bio *bio;
2567         struct r10conf *conf = mddev->private;
2568         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2569
2570         /* we got a read error. Maybe the drive is bad.  Maybe just
2571          * the block and we can fix it.
2572          * We freeze all other IO, and try reading the block from
2573          * other devices.  When we find one, we re-write
2574          * and check it that fixes the read error.
2575          * This is all done synchronously while the array is
2576          * frozen.
2577          */
2578         bio = r10_bio->devs[slot].bio;
2579         bio_put(bio);
2580         r10_bio->devs[slot].bio = NULL;
2581
2582         if (mddev->ro)
2583                 r10_bio->devs[slot].bio = IO_BLOCKED;
2584         else if (!test_bit(FailFast, &rdev->flags)) {
2585                 freeze_array(conf, 1);
2586                 fix_read_error(conf, mddev, r10_bio);
2587                 unfreeze_array(conf);
2588         } else
2589                 md_error(mddev, rdev);
2590
2591         rdev_dec_pending(rdev, mddev);
2592         allow_barrier(conf);
2593         r10_bio->state = 0;
2594         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2595 }
2596
2597 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2598 {
2599         /* Some sort of write request has finished and it
2600          * succeeded in writing where we thought there was a
2601          * bad block.  So forget the bad block.
2602          * Or possibly if failed and we need to record
2603          * a bad block.
2604          */
2605         int m;
2606         struct md_rdev *rdev;
2607
2608         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2609             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2610                 for (m = 0; m < conf->copies; m++) {
2611                         int dev = r10_bio->devs[m].devnum;
2612                         rdev = conf->mirrors[dev].rdev;
2613                         if (r10_bio->devs[m].bio == NULL ||
2614                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2615                                 continue;
2616                         if (!r10_bio->devs[m].bio->bi_status) {
2617                                 rdev_clear_badblocks(
2618                                         rdev,
2619                                         r10_bio->devs[m].addr,
2620                                         r10_bio->sectors, 0);
2621                         } else {
2622                                 if (!rdev_set_badblocks(
2623                                             rdev,
2624                                             r10_bio->devs[m].addr,
2625                                             r10_bio->sectors, 0))
2626                                         md_error(conf->mddev, rdev);
2627                         }
2628                         rdev = conf->mirrors[dev].replacement;
2629                         if (r10_bio->devs[m].repl_bio == NULL ||
2630                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2631                                 continue;
2632
2633                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2634                                 rdev_clear_badblocks(
2635                                         rdev,
2636                                         r10_bio->devs[m].addr,
2637                                         r10_bio->sectors, 0);
2638                         } else {
2639                                 if (!rdev_set_badblocks(
2640                                             rdev,
2641                                             r10_bio->devs[m].addr,
2642                                             r10_bio->sectors, 0))
2643                                         md_error(conf->mddev, rdev);
2644                         }
2645                 }
2646                 put_buf(r10_bio);
2647         } else {
2648                 bool fail = false;
2649                 for (m = 0; m < conf->copies; m++) {
2650                         int dev = r10_bio->devs[m].devnum;
2651                         struct bio *bio = r10_bio->devs[m].bio;
2652                         rdev = conf->mirrors[dev].rdev;
2653                         if (bio == IO_MADE_GOOD) {
2654                                 rdev_clear_badblocks(
2655                                         rdev,
2656                                         r10_bio->devs[m].addr,
2657                                         r10_bio->sectors, 0);
2658                                 rdev_dec_pending(rdev, conf->mddev);
2659                         } else if (bio != NULL && bio->bi_status) {
2660                                 fail = true;
2661                                 if (!narrow_write_error(r10_bio, m)) {
2662                                         md_error(conf->mddev, rdev);
2663                                         set_bit(R10BIO_Degraded,
2664                                                 &r10_bio->state);
2665                                 }
2666                                 rdev_dec_pending(rdev, conf->mddev);
2667                         }
2668                         bio = r10_bio->devs[m].repl_bio;
2669                         rdev = conf->mirrors[dev].replacement;
2670                         if (rdev && bio == IO_MADE_GOOD) {
2671                                 rdev_clear_badblocks(
2672                                         rdev,
2673                                         r10_bio->devs[m].addr,
2674                                         r10_bio->sectors, 0);
2675                                 rdev_dec_pending(rdev, conf->mddev);
2676                         }
2677                 }
2678                 if (fail) {
2679                         spin_lock_irq(&conf->device_lock);
2680                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2681                         conf->nr_queued++;
2682                         spin_unlock_irq(&conf->device_lock);
2683                         /*
2684                          * In case freeze_array() is waiting for condition
2685                          * nr_pending == nr_queued + extra to be true.
2686                          */
2687                         wake_up(&conf->wait_barrier);
2688                         md_wakeup_thread(conf->mddev->thread);
2689                 } else {
2690                         if (test_bit(R10BIO_WriteError,
2691                                      &r10_bio->state))
2692                                 close_write(r10_bio);
2693                         raid_end_bio_io(r10_bio);
2694                 }
2695         }
2696 }
2697
2698 static void raid10d(struct md_thread *thread)
2699 {
2700         struct mddev *mddev = thread->mddev;
2701         struct r10bio *r10_bio;
2702         unsigned long flags;
2703         struct r10conf *conf = mddev->private;
2704         struct list_head *head = &conf->retry_list;
2705         struct blk_plug plug;
2706
2707         md_check_recovery(mddev);
2708
2709         if (!list_empty_careful(&conf->bio_end_io_list) &&
2710             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2711                 LIST_HEAD(tmp);
2712                 spin_lock_irqsave(&conf->device_lock, flags);
2713                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2714                         while (!list_empty(&conf->bio_end_io_list)) {
2715                                 list_move(conf->bio_end_io_list.prev, &tmp);
2716                                 conf->nr_queued--;
2717                         }
2718                 }
2719                 spin_unlock_irqrestore(&conf->device_lock, flags);
2720                 while (!list_empty(&tmp)) {
2721                         r10_bio = list_first_entry(&tmp, struct r10bio,
2722                                                    retry_list);
2723                         list_del(&r10_bio->retry_list);
2724                         if (mddev->degraded)
2725                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2726
2727                         if (test_bit(R10BIO_WriteError,
2728                                      &r10_bio->state))
2729                                 close_write(r10_bio);
2730                         raid_end_bio_io(r10_bio);
2731                 }
2732         }
2733
2734         blk_start_plug(&plug);
2735         for (;;) {
2736
2737                 flush_pending_writes(conf);
2738
2739                 spin_lock_irqsave(&conf->device_lock, flags);
2740                 if (list_empty(head)) {
2741                         spin_unlock_irqrestore(&conf->device_lock, flags);
2742                         break;
2743                 }
2744                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2745                 list_del(head->prev);
2746                 conf->nr_queued--;
2747                 spin_unlock_irqrestore(&conf->device_lock, flags);
2748
2749                 mddev = r10_bio->mddev;
2750                 conf = mddev->private;
2751                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2752                     test_bit(R10BIO_WriteError, &r10_bio->state))
2753                         handle_write_completed(conf, r10_bio);
2754                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2755                         reshape_request_write(mddev, r10_bio);
2756                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2757                         sync_request_write(mddev, r10_bio);
2758                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2759                         recovery_request_write(mddev, r10_bio);
2760                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2761                         handle_read_error(mddev, r10_bio);
2762                 else
2763                         WARN_ON_ONCE(1);
2764
2765                 cond_resched();
2766                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2767                         md_check_recovery(mddev);
2768         }
2769         blk_finish_plug(&plug);
2770 }
2771
2772 static int init_resync(struct r10conf *conf)
2773 {
2774         int ret, buffs, i;
2775
2776         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2777         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2778         conf->have_replacement = 0;
2779         for (i = 0; i < conf->geo.raid_disks; i++)
2780                 if (conf->mirrors[i].replacement)
2781                         conf->have_replacement = 1;
2782         ret = mempool_init(&conf->r10buf_pool, buffs,
2783                            r10buf_pool_alloc, r10buf_pool_free, conf);
2784         if (ret)
2785                 return ret;
2786         conf->next_resync = 0;
2787         return 0;
2788 }
2789
2790 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2791 {
2792         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2793         struct rsync_pages *rp;
2794         struct bio *bio;
2795         int nalloc;
2796         int i;
2797
2798         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2799             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2800                 nalloc = conf->copies; /* resync */
2801         else
2802                 nalloc = 2; /* recovery */
2803
2804         for (i = 0; i < nalloc; i++) {
2805                 bio = r10bio->devs[i].bio;
2806                 rp = bio->bi_private;
2807                 bio_reset(bio);
2808                 bio->bi_private = rp;
2809                 bio = r10bio->devs[i].repl_bio;
2810                 if (bio) {
2811                         rp = bio->bi_private;
2812                         bio_reset(bio);
2813                         bio->bi_private = rp;
2814                 }
2815         }
2816         return r10bio;
2817 }
2818
2819 /*
2820  * Set cluster_sync_high since we need other nodes to add the
2821  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2822  */
2823 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2824 {
2825         sector_t window_size;
2826         int extra_chunk, chunks;
2827
2828         /*
2829          * First, here we define "stripe" as a unit which across
2830          * all member devices one time, so we get chunks by use
2831          * raid_disks / near_copies. Otherwise, if near_copies is
2832          * close to raid_disks, then resync window could increases
2833          * linearly with the increase of raid_disks, which means
2834          * we will suspend a really large IO window while it is not
2835          * necessary. If raid_disks is not divisible by near_copies,
2836          * an extra chunk is needed to ensure the whole "stripe" is
2837          * covered.
2838          */
2839
2840         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2841         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2842                 extra_chunk = 0;
2843         else
2844                 extra_chunk = 1;
2845         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2846
2847         /*
2848          * At least use a 32M window to align with raid1's resync window
2849          */
2850         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2851                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2852
2853         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2854 }
2855
2856 /*
2857  * perform a "sync" on one "block"
2858  *
2859  * We need to make sure that no normal I/O request - particularly write
2860  * requests - conflict with active sync requests.
2861  *
2862  * This is achieved by tracking pending requests and a 'barrier' concept
2863  * that can be installed to exclude normal IO requests.
2864  *
2865  * Resync and recovery are handled very differently.
2866  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2867  *
2868  * For resync, we iterate over virtual addresses, read all copies,
2869  * and update if there are differences.  If only one copy is live,
2870  * skip it.
2871  * For recovery, we iterate over physical addresses, read a good
2872  * value for each non-in_sync drive, and over-write.
2873  *
2874  * So, for recovery we may have several outstanding complex requests for a
2875  * given address, one for each out-of-sync device.  We model this by allocating
2876  * a number of r10_bio structures, one for each out-of-sync device.
2877  * As we setup these structures, we collect all bio's together into a list
2878  * which we then process collectively to add pages, and then process again
2879  * to pass to submit_bio_noacct.
2880  *
2881  * The r10_bio structures are linked using a borrowed master_bio pointer.
2882  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2883  * has its remaining count decremented to 0, the whole complex operation
2884  * is complete.
2885  *
2886  */
2887
2888 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2889                              int *skipped)
2890 {
2891         struct r10conf *conf = mddev->private;
2892         struct r10bio *r10_bio;
2893         struct bio *biolist = NULL, *bio;
2894         sector_t max_sector, nr_sectors;
2895         int i;
2896         int max_sync;
2897         sector_t sync_blocks;
2898         sector_t sectors_skipped = 0;
2899         int chunks_skipped = 0;
2900         sector_t chunk_mask = conf->geo.chunk_mask;
2901         int page_idx = 0;
2902
2903         if (!mempool_initialized(&conf->r10buf_pool))
2904                 if (init_resync(conf))
2905                         return 0;
2906
2907         /*
2908          * Allow skipping a full rebuild for incremental assembly
2909          * of a clean array, like RAID1 does.
2910          */
2911         if (mddev->bitmap == NULL &&
2912             mddev->recovery_cp == MaxSector &&
2913             mddev->reshape_position == MaxSector &&
2914             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2915             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2916             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2917             conf->fullsync == 0) {
2918                 *skipped = 1;
2919                 return mddev->dev_sectors - sector_nr;
2920         }
2921
2922  skipped:
2923         max_sector = mddev->dev_sectors;
2924         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2925             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2926                 max_sector = mddev->resync_max_sectors;
2927         if (sector_nr >= max_sector) {
2928                 conf->cluster_sync_low = 0;
2929                 conf->cluster_sync_high = 0;
2930
2931                 /* If we aborted, we need to abort the
2932                  * sync on the 'current' bitmap chucks (there can
2933                  * be several when recovering multiple devices).
2934                  * as we may have started syncing it but not finished.
2935                  * We can find the current address in
2936                  * mddev->curr_resync, but for recovery,
2937                  * we need to convert that to several
2938                  * virtual addresses.
2939                  */
2940                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2941                         end_reshape(conf);
2942                         close_sync(conf);
2943                         return 0;
2944                 }
2945
2946                 if (mddev->curr_resync < max_sector) { /* aborted */
2947                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2948                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2949                                                    &sync_blocks, 1);
2950                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2951                                 sector_t sect =
2952                                         raid10_find_virt(conf, mddev->curr_resync, i);
2953                                 md_bitmap_end_sync(mddev->bitmap, sect,
2954                                                    &sync_blocks, 1);
2955                         }
2956                 } else {
2957                         /* completed sync */
2958                         if ((!mddev->bitmap || conf->fullsync)
2959                             && conf->have_replacement
2960                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2961                                 /* Completed a full sync so the replacements
2962                                  * are now fully recovered.
2963                                  */
2964                                 rcu_read_lock();
2965                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2966                                         struct md_rdev *rdev =
2967                                                 rcu_dereference(conf->mirrors[i].replacement);
2968                                         if (rdev)
2969                                                 rdev->recovery_offset = MaxSector;
2970                                 }
2971                                 rcu_read_unlock();
2972                         }
2973                         conf->fullsync = 0;
2974                 }
2975                 md_bitmap_close_sync(mddev->bitmap);
2976                 close_sync(conf);
2977                 *skipped = 1;
2978                 return sectors_skipped;
2979         }
2980
2981         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2982                 return reshape_request(mddev, sector_nr, skipped);
2983
2984         if (chunks_skipped >= conf->geo.raid_disks) {
2985                 /* if there has been nothing to do on any drive,
2986                  * then there is nothing to do at all..
2987                  */
2988                 *skipped = 1;
2989                 return (max_sector - sector_nr) + sectors_skipped;
2990         }
2991
2992         if (max_sector > mddev->resync_max)
2993                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2994
2995         /* make sure whole request will fit in a chunk - if chunks
2996          * are meaningful
2997          */
2998         if (conf->geo.near_copies < conf->geo.raid_disks &&
2999             max_sector > (sector_nr | chunk_mask))
3000                 max_sector = (sector_nr | chunk_mask) + 1;
3001
3002         /*
3003          * If there is non-resync activity waiting for a turn, then let it
3004          * though before starting on this new sync request.
3005          */
3006         if (conf->nr_waiting)
3007                 schedule_timeout_uninterruptible(1);
3008
3009         /* Again, very different code for resync and recovery.
3010          * Both must result in an r10bio with a list of bios that
3011          * have bi_end_io, bi_sector, bi_disk set,
3012          * and bi_private set to the r10bio.
3013          * For recovery, we may actually create several r10bios
3014          * with 2 bios in each, that correspond to the bios in the main one.
3015          * In this case, the subordinate r10bios link back through a
3016          * borrowed master_bio pointer, and the counter in the master
3017          * includes a ref from each subordinate.
3018          */
3019         /* First, we decide what to do and set ->bi_end_io
3020          * To end_sync_read if we want to read, and
3021          * end_sync_write if we will want to write.
3022          */
3023
3024         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3025         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3026                 /* recovery... the complicated one */
3027                 int j;
3028                 r10_bio = NULL;
3029
3030                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3031                         int still_degraded;
3032                         struct r10bio *rb2;
3033                         sector_t sect;
3034                         int must_sync;
3035                         int any_working;
3036                         int need_recover = 0;
3037                         int need_replace = 0;
3038                         struct raid10_info *mirror = &conf->mirrors[i];
3039                         struct md_rdev *mrdev, *mreplace;
3040
3041                         rcu_read_lock();
3042                         mrdev = rcu_dereference(mirror->rdev);
3043                         mreplace = rcu_dereference(mirror->replacement);
3044
3045                         if (mrdev != NULL &&
3046                             !test_bit(Faulty, &mrdev->flags) &&
3047                             !test_bit(In_sync, &mrdev->flags))
3048                                 need_recover = 1;
3049                         if (mreplace != NULL &&
3050                             !test_bit(Faulty, &mreplace->flags))
3051                                 need_replace = 1;
3052
3053                         if (!need_recover && !need_replace) {
3054                                 rcu_read_unlock();
3055                                 continue;
3056                         }
3057
3058                         still_degraded = 0;
3059                         /* want to reconstruct this device */
3060                         rb2 = r10_bio;
3061                         sect = raid10_find_virt(conf, sector_nr, i);
3062                         if (sect >= mddev->resync_max_sectors) {
3063                                 /* last stripe is not complete - don't
3064                                  * try to recover this sector.
3065                                  */
3066                                 rcu_read_unlock();
3067                                 continue;
3068                         }
3069                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3070                                 mreplace = NULL;
3071                         /* Unless we are doing a full sync, or a replacement
3072                          * we only need to recover the block if it is set in
3073                          * the bitmap
3074                          */
3075                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3076                                                          &sync_blocks, 1);
3077                         if (sync_blocks < max_sync)
3078                                 max_sync = sync_blocks;
3079                         if (!must_sync &&
3080                             mreplace == NULL &&
3081                             !conf->fullsync) {
3082                                 /* yep, skip the sync_blocks here, but don't assume
3083                                  * that there will never be anything to do here
3084                                  */
3085                                 chunks_skipped = -1;
3086                                 rcu_read_unlock();
3087                                 continue;
3088                         }
3089                         atomic_inc(&mrdev->nr_pending);
3090                         if (mreplace)
3091                                 atomic_inc(&mreplace->nr_pending);
3092                         rcu_read_unlock();
3093
3094                         r10_bio = raid10_alloc_init_r10buf(conf);
3095                         r10_bio->state = 0;
3096                         raise_barrier(conf, rb2 != NULL);
3097                         atomic_set(&r10_bio->remaining, 0);
3098
3099                         r10_bio->master_bio = (struct bio*)rb2;
3100                         if (rb2)
3101                                 atomic_inc(&rb2->remaining);
3102                         r10_bio->mddev = mddev;
3103                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3104                         r10_bio->sector = sect;
3105
3106                         raid10_find_phys(conf, r10_bio);
3107
3108                         /* Need to check if the array will still be
3109                          * degraded
3110                          */
3111                         rcu_read_lock();
3112                         for (j = 0; j < conf->geo.raid_disks; j++) {
3113                                 struct md_rdev *rdev = rcu_dereference(
3114                                         conf->mirrors[j].rdev);
3115                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3116                                         still_degraded = 1;
3117                                         break;
3118                                 }
3119                         }
3120
3121                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3122                                                          &sync_blocks, still_degraded);
3123
3124                         any_working = 0;
3125                         for (j=0; j<conf->copies;j++) {
3126                                 int k;
3127                                 int d = r10_bio->devs[j].devnum;
3128                                 sector_t from_addr, to_addr;
3129                                 struct md_rdev *rdev =
3130                                         rcu_dereference(conf->mirrors[d].rdev);
3131                                 sector_t sector, first_bad;
3132                                 int bad_sectors;
3133                                 if (!rdev ||
3134                                     !test_bit(In_sync, &rdev->flags))
3135                                         continue;
3136                                 /* This is where we read from */
3137                                 any_working = 1;
3138                                 sector = r10_bio->devs[j].addr;
3139
3140                                 if (is_badblock(rdev, sector, max_sync,
3141                                                 &first_bad, &bad_sectors)) {
3142                                         if (first_bad > sector)
3143                                                 max_sync = first_bad - sector;
3144                                         else {
3145                                                 bad_sectors -= (sector
3146                                                                 - first_bad);
3147                                                 if (max_sync > bad_sectors)
3148                                                         max_sync = bad_sectors;
3149                                                 continue;
3150                                         }
3151                                 }
3152                                 bio = r10_bio->devs[0].bio;
3153                                 bio->bi_next = biolist;
3154                                 biolist = bio;
3155                                 bio->bi_end_io = end_sync_read;
3156                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3157                                 if (test_bit(FailFast, &rdev->flags))
3158                                         bio->bi_opf |= MD_FAILFAST;
3159                                 from_addr = r10_bio->devs[j].addr;
3160                                 bio->bi_iter.bi_sector = from_addr +
3161                                         rdev->data_offset;
3162                                 bio_set_dev(bio, rdev->bdev);
3163                                 atomic_inc(&rdev->nr_pending);
3164                                 /* and we write to 'i' (if not in_sync) */
3165
3166                                 for (k=0; k<conf->copies; k++)
3167                                         if (r10_bio->devs[k].devnum == i)
3168                                                 break;
3169                                 BUG_ON(k == conf->copies);
3170                                 to_addr = r10_bio->devs[k].addr;
3171                                 r10_bio->devs[0].devnum = d;
3172                                 r10_bio->devs[0].addr = from_addr;
3173                                 r10_bio->devs[1].devnum = i;
3174                                 r10_bio->devs[1].addr = to_addr;
3175
3176                                 if (need_recover) {
3177                                         bio = r10_bio->devs[1].bio;
3178                                         bio->bi_next = biolist;
3179                                         biolist = bio;
3180                                         bio->bi_end_io = end_sync_write;
3181                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3182                                         bio->bi_iter.bi_sector = to_addr
3183                                                 + mrdev->data_offset;
3184                                         bio_set_dev(bio, mrdev->bdev);
3185                                         atomic_inc(&r10_bio->remaining);
3186                                 } else
3187                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3188
3189                                 /* and maybe write to replacement */
3190                                 bio = r10_bio->devs[1].repl_bio;
3191                                 if (bio)
3192                                         bio->bi_end_io = NULL;
3193                                 /* Note: if need_replace, then bio
3194                                  * cannot be NULL as r10buf_pool_alloc will
3195                                  * have allocated it.
3196                                  */
3197                                 if (!need_replace)
3198                                         break;
3199                                 bio->bi_next = biolist;
3200                                 biolist = bio;
3201                                 bio->bi_end_io = end_sync_write;
3202                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3203                                 bio->bi_iter.bi_sector = to_addr +
3204                                         mreplace->data_offset;
3205                                 bio_set_dev(bio, mreplace->bdev);
3206                                 atomic_inc(&r10_bio->remaining);
3207                                 break;
3208                         }
3209                         rcu_read_unlock();
3210                         if (j == conf->copies) {
3211                                 /* Cannot recover, so abort the recovery or
3212                                  * record a bad block */
3213                                 if (any_working) {
3214                                         /* problem is that there are bad blocks
3215                                          * on other device(s)
3216                                          */
3217                                         int k;
3218                                         for (k = 0; k < conf->copies; k++)
3219                                                 if (r10_bio->devs[k].devnum == i)
3220                                                         break;
3221                                         if (!test_bit(In_sync,
3222                                                       &mrdev->flags)
3223                                             && !rdev_set_badblocks(
3224                                                     mrdev,
3225                                                     r10_bio->devs[k].addr,
3226                                                     max_sync, 0))
3227                                                 any_working = 0;
3228                                         if (mreplace &&
3229                                             !rdev_set_badblocks(
3230                                                     mreplace,
3231                                                     r10_bio->devs[k].addr,
3232                                                     max_sync, 0))
3233                                                 any_working = 0;
3234                                 }
3235                                 if (!any_working)  {
3236                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3237                                                               &mddev->recovery))
3238                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3239                                                        mdname(mddev));
3240                                         mirror->recovery_disabled
3241                                                 = mddev->recovery_disabled;
3242                                 }
3243                                 put_buf(r10_bio);
3244                                 if (rb2)
3245                                         atomic_dec(&rb2->remaining);
3246                                 r10_bio = rb2;
3247                                 rdev_dec_pending(mrdev, mddev);
3248                                 if (mreplace)
3249                                         rdev_dec_pending(mreplace, mddev);
3250                                 break;
3251                         }
3252                         rdev_dec_pending(mrdev, mddev);
3253                         if (mreplace)
3254                                 rdev_dec_pending(mreplace, mddev);
3255                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3256                                 /* Only want this if there is elsewhere to
3257                                  * read from. 'j' is currently the first
3258                                  * readable copy.
3259                                  */
3260                                 int targets = 1;
3261                                 for (; j < conf->copies; j++) {
3262                                         int d = r10_bio->devs[j].devnum;
3263                                         if (conf->mirrors[d].rdev &&
3264                                             test_bit(In_sync,
3265                                                       &conf->mirrors[d].rdev->flags))
3266                                                 targets++;
3267                                 }
3268                                 if (targets == 1)
3269                                         r10_bio->devs[0].bio->bi_opf
3270                                                 &= ~MD_FAILFAST;
3271                         }
3272                 }
3273                 if (biolist == NULL) {
3274                         while (r10_bio) {
3275                                 struct r10bio *rb2 = r10_bio;
3276                                 r10_bio = (struct r10bio*) rb2->master_bio;
3277                                 rb2->master_bio = NULL;
3278                                 put_buf(rb2);
3279                         }
3280                         goto giveup;
3281                 }
3282         } else {
3283                 /* resync. Schedule a read for every block at this virt offset */
3284                 int count = 0;
3285
3286                 /*
3287                  * Since curr_resync_completed could probably not update in
3288                  * time, and we will set cluster_sync_low based on it.
3289                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3290                  * safety reason, which ensures curr_resync_completed is
3291                  * updated in bitmap_cond_end_sync.
3292                  */
3293                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3294                                         mddev_is_clustered(mddev) &&
3295                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3296
3297                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3298                                           &sync_blocks, mddev->degraded) &&
3299                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3300                                                  &mddev->recovery)) {
3301                         /* We can skip this block */
3302                         *skipped = 1;
3303                         return sync_blocks + sectors_skipped;
3304                 }
3305                 if (sync_blocks < max_sync)
3306                         max_sync = sync_blocks;
3307                 r10_bio = raid10_alloc_init_r10buf(conf);
3308                 r10_bio->state = 0;
3309
3310                 r10_bio->mddev = mddev;
3311                 atomic_set(&r10_bio->remaining, 0);
3312                 raise_barrier(conf, 0);
3313                 conf->next_resync = sector_nr;
3314
3315                 r10_bio->master_bio = NULL;
3316                 r10_bio->sector = sector_nr;
3317                 set_bit(R10BIO_IsSync, &r10_bio->state);
3318                 raid10_find_phys(conf, r10_bio);
3319                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3320
3321                 for (i = 0; i < conf->copies; i++) {
3322                         int d = r10_bio->devs[i].devnum;
3323                         sector_t first_bad, sector;
3324                         int bad_sectors;
3325                         struct md_rdev *rdev;
3326
3327                         if (r10_bio->devs[i].repl_bio)
3328                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3329
3330                         bio = r10_bio->devs[i].bio;
3331                         bio->bi_status = BLK_STS_IOERR;
3332                         rcu_read_lock();
3333                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3334                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3335                                 rcu_read_unlock();
3336                                 continue;
3337                         }
3338                         sector = r10_bio->devs[i].addr;
3339                         if (is_badblock(rdev, sector, max_sync,
3340                                         &first_bad, &bad_sectors)) {
3341                                 if (first_bad > sector)
3342                                         max_sync = first_bad - sector;
3343                                 else {
3344                                         bad_sectors -= (sector - first_bad);
3345                                         if (max_sync > bad_sectors)
3346                                                 max_sync = bad_sectors;
3347                                         rcu_read_unlock();
3348                                         continue;
3349                                 }
3350                         }
3351                         atomic_inc(&rdev->nr_pending);
3352                         atomic_inc(&r10_bio->remaining);
3353                         bio->bi_next = biolist;
3354                         biolist = bio;
3355                         bio->bi_end_io = end_sync_read;
3356                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3357                         if (test_bit(FailFast, &rdev->flags))
3358                                 bio->bi_opf |= MD_FAILFAST;
3359                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3360                         bio_set_dev(bio, rdev->bdev);
3361                         count++;
3362
3363                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3364                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3365                                 rcu_read_unlock();
3366                                 continue;
3367                         }
3368                         atomic_inc(&rdev->nr_pending);
3369
3370                         /* Need to set up for writing to the replacement */
3371                         bio = r10_bio->devs[i].repl_bio;
3372                         bio->bi_status = BLK_STS_IOERR;
3373
3374                         sector = r10_bio->devs[i].addr;
3375                         bio->bi_next = biolist;
3376                         biolist = bio;
3377                         bio->bi_end_io = end_sync_write;
3378                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3379                         if (test_bit(FailFast, &rdev->flags))
3380                                 bio->bi_opf |= MD_FAILFAST;
3381                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3382                         bio_set_dev(bio, rdev->bdev);
3383                         count++;
3384                         rcu_read_unlock();
3385                 }
3386
3387                 if (count < 2) {
3388                         for (i=0; i<conf->copies; i++) {
3389                                 int d = r10_bio->devs[i].devnum;
3390                                 if (r10_bio->devs[i].bio->bi_end_io)
3391                                         rdev_dec_pending(conf->mirrors[d].rdev,
3392                                                          mddev);
3393                                 if (r10_bio->devs[i].repl_bio &&
3394                                     r10_bio->devs[i].repl_bio->bi_end_io)
3395                                         rdev_dec_pending(
3396                                                 conf->mirrors[d].replacement,
3397                                                 mddev);
3398                         }
3399                         put_buf(r10_bio);
3400                         biolist = NULL;
3401                         goto giveup;
3402                 }
3403         }
3404
3405         nr_sectors = 0;
3406         if (sector_nr + max_sync < max_sector)
3407                 max_sector = sector_nr + max_sync;
3408         do {
3409                 struct page *page;
3410                 int len = PAGE_SIZE;
3411                 if (sector_nr + (len>>9) > max_sector)
3412                         len = (max_sector - sector_nr) << 9;
3413                 if (len == 0)
3414                         break;
3415                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3416                         struct resync_pages *rp = get_resync_pages(bio);
3417                         page = resync_fetch_page(rp, page_idx);
3418                         /*
3419                          * won't fail because the vec table is big enough
3420                          * to hold all these pages
3421                          */
3422                         bio_add_page(bio, page, len, 0);
3423                 }
3424                 nr_sectors += len>>9;
3425                 sector_nr += len>>9;
3426         } while (++page_idx < RESYNC_PAGES);
3427         r10_bio->sectors = nr_sectors;
3428
3429         if (mddev_is_clustered(mddev) &&
3430             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3431                 /* It is resync not recovery */
3432                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3433                         conf->cluster_sync_low = mddev->curr_resync_completed;
3434                         raid10_set_cluster_sync_high(conf);
3435                         /* Send resync message */
3436                         md_cluster_ops->resync_info_update(mddev,
3437                                                 conf->cluster_sync_low,
3438                                                 conf->cluster_sync_high);
3439                 }
3440         } else if (mddev_is_clustered(mddev)) {
3441                 /* This is recovery not resync */
3442                 sector_t sect_va1, sect_va2;
3443                 bool broadcast_msg = false;
3444
3445                 for (i = 0; i < conf->geo.raid_disks; i++) {
3446                         /*
3447                          * sector_nr is a device address for recovery, so we
3448                          * need translate it to array address before compare
3449                          * with cluster_sync_high.
3450                          */
3451                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3452
3453                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3454                                 broadcast_msg = true;
3455                                 /*
3456                                  * curr_resync_completed is similar as
3457                                  * sector_nr, so make the translation too.
3458                                  */
3459                                 sect_va2 = raid10_find_virt(conf,
3460                                         mddev->curr_resync_completed, i);
3461
3462                                 if (conf->cluster_sync_low == 0 ||
3463                                     conf->cluster_sync_low > sect_va2)
3464                                         conf->cluster_sync_low = sect_va2;
3465                         }
3466                 }
3467                 if (broadcast_msg) {
3468                         raid10_set_cluster_sync_high(conf);
3469                         md_cluster_ops->resync_info_update(mddev,
3470                                                 conf->cluster_sync_low,
3471                                                 conf->cluster_sync_high);
3472                 }
3473         }
3474
3475         while (biolist) {
3476                 bio = biolist;
3477                 biolist = biolist->bi_next;
3478
3479                 bio->bi_next = NULL;
3480                 r10_bio = get_resync_r10bio(bio);
3481                 r10_bio->sectors = nr_sectors;
3482
3483                 if (bio->bi_end_io == end_sync_read) {
3484                         md_sync_acct_bio(bio, nr_sectors);
3485                         bio->bi_status = 0;
3486                         submit_bio_noacct(bio);
3487                 }
3488         }
3489
3490         if (sectors_skipped)
3491                 /* pretend they weren't skipped, it makes
3492                  * no important difference in this case
3493                  */
3494                 md_done_sync(mddev, sectors_skipped, 1);
3495
3496         return sectors_skipped + nr_sectors;
3497  giveup:
3498         /* There is nowhere to write, so all non-sync
3499          * drives must be failed or in resync, all drives
3500          * have a bad block, so try the next chunk...
3501          */
3502         if (sector_nr + max_sync < max_sector)
3503                 max_sector = sector_nr + max_sync;
3504
3505         sectors_skipped += (max_sector - sector_nr);
3506         chunks_skipped ++;
3507         sector_nr = max_sector;
3508         goto skipped;
3509 }
3510
3511 static sector_t
3512 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3513 {
3514         sector_t size;
3515         struct r10conf *conf = mddev->private;
3516
3517         if (!raid_disks)
3518                 raid_disks = min(conf->geo.raid_disks,
3519                                  conf->prev.raid_disks);
3520         if (!sectors)
3521                 sectors = conf->dev_sectors;
3522
3523         size = sectors >> conf->geo.chunk_shift;
3524         sector_div(size, conf->geo.far_copies);
3525         size = size * raid_disks;
3526         sector_div(size, conf->geo.near_copies);
3527
3528         return size << conf->geo.chunk_shift;
3529 }
3530
3531 static void calc_sectors(struct r10conf *conf, sector_t size)
3532 {
3533         /* Calculate the number of sectors-per-device that will
3534          * actually be used, and set conf->dev_sectors and
3535          * conf->stride
3536          */
3537
3538         size = size >> conf->geo.chunk_shift;
3539         sector_div(size, conf->geo.far_copies);
3540         size = size * conf->geo.raid_disks;
3541         sector_div(size, conf->geo.near_copies);
3542         /* 'size' is now the number of chunks in the array */
3543         /* calculate "used chunks per device" */
3544         size = size * conf->copies;
3545
3546         /* We need to round up when dividing by raid_disks to
3547          * get the stride size.
3548          */
3549         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3550
3551         conf->dev_sectors = size << conf->geo.chunk_shift;
3552
3553         if (conf->geo.far_offset)
3554                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3555         else {
3556                 sector_div(size, conf->geo.far_copies);
3557                 conf->geo.stride = size << conf->geo.chunk_shift;
3558         }
3559 }
3560
3561 enum geo_type {geo_new, geo_old, geo_start};
3562 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3563 {
3564         int nc, fc, fo;
3565         int layout, chunk, disks;
3566         switch (new) {
3567         case geo_old:
3568                 layout = mddev->layout;
3569                 chunk = mddev->chunk_sectors;
3570                 disks = mddev->raid_disks - mddev->delta_disks;
3571                 break;
3572         case geo_new:
3573                 layout = mddev->new_layout;
3574                 chunk = mddev->new_chunk_sectors;
3575                 disks = mddev->raid_disks;
3576                 break;
3577         default: /* avoid 'may be unused' warnings */
3578         case geo_start: /* new when starting reshape - raid_disks not
3579                          * updated yet. */
3580                 layout = mddev->new_layout;
3581                 chunk = mddev->new_chunk_sectors;
3582                 disks = mddev->raid_disks + mddev->delta_disks;
3583                 break;
3584         }
3585         if (layout >> 19)
3586                 return -1;
3587         if (chunk < (PAGE_SIZE >> 9) ||
3588             !is_power_of_2(chunk))
3589                 return -2;
3590         nc = layout & 255;
3591         fc = (layout >> 8) & 255;
3592         fo = layout & (1<<16);
3593         geo->raid_disks = disks;
3594         geo->near_copies = nc;
3595         geo->far_copies = fc;
3596         geo->far_offset = fo;
3597         switch (layout >> 17) {
3598         case 0: /* original layout.  simple but not always optimal */
3599                 geo->far_set_size = disks;
3600                 break;
3601         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3602                  * actually using this, but leave code here just in case.*/
3603                 geo->far_set_size = disks/fc;
3604                 WARN(geo->far_set_size < fc,
3605                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3606                 break;
3607         case 2: /* "improved" layout fixed to match documentation */
3608                 geo->far_set_size = fc * nc;
3609                 break;
3610         default: /* Not a valid layout */
3611                 return -1;
3612         }
3613         geo->chunk_mask = chunk - 1;
3614         geo->chunk_shift = ffz(~chunk);
3615         return nc*fc;
3616 }
3617
3618 static struct r10conf *setup_conf(struct mddev *mddev)
3619 {
3620         struct r10conf *conf = NULL;
3621         int err = -EINVAL;
3622         struct geom geo;
3623         int copies;
3624
3625         copies = setup_geo(&geo, mddev, geo_new);
3626
3627         if (copies == -2) {
3628                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3629                         mdname(mddev), PAGE_SIZE);
3630                 goto out;
3631         }
3632
3633         if (copies < 2 || copies > mddev->raid_disks) {
3634                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3635                         mdname(mddev), mddev->new_layout);
3636                 goto out;
3637         }
3638
3639         err = -ENOMEM;
3640         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3641         if (!conf)
3642                 goto out;
3643
3644         /* FIXME calc properly */
3645         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3646                                 sizeof(struct raid10_info),
3647                                 GFP_KERNEL);
3648         if (!conf->mirrors)
3649                 goto out;
3650
3651         conf->tmppage = alloc_page(GFP_KERNEL);
3652         if (!conf->tmppage)
3653                 goto out;
3654
3655         conf->geo = geo;
3656         conf->copies = copies;
3657         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3658                            rbio_pool_free, conf);
3659         if (err)
3660                 goto out;
3661
3662         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3663         if (err)
3664                 goto out;
3665
3666         calc_sectors(conf, mddev->dev_sectors);
3667         if (mddev->reshape_position == MaxSector) {
3668                 conf->prev = conf->geo;
3669                 conf->reshape_progress = MaxSector;
3670         } else {
3671                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3672                         err = -EINVAL;
3673                         goto out;
3674                 }
3675                 conf->reshape_progress = mddev->reshape_position;
3676                 if (conf->prev.far_offset)
3677                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3678                 else
3679                         /* far_copies must be 1 */
3680                         conf->prev.stride = conf->dev_sectors;
3681         }
3682         conf->reshape_safe = conf->reshape_progress;
3683         spin_lock_init(&conf->device_lock);
3684         INIT_LIST_HEAD(&conf->retry_list);
3685         INIT_LIST_HEAD(&conf->bio_end_io_list);
3686
3687         spin_lock_init(&conf->resync_lock);
3688         init_waitqueue_head(&conf->wait_barrier);
3689         atomic_set(&conf->nr_pending, 0);
3690
3691         err = -ENOMEM;
3692         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3693         if (!conf->thread)
3694                 goto out;
3695
3696         conf->mddev = mddev;
3697         return conf;
3698
3699  out:
3700         if (conf) {
3701                 mempool_exit(&conf->r10bio_pool);
3702                 kfree(conf->mirrors);
3703                 safe_put_page(conf->tmppage);
3704                 bioset_exit(&conf->bio_split);
3705                 kfree(conf);
3706         }
3707         return ERR_PTR(err);
3708 }
3709
3710 static void raid10_set_io_opt(struct r10conf *conf)
3711 {
3712         int raid_disks = conf->geo.raid_disks;
3713
3714         if (!(conf->geo.raid_disks % conf->geo.near_copies))
3715                 raid_disks /= conf->geo.near_copies;
3716         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3717                          raid_disks);
3718 }
3719
3720 static int raid10_run(struct mddev *mddev)
3721 {
3722         struct r10conf *conf;
3723         int i, disk_idx;
3724         struct raid10_info *disk;
3725         struct md_rdev *rdev;
3726         sector_t size;
3727         sector_t min_offset_diff = 0;
3728         int first = 1;
3729         bool discard_supported = false;
3730
3731         if (mddev_init_writes_pending(mddev) < 0)
3732                 return -ENOMEM;
3733
3734         if (mddev->private == NULL) {
3735                 conf = setup_conf(mddev);
3736                 if (IS_ERR(conf))
3737                         return PTR_ERR(conf);
3738                 mddev->private = conf;
3739         }
3740         conf = mddev->private;
3741         if (!conf)
3742                 goto out;
3743
3744         if (mddev_is_clustered(conf->mddev)) {
3745                 int fc, fo;
3746
3747                 fc = (mddev->layout >> 8) & 255;
3748                 fo = mddev->layout & (1<<16);
3749                 if (fc > 1 || fo > 0) {
3750                         pr_err("only near layout is supported by clustered"
3751                                 " raid10\n");
3752                         goto out_free_conf;
3753                 }
3754         }
3755
3756         mddev->thread = conf->thread;
3757         conf->thread = NULL;
3758
3759         if (mddev->queue) {
3760                 blk_queue_max_discard_sectors(mddev->queue,
3761                                               mddev->chunk_sectors);
3762                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3763                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3764                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3765                 raid10_set_io_opt(conf);
3766         }
3767
3768         rdev_for_each(rdev, mddev) {
3769                 long long diff;
3770
3771                 disk_idx = rdev->raid_disk;
3772                 if (disk_idx < 0)
3773                         continue;
3774                 if (disk_idx >= conf->geo.raid_disks &&
3775                     disk_idx >= conf->prev.raid_disks)
3776                         continue;
3777                 disk = conf->mirrors + disk_idx;
3778
3779                 if (test_bit(Replacement, &rdev->flags)) {
3780                         if (disk->replacement)
3781                                 goto out_free_conf;
3782                         disk->replacement = rdev;
3783                 } else {
3784                         if (disk->rdev)
3785                                 goto out_free_conf;
3786                         disk->rdev = rdev;
3787                 }
3788                 diff = (rdev->new_data_offset - rdev->data_offset);
3789                 if (!mddev->reshape_backwards)
3790                         diff = -diff;
3791                 if (diff < 0)
3792                         diff = 0;
3793                 if (first || diff < min_offset_diff)
3794                         min_offset_diff = diff;
3795
3796                 if (mddev->gendisk)
3797                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3798                                           rdev->data_offset << 9);
3799
3800                 disk->head_position = 0;
3801
3802                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3803                         discard_supported = true;
3804                 first = 0;
3805         }
3806
3807         if (mddev->queue) {
3808                 if (discard_supported)
3809                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3810                                                 mddev->queue);
3811                 else
3812                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3813                                                   mddev->queue);
3814         }
3815         /* need to check that every block has at least one working mirror */
3816         if (!enough(conf, -1)) {
3817                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3818                        mdname(mddev));
3819                 goto out_free_conf;
3820         }
3821
3822         if (conf->reshape_progress != MaxSector) {
3823                 /* must ensure that shape change is supported */
3824                 if (conf->geo.far_copies != 1 &&
3825                     conf->geo.far_offset == 0)
3826                         goto out_free_conf;
3827                 if (conf->prev.far_copies != 1 &&
3828                     conf->prev.far_offset == 0)
3829                         goto out_free_conf;
3830         }
3831
3832         mddev->degraded = 0;
3833         for (i = 0;
3834              i < conf->geo.raid_disks
3835                      || i < conf->prev.raid_disks;
3836              i++) {
3837
3838                 disk = conf->mirrors + i;
3839
3840                 if (!disk->rdev && disk->replacement) {
3841                         /* The replacement is all we have - use it */
3842                         disk->rdev = disk->replacement;
3843                         disk->replacement = NULL;
3844                         clear_bit(Replacement, &disk->rdev->flags);
3845                 }
3846
3847                 if (!disk->rdev ||
3848                     !test_bit(In_sync, &disk->rdev->flags)) {
3849                         disk->head_position = 0;
3850                         mddev->degraded++;
3851                         if (disk->rdev &&
3852                             disk->rdev->saved_raid_disk < 0)
3853                                 conf->fullsync = 1;
3854                 }
3855
3856                 if (disk->replacement &&
3857                     !test_bit(In_sync, &disk->replacement->flags) &&
3858                     disk->replacement->saved_raid_disk < 0) {
3859                         conf->fullsync = 1;
3860                 }
3861
3862                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3863         }
3864
3865         if (mddev->recovery_cp != MaxSector)
3866                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3867                           mdname(mddev));
3868         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3869                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3870                 conf->geo.raid_disks);
3871         /*
3872          * Ok, everything is just fine now
3873          */
3874         mddev->dev_sectors = conf->dev_sectors;
3875         size = raid10_size(mddev, 0, 0);
3876         md_set_array_sectors(mddev, size);
3877         mddev->resync_max_sectors = size;
3878         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3879
3880         if (md_integrity_register(mddev))
3881                 goto out_free_conf;
3882
3883         if (conf->reshape_progress != MaxSector) {
3884                 unsigned long before_length, after_length;
3885
3886                 before_length = ((1 << conf->prev.chunk_shift) *
3887                                  conf->prev.far_copies);
3888                 after_length = ((1 << conf->geo.chunk_shift) *
3889                                 conf->geo.far_copies);
3890
3891                 if (max(before_length, after_length) > min_offset_diff) {
3892                         /* This cannot work */
3893                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3894                         goto out_free_conf;
3895                 }
3896                 conf->offset_diff = min_offset_diff;
3897
3898                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3899                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3900                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3901                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3902                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3903                                                         "reshape");
3904                 if (!mddev->sync_thread)
3905                         goto out_free_conf;
3906         }
3907
3908         return 0;
3909
3910 out_free_conf:
3911         md_unregister_thread(&mddev->thread);
3912         mempool_exit(&conf->r10bio_pool);
3913         safe_put_page(conf->tmppage);
3914         kfree(conf->mirrors);
3915         kfree(conf);
3916         mddev->private = NULL;
3917 out:
3918         return -EIO;
3919 }
3920
3921 static void raid10_free(struct mddev *mddev, void *priv)
3922 {
3923         struct r10conf *conf = priv;
3924
3925         mempool_exit(&conf->r10bio_pool);
3926         safe_put_page(conf->tmppage);
3927         kfree(conf->mirrors);
3928         kfree(conf->mirrors_old);
3929         kfree(conf->mirrors_new);
3930         bioset_exit(&conf->bio_split);
3931         kfree(conf);
3932 }
3933
3934 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3935 {
3936         struct r10conf *conf = mddev->private;
3937
3938         if (quiesce)
3939                 raise_barrier(conf, 0);
3940         else
3941                 lower_barrier(conf);
3942 }
3943
3944 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3945 {
3946         /* Resize of 'far' arrays is not supported.
3947          * For 'near' and 'offset' arrays we can set the
3948          * number of sectors used to be an appropriate multiple
3949          * of the chunk size.
3950          * For 'offset', this is far_copies*chunksize.
3951          * For 'near' the multiplier is the LCM of
3952          * near_copies and raid_disks.
3953          * So if far_copies > 1 && !far_offset, fail.
3954          * Else find LCM(raid_disks, near_copy)*far_copies and
3955          * multiply by chunk_size.  Then round to this number.
3956          * This is mostly done by raid10_size()
3957          */
3958         struct r10conf *conf = mddev->private;
3959         sector_t oldsize, size;
3960
3961         if (mddev->reshape_position != MaxSector)
3962                 return -EBUSY;
3963
3964         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3965                 return -EINVAL;
3966
3967         oldsize = raid10_size(mddev, 0, 0);
3968         size = raid10_size(mddev, sectors, 0);
3969         if (mddev->external_size &&
3970             mddev->array_sectors > size)
3971                 return -EINVAL;
3972         if (mddev->bitmap) {
3973                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3974                 if (ret)
3975                         return ret;
3976         }
3977         md_set_array_sectors(mddev, size);
3978         if (sectors > mddev->dev_sectors &&
3979             mddev->recovery_cp > oldsize) {
3980                 mddev->recovery_cp = oldsize;
3981                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3982         }
3983         calc_sectors(conf, sectors);
3984         mddev->dev_sectors = conf->dev_sectors;
3985         mddev->resync_max_sectors = size;
3986         return 0;
3987 }
3988
3989 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3990 {
3991         struct md_rdev *rdev;
3992         struct r10conf *conf;
3993
3994         if (mddev->degraded > 0) {
3995                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3996                         mdname(mddev));
3997                 return ERR_PTR(-EINVAL);
3998         }
3999         sector_div(size, devs);
4000
4001         /* Set new parameters */
4002         mddev->new_level = 10;
4003         /* new layout: far_copies = 1, near_copies = 2 */
4004         mddev->new_layout = (1<<8) + 2;
4005         mddev->new_chunk_sectors = mddev->chunk_sectors;
4006         mddev->delta_disks = mddev->raid_disks;
4007         mddev->raid_disks *= 2;
4008         /* make sure it will be not marked as dirty */
4009         mddev->recovery_cp = MaxSector;
4010         mddev->dev_sectors = size;
4011
4012         conf = setup_conf(mddev);
4013         if (!IS_ERR(conf)) {
4014                 rdev_for_each(rdev, mddev)
4015                         if (rdev->raid_disk >= 0) {
4016                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4017                                 rdev->sectors = size;
4018                         }
4019                 conf->barrier = 1;
4020         }
4021
4022         return conf;
4023 }
4024
4025 static void *raid10_takeover(struct mddev *mddev)
4026 {
4027         struct r0conf *raid0_conf;
4028
4029         /* raid10 can take over:
4030          *  raid0 - providing it has only two drives
4031          */
4032         if (mddev->level == 0) {
4033                 /* for raid0 takeover only one zone is supported */
4034                 raid0_conf = mddev->private;
4035                 if (raid0_conf->nr_strip_zones > 1) {
4036                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4037                                 mdname(mddev));
4038                         return ERR_PTR(-EINVAL);
4039                 }
4040                 return raid10_takeover_raid0(mddev,
4041                         raid0_conf->strip_zone->zone_end,
4042                         raid0_conf->strip_zone->nb_dev);
4043         }
4044         return ERR_PTR(-EINVAL);
4045 }
4046
4047 static int raid10_check_reshape(struct mddev *mddev)
4048 {
4049         /* Called when there is a request to change
4050          * - layout (to ->new_layout)
4051          * - chunk size (to ->new_chunk_sectors)
4052          * - raid_disks (by delta_disks)
4053          * or when trying to restart a reshape that was ongoing.
4054          *
4055          * We need to validate the request and possibly allocate
4056          * space if that might be an issue later.
4057          *
4058          * Currently we reject any reshape of a 'far' mode array,
4059          * allow chunk size to change if new is generally acceptable,
4060          * allow raid_disks to increase, and allow
4061          * a switch between 'near' mode and 'offset' mode.
4062          */
4063         struct r10conf *conf = mddev->private;
4064         struct geom geo;
4065
4066         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4067                 return -EINVAL;
4068
4069         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4070                 /* mustn't change number of copies */
4071                 return -EINVAL;
4072         if (geo.far_copies > 1 && !geo.far_offset)
4073                 /* Cannot switch to 'far' mode */
4074                 return -EINVAL;
4075
4076         if (mddev->array_sectors & geo.chunk_mask)
4077                         /* not factor of array size */
4078                         return -EINVAL;
4079
4080         if (!enough(conf, -1))
4081                 return -EINVAL;
4082
4083         kfree(conf->mirrors_new);
4084         conf->mirrors_new = NULL;
4085         if (mddev->delta_disks > 0) {
4086                 /* allocate new 'mirrors' list */
4087                 conf->mirrors_new =
4088                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4089                                 sizeof(struct raid10_info),
4090                                 GFP_KERNEL);
4091                 if (!conf->mirrors_new)
4092                         return -ENOMEM;
4093         }
4094         return 0;
4095 }
4096
4097 /*
4098  * Need to check if array has failed when deciding whether to:
4099  *  - start an array
4100  *  - remove non-faulty devices
4101  *  - add a spare
4102  *  - allow a reshape
4103  * This determination is simple when no reshape is happening.
4104  * However if there is a reshape, we need to carefully check
4105  * both the before and after sections.
4106  * This is because some failed devices may only affect one
4107  * of the two sections, and some non-in_sync devices may
4108  * be insync in the section most affected by failed devices.
4109  */
4110 static int calc_degraded(struct r10conf *conf)
4111 {
4112         int degraded, degraded2;
4113         int i;
4114
4115         rcu_read_lock();
4116         degraded = 0;
4117         /* 'prev' section first */
4118         for (i = 0; i < conf->prev.raid_disks; i++) {
4119                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4120                 if (!rdev || test_bit(Faulty, &rdev->flags))
4121                         degraded++;
4122                 else if (!test_bit(In_sync, &rdev->flags))
4123                         /* When we can reduce the number of devices in
4124                          * an array, this might not contribute to
4125                          * 'degraded'.  It does now.
4126                          */
4127                         degraded++;
4128         }
4129         rcu_read_unlock();
4130         if (conf->geo.raid_disks == conf->prev.raid_disks)
4131                 return degraded;
4132         rcu_read_lock();
4133         degraded2 = 0;
4134         for (i = 0; i < conf->geo.raid_disks; i++) {
4135                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4136                 if (!rdev || test_bit(Faulty, &rdev->flags))
4137                         degraded2++;
4138                 else if (!test_bit(In_sync, &rdev->flags)) {
4139                         /* If reshape is increasing the number of devices,
4140                          * this section has already been recovered, so
4141                          * it doesn't contribute to degraded.
4142                          * else it does.
4143                          */
4144                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4145                                 degraded2++;
4146                 }
4147         }
4148         rcu_read_unlock();
4149         if (degraded2 > degraded)
4150                 return degraded2;
4151         return degraded;
4152 }
4153
4154 static int raid10_start_reshape(struct mddev *mddev)
4155 {
4156         /* A 'reshape' has been requested. This commits
4157          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4158          * This also checks if there are enough spares and adds them
4159          * to the array.
4160          * We currently require enough spares to make the final
4161          * array non-degraded.  We also require that the difference
4162          * between old and new data_offset - on each device - is
4163          * enough that we never risk over-writing.
4164          */
4165
4166         unsigned long before_length, after_length;
4167         sector_t min_offset_diff = 0;
4168         int first = 1;
4169         struct geom new;
4170         struct r10conf *conf = mddev->private;
4171         struct md_rdev *rdev;
4172         int spares = 0;
4173         int ret;
4174
4175         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4176                 return -EBUSY;
4177
4178         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4179                 return -EINVAL;
4180
4181         before_length = ((1 << conf->prev.chunk_shift) *
4182                          conf->prev.far_copies);
4183         after_length = ((1 << conf->geo.chunk_shift) *
4184                         conf->geo.far_copies);
4185
4186         rdev_for_each(rdev, mddev) {
4187                 if (!test_bit(In_sync, &rdev->flags)
4188                     && !test_bit(Faulty, &rdev->flags))
4189                         spares++;
4190                 if (rdev->raid_disk >= 0) {
4191                         long long diff = (rdev->new_data_offset
4192                                           - rdev->data_offset);
4193                         if (!mddev->reshape_backwards)
4194                                 diff = -diff;
4195                         if (diff < 0)
4196                                 diff = 0;
4197                         if (first || diff < min_offset_diff)
4198                                 min_offset_diff = diff;
4199                         first = 0;
4200                 }
4201         }
4202
4203         if (max(before_length, after_length) > min_offset_diff)
4204                 return -EINVAL;
4205
4206         if (spares < mddev->delta_disks)
4207                 return -EINVAL;
4208
4209         conf->offset_diff = min_offset_diff;
4210         spin_lock_irq(&conf->device_lock);
4211         if (conf->mirrors_new) {
4212                 memcpy(conf->mirrors_new, conf->mirrors,
4213                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4214                 smp_mb();
4215                 kfree(conf->mirrors_old);
4216                 conf->mirrors_old = conf->mirrors;
4217                 conf->mirrors = conf->mirrors_new;
4218                 conf->mirrors_new = NULL;
4219         }
4220         setup_geo(&conf->geo, mddev, geo_start);
4221         smp_mb();
4222         if (mddev->reshape_backwards) {
4223                 sector_t size = raid10_size(mddev, 0, 0);
4224                 if (size < mddev->array_sectors) {
4225                         spin_unlock_irq(&conf->device_lock);
4226                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4227                                 mdname(mddev));
4228                         return -EINVAL;
4229                 }
4230                 mddev->resync_max_sectors = size;
4231                 conf->reshape_progress = size;
4232         } else
4233                 conf->reshape_progress = 0;
4234         conf->reshape_safe = conf->reshape_progress;
4235         spin_unlock_irq(&conf->device_lock);
4236
4237         if (mddev->delta_disks && mddev->bitmap) {
4238                 struct mdp_superblock_1 *sb = NULL;
4239                 sector_t oldsize, newsize;
4240
4241                 oldsize = raid10_size(mddev, 0, 0);
4242                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4243
4244                 if (!mddev_is_clustered(mddev)) {
4245                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4246                         if (ret)
4247                                 goto abort;
4248                         else
4249                                 goto out;
4250                 }
4251
4252                 rdev_for_each(rdev, mddev) {
4253                         if (rdev->raid_disk > -1 &&
4254                             !test_bit(Faulty, &rdev->flags))
4255                                 sb = page_address(rdev->sb_page);
4256                 }
4257
4258                 /*
4259                  * some node is already performing reshape, and no need to
4260                  * call md_bitmap_resize again since it should be called when
4261                  * receiving BITMAP_RESIZE msg
4262                  */
4263                 if ((sb && (le32_to_cpu(sb->feature_map) &
4264                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4265                         goto out;
4266
4267                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268                 if (ret)
4269                         goto abort;
4270
4271                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4272                 if (ret) {
4273                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4274                         goto abort;
4275                 }
4276         }
4277 out:
4278         if (mddev->delta_disks > 0) {
4279                 rdev_for_each(rdev, mddev)
4280                         if (rdev->raid_disk < 0 &&
4281                             !test_bit(Faulty, &rdev->flags)) {
4282                                 if (raid10_add_disk(mddev, rdev) == 0) {
4283                                         if (rdev->raid_disk >=
4284                                             conf->prev.raid_disks)
4285                                                 set_bit(In_sync, &rdev->flags);
4286                                         else
4287                                                 rdev->recovery_offset = 0;
4288
4289                                         /* Failure here is OK */
4290                                         sysfs_link_rdev(mddev, rdev);
4291                                 }
4292                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4293                                    && !test_bit(Faulty, &rdev->flags)) {
4294                                 /* This is a spare that was manually added */
4295                                 set_bit(In_sync, &rdev->flags);
4296                         }
4297         }
4298         /* When a reshape changes the number of devices,
4299          * ->degraded is measured against the larger of the
4300          * pre and  post numbers.
4301          */
4302         spin_lock_irq(&conf->device_lock);
4303         mddev->degraded = calc_degraded(conf);
4304         spin_unlock_irq(&conf->device_lock);
4305         mddev->raid_disks = conf->geo.raid_disks;
4306         mddev->reshape_position = conf->reshape_progress;
4307         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4308
4309         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4310         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4311         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4312         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4313         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4314
4315         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4316                                                 "reshape");
4317         if (!mddev->sync_thread) {
4318                 ret = -EAGAIN;
4319                 goto abort;
4320         }
4321         conf->reshape_checkpoint = jiffies;
4322         md_wakeup_thread(mddev->sync_thread);
4323         md_new_event(mddev);
4324         return 0;
4325
4326 abort:
4327         mddev->recovery = 0;
4328         spin_lock_irq(&conf->device_lock);
4329         conf->geo = conf->prev;
4330         mddev->raid_disks = conf->geo.raid_disks;
4331         rdev_for_each(rdev, mddev)
4332                 rdev->new_data_offset = rdev->data_offset;
4333         smp_wmb();
4334         conf->reshape_progress = MaxSector;
4335         conf->reshape_safe = MaxSector;
4336         mddev->reshape_position = MaxSector;
4337         spin_unlock_irq(&conf->device_lock);
4338         return ret;
4339 }
4340
4341 /* Calculate the last device-address that could contain
4342  * any block from the chunk that includes the array-address 's'
4343  * and report the next address.
4344  * i.e. the address returned will be chunk-aligned and after
4345  * any data that is in the chunk containing 's'.
4346  */
4347 static sector_t last_dev_address(sector_t s, struct geom *geo)
4348 {
4349         s = (s | geo->chunk_mask) + 1;
4350         s >>= geo->chunk_shift;
4351         s *= geo->near_copies;
4352         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4353         s *= geo->far_copies;
4354         s <<= geo->chunk_shift;
4355         return s;
4356 }
4357
4358 /* Calculate the first device-address that could contain
4359  * any block from the chunk that includes the array-address 's'.
4360  * This too will be the start of a chunk
4361  */
4362 static sector_t first_dev_address(sector_t s, struct geom *geo)
4363 {
4364         s >>= geo->chunk_shift;
4365         s *= geo->near_copies;
4366         sector_div(s, geo->raid_disks);
4367         s *= geo->far_copies;
4368         s <<= geo->chunk_shift;
4369         return s;
4370 }
4371
4372 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4373                                 int *skipped)
4374 {
4375         /* We simply copy at most one chunk (smallest of old and new)
4376          * at a time, possibly less if that exceeds RESYNC_PAGES,
4377          * or we hit a bad block or something.
4378          * This might mean we pause for normal IO in the middle of
4379          * a chunk, but that is not a problem as mddev->reshape_position
4380          * can record any location.
4381          *
4382          * If we will want to write to a location that isn't
4383          * yet recorded as 'safe' (i.e. in metadata on disk) then
4384          * we need to flush all reshape requests and update the metadata.
4385          *
4386          * When reshaping forwards (e.g. to more devices), we interpret
4387          * 'safe' as the earliest block which might not have been copied
4388          * down yet.  We divide this by previous stripe size and multiply
4389          * by previous stripe length to get lowest device offset that we
4390          * cannot write to yet.
4391          * We interpret 'sector_nr' as an address that we want to write to.
4392          * From this we use last_device_address() to find where we might
4393          * write to, and first_device_address on the  'safe' position.
4394          * If this 'next' write position is after the 'safe' position,
4395          * we must update the metadata to increase the 'safe' position.
4396          *
4397          * When reshaping backwards, we round in the opposite direction
4398          * and perform the reverse test:  next write position must not be
4399          * less than current safe position.
4400          *
4401          * In all this the minimum difference in data offsets
4402          * (conf->offset_diff - always positive) allows a bit of slack,
4403          * so next can be after 'safe', but not by more than offset_diff
4404          *
4405          * We need to prepare all the bios here before we start any IO
4406          * to ensure the size we choose is acceptable to all devices.
4407          * The means one for each copy for write-out and an extra one for
4408          * read-in.
4409          * We store the read-in bio in ->master_bio and the others in
4410          * ->devs[x].bio and ->devs[x].repl_bio.
4411          */
4412         struct r10conf *conf = mddev->private;
4413         struct r10bio *r10_bio;
4414         sector_t next, safe, last;
4415         int max_sectors;
4416         int nr_sectors;
4417         int s;
4418         struct md_rdev *rdev;
4419         int need_flush = 0;
4420         struct bio *blist;
4421         struct bio *bio, *read_bio;
4422         int sectors_done = 0;
4423         struct page **pages;
4424
4425         if (sector_nr == 0) {
4426                 /* If restarting in the middle, skip the initial sectors */
4427                 if (mddev->reshape_backwards &&
4428                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4429                         sector_nr = (raid10_size(mddev, 0, 0)
4430                                      - conf->reshape_progress);
4431                 } else if (!mddev->reshape_backwards &&
4432                            conf->reshape_progress > 0)
4433                         sector_nr = conf->reshape_progress;
4434                 if (sector_nr) {
4435                         mddev->curr_resync_completed = sector_nr;
4436                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4437                         *skipped = 1;
4438                         return sector_nr;
4439                 }
4440         }
4441
4442         /* We don't use sector_nr to track where we are up to
4443          * as that doesn't work well for ->reshape_backwards.
4444          * So just use ->reshape_progress.
4445          */
4446         if (mddev->reshape_backwards) {
4447                 /* 'next' is the earliest device address that we might
4448                  * write to for this chunk in the new layout
4449                  */
4450                 next = first_dev_address(conf->reshape_progress - 1,
4451                                          &conf->geo);
4452
4453                 /* 'safe' is the last device address that we might read from
4454                  * in the old layout after a restart
4455                  */
4456                 safe = last_dev_address(conf->reshape_safe - 1,
4457                                         &conf->prev);
4458
4459                 if (next + conf->offset_diff < safe)
4460                         need_flush = 1;
4461
4462                 last = conf->reshape_progress - 1;
4463                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4464                                                & conf->prev.chunk_mask);
4465                 if (sector_nr + RESYNC_SECTORS < last)
4466                         sector_nr = last + 1 - RESYNC_SECTORS;
4467         } else {
4468                 /* 'next' is after the last device address that we
4469                  * might write to for this chunk in the new layout
4470                  */
4471                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4472
4473                 /* 'safe' is the earliest device address that we might
4474                  * read from in the old layout after a restart
4475                  */
4476                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4477
4478                 /* Need to update metadata if 'next' might be beyond 'safe'
4479                  * as that would possibly corrupt data
4480                  */
4481                 if (next > safe + conf->offset_diff)
4482                         need_flush = 1;
4483
4484                 sector_nr = conf->reshape_progress;
4485                 last  = sector_nr | (conf->geo.chunk_mask
4486                                      & conf->prev.chunk_mask);
4487
4488                 if (sector_nr + RESYNC_SECTORS <= last)
4489                         last = sector_nr + RESYNC_SECTORS - 1;
4490         }
4491
4492         if (need_flush ||
4493             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4494                 /* Need to update reshape_position in metadata */
4495                 wait_barrier(conf);
4496                 mddev->reshape_position = conf->reshape_progress;
4497                 if (mddev->reshape_backwards)
4498                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4499                                 - conf->reshape_progress;
4500                 else
4501                         mddev->curr_resync_completed = conf->reshape_progress;
4502                 conf->reshape_checkpoint = jiffies;
4503                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4504                 md_wakeup_thread(mddev->thread);
4505                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4506                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4507                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4508                         allow_barrier(conf);
4509                         return sectors_done;
4510                 }
4511                 conf->reshape_safe = mddev->reshape_position;
4512                 allow_barrier(conf);
4513         }
4514
4515         raise_barrier(conf, 0);
4516 read_more:
4517         /* Now schedule reads for blocks from sector_nr to last */
4518         r10_bio = raid10_alloc_init_r10buf(conf);
4519         r10_bio->state = 0;
4520         raise_barrier(conf, 1);
4521         atomic_set(&r10_bio->remaining, 0);
4522         r10_bio->mddev = mddev;
4523         r10_bio->sector = sector_nr;
4524         set_bit(R10BIO_IsReshape, &r10_bio->state);
4525         r10_bio->sectors = last - sector_nr + 1;
4526         rdev = read_balance(conf, r10_bio, &max_sectors);
4527         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4528
4529         if (!rdev) {
4530                 /* Cannot read from here, so need to record bad blocks
4531                  * on all the target devices.
4532                  */
4533                 // FIXME
4534                 mempool_free(r10_bio, &conf->r10buf_pool);
4535                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4536                 return sectors_done;
4537         }
4538
4539         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4540
4541         bio_set_dev(read_bio, rdev->bdev);
4542         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4543                                + rdev->data_offset);
4544         read_bio->bi_private = r10_bio;
4545         read_bio->bi_end_io = end_reshape_read;
4546         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4547         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4548         read_bio->bi_status = 0;
4549         read_bio->bi_vcnt = 0;
4550         read_bio->bi_iter.bi_size = 0;
4551         r10_bio->master_bio = read_bio;
4552         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4553
4554         /*
4555          * Broadcast RESYNC message to other nodes, so all nodes would not
4556          * write to the region to avoid conflict.
4557         */
4558         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4559                 struct mdp_superblock_1 *sb = NULL;
4560                 int sb_reshape_pos = 0;
4561
4562                 conf->cluster_sync_low = sector_nr;
4563                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4564                 sb = page_address(rdev->sb_page);
4565                 if (sb) {
4566                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4567                         /*
4568                          * Set cluster_sync_low again if next address for array
4569                          * reshape is less than cluster_sync_low. Since we can't
4570                          * update cluster_sync_low until it has finished reshape.
4571                          */
4572                         if (sb_reshape_pos < conf->cluster_sync_low)
4573                                 conf->cluster_sync_low = sb_reshape_pos;
4574                 }
4575
4576                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4577                                                           conf->cluster_sync_high);
4578         }
4579
4580         /* Now find the locations in the new layout */
4581         __raid10_find_phys(&conf->geo, r10_bio);
4582
4583         blist = read_bio;
4584         read_bio->bi_next = NULL;
4585
4586         rcu_read_lock();
4587         for (s = 0; s < conf->copies*2; s++) {
4588                 struct bio *b;
4589                 int d = r10_bio->devs[s/2].devnum;
4590                 struct md_rdev *rdev2;
4591                 if (s&1) {
4592                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4593                         b = r10_bio->devs[s/2].repl_bio;
4594                 } else {
4595                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4596                         b = r10_bio->devs[s/2].bio;
4597                 }
4598                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4599                         continue;
4600
4601                 bio_set_dev(b, rdev2->bdev);
4602                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4603                         rdev2->new_data_offset;
4604                 b->bi_end_io = end_reshape_write;
4605                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4606                 b->bi_next = blist;
4607                 blist = b;
4608         }
4609
4610         /* Now add as many pages as possible to all of these bios. */
4611
4612         nr_sectors = 0;
4613         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4614         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4615                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4616                 int len = (max_sectors - s) << 9;
4617                 if (len > PAGE_SIZE)
4618                         len = PAGE_SIZE;
4619                 for (bio = blist; bio ; bio = bio->bi_next) {
4620                         /*
4621                          * won't fail because the vec table is big enough
4622                          * to hold all these pages
4623                          */
4624                         bio_add_page(bio, page, len, 0);
4625                 }
4626                 sector_nr += len >> 9;
4627                 nr_sectors += len >> 9;
4628         }
4629         rcu_read_unlock();
4630         r10_bio->sectors = nr_sectors;
4631
4632         /* Now submit the read */
4633         md_sync_acct_bio(read_bio, r10_bio->sectors);
4634         atomic_inc(&r10_bio->remaining);
4635         read_bio->bi_next = NULL;
4636         submit_bio_noacct(read_bio);
4637         sectors_done += nr_sectors;
4638         if (sector_nr <= last)
4639                 goto read_more;
4640
4641         lower_barrier(conf);
4642
4643         /* Now that we have done the whole section we can
4644          * update reshape_progress
4645          */
4646         if (mddev->reshape_backwards)
4647                 conf->reshape_progress -= sectors_done;
4648         else
4649                 conf->reshape_progress += sectors_done;
4650
4651         return sectors_done;
4652 }
4653
4654 static void end_reshape_request(struct r10bio *r10_bio);
4655 static int handle_reshape_read_error(struct mddev *mddev,
4656                                      struct r10bio *r10_bio);
4657 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4658 {
4659         /* Reshape read completed.  Hopefully we have a block
4660          * to write out.
4661          * If we got a read error then we do sync 1-page reads from
4662          * elsewhere until we find the data - or give up.
4663          */
4664         struct r10conf *conf = mddev->private;
4665         int s;
4666
4667         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4668                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4669                         /* Reshape has been aborted */
4670                         md_done_sync(mddev, r10_bio->sectors, 0);
4671                         return;
4672                 }
4673
4674         /* We definitely have the data in the pages, schedule the
4675          * writes.
4676          */
4677         atomic_set(&r10_bio->remaining, 1);
4678         for (s = 0; s < conf->copies*2; s++) {
4679                 struct bio *b;
4680                 int d = r10_bio->devs[s/2].devnum;
4681                 struct md_rdev *rdev;
4682                 rcu_read_lock();
4683                 if (s&1) {
4684                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4685                         b = r10_bio->devs[s/2].repl_bio;
4686                 } else {
4687                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4688                         b = r10_bio->devs[s/2].bio;
4689                 }
4690                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4691                         rcu_read_unlock();
4692                         continue;
4693                 }
4694                 atomic_inc(&rdev->nr_pending);
4695                 rcu_read_unlock();
4696                 md_sync_acct_bio(b, r10_bio->sectors);
4697                 atomic_inc(&r10_bio->remaining);
4698                 b->bi_next = NULL;
4699                 submit_bio_noacct(b);
4700         }
4701         end_reshape_request(r10_bio);
4702 }
4703
4704 static void end_reshape(struct r10conf *conf)
4705 {
4706         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4707                 return;
4708
4709         spin_lock_irq(&conf->device_lock);
4710         conf->prev = conf->geo;
4711         md_finish_reshape(conf->mddev);
4712         smp_wmb();
4713         conf->reshape_progress = MaxSector;
4714         conf->reshape_safe = MaxSector;
4715         spin_unlock_irq(&conf->device_lock);
4716
4717         if (conf->mddev->queue)
4718                 raid10_set_io_opt(conf);
4719         conf->fullsync = 0;
4720 }
4721
4722 static void raid10_update_reshape_pos(struct mddev *mddev)
4723 {
4724         struct r10conf *conf = mddev->private;
4725         sector_t lo, hi;
4726
4727         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4728         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4729             || mddev->reshape_position == MaxSector)
4730                 conf->reshape_progress = mddev->reshape_position;
4731         else
4732                 WARN_ON_ONCE(1);
4733 }
4734
4735 static int handle_reshape_read_error(struct mddev *mddev,
4736                                      struct r10bio *r10_bio)
4737 {
4738         /* Use sync reads to get the blocks from somewhere else */
4739         int sectors = r10_bio->sectors;
4740         struct r10conf *conf = mddev->private;
4741         struct r10bio *r10b;
4742         int slot = 0;
4743         int idx = 0;
4744         struct page **pages;
4745
4746         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4747         if (!r10b) {
4748                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4749                 return -ENOMEM;
4750         }
4751
4752         /* reshape IOs share pages from .devs[0].bio */
4753         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4754
4755         r10b->sector = r10_bio->sector;
4756         __raid10_find_phys(&conf->prev, r10b);
4757
4758         while (sectors) {
4759                 int s = sectors;
4760                 int success = 0;
4761                 int first_slot = slot;
4762
4763                 if (s > (PAGE_SIZE >> 9))
4764                         s = PAGE_SIZE >> 9;
4765
4766                 rcu_read_lock();
4767                 while (!success) {
4768                         int d = r10b->devs[slot].devnum;
4769                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4770                         sector_t addr;
4771                         if (rdev == NULL ||
4772                             test_bit(Faulty, &rdev->flags) ||
4773                             !test_bit(In_sync, &rdev->flags))
4774                                 goto failed;
4775
4776                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4777                         atomic_inc(&rdev->nr_pending);
4778                         rcu_read_unlock();
4779                         success = sync_page_io(rdev,
4780                                                addr,
4781                                                s << 9,
4782                                                pages[idx],
4783                                                REQ_OP_READ, 0, false);
4784                         rdev_dec_pending(rdev, mddev);
4785                         rcu_read_lock();
4786                         if (success)
4787                                 break;
4788                 failed:
4789                         slot++;
4790                         if (slot >= conf->copies)
4791                                 slot = 0;
4792                         if (slot == first_slot)
4793                                 break;
4794                 }
4795                 rcu_read_unlock();
4796                 if (!success) {
4797                         /* couldn't read this block, must give up */
4798                         set_bit(MD_RECOVERY_INTR,
4799                                 &mddev->recovery);
4800                         kfree(r10b);
4801                         return -EIO;
4802                 }
4803                 sectors -= s;
4804                 idx++;
4805         }
4806         kfree(r10b);
4807         return 0;
4808 }
4809
4810 static void end_reshape_write(struct bio *bio)
4811 {
4812         struct r10bio *r10_bio = get_resync_r10bio(bio);
4813         struct mddev *mddev = r10_bio->mddev;
4814         struct r10conf *conf = mddev->private;
4815         int d;
4816         int slot;
4817         int repl;
4818         struct md_rdev *rdev = NULL;
4819
4820         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4821         if (repl)
4822                 rdev = conf->mirrors[d].replacement;
4823         if (!rdev) {
4824                 smp_mb();
4825                 rdev = conf->mirrors[d].rdev;
4826         }
4827
4828         if (bio->bi_status) {
4829                 /* FIXME should record badblock */
4830                 md_error(mddev, rdev);
4831         }
4832
4833         rdev_dec_pending(rdev, mddev);
4834         end_reshape_request(r10_bio);
4835 }
4836
4837 static void end_reshape_request(struct r10bio *r10_bio)
4838 {
4839         if (!atomic_dec_and_test(&r10_bio->remaining))
4840                 return;
4841         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4842         bio_put(r10_bio->master_bio);
4843         put_buf(r10_bio);
4844 }
4845
4846 static void raid10_finish_reshape(struct mddev *mddev)
4847 {
4848         struct r10conf *conf = mddev->private;
4849
4850         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4851                 return;
4852
4853         if (mddev->delta_disks > 0) {
4854                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4855                         mddev->recovery_cp = mddev->resync_max_sectors;
4856                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4857                 }
4858                 mddev->resync_max_sectors = mddev->array_sectors;
4859         } else {
4860                 int d;
4861                 rcu_read_lock();
4862                 for (d = conf->geo.raid_disks ;
4863                      d < conf->geo.raid_disks - mddev->delta_disks;
4864                      d++) {
4865                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4866                         if (rdev)
4867                                 clear_bit(In_sync, &rdev->flags);
4868                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4869                         if (rdev)
4870                                 clear_bit(In_sync, &rdev->flags);
4871                 }
4872                 rcu_read_unlock();
4873         }
4874         mddev->layout = mddev->new_layout;
4875         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4876         mddev->reshape_position = MaxSector;
4877         mddev->delta_disks = 0;
4878         mddev->reshape_backwards = 0;
4879 }
4880
4881 static struct md_personality raid10_personality =
4882 {
4883         .name           = "raid10",
4884         .level          = 10,
4885         .owner          = THIS_MODULE,
4886         .make_request   = raid10_make_request,
4887         .run            = raid10_run,
4888         .free           = raid10_free,
4889         .status         = raid10_status,
4890         .error_handler  = raid10_error,
4891         .hot_add_disk   = raid10_add_disk,
4892         .hot_remove_disk= raid10_remove_disk,
4893         .spare_active   = raid10_spare_active,
4894         .sync_request   = raid10_sync_request,
4895         .quiesce        = raid10_quiesce,
4896         .size           = raid10_size,
4897         .resize         = raid10_resize,
4898         .takeover       = raid10_takeover,
4899         .check_reshape  = raid10_check_reshape,
4900         .start_reshape  = raid10_start_reshape,
4901         .finish_reshape = raid10_finish_reshape,
4902         .update_reshape_pos = raid10_update_reshape_pos,
4903 };
4904
4905 static int __init raid_init(void)
4906 {
4907         return register_md_personality(&raid10_personality);
4908 }
4909
4910 static void raid_exit(void)
4911 {
4912         unregister_md_personality(&raid10_personality);
4913 }
4914
4915 module_init(raid_init);
4916 module_exit(raid_exit);
4917 MODULE_LICENSE("GPL");
4918 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4919 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4920 MODULE_ALIAS("md-raid10");
4921 MODULE_ALIAS("md-level-10");
4922
4923 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);