GNU Linux-libre 4.9.331-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450         bool discard_error;
451
452         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (bio->bi_error && !discard_error) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 /*
494                  * Do not set R10BIO_Uptodate if the current device is
495                  * rebuilding or Faulty. This is because we cannot use
496                  * such device for properly reading the data back (we could
497                  * potentially use it, if the current write would have felt
498                  * before rdev->recovery_offset, but for simplicity we don't
499                  * check this here.
500                  */
501                 if (test_bit(In_sync, &rdev->flags) &&
502                     !test_bit(Faulty, &rdev->flags))
503                         set_bit(R10BIO_Uptodate, &r10_bio->state);
504
505                 /* Maybe we can clear some bad blocks. */
506                 if (is_badblock(rdev,
507                                 r10_bio->devs[slot].addr,
508                                 r10_bio->sectors,
509                                 &first_bad, &bad_sectors) && !discard_error) {
510                         bio_put(bio);
511                         if (repl)
512                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513                         else
514                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515                         dec_rdev = 0;
516                         set_bit(R10BIO_MadeGood, &r10_bio->state);
517                 }
518         }
519
520         /*
521          *
522          * Let's see if all mirrored write operations have finished
523          * already.
524          */
525         one_write_done(r10_bio);
526         if (dec_rdev)
527                 rdev_dec_pending(rdev, conf->mddev);
528 }
529
530 /*
531  * RAID10 layout manager
532  * As well as the chunksize and raid_disks count, there are two
533  * parameters: near_copies and far_copies.
534  * near_copies * far_copies must be <= raid_disks.
535  * Normally one of these will be 1.
536  * If both are 1, we get raid0.
537  * If near_copies == raid_disks, we get raid1.
538  *
539  * Chunks are laid out in raid0 style with near_copies copies of the
540  * first chunk, followed by near_copies copies of the next chunk and
541  * so on.
542  * If far_copies > 1, then after 1/far_copies of the array has been assigned
543  * as described above, we start again with a device offset of near_copies.
544  * So we effectively have another copy of the whole array further down all
545  * the drives, but with blocks on different drives.
546  * With this layout, and block is never stored twice on the one device.
547  *
548  * raid10_find_phys finds the sector offset of a given virtual sector
549  * on each device that it is on.
550  *
551  * raid10_find_virt does the reverse mapping, from a device and a
552  * sector offset to a virtual address
553  */
554
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557         int n,f;
558         sector_t sector;
559         sector_t chunk;
560         sector_t stripe;
561         int dev;
562         int slot = 0;
563         int last_far_set_start, last_far_set_size;
564
565         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566         last_far_set_start *= geo->far_set_size;
567
568         last_far_set_size = geo->far_set_size;
569         last_far_set_size += (geo->raid_disks % geo->far_set_size);
570
571         /* now calculate first sector/dev */
572         chunk = r10bio->sector >> geo->chunk_shift;
573         sector = r10bio->sector & geo->chunk_mask;
574
575         chunk *= geo->near_copies;
576         stripe = chunk;
577         dev = sector_div(stripe, geo->raid_disks);
578         if (geo->far_offset)
579                 stripe *= geo->far_copies;
580
581         sector += stripe << geo->chunk_shift;
582
583         /* and calculate all the others */
584         for (n = 0; n < geo->near_copies; n++) {
585                 int d = dev;
586                 int set;
587                 sector_t s = sector;
588                 r10bio->devs[slot].devnum = d;
589                 r10bio->devs[slot].addr = s;
590                 slot++;
591
592                 for (f = 1; f < geo->far_copies; f++) {
593                         set = d / geo->far_set_size;
594                         d += geo->near_copies;
595
596                         if ((geo->raid_disks % geo->far_set_size) &&
597                             (d > last_far_set_start)) {
598                                 d -= last_far_set_start;
599                                 d %= last_far_set_size;
600                                 d += last_far_set_start;
601                         } else {
602                                 d %= geo->far_set_size;
603                                 d += geo->far_set_size * set;
604                         }
605                         s += geo->stride;
606                         r10bio->devs[slot].devnum = d;
607                         r10bio->devs[slot].addr = s;
608                         slot++;
609                 }
610                 dev++;
611                 if (dev >= geo->raid_disks) {
612                         dev = 0;
613                         sector += (geo->chunk_mask + 1);
614                 }
615         }
616 }
617
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620         struct geom *geo = &conf->geo;
621
622         if (conf->reshape_progress != MaxSector &&
623             ((r10bio->sector >= conf->reshape_progress) !=
624              conf->mddev->reshape_backwards)) {
625                 set_bit(R10BIO_Previous, &r10bio->state);
626                 geo = &conf->prev;
627         } else
628                 clear_bit(R10BIO_Previous, &r10bio->state);
629
630         __raid10_find_phys(geo, r10bio);
631 }
632
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635         sector_t offset, chunk, vchunk;
636         /* Never use conf->prev as this is only called during resync
637          * or recovery, so reshape isn't happening
638          */
639         struct geom *geo = &conf->geo;
640         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641         int far_set_size = geo->far_set_size;
642         int last_far_set_start;
643
644         if (geo->raid_disks % geo->far_set_size) {
645                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646                 last_far_set_start *= geo->far_set_size;
647
648                 if (dev >= last_far_set_start) {
649                         far_set_size = geo->far_set_size;
650                         far_set_size += (geo->raid_disks % geo->far_set_size);
651                         far_set_start = last_far_set_start;
652                 }
653         }
654
655         offset = sector & geo->chunk_mask;
656         if (geo->far_offset) {
657                 int fc;
658                 chunk = sector >> geo->chunk_shift;
659                 fc = sector_div(chunk, geo->far_copies);
660                 dev -= fc * geo->near_copies;
661                 if (dev < far_set_start)
662                         dev += far_set_size;
663         } else {
664                 while (sector >= geo->stride) {
665                         sector -= geo->stride;
666                         if (dev < (geo->near_copies + far_set_start))
667                                 dev += far_set_size - geo->near_copies;
668                         else
669                                 dev -= geo->near_copies;
670                 }
671                 chunk = sector >> geo->chunk_shift;
672         }
673         vchunk = chunk * geo->raid_disks + dev;
674         sector_div(vchunk, geo->near_copies);
675         return (vchunk << geo->chunk_shift) + offset;
676 }
677
678 /*
679  * This routine returns the disk from which the requested read should
680  * be done. There is a per-array 'next expected sequential IO' sector
681  * number - if this matches on the next IO then we use the last disk.
682  * There is also a per-disk 'last know head position' sector that is
683  * maintained from IRQ contexts, both the normal and the resync IO
684  * completion handlers update this position correctly. If there is no
685  * perfect sequential match then we pick the disk whose head is closest.
686  *
687  * If there are 2 mirrors in the same 2 devices, performance degrades
688  * because position is mirror, not device based.
689  *
690  * The rdev for the device selected will have nr_pending incremented.
691  */
692
693 /*
694  * FIXME: possibly should rethink readbalancing and do it differently
695  * depending on near_copies / far_copies geometry.
696  */
697 static struct md_rdev *read_balance(struct r10conf *conf,
698                                     struct r10bio *r10_bio,
699                                     int *max_sectors)
700 {
701         const sector_t this_sector = r10_bio->sector;
702         int disk, slot;
703         int sectors = r10_bio->sectors;
704         int best_good_sectors;
705         sector_t new_distance, best_dist;
706         struct md_rdev *best_rdev, *rdev = NULL;
707         int do_balance;
708         int best_slot;
709         struct geom *geo = &conf->geo;
710
711         raid10_find_phys(conf, r10_bio);
712         rcu_read_lock();
713         sectors = r10_bio->sectors;
714         best_slot = -1;
715         best_rdev = NULL;
716         best_dist = MaxSector;
717         best_good_sectors = 0;
718         do_balance = 1;
719         /*
720          * Check if we can balance. We can balance on the whole
721          * device if no resync is going on (recovery is ok), or below
722          * the resync window. We take the first readable disk when
723          * above the resync window.
724          */
725         if (conf->mddev->recovery_cp < MaxSector
726             && (this_sector + sectors >= conf->next_resync))
727                 do_balance = 0;
728
729         for (slot = 0; slot < conf->copies ; slot++) {
730                 sector_t first_bad;
731                 int bad_sectors;
732                 sector_t dev_sector;
733
734                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
735                         continue;
736                 disk = r10_bio->devs[slot].devnum;
737                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
738                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
739                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
740                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
741                 if (rdev == NULL ||
742                     test_bit(Faulty, &rdev->flags))
743                         continue;
744                 if (!test_bit(In_sync, &rdev->flags) &&
745                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
746                         continue;
747
748                 dev_sector = r10_bio->devs[slot].addr;
749                 if (is_badblock(rdev, dev_sector, sectors,
750                                 &first_bad, &bad_sectors)) {
751                         if (best_dist < MaxSector)
752                                 /* Already have a better slot */
753                                 continue;
754                         if (first_bad <= dev_sector) {
755                                 /* Cannot read here.  If this is the
756                                  * 'primary' device, then we must not read
757                                  * beyond 'bad_sectors' from another device.
758                                  */
759                                 bad_sectors -= (dev_sector - first_bad);
760                                 if (!do_balance && sectors > bad_sectors)
761                                         sectors = bad_sectors;
762                                 if (best_good_sectors > sectors)
763                                         best_good_sectors = sectors;
764                         } else {
765                                 sector_t good_sectors =
766                                         first_bad - dev_sector;
767                                 if (good_sectors > best_good_sectors) {
768                                         best_good_sectors = good_sectors;
769                                         best_slot = slot;
770                                         best_rdev = rdev;
771                                 }
772                                 if (!do_balance)
773                                         /* Must read from here */
774                                         break;
775                         }
776                         continue;
777                 } else
778                         best_good_sectors = sectors;
779
780                 if (!do_balance)
781                         break;
782
783                 /* This optimisation is debatable, and completely destroys
784                  * sequential read speed for 'far copies' arrays.  So only
785                  * keep it for 'near' arrays, and review those later.
786                  */
787                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
788                         break;
789
790                 /* for far > 1 always use the lowest address */
791                 if (geo->far_copies > 1)
792                         new_distance = r10_bio->devs[slot].addr;
793                 else
794                         new_distance = abs(r10_bio->devs[slot].addr -
795                                            conf->mirrors[disk].head_position);
796                 if (new_distance < best_dist) {
797                         best_dist = new_distance;
798                         best_slot = slot;
799                         best_rdev = rdev;
800                 }
801         }
802         if (slot >= conf->copies) {
803                 slot = best_slot;
804                 rdev = best_rdev;
805         }
806
807         if (slot >= 0) {
808                 atomic_inc(&rdev->nr_pending);
809                 r10_bio->read_slot = slot;
810         } else
811                 rdev = NULL;
812         rcu_read_unlock();
813         *max_sectors = best_good_sectors;
814
815         return rdev;
816 }
817
818 static int raid10_congested(struct mddev *mddev, int bits)
819 {
820         struct r10conf *conf = mddev->private;
821         int i, ret = 0;
822
823         if ((bits & (1 << WB_async_congested)) &&
824             conf->pending_count >= max_queued_requests)
825                 return 1;
826
827         rcu_read_lock();
828         for (i = 0;
829              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
830                      && ret == 0;
831              i++) {
832                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
833                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
834                         struct request_queue *q = bdev_get_queue(rdev->bdev);
835
836                         ret |= bdi_congested(&q->backing_dev_info, bits);
837                 }
838         }
839         rcu_read_unlock();
840         return ret;
841 }
842
843 static void flush_pending_writes(struct r10conf *conf)
844 {
845         /* Any writes that have been queued but are awaiting
846          * bitmap updates get flushed here.
847          */
848         spin_lock_irq(&conf->device_lock);
849
850         if (conf->pending_bio_list.head) {
851                 struct bio *bio;
852                 bio = bio_list_get(&conf->pending_bio_list);
853                 conf->pending_count = 0;
854                 spin_unlock_irq(&conf->device_lock);
855                 /* flush any pending bitmap writes to disk
856                  * before proceeding w/ I/O */
857                 bitmap_unplug(conf->mddev->bitmap);
858                 wake_up(&conf->wait_barrier);
859
860                 while (bio) { /* submit pending writes */
861                         struct bio *next = bio->bi_next;
862                         bio->bi_next = NULL;
863                         if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
864                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
865                                 /* Just ignore it */
866                                 bio_endio(bio);
867                         else
868                                 generic_make_request(bio);
869                         bio = next;
870                 }
871         } else
872                 spin_unlock_irq(&conf->device_lock);
873 }
874
875 /* Barriers....
876  * Sometimes we need to suspend IO while we do something else,
877  * either some resync/recovery, or reconfigure the array.
878  * To do this we raise a 'barrier'.
879  * The 'barrier' is a counter that can be raised multiple times
880  * to count how many activities are happening which preclude
881  * normal IO.
882  * We can only raise the barrier if there is no pending IO.
883  * i.e. if nr_pending == 0.
884  * We choose only to raise the barrier if no-one is waiting for the
885  * barrier to go down.  This means that as soon as an IO request
886  * is ready, no other operations which require a barrier will start
887  * until the IO request has had a chance.
888  *
889  * So: regular IO calls 'wait_barrier'.  When that returns there
890  *    is no backgroup IO happening,  It must arrange to call
891  *    allow_barrier when it has finished its IO.
892  * backgroup IO calls must call raise_barrier.  Once that returns
893  *    there is no normal IO happeing.  It must arrange to call
894  *    lower_barrier when the particular background IO completes.
895  */
896
897 static void raise_barrier(struct r10conf *conf, int force)
898 {
899         BUG_ON(force && !conf->barrier);
900         spin_lock_irq(&conf->resync_lock);
901
902         /* Wait until no block IO is waiting (unless 'force') */
903         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
904                             conf->resync_lock);
905
906         /* block any new IO from starting */
907         conf->barrier++;
908
909         /* Now wait for all pending IO to complete */
910         wait_event_lock_irq(conf->wait_barrier,
911                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
912                             conf->resync_lock);
913
914         spin_unlock_irq(&conf->resync_lock);
915 }
916
917 static void lower_barrier(struct r10conf *conf)
918 {
919         unsigned long flags;
920         spin_lock_irqsave(&conf->resync_lock, flags);
921         conf->barrier--;
922         spin_unlock_irqrestore(&conf->resync_lock, flags);
923         wake_up(&conf->wait_barrier);
924 }
925
926 static void wait_barrier(struct r10conf *conf)
927 {
928         spin_lock_irq(&conf->resync_lock);
929         if (conf->barrier) {
930                 conf->nr_waiting++;
931                 /* Wait for the barrier to drop.
932                  * However if there are already pending
933                  * requests (preventing the barrier from
934                  * rising completely), and the
935                  * pre-process bio queue isn't empty,
936                  * then don't wait, as we need to empty
937                  * that queue to get the nr_pending
938                  * count down.
939                  */
940                 wait_event_lock_irq(conf->wait_barrier,
941                                     !conf->barrier ||
942                                     (atomic_read(&conf->nr_pending) &&
943                                      current->bio_list &&
944                                      (!bio_list_empty(&current->bio_list[0]) ||
945                                       !bio_list_empty(&current->bio_list[1]))),
946                                     conf->resync_lock);
947                 conf->nr_waiting--;
948                 if (!conf->nr_waiting)
949                         wake_up(&conf->wait_barrier);
950         }
951         atomic_inc(&conf->nr_pending);
952         spin_unlock_irq(&conf->resync_lock);
953 }
954
955 static void allow_barrier(struct r10conf *conf)
956 {
957         if ((atomic_dec_and_test(&conf->nr_pending)) ||
958                         (conf->array_freeze_pending))
959                 wake_up(&conf->wait_barrier);
960 }
961
962 static void freeze_array(struct r10conf *conf, int extra)
963 {
964         /* stop syncio and normal IO and wait for everything to
965          * go quiet.
966          * We increment barrier and nr_waiting, and then
967          * wait until nr_pending match nr_queued+extra
968          * This is called in the context of one normal IO request
969          * that has failed. Thus any sync request that might be pending
970          * will be blocked by nr_pending, and we need to wait for
971          * pending IO requests to complete or be queued for re-try.
972          * Thus the number queued (nr_queued) plus this request (extra)
973          * must match the number of pending IOs (nr_pending) before
974          * we continue.
975          */
976         spin_lock_irq(&conf->resync_lock);
977         conf->array_freeze_pending++;
978         conf->barrier++;
979         conf->nr_waiting++;
980         wait_event_lock_irq_cmd(conf->wait_barrier,
981                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
982                                 conf->resync_lock,
983                                 flush_pending_writes(conf));
984
985         conf->array_freeze_pending--;
986         spin_unlock_irq(&conf->resync_lock);
987 }
988
989 static void unfreeze_array(struct r10conf *conf)
990 {
991         /* reverse the effect of the freeze */
992         spin_lock_irq(&conf->resync_lock);
993         conf->barrier--;
994         conf->nr_waiting--;
995         wake_up(&conf->wait_barrier);
996         spin_unlock_irq(&conf->resync_lock);
997 }
998
999 static sector_t choose_data_offset(struct r10bio *r10_bio,
1000                                    struct md_rdev *rdev)
1001 {
1002         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1003             test_bit(R10BIO_Previous, &r10_bio->state))
1004                 return rdev->data_offset;
1005         else
1006                 return rdev->new_data_offset;
1007 }
1008
1009 struct raid10_plug_cb {
1010         struct blk_plug_cb      cb;
1011         struct bio_list         pending;
1012         int                     pending_cnt;
1013 };
1014
1015 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1016 {
1017         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1018                                                    cb);
1019         struct mddev *mddev = plug->cb.data;
1020         struct r10conf *conf = mddev->private;
1021         struct bio *bio;
1022
1023         if (from_schedule || current->bio_list) {
1024                 spin_lock_irq(&conf->device_lock);
1025                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1026                 conf->pending_count += plug->pending_cnt;
1027                 spin_unlock_irq(&conf->device_lock);
1028                 wake_up(&conf->wait_barrier);
1029                 md_wakeup_thread(mddev->thread);
1030                 kfree(plug);
1031                 return;
1032         }
1033
1034         /* we aren't scheduling, so we can do the write-out directly. */
1035         bio = bio_list_get(&plug->pending);
1036         bitmap_unplug(mddev->bitmap);
1037         wake_up(&conf->wait_barrier);
1038
1039         while (bio) { /* submit pending writes */
1040                 struct bio *next = bio->bi_next;
1041                 bio->bi_next = NULL;
1042                 if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1043                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1044                         /* Just ignore it */
1045                         bio_endio(bio);
1046                 else
1047                         generic_make_request(bio);
1048                 bio = next;
1049         }
1050         kfree(plug);
1051 }
1052
1053 static void __make_request(struct mddev *mddev, struct bio *bio)
1054 {
1055         struct r10conf *conf = mddev->private;
1056         struct r10bio *r10_bio;
1057         struct bio *read_bio;
1058         int i;
1059         const int op = bio_op(bio);
1060         const int rw = bio_data_dir(bio);
1061         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1062         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1063         unsigned long flags;
1064         struct md_rdev *blocked_rdev;
1065         struct blk_plug_cb *cb;
1066         struct raid10_plug_cb *plug = NULL;
1067         int sectors_handled;
1068         int max_sectors;
1069         int sectors;
1070
1071         md_write_start(mddev, bio);
1072
1073         /*
1074          * Register the new request and wait if the reconstruction
1075          * thread has put up a bar for new requests.
1076          * Continue immediately if no resync is active currently.
1077          */
1078         wait_barrier(conf);
1079
1080         sectors = bio_sectors(bio);
1081         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1082             bio->bi_iter.bi_sector < conf->reshape_progress &&
1083             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1084                 /* IO spans the reshape position.  Need to wait for
1085                  * reshape to pass
1086                  */
1087                 allow_barrier(conf);
1088                 wait_event(conf->wait_barrier,
1089                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1090                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1091                            sectors);
1092                 wait_barrier(conf);
1093         }
1094         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1095             bio_data_dir(bio) == WRITE &&
1096             (mddev->reshape_backwards
1097              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1098                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1099              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1100                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1101                 /* Need to update reshape_position in metadata */
1102                 mddev->reshape_position = conf->reshape_progress;
1103                 set_mask_bits(&mddev->flags, 0,
1104                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1105                 md_wakeup_thread(mddev->thread);
1106                 wait_event(mddev->sb_wait,
1107                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1108
1109                 conf->reshape_safe = mddev->reshape_position;
1110         }
1111
1112         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1113
1114         r10_bio->master_bio = bio;
1115         r10_bio->sectors = sectors;
1116
1117         r10_bio->mddev = mddev;
1118         r10_bio->sector = bio->bi_iter.bi_sector;
1119         r10_bio->state = 0;
1120
1121         /* We might need to issue multiple reads to different
1122          * devices if there are bad blocks around, so we keep
1123          * track of the number of reads in bio->bi_phys_segments.
1124          * If this is 0, there is only one r10_bio and no locking
1125          * will be needed when the request completes.  If it is
1126          * non-zero, then it is the number of not-completed requests.
1127          */
1128         bio->bi_phys_segments = 0;
1129         bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131         if (rw == READ) {
1132                 /*
1133                  * read balancing logic:
1134                  */
1135                 struct md_rdev *rdev;
1136                 int slot;
1137
1138 read_again:
1139                 rdev = read_balance(conf, r10_bio, &max_sectors);
1140                 if (!rdev) {
1141                         raid_end_bio_io(r10_bio);
1142                         return;
1143                 }
1144                 slot = r10_bio->read_slot;
1145
1146                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1147                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1148                          max_sectors);
1149
1150                 r10_bio->devs[slot].bio = read_bio;
1151                 r10_bio->devs[slot].rdev = rdev;
1152
1153                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1154                         choose_data_offset(r10_bio, rdev);
1155                 read_bio->bi_bdev = rdev->bdev;
1156                 read_bio->bi_end_io = raid10_end_read_request;
1157                 bio_set_op_attrs(read_bio, op, do_sync);
1158                 read_bio->bi_private = r10_bio;
1159
1160                 if (max_sectors < r10_bio->sectors) {
1161                         /* Could not read all from this device, so we will
1162                          * need another r10_bio.
1163                          */
1164                         sectors_handled = (r10_bio->sector + max_sectors
1165                                            - bio->bi_iter.bi_sector);
1166                         r10_bio->sectors = max_sectors;
1167                         spin_lock_irq(&conf->device_lock);
1168                         if (bio->bi_phys_segments == 0)
1169                                 bio->bi_phys_segments = 2;
1170                         else
1171                                 bio->bi_phys_segments++;
1172                         spin_unlock_irq(&conf->device_lock);
1173                         /* Cannot call generic_make_request directly
1174                          * as that will be queued in __generic_make_request
1175                          * and subsequent mempool_alloc might block
1176                          * waiting for it.  so hand bio over to raid10d.
1177                          */
1178                         reschedule_retry(r10_bio);
1179
1180                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1181
1182                         r10_bio->master_bio = bio;
1183                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1184                         r10_bio->state = 0;
1185                         r10_bio->mddev = mddev;
1186                         r10_bio->sector = bio->bi_iter.bi_sector +
1187                                 sectors_handled;
1188                         goto read_again;
1189                 } else
1190                         generic_make_request(read_bio);
1191                 return;
1192         }
1193
1194         /*
1195          * WRITE:
1196          */
1197         if (conf->pending_count >= max_queued_requests) {
1198                 md_wakeup_thread(mddev->thread);
1199                 wait_event(conf->wait_barrier,
1200                            conf->pending_count < max_queued_requests);
1201         }
1202         /* first select target devices under rcu_lock and
1203          * inc refcount on their rdev.  Record them by setting
1204          * bios[x] to bio
1205          * If there are known/acknowledged bad blocks on any device
1206          * on which we have seen a write error, we want to avoid
1207          * writing to those blocks.  This potentially requires several
1208          * writes to write around the bad blocks.  Each set of writes
1209          * gets its own r10_bio with a set of bios attached.  The number
1210          * of r10_bios is recored in bio->bi_phys_segments just as with
1211          * the read case.
1212          */
1213
1214         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1215         raid10_find_phys(conf, r10_bio);
1216 retry_write:
1217         blocked_rdev = NULL;
1218         rcu_read_lock();
1219         max_sectors = r10_bio->sectors;
1220
1221         for (i = 0;  i < conf->copies; i++) {
1222                 int d = r10_bio->devs[i].devnum;
1223                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1224                 struct md_rdev *rrdev = rcu_dereference(
1225                         conf->mirrors[d].replacement);
1226                 if (rdev == rrdev)
1227                         rrdev = NULL;
1228                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1229                         atomic_inc(&rdev->nr_pending);
1230                         blocked_rdev = rdev;
1231                         break;
1232                 }
1233                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1234                         atomic_inc(&rrdev->nr_pending);
1235                         blocked_rdev = rrdev;
1236                         break;
1237                 }
1238                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1239                         rdev = NULL;
1240                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1241                         rrdev = NULL;
1242
1243                 r10_bio->devs[i].bio = NULL;
1244                 r10_bio->devs[i].repl_bio = NULL;
1245
1246                 if (!rdev && !rrdev) {
1247                         set_bit(R10BIO_Degraded, &r10_bio->state);
1248                         continue;
1249                 }
1250                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1251                         sector_t first_bad;
1252                         sector_t dev_sector = r10_bio->devs[i].addr;
1253                         int bad_sectors;
1254                         int is_bad;
1255
1256                         is_bad = is_badblock(rdev, dev_sector,
1257                                              max_sectors,
1258                                              &first_bad, &bad_sectors);
1259                         if (is_bad < 0) {
1260                                 /* Mustn't write here until the bad block
1261                                  * is acknowledged
1262                                  */
1263                                 atomic_inc(&rdev->nr_pending);
1264                                 set_bit(BlockedBadBlocks, &rdev->flags);
1265                                 blocked_rdev = rdev;
1266                                 break;
1267                         }
1268                         if (is_bad && first_bad <= dev_sector) {
1269                                 /* Cannot write here at all */
1270                                 bad_sectors -= (dev_sector - first_bad);
1271                                 if (bad_sectors < max_sectors)
1272                                         /* Mustn't write more than bad_sectors
1273                                          * to other devices yet
1274                                          */
1275                                         max_sectors = bad_sectors;
1276                                 /* We don't set R10BIO_Degraded as that
1277                                  * only applies if the disk is missing,
1278                                  * so it might be re-added, and we want to
1279                                  * know to recover this chunk.
1280                                  * In this case the device is here, and the
1281                                  * fact that this chunk is not in-sync is
1282                                  * recorded in the bad block log.
1283                                  */
1284                                 continue;
1285                         }
1286                         if (is_bad) {
1287                                 int good_sectors = first_bad - dev_sector;
1288                                 if (good_sectors < max_sectors)
1289                                         max_sectors = good_sectors;
1290                         }
1291                 }
1292                 if (rdev) {
1293                         r10_bio->devs[i].bio = bio;
1294                         atomic_inc(&rdev->nr_pending);
1295                 }
1296                 if (rrdev) {
1297                         r10_bio->devs[i].repl_bio = bio;
1298                         atomic_inc(&rrdev->nr_pending);
1299                 }
1300         }
1301         rcu_read_unlock();
1302
1303         if (unlikely(blocked_rdev)) {
1304                 /* Have to wait for this device to get unblocked, then retry */
1305                 int j;
1306                 int d;
1307
1308                 for (j = 0; j < i; j++) {
1309                         if (r10_bio->devs[j].bio) {
1310                                 d = r10_bio->devs[j].devnum;
1311                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1312                         }
1313                         if (r10_bio->devs[j].repl_bio) {
1314                                 struct md_rdev *rdev;
1315                                 d = r10_bio->devs[j].devnum;
1316                                 rdev = conf->mirrors[d].replacement;
1317                                 if (!rdev) {
1318                                         /* Race with remove_disk */
1319                                         smp_mb();
1320                                         rdev = conf->mirrors[d].rdev;
1321                                 }
1322                                 rdev_dec_pending(rdev, mddev);
1323                         }
1324                 }
1325                 allow_barrier(conf);
1326                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327                 wait_barrier(conf);
1328                 goto retry_write;
1329         }
1330
1331         if (max_sectors < r10_bio->sectors) {
1332                 /* We are splitting this into multiple parts, so
1333                  * we need to prepare for allocating another r10_bio.
1334                  */
1335                 r10_bio->sectors = max_sectors;
1336                 spin_lock_irq(&conf->device_lock);
1337                 if (bio->bi_phys_segments == 0)
1338                         bio->bi_phys_segments = 2;
1339                 else
1340                         bio->bi_phys_segments++;
1341                 spin_unlock_irq(&conf->device_lock);
1342         }
1343         sectors_handled = r10_bio->sector + max_sectors -
1344                 bio->bi_iter.bi_sector;
1345
1346         atomic_set(&r10_bio->remaining, 1);
1347         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1348
1349         for (i = 0; i < conf->copies; i++) {
1350                 struct bio *mbio;
1351                 int d = r10_bio->devs[i].devnum;
1352                 if (r10_bio->devs[i].bio) {
1353                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1354                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1355                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1356                                  max_sectors);
1357                         r10_bio->devs[i].bio = mbio;
1358
1359                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1360                                            choose_data_offset(r10_bio,
1361                                                               rdev));
1362                         mbio->bi_bdev = rdev->bdev;
1363                         mbio->bi_end_io = raid10_end_write_request;
1364                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1365                         mbio->bi_private = r10_bio;
1366
1367                         atomic_inc(&r10_bio->remaining);
1368
1369                         cb = blk_check_plugged(raid10_unplug, mddev,
1370                                                sizeof(*plug));
1371                         if (cb)
1372                                 plug = container_of(cb, struct raid10_plug_cb,
1373                                                     cb);
1374                         else
1375                                 plug = NULL;
1376                         spin_lock_irqsave(&conf->device_lock, flags);
1377                         if (plug) {
1378                                 bio_list_add(&plug->pending, mbio);
1379                                 plug->pending_cnt++;
1380                         } else {
1381                                 bio_list_add(&conf->pending_bio_list, mbio);
1382                                 conf->pending_count++;
1383                         }
1384                         spin_unlock_irqrestore(&conf->device_lock, flags);
1385                         if (!plug)
1386                                 md_wakeup_thread(mddev->thread);
1387                 }
1388
1389                 if (r10_bio->devs[i].repl_bio) {
1390                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1391                         if (rdev == NULL) {
1392                                 /* Replacement just got moved to main 'rdev' */
1393                                 smp_mb();
1394                                 rdev = conf->mirrors[d].rdev;
1395                         }
1396                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1397                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1398                                  max_sectors);
1399                         r10_bio->devs[i].repl_bio = mbio;
1400
1401                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1402                                            choose_data_offset(
1403                                                    r10_bio, rdev));
1404                         mbio->bi_bdev = rdev->bdev;
1405                         mbio->bi_end_io = raid10_end_write_request;
1406                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1407                         mbio->bi_private = r10_bio;
1408
1409                         atomic_inc(&r10_bio->remaining);
1410
1411                         cb = blk_check_plugged(raid10_unplug, mddev,
1412                                                sizeof(*plug));
1413                         if (cb)
1414                                 plug = container_of(cb, struct raid10_plug_cb,
1415                                                     cb);
1416                         else
1417                                 plug = NULL;
1418                         spin_lock_irqsave(&conf->device_lock, flags);
1419                         if (plug) {
1420                                 bio_list_add(&plug->pending, mbio);
1421                                 plug->pending_cnt++;
1422                         } else {
1423                                 bio_list_add(&conf->pending_bio_list, mbio);
1424                                 conf->pending_count++;
1425                         }
1426                         spin_unlock_irqrestore(&conf->device_lock, flags);
1427                         if (!plug)
1428                                 md_wakeup_thread(mddev->thread);
1429                 }
1430         }
1431
1432         /* Don't remove the bias on 'remaining' (one_write_done) until
1433          * after checking if we need to go around again.
1434          */
1435
1436         if (sectors_handled < bio_sectors(bio)) {
1437                 one_write_done(r10_bio);
1438                 /* We need another r10_bio.  It has already been counted
1439                  * in bio->bi_phys_segments.
1440                  */
1441                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1442
1443                 r10_bio->master_bio = bio;
1444                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1445
1446                 r10_bio->mddev = mddev;
1447                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448                 r10_bio->state = 0;
1449                 goto retry_write;
1450         }
1451         one_write_done(r10_bio);
1452 }
1453
1454 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1455 {
1456         struct r10conf *conf = mddev->private;
1457         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1458         int chunk_sects = chunk_mask + 1;
1459
1460         struct bio *split;
1461
1462         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1463                 md_flush_request(mddev, bio);
1464                 return;
1465         }
1466
1467         do {
1468
1469                 /*
1470                  * If this request crosses a chunk boundary, we need to split
1471                  * it.
1472                  */
1473                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1474                              bio_sectors(bio) > chunk_sects
1475                              && (conf->geo.near_copies < conf->geo.raid_disks
1476                                  || conf->prev.near_copies <
1477                                  conf->prev.raid_disks))) {
1478                         split = bio_split(bio, chunk_sects -
1479                                           (bio->bi_iter.bi_sector &
1480                                            (chunk_sects - 1)),
1481                                           GFP_NOIO, fs_bio_set);
1482                         bio_chain(split, bio);
1483                 } else {
1484                         split = bio;
1485                 }
1486
1487                 /*
1488                  * If a bio is splitted, the first part of bio will pass
1489                  * barrier but the bio is queued in current->bio_list (see
1490                  * generic_make_request). If there is a raise_barrier() called
1491                  * here, the second part of bio can't pass barrier. But since
1492                  * the first part bio isn't dispatched to underlaying disks
1493                  * yet, the barrier is never released, hence raise_barrier will
1494                  * alays wait. We have a deadlock.
1495                  * Note, this only happens in read path. For write path, the
1496                  * first part of bio is dispatched in a schedule() call
1497                  * (because of blk plug) or offloaded to raid10d.
1498                  * Quitting from the function immediately can change the bio
1499                  * order queued in bio_list and avoid the deadlock.
1500                  */
1501                 __make_request(mddev, split);
1502                 if (split != bio && bio_data_dir(bio) == READ) {
1503                         generic_make_request(bio);
1504                         break;
1505                 }
1506         } while (split != bio);
1507
1508         /* In case raid10d snuck in to freeze_array */
1509         wake_up(&conf->wait_barrier);
1510 }
1511
1512 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1513 {
1514         struct r10conf *conf = mddev->private;
1515         int i;
1516
1517         if (conf->geo.near_copies < conf->geo.raid_disks)
1518                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1519         if (conf->geo.near_copies > 1)
1520                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1521         if (conf->geo.far_copies > 1) {
1522                 if (conf->geo.far_offset)
1523                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1524                 else
1525                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1526                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1527                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1528         }
1529         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1530                                         conf->geo.raid_disks - mddev->degraded);
1531         rcu_read_lock();
1532         for (i = 0; i < conf->geo.raid_disks; i++) {
1533                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1535         }
1536         rcu_read_unlock();
1537         seq_printf(seq, "]");
1538 }
1539
1540 /* check if there are enough drives for
1541  * every block to appear on atleast one.
1542  * Don't consider the device numbered 'ignore'
1543  * as we might be about to remove it.
1544  */
1545 static int _enough(struct r10conf *conf, int previous, int ignore)
1546 {
1547         int first = 0;
1548         int has_enough = 0;
1549         int disks, ncopies;
1550         if (previous) {
1551                 disks = conf->prev.raid_disks;
1552                 ncopies = conf->prev.near_copies;
1553         } else {
1554                 disks = conf->geo.raid_disks;
1555                 ncopies = conf->geo.near_copies;
1556         }
1557
1558         rcu_read_lock();
1559         do {
1560                 int n = conf->copies;
1561                 int cnt = 0;
1562                 int this = first;
1563                 while (n--) {
1564                         struct md_rdev *rdev;
1565                         if (this != ignore &&
1566                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1567                             test_bit(In_sync, &rdev->flags))
1568                                 cnt++;
1569                         this = (this+1) % disks;
1570                 }
1571                 if (cnt == 0)
1572                         goto out;
1573                 first = (first + ncopies) % disks;
1574         } while (first != 0);
1575         has_enough = 1;
1576 out:
1577         rcu_read_unlock();
1578         return has_enough;
1579 }
1580
1581 static int enough(struct r10conf *conf, int ignore)
1582 {
1583         /* when calling 'enough', both 'prev' and 'geo' must
1584          * be stable.
1585          * This is ensured if ->reconfig_mutex or ->device_lock
1586          * is held.
1587          */
1588         return _enough(conf, 0, ignore) &&
1589                 _enough(conf, 1, ignore);
1590 }
1591
1592 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1593 {
1594         char b[BDEVNAME_SIZE];
1595         struct r10conf *conf = mddev->private;
1596         unsigned long flags;
1597
1598         /*
1599          * If it is not operational, then we have already marked it as dead
1600          * else if it is the last working disks, ignore the error, let the
1601          * next level up know.
1602          * else mark the drive as failed
1603          */
1604         spin_lock_irqsave(&conf->device_lock, flags);
1605         if (test_bit(In_sync, &rdev->flags)
1606             && !enough(conf, rdev->raid_disk)) {
1607                 /*
1608                  * Don't fail the drive, just return an IO error.
1609                  */
1610                 spin_unlock_irqrestore(&conf->device_lock, flags);
1611                 return;
1612         }
1613         if (test_and_clear_bit(In_sync, &rdev->flags))
1614                 mddev->degraded++;
1615         /*
1616          * If recovery is running, make sure it aborts.
1617          */
1618         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1619         set_bit(Blocked, &rdev->flags);
1620         set_bit(Faulty, &rdev->flags);
1621         set_mask_bits(&mddev->flags, 0,
1622                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1623         spin_unlock_irqrestore(&conf->device_lock, flags);
1624         printk(KERN_ALERT
1625                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1626                "md/raid10:%s: Operation continuing on %d devices.\n",
1627                mdname(mddev), bdevname(rdev->bdev, b),
1628                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1629 }
1630
1631 static void print_conf(struct r10conf *conf)
1632 {
1633         int i;
1634         struct md_rdev *rdev;
1635
1636         printk(KERN_DEBUG "RAID10 conf printout:\n");
1637         if (!conf) {
1638                 printk(KERN_DEBUG "(!conf)\n");
1639                 return;
1640         }
1641         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1642                 conf->geo.raid_disks);
1643
1644         /* This is only called with ->reconfix_mutex held, so
1645          * rcu protection of rdev is not needed */
1646         for (i = 0; i < conf->geo.raid_disks; i++) {
1647                 char b[BDEVNAME_SIZE];
1648                 rdev = conf->mirrors[i].rdev;
1649                 if (rdev)
1650                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1651                                 i, !test_bit(In_sync, &rdev->flags),
1652                                 !test_bit(Faulty, &rdev->flags),
1653                                 bdevname(rdev->bdev,b));
1654         }
1655 }
1656
1657 static void close_sync(struct r10conf *conf)
1658 {
1659         wait_barrier(conf);
1660         allow_barrier(conf);
1661
1662         mempool_destroy(conf->r10buf_pool);
1663         conf->r10buf_pool = NULL;
1664 }
1665
1666 static int raid10_spare_active(struct mddev *mddev)
1667 {
1668         int i;
1669         struct r10conf *conf = mddev->private;
1670         struct raid10_info *tmp;
1671         int count = 0;
1672         unsigned long flags;
1673
1674         /*
1675          * Find all non-in_sync disks within the RAID10 configuration
1676          * and mark them in_sync
1677          */
1678         for (i = 0; i < conf->geo.raid_disks; i++) {
1679                 tmp = conf->mirrors + i;
1680                 if (tmp->replacement
1681                     && tmp->replacement->recovery_offset == MaxSector
1682                     && !test_bit(Faulty, &tmp->replacement->flags)
1683                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1684                         /* Replacement has just become active */
1685                         if (!tmp->rdev
1686                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1687                                 count++;
1688                         if (tmp->rdev) {
1689                                 /* Replaced device not technically faulty,
1690                                  * but we need to be sure it gets removed
1691                                  * and never re-added.
1692                                  */
1693                                 set_bit(Faulty, &tmp->rdev->flags);
1694                                 sysfs_notify_dirent_safe(
1695                                         tmp->rdev->sysfs_state);
1696                         }
1697                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1698                 } else if (tmp->rdev
1699                            && tmp->rdev->recovery_offset == MaxSector
1700                            && !test_bit(Faulty, &tmp->rdev->flags)
1701                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1702                         count++;
1703                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1704                 }
1705         }
1706         spin_lock_irqsave(&conf->device_lock, flags);
1707         mddev->degraded -= count;
1708         spin_unlock_irqrestore(&conf->device_lock, flags);
1709
1710         print_conf(conf);
1711         return count;
1712 }
1713
1714 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1715 {
1716         struct r10conf *conf = mddev->private;
1717         int err = -EEXIST;
1718         int mirror;
1719         int first = 0;
1720         int last = conf->geo.raid_disks - 1;
1721
1722         if (mddev->recovery_cp < MaxSector)
1723                 /* only hot-add to in-sync arrays, as recovery is
1724                  * very different from resync
1725                  */
1726                 return -EBUSY;
1727         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1728                 return -EINVAL;
1729
1730         if (md_integrity_add_rdev(rdev, mddev))
1731                 return -ENXIO;
1732
1733         if (rdev->raid_disk >= 0)
1734                 first = last = rdev->raid_disk;
1735
1736         if (rdev->saved_raid_disk >= first &&
1737             rdev->saved_raid_disk < conf->geo.raid_disks &&
1738             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1739                 mirror = rdev->saved_raid_disk;
1740         else
1741                 mirror = first;
1742         for ( ; mirror <= last ; mirror++) {
1743                 struct raid10_info *p = &conf->mirrors[mirror];
1744                 if (p->recovery_disabled == mddev->recovery_disabled)
1745                         continue;
1746                 if (p->rdev) {
1747                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1748                             p->replacement != NULL)
1749                                 continue;
1750                         clear_bit(In_sync, &rdev->flags);
1751                         set_bit(Replacement, &rdev->flags);
1752                         rdev->raid_disk = mirror;
1753                         err = 0;
1754                         if (mddev->gendisk)
1755                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1756                                                   rdev->data_offset << 9);
1757                         conf->fullsync = 1;
1758                         rcu_assign_pointer(p->replacement, rdev);
1759                         break;
1760                 }
1761
1762                 if (mddev->gendisk)
1763                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1764                                           rdev->data_offset << 9);
1765
1766                 p->head_position = 0;
1767                 p->recovery_disabled = mddev->recovery_disabled - 1;
1768                 rdev->raid_disk = mirror;
1769                 err = 0;
1770                 if (rdev->saved_raid_disk != mirror)
1771                         conf->fullsync = 1;
1772                 rcu_assign_pointer(p->rdev, rdev);
1773                 break;
1774         }
1775         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1776                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1777
1778         print_conf(conf);
1779         return err;
1780 }
1781
1782 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1783 {
1784         struct r10conf *conf = mddev->private;
1785         int err = 0;
1786         int number = rdev->raid_disk;
1787         struct md_rdev **rdevp;
1788         struct raid10_info *p;
1789
1790         print_conf(conf);
1791         if (unlikely(number >= mddev->raid_disks))
1792                 return 0;
1793         p = conf->mirrors + number;
1794         if (rdev == p->rdev)
1795                 rdevp = &p->rdev;
1796         else if (rdev == p->replacement)
1797                 rdevp = &p->replacement;
1798         else
1799                 return 0;
1800
1801         if (test_bit(In_sync, &rdev->flags) ||
1802             atomic_read(&rdev->nr_pending)) {
1803                 err = -EBUSY;
1804                 goto abort;
1805         }
1806         /* Only remove non-faulty devices if recovery
1807          * is not possible.
1808          */
1809         if (!test_bit(Faulty, &rdev->flags) &&
1810             mddev->recovery_disabled != p->recovery_disabled &&
1811             (!p->replacement || p->replacement == rdev) &&
1812             number < conf->geo.raid_disks &&
1813             enough(conf, -1)) {
1814                 err = -EBUSY;
1815                 goto abort;
1816         }
1817         *rdevp = NULL;
1818         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1819                 synchronize_rcu();
1820                 if (atomic_read(&rdev->nr_pending)) {
1821                         /* lost the race, try later */
1822                         err = -EBUSY;
1823                         *rdevp = rdev;
1824                         goto abort;
1825                 }
1826         }
1827         if (p->replacement) {
1828                 /* We must have just cleared 'rdev' */
1829                 p->rdev = p->replacement;
1830                 clear_bit(Replacement, &p->replacement->flags);
1831                 smp_mb(); /* Make sure other CPUs may see both as identical
1832                            * but will never see neither -- if they are careful.
1833                            */
1834                 p->replacement = NULL;
1835                 clear_bit(WantReplacement, &rdev->flags);
1836         } else
1837                 /* We might have just remove the Replacement as faulty
1838                  * Clear the flag just in case
1839                  */
1840                 clear_bit(WantReplacement, &rdev->flags);
1841
1842         err = md_integrity_register(mddev);
1843
1844 abort:
1845
1846         print_conf(conf);
1847         return err;
1848 }
1849
1850 static void end_sync_read(struct bio *bio)
1851 {
1852         struct r10bio *r10_bio = bio->bi_private;
1853         struct r10conf *conf = r10_bio->mddev->private;
1854         int d;
1855
1856         if (bio == r10_bio->master_bio) {
1857                 /* this is a reshape read */
1858                 d = r10_bio->read_slot; /* really the read dev */
1859         } else
1860                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1861
1862         if (!bio->bi_error)
1863                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1864         else
1865                 /* The write handler will notice the lack of
1866                  * R10BIO_Uptodate and record any errors etc
1867                  */
1868                 atomic_add(r10_bio->sectors,
1869                            &conf->mirrors[d].rdev->corrected_errors);
1870
1871         /* for reconstruct, we always reschedule after a read.
1872          * for resync, only after all reads
1873          */
1874         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1875         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1876             atomic_dec_and_test(&r10_bio->remaining)) {
1877                 /* we have read all the blocks,
1878                  * do the comparison in process context in raid10d
1879                  */
1880                 reschedule_retry(r10_bio);
1881         }
1882 }
1883
1884 static void end_sync_request(struct r10bio *r10_bio)
1885 {
1886         struct mddev *mddev = r10_bio->mddev;
1887
1888         while (atomic_dec_and_test(&r10_bio->remaining)) {
1889                 if (r10_bio->master_bio == NULL) {
1890                         /* the primary of several recovery bios */
1891                         sector_t s = r10_bio->sectors;
1892                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1893                             test_bit(R10BIO_WriteError, &r10_bio->state))
1894                                 reschedule_retry(r10_bio);
1895                         else
1896                                 put_buf(r10_bio);
1897                         md_done_sync(mddev, s, 1);
1898                         break;
1899                 } else {
1900                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1901                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1902                             test_bit(R10BIO_WriteError, &r10_bio->state))
1903                                 reschedule_retry(r10_bio);
1904                         else
1905                                 put_buf(r10_bio);
1906                         r10_bio = r10_bio2;
1907                 }
1908         }
1909 }
1910
1911 static void end_sync_write(struct bio *bio)
1912 {
1913         struct r10bio *r10_bio = bio->bi_private;
1914         struct mddev *mddev = r10_bio->mddev;
1915         struct r10conf *conf = mddev->private;
1916         int d;
1917         sector_t first_bad;
1918         int bad_sectors;
1919         int slot;
1920         int repl;
1921         struct md_rdev *rdev = NULL;
1922
1923         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1924         if (repl)
1925                 rdev = conf->mirrors[d].replacement;
1926         else
1927                 rdev = conf->mirrors[d].rdev;
1928
1929         if (bio->bi_error) {
1930                 if (repl)
1931                         md_error(mddev, rdev);
1932                 else {
1933                         set_bit(WriteErrorSeen, &rdev->flags);
1934                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1935                                 set_bit(MD_RECOVERY_NEEDED,
1936                                         &rdev->mddev->recovery);
1937                         set_bit(R10BIO_WriteError, &r10_bio->state);
1938                 }
1939         } else if (is_badblock(rdev,
1940                              r10_bio->devs[slot].addr,
1941                              r10_bio->sectors,
1942                              &first_bad, &bad_sectors))
1943                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1944
1945         rdev_dec_pending(rdev, mddev);
1946
1947         end_sync_request(r10_bio);
1948 }
1949
1950 /*
1951  * Note: sync and recover and handled very differently for raid10
1952  * This code is for resync.
1953  * For resync, we read through virtual addresses and read all blocks.
1954  * If there is any error, we schedule a write.  The lowest numbered
1955  * drive is authoritative.
1956  * However requests come for physical address, so we need to map.
1957  * For every physical address there are raid_disks/copies virtual addresses,
1958  * which is always are least one, but is not necessarly an integer.
1959  * This means that a physical address can span multiple chunks, so we may
1960  * have to submit multiple io requests for a single sync request.
1961  */
1962 /*
1963  * We check if all blocks are in-sync and only write to blocks that
1964  * aren't in sync
1965  */
1966 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1967 {
1968         struct r10conf *conf = mddev->private;
1969         int i, first;
1970         struct bio *tbio, *fbio;
1971         int vcnt;
1972
1973         atomic_set(&r10_bio->remaining, 1);
1974
1975         /* find the first device with a block */
1976         for (i=0; i<conf->copies; i++)
1977                 if (!r10_bio->devs[i].bio->bi_error)
1978                         break;
1979
1980         if (i == conf->copies)
1981                 goto done;
1982
1983         first = i;
1984         fbio = r10_bio->devs[i].bio;
1985         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1986         fbio->bi_iter.bi_idx = 0;
1987
1988         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1989         /* now find blocks with errors */
1990         for (i=0 ; i < conf->copies ; i++) {
1991                 int  j, d;
1992
1993                 tbio = r10_bio->devs[i].bio;
1994
1995                 if (tbio->bi_end_io != end_sync_read)
1996                         continue;
1997                 if (i == first)
1998                         continue;
1999                 if (!r10_bio->devs[i].bio->bi_error) {
2000                         /* We know that the bi_io_vec layout is the same for
2001                          * both 'first' and 'i', so we just compare them.
2002                          * All vec entries are PAGE_SIZE;
2003                          */
2004                         int sectors = r10_bio->sectors;
2005                         for (j = 0; j < vcnt; j++) {
2006                                 int len = PAGE_SIZE;
2007                                 if (sectors < (len / 512))
2008                                         len = sectors * 512;
2009                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2010                                            page_address(tbio->bi_io_vec[j].bv_page),
2011                                            len))
2012                                         break;
2013                                 sectors -= len/512;
2014                         }
2015                         if (j == vcnt)
2016                                 continue;
2017                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2018                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2019                                 /* Don't fix anything. */
2020                                 continue;
2021                 }
2022                 /* Ok, we need to write this bio, either to correct an
2023                  * inconsistency or to correct an unreadable block.
2024                  * First we need to fixup bv_offset, bv_len and
2025                  * bi_vecs, as the read request might have corrupted these
2026                  */
2027                 bio_reset(tbio);
2028
2029                 tbio->bi_vcnt = vcnt;
2030                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2031                 tbio->bi_private = r10_bio;
2032                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2033                 tbio->bi_end_io = end_sync_write;
2034                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2035
2036                 bio_copy_data(tbio, fbio);
2037
2038                 d = r10_bio->devs[i].devnum;
2039                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2040                 atomic_inc(&r10_bio->remaining);
2041                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2042
2043                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2044                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2045                 generic_make_request(tbio);
2046         }
2047
2048         /* Now write out to any replacement devices
2049          * that are active
2050          */
2051         for (i = 0; i < conf->copies; i++) {
2052                 int d;
2053
2054                 tbio = r10_bio->devs[i].repl_bio;
2055                 if (!tbio || !tbio->bi_end_io)
2056                         continue;
2057                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2058                     && r10_bio->devs[i].bio != fbio)
2059                         bio_copy_data(tbio, fbio);
2060                 d = r10_bio->devs[i].devnum;
2061                 atomic_inc(&r10_bio->remaining);
2062                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2063                              bio_sectors(tbio));
2064                 generic_make_request(tbio);
2065         }
2066
2067 done:
2068         if (atomic_dec_and_test(&r10_bio->remaining)) {
2069                 md_done_sync(mddev, r10_bio->sectors, 1);
2070                 put_buf(r10_bio);
2071         }
2072 }
2073
2074 /*
2075  * Now for the recovery code.
2076  * Recovery happens across physical sectors.
2077  * We recover all non-is_sync drives by finding the virtual address of
2078  * each, and then choose a working drive that also has that virt address.
2079  * There is a separate r10_bio for each non-in_sync drive.
2080  * Only the first two slots are in use. The first for reading,
2081  * The second for writing.
2082  *
2083  */
2084 static void fix_recovery_read_error(struct r10bio *r10_bio)
2085 {
2086         /* We got a read error during recovery.
2087          * We repeat the read in smaller page-sized sections.
2088          * If a read succeeds, write it to the new device or record
2089          * a bad block if we cannot.
2090          * If a read fails, record a bad block on both old and
2091          * new devices.
2092          */
2093         struct mddev *mddev = r10_bio->mddev;
2094         struct r10conf *conf = mddev->private;
2095         struct bio *bio = r10_bio->devs[0].bio;
2096         sector_t sect = 0;
2097         int sectors = r10_bio->sectors;
2098         int idx = 0;
2099         int dr = r10_bio->devs[0].devnum;
2100         int dw = r10_bio->devs[1].devnum;
2101
2102         while (sectors) {
2103                 int s = sectors;
2104                 struct md_rdev *rdev;
2105                 sector_t addr;
2106                 int ok;
2107
2108                 if (s > (PAGE_SIZE>>9))
2109                         s = PAGE_SIZE >> 9;
2110
2111                 rdev = conf->mirrors[dr].rdev;
2112                 addr = r10_bio->devs[0].addr + sect,
2113                 ok = sync_page_io(rdev,
2114                                   addr,
2115                                   s << 9,
2116                                   bio->bi_io_vec[idx].bv_page,
2117                                   REQ_OP_READ, 0, false);
2118                 if (ok) {
2119                         rdev = conf->mirrors[dw].rdev;
2120                         addr = r10_bio->devs[1].addr + sect;
2121                         ok = sync_page_io(rdev,
2122                                           addr,
2123                                           s << 9,
2124                                           bio->bi_io_vec[idx].bv_page,
2125                                           REQ_OP_WRITE, 0, false);
2126                         if (!ok) {
2127                                 set_bit(WriteErrorSeen, &rdev->flags);
2128                                 if (!test_and_set_bit(WantReplacement,
2129                                                       &rdev->flags))
2130                                         set_bit(MD_RECOVERY_NEEDED,
2131                                                 &rdev->mddev->recovery);
2132                         }
2133                 }
2134                 if (!ok) {
2135                         /* We don't worry if we cannot set a bad block -
2136                          * it really is bad so there is no loss in not
2137                          * recording it yet
2138                          */
2139                         rdev_set_badblocks(rdev, addr, s, 0);
2140
2141                         if (rdev != conf->mirrors[dw].rdev) {
2142                                 /* need bad block on destination too */
2143                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2144                                 addr = r10_bio->devs[1].addr + sect;
2145                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2146                                 if (!ok) {
2147                                         /* just abort the recovery */
2148                                         printk(KERN_NOTICE
2149                                                "md/raid10:%s: recovery aborted"
2150                                                " due to read error\n",
2151                                                mdname(mddev));
2152
2153                                         conf->mirrors[dw].recovery_disabled
2154                                                 = mddev->recovery_disabled;
2155                                         set_bit(MD_RECOVERY_INTR,
2156                                                 &mddev->recovery);
2157                                         break;
2158                                 }
2159                         }
2160                 }
2161
2162                 sectors -= s;
2163                 sect += s;
2164                 idx++;
2165         }
2166 }
2167
2168 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2169 {
2170         struct r10conf *conf = mddev->private;
2171         int d;
2172         struct bio *wbio, *wbio2;
2173
2174         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2175                 fix_recovery_read_error(r10_bio);
2176                 end_sync_request(r10_bio);
2177                 return;
2178         }
2179
2180         /*
2181          * share the pages with the first bio
2182          * and submit the write request
2183          */
2184         d = r10_bio->devs[1].devnum;
2185         wbio = r10_bio->devs[1].bio;
2186         wbio2 = r10_bio->devs[1].repl_bio;
2187         /* Need to test wbio2->bi_end_io before we call
2188          * generic_make_request as if the former is NULL,
2189          * the latter is free to free wbio2.
2190          */
2191         if (wbio2 && !wbio2->bi_end_io)
2192                 wbio2 = NULL;
2193         if (wbio->bi_end_io) {
2194                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2195                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2196                 generic_make_request(wbio);
2197         }
2198         if (wbio2) {
2199                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2200                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2201                              bio_sectors(wbio2));
2202                 generic_make_request(wbio2);
2203         }
2204 }
2205
2206 /*
2207  * Used by fix_read_error() to decay the per rdev read_errors.
2208  * We halve the read error count for every hour that has elapsed
2209  * since the last recorded read error.
2210  *
2211  */
2212 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2213 {
2214         long cur_time_mon;
2215         unsigned long hours_since_last;
2216         unsigned int read_errors = atomic_read(&rdev->read_errors);
2217
2218         cur_time_mon = ktime_get_seconds();
2219
2220         if (rdev->last_read_error == 0) {
2221                 /* first time we've seen a read error */
2222                 rdev->last_read_error = cur_time_mon;
2223                 return;
2224         }
2225
2226         hours_since_last = (long)(cur_time_mon -
2227                             rdev->last_read_error) / 3600;
2228
2229         rdev->last_read_error = cur_time_mon;
2230
2231         /*
2232          * if hours_since_last is > the number of bits in read_errors
2233          * just set read errors to 0. We do this to avoid
2234          * overflowing the shift of read_errors by hours_since_last.
2235          */
2236         if (hours_since_last >= 8 * sizeof(read_errors))
2237                 atomic_set(&rdev->read_errors, 0);
2238         else
2239                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2240 }
2241
2242 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2243                             int sectors, struct page *page, int rw)
2244 {
2245         sector_t first_bad;
2246         int bad_sectors;
2247
2248         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2249             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2250                 return -1;
2251         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2252                 /* success */
2253                 return 1;
2254         if (rw == WRITE) {
2255                 set_bit(WriteErrorSeen, &rdev->flags);
2256                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2257                         set_bit(MD_RECOVERY_NEEDED,
2258                                 &rdev->mddev->recovery);
2259         }
2260         /* need to record an error - either for the block or the device */
2261         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2262                 md_error(rdev->mddev, rdev);
2263         return 0;
2264 }
2265
2266 /*
2267  * This is a kernel thread which:
2268  *
2269  *      1.      Retries failed read operations on working mirrors.
2270  *      2.      Updates the raid superblock when problems encounter.
2271  *      3.      Performs writes following reads for array synchronising.
2272  */
2273
2274 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2275 {
2276         int sect = 0; /* Offset from r10_bio->sector */
2277         int sectors = r10_bio->sectors;
2278         struct md_rdev*rdev;
2279         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2280         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2281
2282         /* still own a reference to this rdev, so it cannot
2283          * have been cleared recently.
2284          */
2285         rdev = conf->mirrors[d].rdev;
2286
2287         if (test_bit(Faulty, &rdev->flags))
2288                 /* drive has already been failed, just ignore any
2289                    more fix_read_error() attempts */
2290                 return;
2291
2292         check_decay_read_errors(mddev, rdev);
2293         atomic_inc(&rdev->read_errors);
2294         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2295                 char b[BDEVNAME_SIZE];
2296                 bdevname(rdev->bdev, b);
2297
2298                 printk(KERN_NOTICE
2299                        "md/raid10:%s: %s: Raid device exceeded "
2300                        "read_error threshold [cur %d:max %d]\n",
2301                        mdname(mddev), b,
2302                        atomic_read(&rdev->read_errors), max_read_errors);
2303                 printk(KERN_NOTICE
2304                        "md/raid10:%s: %s: Failing raid device\n",
2305                        mdname(mddev), b);
2306                 md_error(mddev, rdev);
2307                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2308                 return;
2309         }
2310
2311         while(sectors) {
2312                 int s = sectors;
2313                 int sl = r10_bio->read_slot;
2314                 int success = 0;
2315                 int start;
2316
2317                 if (s > (PAGE_SIZE>>9))
2318                         s = PAGE_SIZE >> 9;
2319
2320                 rcu_read_lock();
2321                 do {
2322                         sector_t first_bad;
2323                         int bad_sectors;
2324
2325                         d = r10_bio->devs[sl].devnum;
2326                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2327                         if (rdev &&
2328                             test_bit(In_sync, &rdev->flags) &&
2329                             !test_bit(Faulty, &rdev->flags) &&
2330                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2331                                         &first_bad, &bad_sectors) == 0) {
2332                                 atomic_inc(&rdev->nr_pending);
2333                                 rcu_read_unlock();
2334                                 success = sync_page_io(rdev,
2335                                                        r10_bio->devs[sl].addr +
2336                                                        sect,
2337                                                        s<<9,
2338                                                        conf->tmppage,
2339                                                        REQ_OP_READ, 0, false);
2340                                 rdev_dec_pending(rdev, mddev);
2341                                 rcu_read_lock();
2342                                 if (success)
2343                                         break;
2344                         }
2345                         sl++;
2346                         if (sl == conf->copies)
2347                                 sl = 0;
2348                 } while (!success && sl != r10_bio->read_slot);
2349                 rcu_read_unlock();
2350
2351                 if (!success) {
2352                         /* Cannot read from anywhere, just mark the block
2353                          * as bad on the first device to discourage future
2354                          * reads.
2355                          */
2356                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2357                         rdev = conf->mirrors[dn].rdev;
2358
2359                         if (!rdev_set_badblocks(
2360                                     rdev,
2361                                     r10_bio->devs[r10_bio->read_slot].addr
2362                                     + sect,
2363                                     s, 0)) {
2364                                 md_error(mddev, rdev);
2365                                 r10_bio->devs[r10_bio->read_slot].bio
2366                                         = IO_BLOCKED;
2367                         }
2368                         break;
2369                 }
2370
2371                 start = sl;
2372                 /* write it back and re-read */
2373                 rcu_read_lock();
2374                 while (sl != r10_bio->read_slot) {
2375                         char b[BDEVNAME_SIZE];
2376
2377                         if (sl==0)
2378                                 sl = conf->copies;
2379                         sl--;
2380                         d = r10_bio->devs[sl].devnum;
2381                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2382                         if (!rdev ||
2383                             test_bit(Faulty, &rdev->flags) ||
2384                             !test_bit(In_sync, &rdev->flags))
2385                                 continue;
2386
2387                         atomic_inc(&rdev->nr_pending);
2388                         rcu_read_unlock();
2389                         if (r10_sync_page_io(rdev,
2390                                              r10_bio->devs[sl].addr +
2391                                              sect,
2392                                              s, conf->tmppage, WRITE)
2393                             == 0) {
2394                                 /* Well, this device is dead */
2395                                 printk(KERN_NOTICE
2396                                        "md/raid10:%s: read correction "
2397                                        "write failed"
2398                                        " (%d sectors at %llu on %s)\n",
2399                                        mdname(mddev), s,
2400                                        (unsigned long long)(
2401                                                sect +
2402                                                choose_data_offset(r10_bio,
2403                                                                   rdev)),
2404                                        bdevname(rdev->bdev, b));
2405                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2406                                        "drive\n",
2407                                        mdname(mddev),
2408                                        bdevname(rdev->bdev, b));
2409                         }
2410                         rdev_dec_pending(rdev, mddev);
2411                         rcu_read_lock();
2412                 }
2413                 sl = start;
2414                 while (sl != r10_bio->read_slot) {
2415                         char b[BDEVNAME_SIZE];
2416
2417                         if (sl==0)
2418                                 sl = conf->copies;
2419                         sl--;
2420                         d = r10_bio->devs[sl].devnum;
2421                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2422                         if (!rdev ||
2423                             test_bit(Faulty, &rdev->flags) ||
2424                             !test_bit(In_sync, &rdev->flags))
2425                                 continue;
2426
2427                         atomic_inc(&rdev->nr_pending);
2428                         rcu_read_unlock();
2429                         switch (r10_sync_page_io(rdev,
2430                                              r10_bio->devs[sl].addr +
2431                                              sect,
2432                                              s, conf->tmppage,
2433                                                  READ)) {
2434                         case 0:
2435                                 /* Well, this device is dead */
2436                                 printk(KERN_NOTICE
2437                                        "md/raid10:%s: unable to read back "
2438                                        "corrected sectors"
2439                                        " (%d sectors at %llu on %s)\n",
2440                                        mdname(mddev), s,
2441                                        (unsigned long long)(
2442                                                sect +
2443                                                choose_data_offset(r10_bio, rdev)),
2444                                        bdevname(rdev->bdev, b));
2445                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2446                                        "drive\n",
2447                                        mdname(mddev),
2448                                        bdevname(rdev->bdev, b));
2449                                 break;
2450                         case 1:
2451                                 printk(KERN_INFO
2452                                        "md/raid10:%s: read error corrected"
2453                                        " (%d sectors at %llu on %s)\n",
2454                                        mdname(mddev), s,
2455                                        (unsigned long long)(
2456                                                sect +
2457                                                choose_data_offset(r10_bio, rdev)),
2458                                        bdevname(rdev->bdev, b));
2459                                 atomic_add(s, &rdev->corrected_errors);
2460                         }
2461
2462                         rdev_dec_pending(rdev, mddev);
2463                         rcu_read_lock();
2464                 }
2465                 rcu_read_unlock();
2466
2467                 sectors -= s;
2468                 sect += s;
2469         }
2470 }
2471
2472 static int narrow_write_error(struct r10bio *r10_bio, int i)
2473 {
2474         struct bio *bio = r10_bio->master_bio;
2475         struct mddev *mddev = r10_bio->mddev;
2476         struct r10conf *conf = mddev->private;
2477         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2478         /* bio has the data to be written to slot 'i' where
2479          * we just recently had a write error.
2480          * We repeatedly clone the bio and trim down to one block,
2481          * then try the write.  Where the write fails we record
2482          * a bad block.
2483          * It is conceivable that the bio doesn't exactly align with
2484          * blocks.  We must handle this.
2485          *
2486          * We currently own a reference to the rdev.
2487          */
2488
2489         int block_sectors;
2490         sector_t sector;
2491         int sectors;
2492         int sect_to_write = r10_bio->sectors;
2493         int ok = 1;
2494
2495         if (rdev->badblocks.shift < 0)
2496                 return 0;
2497
2498         block_sectors = roundup(1 << rdev->badblocks.shift,
2499                                 bdev_logical_block_size(rdev->bdev) >> 9);
2500         sector = r10_bio->sector;
2501         sectors = ((r10_bio->sector + block_sectors)
2502                    & ~(sector_t)(block_sectors - 1))
2503                 - sector;
2504
2505         while (sect_to_write) {
2506                 struct bio *wbio;
2507                 sector_t wsector;
2508                 if (sectors > sect_to_write)
2509                         sectors = sect_to_write;
2510                 /* Write at 'sector' for 'sectors' */
2511                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2512                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2513                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2514                 wbio->bi_iter.bi_sector = wsector +
2515                                    choose_data_offset(r10_bio, rdev);
2516                 wbio->bi_bdev = rdev->bdev;
2517                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2518
2519                 if (submit_bio_wait(wbio) < 0)
2520                         /* Failure! */
2521                         ok = rdev_set_badblocks(rdev, wsector,
2522                                                 sectors, 0)
2523                                 && ok;
2524
2525                 bio_put(wbio);
2526                 sect_to_write -= sectors;
2527                 sector += sectors;
2528                 sectors = block_sectors;
2529         }
2530         return ok;
2531 }
2532
2533 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2534 {
2535         int slot = r10_bio->read_slot;
2536         struct bio *bio;
2537         struct r10conf *conf = mddev->private;
2538         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2539         char b[BDEVNAME_SIZE];
2540         unsigned long do_sync;
2541         int max_sectors;
2542
2543         /* we got a read error. Maybe the drive is bad.  Maybe just
2544          * the block and we can fix it.
2545          * We freeze all other IO, and try reading the block from
2546          * other devices.  When we find one, we re-write
2547          * and check it that fixes the read error.
2548          * This is all done synchronously while the array is
2549          * frozen.
2550          */
2551         bio = r10_bio->devs[slot].bio;
2552         bdevname(bio->bi_bdev, b);
2553         bio_put(bio);
2554         r10_bio->devs[slot].bio = NULL;
2555
2556         if (mddev->ro == 0) {
2557                 freeze_array(conf, 1);
2558                 fix_read_error(conf, mddev, r10_bio);
2559                 unfreeze_array(conf);
2560         } else
2561                 r10_bio->devs[slot].bio = IO_BLOCKED;
2562
2563         rdev_dec_pending(rdev, mddev);
2564
2565 read_more:
2566         rdev = read_balance(conf, r10_bio, &max_sectors);
2567         if (rdev == NULL) {
2568                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2569                        " read error for block %llu\n",
2570                        mdname(mddev), b,
2571                        (unsigned long long)r10_bio->sector);
2572                 raid_end_bio_io(r10_bio);
2573                 return;
2574         }
2575
2576         do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2577         slot = r10_bio->read_slot;
2578         printk_ratelimited(
2579                 KERN_ERR
2580                 "md/raid10:%s: %s: redirecting "
2581                 "sector %llu to another mirror\n",
2582                 mdname(mddev),
2583                 bdevname(rdev->bdev, b),
2584                 (unsigned long long)r10_bio->sector);
2585         bio = bio_clone_mddev(r10_bio->master_bio,
2586                               GFP_NOIO, mddev);
2587         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2588         r10_bio->devs[slot].bio = bio;
2589         r10_bio->devs[slot].rdev = rdev;
2590         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2591                 + choose_data_offset(r10_bio, rdev);
2592         bio->bi_bdev = rdev->bdev;
2593         bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2594         bio->bi_private = r10_bio;
2595         bio->bi_end_io = raid10_end_read_request;
2596         if (max_sectors < r10_bio->sectors) {
2597                 /* Drat - have to split this up more */
2598                 struct bio *mbio = r10_bio->master_bio;
2599                 int sectors_handled =
2600                         r10_bio->sector + max_sectors
2601                         - mbio->bi_iter.bi_sector;
2602                 r10_bio->sectors = max_sectors;
2603                 spin_lock_irq(&conf->device_lock);
2604                 if (mbio->bi_phys_segments == 0)
2605                         mbio->bi_phys_segments = 2;
2606                 else
2607                         mbio->bi_phys_segments++;
2608                 spin_unlock_irq(&conf->device_lock);
2609                 generic_make_request(bio);
2610
2611                 r10_bio = mempool_alloc(conf->r10bio_pool,
2612                                         GFP_NOIO);
2613                 r10_bio->master_bio = mbio;
2614                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2615                 r10_bio->state = 0;
2616                 set_bit(R10BIO_ReadError,
2617                         &r10_bio->state);
2618                 r10_bio->mddev = mddev;
2619                 r10_bio->sector = mbio->bi_iter.bi_sector
2620                         + sectors_handled;
2621
2622                 goto read_more;
2623         } else
2624                 generic_make_request(bio);
2625 }
2626
2627 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2628 {
2629         /* Some sort of write request has finished and it
2630          * succeeded in writing where we thought there was a
2631          * bad block.  So forget the bad block.
2632          * Or possibly if failed and we need to record
2633          * a bad block.
2634          */
2635         int m;
2636         struct md_rdev *rdev;
2637
2638         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2639             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2640                 for (m = 0; m < conf->copies; m++) {
2641                         int dev = r10_bio->devs[m].devnum;
2642                         rdev = conf->mirrors[dev].rdev;
2643                         if (r10_bio->devs[m].bio == NULL ||
2644                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2645                                 continue;
2646                         if (!r10_bio->devs[m].bio->bi_error) {
2647                                 rdev_clear_badblocks(
2648                                         rdev,
2649                                         r10_bio->devs[m].addr,
2650                                         r10_bio->sectors, 0);
2651                         } else {
2652                                 if (!rdev_set_badblocks(
2653                                             rdev,
2654                                             r10_bio->devs[m].addr,
2655                                             r10_bio->sectors, 0))
2656                                         md_error(conf->mddev, rdev);
2657                         }
2658                         rdev = conf->mirrors[dev].replacement;
2659                         if (r10_bio->devs[m].repl_bio == NULL ||
2660                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2661                                 continue;
2662
2663                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2664                                 rdev_clear_badblocks(
2665                                         rdev,
2666                                         r10_bio->devs[m].addr,
2667                                         r10_bio->sectors, 0);
2668                         } else {
2669                                 if (!rdev_set_badblocks(
2670                                             rdev,
2671                                             r10_bio->devs[m].addr,
2672                                             r10_bio->sectors, 0))
2673                                         md_error(conf->mddev, rdev);
2674                         }
2675                 }
2676                 put_buf(r10_bio);
2677         } else {
2678                 bool fail = false;
2679                 for (m = 0; m < conf->copies; m++) {
2680                         int dev = r10_bio->devs[m].devnum;
2681                         struct bio *bio = r10_bio->devs[m].bio;
2682                         rdev = conf->mirrors[dev].rdev;
2683                         if (bio == IO_MADE_GOOD) {
2684                                 rdev_clear_badblocks(
2685                                         rdev,
2686                                         r10_bio->devs[m].addr,
2687                                         r10_bio->sectors, 0);
2688                                 rdev_dec_pending(rdev, conf->mddev);
2689                         } else if (bio != NULL && bio->bi_error) {
2690                                 fail = true;
2691                                 if (!narrow_write_error(r10_bio, m)) {
2692                                         md_error(conf->mddev, rdev);
2693                                         set_bit(R10BIO_Degraded,
2694                                                 &r10_bio->state);
2695                                 }
2696                                 rdev_dec_pending(rdev, conf->mddev);
2697                         }
2698                         bio = r10_bio->devs[m].repl_bio;
2699                         rdev = conf->mirrors[dev].replacement;
2700                         if (rdev && bio == IO_MADE_GOOD) {
2701                                 rdev_clear_badblocks(
2702                                         rdev,
2703                                         r10_bio->devs[m].addr,
2704                                         r10_bio->sectors, 0);
2705                                 rdev_dec_pending(rdev, conf->mddev);
2706                         }
2707                 }
2708                 if (fail) {
2709                         spin_lock_irq(&conf->device_lock);
2710                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2711                         conf->nr_queued++;
2712                         spin_unlock_irq(&conf->device_lock);
2713                         /*
2714                          * In case freeze_array() is waiting for condition
2715                          * nr_pending == nr_queued + extra to be true.
2716                          */
2717                         wake_up(&conf->wait_barrier);
2718                         md_wakeup_thread(conf->mddev->thread);
2719                 } else {
2720                         if (test_bit(R10BIO_WriteError,
2721                                      &r10_bio->state))
2722                                 close_write(r10_bio);
2723                         raid_end_bio_io(r10_bio);
2724                 }
2725         }
2726 }
2727
2728 static void raid10d(struct md_thread *thread)
2729 {
2730         struct mddev *mddev = thread->mddev;
2731         struct r10bio *r10_bio;
2732         unsigned long flags;
2733         struct r10conf *conf = mddev->private;
2734         struct list_head *head = &conf->retry_list;
2735         struct blk_plug plug;
2736
2737         md_check_recovery(mddev);
2738
2739         if (!list_empty_careful(&conf->bio_end_io_list) &&
2740             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2741                 LIST_HEAD(tmp);
2742                 spin_lock_irqsave(&conf->device_lock, flags);
2743                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2744                         while (!list_empty(&conf->bio_end_io_list)) {
2745                                 list_move(conf->bio_end_io_list.prev, &tmp);
2746                                 conf->nr_queued--;
2747                         }
2748                 }
2749                 spin_unlock_irqrestore(&conf->device_lock, flags);
2750                 while (!list_empty(&tmp)) {
2751                         r10_bio = list_first_entry(&tmp, struct r10bio,
2752                                                    retry_list);
2753                         list_del(&r10_bio->retry_list);
2754                         if (mddev->degraded)
2755                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2756
2757                         if (test_bit(R10BIO_WriteError,
2758                                      &r10_bio->state))
2759                                 close_write(r10_bio);
2760                         raid_end_bio_io(r10_bio);
2761                 }
2762         }
2763
2764         blk_start_plug(&plug);
2765         for (;;) {
2766
2767                 flush_pending_writes(conf);
2768
2769                 spin_lock_irqsave(&conf->device_lock, flags);
2770                 if (list_empty(head)) {
2771                         spin_unlock_irqrestore(&conf->device_lock, flags);
2772                         break;
2773                 }
2774                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2775                 list_del(head->prev);
2776                 conf->nr_queued--;
2777                 spin_unlock_irqrestore(&conf->device_lock, flags);
2778
2779                 mddev = r10_bio->mddev;
2780                 conf = mddev->private;
2781                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2782                     test_bit(R10BIO_WriteError, &r10_bio->state))
2783                         handle_write_completed(conf, r10_bio);
2784                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2785                         reshape_request_write(mddev, r10_bio);
2786                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2787                         sync_request_write(mddev, r10_bio);
2788                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2789                         recovery_request_write(mddev, r10_bio);
2790                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2791                         handle_read_error(mddev, r10_bio);
2792                 else {
2793                         /* just a partial read to be scheduled from a
2794                          * separate context
2795                          */
2796                         int slot = r10_bio->read_slot;
2797                         generic_make_request(r10_bio->devs[slot].bio);
2798                 }
2799
2800                 cond_resched();
2801                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2802                         md_check_recovery(mddev);
2803         }
2804         blk_finish_plug(&plug);
2805 }
2806
2807 static int init_resync(struct r10conf *conf)
2808 {
2809         int buffs;
2810         int i;
2811
2812         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2813         BUG_ON(conf->r10buf_pool);
2814         conf->have_replacement = 0;
2815         for (i = 0; i < conf->geo.raid_disks; i++)
2816                 if (conf->mirrors[i].replacement)
2817                         conf->have_replacement = 1;
2818         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2819         if (!conf->r10buf_pool)
2820                 return -ENOMEM;
2821         conf->next_resync = 0;
2822         return 0;
2823 }
2824
2825 /*
2826  * perform a "sync" on one "block"
2827  *
2828  * We need to make sure that no normal I/O request - particularly write
2829  * requests - conflict with active sync requests.
2830  *
2831  * This is achieved by tracking pending requests and a 'barrier' concept
2832  * that can be installed to exclude normal IO requests.
2833  *
2834  * Resync and recovery are handled very differently.
2835  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2836  *
2837  * For resync, we iterate over virtual addresses, read all copies,
2838  * and update if there are differences.  If only one copy is live,
2839  * skip it.
2840  * For recovery, we iterate over physical addresses, read a good
2841  * value for each non-in_sync drive, and over-write.
2842  *
2843  * So, for recovery we may have several outstanding complex requests for a
2844  * given address, one for each out-of-sync device.  We model this by allocating
2845  * a number of r10_bio structures, one for each out-of-sync device.
2846  * As we setup these structures, we collect all bio's together into a list
2847  * which we then process collectively to add pages, and then process again
2848  * to pass to generic_make_request.
2849  *
2850  * The r10_bio structures are linked using a borrowed master_bio pointer.
2851  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2852  * has its remaining count decremented to 0, the whole complex operation
2853  * is complete.
2854  *
2855  */
2856
2857 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2858                              int *skipped)
2859 {
2860         struct r10conf *conf = mddev->private;
2861         struct r10bio *r10_bio;
2862         struct bio *biolist = NULL, *bio;
2863         sector_t max_sector, nr_sectors;
2864         int i;
2865         int max_sync;
2866         sector_t sync_blocks;
2867         sector_t sectors_skipped = 0;
2868         int chunks_skipped = 0;
2869         sector_t chunk_mask = conf->geo.chunk_mask;
2870
2871         if (!conf->r10buf_pool)
2872                 if (init_resync(conf))
2873                         return 0;
2874
2875         /*
2876          * Allow skipping a full rebuild for incremental assembly
2877          * of a clean array, like RAID1 does.
2878          */
2879         if (mddev->bitmap == NULL &&
2880             mddev->recovery_cp == MaxSector &&
2881             mddev->reshape_position == MaxSector &&
2882             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2883             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2884             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2885             conf->fullsync == 0) {
2886                 *skipped = 1;
2887                 return mddev->dev_sectors - sector_nr;
2888         }
2889
2890  skipped:
2891         max_sector = mddev->dev_sectors;
2892         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2893             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2894                 max_sector = mddev->resync_max_sectors;
2895         if (sector_nr >= max_sector) {
2896                 /* If we aborted, we need to abort the
2897                  * sync on the 'current' bitmap chucks (there can
2898                  * be several when recovering multiple devices).
2899                  * as we may have started syncing it but not finished.
2900                  * We can find the current address in
2901                  * mddev->curr_resync, but for recovery,
2902                  * we need to convert that to several
2903                  * virtual addresses.
2904                  */
2905                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2906                         end_reshape(conf);
2907                         close_sync(conf);
2908                         return 0;
2909                 }
2910
2911                 if (mddev->curr_resync < max_sector) { /* aborted */
2912                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2913                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2914                                                 &sync_blocks, 1);
2915                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2916                                 sector_t sect =
2917                                         raid10_find_virt(conf, mddev->curr_resync, i);
2918                                 bitmap_end_sync(mddev->bitmap, sect,
2919                                                 &sync_blocks, 1);
2920                         }
2921                 } else {
2922                         /* completed sync */
2923                         if ((!mddev->bitmap || conf->fullsync)
2924                             && conf->have_replacement
2925                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2926                                 /* Completed a full sync so the replacements
2927                                  * are now fully recovered.
2928                                  */
2929                                 rcu_read_lock();
2930                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2931                                         struct md_rdev *rdev =
2932                                                 rcu_dereference(conf->mirrors[i].replacement);
2933                                         if (rdev)
2934                                                 rdev->recovery_offset = MaxSector;
2935                                 }
2936                                 rcu_read_unlock();
2937                         }
2938                         conf->fullsync = 0;
2939                 }
2940                 bitmap_close_sync(mddev->bitmap);
2941                 close_sync(conf);
2942                 *skipped = 1;
2943                 return sectors_skipped;
2944         }
2945
2946         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2947                 return reshape_request(mddev, sector_nr, skipped);
2948
2949         if (chunks_skipped >= conf->geo.raid_disks) {
2950                 /* if there has been nothing to do on any drive,
2951                  * then there is nothing to do at all..
2952                  */
2953                 *skipped = 1;
2954                 return (max_sector - sector_nr) + sectors_skipped;
2955         }
2956
2957         if (max_sector > mddev->resync_max)
2958                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2959
2960         /* make sure whole request will fit in a chunk - if chunks
2961          * are meaningful
2962          */
2963         if (conf->geo.near_copies < conf->geo.raid_disks &&
2964             max_sector > (sector_nr | chunk_mask))
2965                 max_sector = (sector_nr | chunk_mask) + 1;
2966
2967         /*
2968          * If there is non-resync activity waiting for a turn, then let it
2969          * though before starting on this new sync request.
2970          */
2971         if (conf->nr_waiting)
2972                 schedule_timeout_uninterruptible(1);
2973
2974         /* Again, very different code for resync and recovery.
2975          * Both must result in an r10bio with a list of bios that
2976          * have bi_end_io, bi_sector, bi_bdev set,
2977          * and bi_private set to the r10bio.
2978          * For recovery, we may actually create several r10bios
2979          * with 2 bios in each, that correspond to the bios in the main one.
2980          * In this case, the subordinate r10bios link back through a
2981          * borrowed master_bio pointer, and the counter in the master
2982          * includes a ref from each subordinate.
2983          */
2984         /* First, we decide what to do and set ->bi_end_io
2985          * To end_sync_read if we want to read, and
2986          * end_sync_write if we will want to write.
2987          */
2988
2989         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2990         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2991                 /* recovery... the complicated one */
2992                 int j;
2993                 r10_bio = NULL;
2994
2995                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2996                         int still_degraded;
2997                         struct r10bio *rb2;
2998                         sector_t sect;
2999                         int must_sync;
3000                         int any_working;
3001                         struct raid10_info *mirror = &conf->mirrors[i];
3002                         struct md_rdev *mrdev, *mreplace;
3003
3004                         rcu_read_lock();
3005                         mrdev = rcu_dereference(mirror->rdev);
3006                         mreplace = rcu_dereference(mirror->replacement);
3007
3008                         if ((mrdev == NULL ||
3009                              test_bit(Faulty, &mrdev->flags) ||
3010                              test_bit(In_sync, &mrdev->flags)) &&
3011                             (mreplace == NULL ||
3012                              test_bit(Faulty, &mreplace->flags))) {
3013                                 rcu_read_unlock();
3014                                 continue;
3015                         }
3016
3017                         still_degraded = 0;
3018                         /* want to reconstruct this device */
3019                         rb2 = r10_bio;
3020                         sect = raid10_find_virt(conf, sector_nr, i);
3021                         if (sect >= mddev->resync_max_sectors) {
3022                                 /* last stripe is not complete - don't
3023                                  * try to recover this sector.
3024                                  */
3025                                 rcu_read_unlock();
3026                                 continue;
3027                         }
3028                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3029                                 mreplace = NULL;
3030                         /* Unless we are doing a full sync, or a replacement
3031                          * we only need to recover the block if it is set in
3032                          * the bitmap
3033                          */
3034                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035                                                       &sync_blocks, 1);
3036                         if (sync_blocks < max_sync)
3037                                 max_sync = sync_blocks;
3038                         if (!must_sync &&
3039                             mreplace == NULL &&
3040                             !conf->fullsync) {
3041                                 /* yep, skip the sync_blocks here, but don't assume
3042                                  * that there will never be anything to do here
3043                                  */
3044                                 chunks_skipped = -1;
3045                                 rcu_read_unlock();
3046                                 continue;
3047                         }
3048                         atomic_inc(&mrdev->nr_pending);
3049                         if (mreplace)
3050                                 atomic_inc(&mreplace->nr_pending);
3051                         rcu_read_unlock();
3052
3053                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3054                         r10_bio->state = 0;
3055                         raise_barrier(conf, rb2 != NULL);
3056                         atomic_set(&r10_bio->remaining, 0);
3057
3058                         r10_bio->master_bio = (struct bio*)rb2;
3059                         if (rb2)
3060                                 atomic_inc(&rb2->remaining);
3061                         r10_bio->mddev = mddev;
3062                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3063                         r10_bio->sector = sect;
3064
3065                         raid10_find_phys(conf, r10_bio);
3066
3067                         /* Need to check if the array will still be
3068                          * degraded
3069                          */
3070                         rcu_read_lock();
3071                         for (j = 0; j < conf->geo.raid_disks; j++) {
3072                                 struct md_rdev *rdev = rcu_dereference(
3073                                         conf->mirrors[j].rdev);
3074                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3075                                         still_degraded = 1;
3076                                         break;
3077                                 }
3078                         }
3079
3080                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3081                                                       &sync_blocks, still_degraded);
3082
3083                         any_working = 0;
3084                         for (j=0; j<conf->copies;j++) {
3085                                 int k;
3086                                 int d = r10_bio->devs[j].devnum;
3087                                 sector_t from_addr, to_addr;
3088                                 struct md_rdev *rdev =
3089                                         rcu_dereference(conf->mirrors[d].rdev);
3090                                 sector_t sector, first_bad;
3091                                 int bad_sectors;
3092                                 if (!rdev ||
3093                                     !test_bit(In_sync, &rdev->flags))
3094                                         continue;
3095                                 /* This is where we read from */
3096                                 any_working = 1;
3097                                 sector = r10_bio->devs[j].addr;
3098
3099                                 if (is_badblock(rdev, sector, max_sync,
3100                                                 &first_bad, &bad_sectors)) {
3101                                         if (first_bad > sector)
3102                                                 max_sync = first_bad - sector;
3103                                         else {
3104                                                 bad_sectors -= (sector
3105                                                                 - first_bad);
3106                                                 if (max_sync > bad_sectors)
3107                                                         max_sync = bad_sectors;
3108                                                 continue;
3109                                         }
3110                                 }
3111                                 bio = r10_bio->devs[0].bio;
3112                                 bio_reset(bio);
3113                                 bio->bi_next = biolist;
3114                                 biolist = bio;
3115                                 bio->bi_private = r10_bio;
3116                                 bio->bi_end_io = end_sync_read;
3117                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3118                                 from_addr = r10_bio->devs[j].addr;
3119                                 bio->bi_iter.bi_sector = from_addr +
3120                                         rdev->data_offset;
3121                                 bio->bi_bdev = rdev->bdev;
3122                                 atomic_inc(&rdev->nr_pending);
3123                                 /* and we write to 'i' (if not in_sync) */
3124
3125                                 for (k=0; k<conf->copies; k++)
3126                                         if (r10_bio->devs[k].devnum == i)
3127                                                 break;
3128                                 BUG_ON(k == conf->copies);
3129                                 to_addr = r10_bio->devs[k].addr;
3130                                 r10_bio->devs[0].devnum = d;
3131                                 r10_bio->devs[0].addr = from_addr;
3132                                 r10_bio->devs[1].devnum = i;
3133                                 r10_bio->devs[1].addr = to_addr;
3134
3135                                 if (!test_bit(In_sync, &mrdev->flags)) {
3136                                         bio = r10_bio->devs[1].bio;
3137                                         bio_reset(bio);
3138                                         bio->bi_next = biolist;
3139                                         biolist = bio;
3140                                         bio->bi_private = r10_bio;
3141                                         bio->bi_end_io = end_sync_write;
3142                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3143                                         bio->bi_iter.bi_sector = to_addr
3144                                                 + mrdev->data_offset;
3145                                         bio->bi_bdev = mrdev->bdev;
3146                                         atomic_inc(&r10_bio->remaining);
3147                                 } else
3148                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3149
3150                                 /* and maybe write to replacement */
3151                                 bio = r10_bio->devs[1].repl_bio;
3152                                 if (bio)
3153                                         bio->bi_end_io = NULL;
3154                                 /* Note: if mreplace != NULL, then bio
3155                                  * cannot be NULL as r10buf_pool_alloc will
3156                                  * have allocated it.
3157                                  * So the second test here is pointless.
3158                                  * But it keeps semantic-checkers happy, and
3159                                  * this comment keeps human reviewers
3160                                  * happy.
3161                                  */
3162                                 if (mreplace == NULL || bio == NULL ||
3163                                     test_bit(Faulty, &mreplace->flags))
3164                                         break;
3165                                 bio_reset(bio);
3166                                 bio->bi_next = biolist;
3167                                 biolist = bio;
3168                                 bio->bi_private = r10_bio;
3169                                 bio->bi_end_io = end_sync_write;
3170                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3171                                 bio->bi_iter.bi_sector = to_addr +
3172                                         mreplace->data_offset;
3173                                 bio->bi_bdev = mreplace->bdev;
3174                                 atomic_inc(&r10_bio->remaining);
3175                                 break;
3176                         }
3177                         rcu_read_unlock();
3178                         if (j == conf->copies) {
3179                                 /* Cannot recover, so abort the recovery or
3180                                  * record a bad block */
3181                                 if (any_working) {
3182                                         /* problem is that there are bad blocks
3183                                          * on other device(s)
3184                                          */
3185                                         int k;
3186                                         for (k = 0; k < conf->copies; k++)
3187                                                 if (r10_bio->devs[k].devnum == i)
3188                                                         break;
3189                                         if (!test_bit(In_sync,
3190                                                       &mrdev->flags)
3191                                             && !rdev_set_badblocks(
3192                                                     mrdev,
3193                                                     r10_bio->devs[k].addr,
3194                                                     max_sync, 0))
3195                                                 any_working = 0;
3196                                         if (mreplace &&
3197                                             !rdev_set_badblocks(
3198                                                     mreplace,
3199                                                     r10_bio->devs[k].addr,
3200                                                     max_sync, 0))
3201                                                 any_working = 0;
3202                                 }
3203                                 if (!any_working)  {
3204                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3205                                                               &mddev->recovery))
3206                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3207                                                        "working devices for recovery.\n",
3208                                                        mdname(mddev));
3209                                         mirror->recovery_disabled
3210                                                 = mddev->recovery_disabled;
3211                                 }
3212                                 put_buf(r10_bio);
3213                                 if (rb2)
3214                                         atomic_dec(&rb2->remaining);
3215                                 r10_bio = rb2;
3216                                 rdev_dec_pending(mrdev, mddev);
3217                                 if (mreplace)
3218                                         rdev_dec_pending(mreplace, mddev);
3219                                 break;
3220                         }
3221                         rdev_dec_pending(mrdev, mddev);
3222                         if (mreplace)
3223                                 rdev_dec_pending(mreplace, mddev);
3224                 }
3225                 if (biolist == NULL) {
3226                         while (r10_bio) {
3227                                 struct r10bio *rb2 = r10_bio;
3228                                 r10_bio = (struct r10bio*) rb2->master_bio;
3229                                 rb2->master_bio = NULL;
3230                                 put_buf(rb2);
3231                         }
3232                         goto giveup;
3233                 }
3234         } else {
3235                 /* resync. Schedule a read for every block at this virt offset */
3236                 int count = 0;
3237
3238                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3239
3240                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3241                                        &sync_blocks, mddev->degraded) &&
3242                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3243                                                  &mddev->recovery)) {
3244                         /* We can skip this block */
3245                         *skipped = 1;
3246                         return sync_blocks + sectors_skipped;
3247                 }
3248                 if (sync_blocks < max_sync)
3249                         max_sync = sync_blocks;
3250                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3251                 r10_bio->state = 0;
3252
3253                 r10_bio->mddev = mddev;
3254                 atomic_set(&r10_bio->remaining, 0);
3255                 raise_barrier(conf, 0);
3256                 conf->next_resync = sector_nr;
3257
3258                 r10_bio->master_bio = NULL;
3259                 r10_bio->sector = sector_nr;
3260                 set_bit(R10BIO_IsSync, &r10_bio->state);
3261                 raid10_find_phys(conf, r10_bio);
3262                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3263
3264                 for (i = 0; i < conf->copies; i++) {
3265                         int d = r10_bio->devs[i].devnum;
3266                         sector_t first_bad, sector;
3267                         int bad_sectors;
3268                         struct md_rdev *rdev;
3269
3270                         if (r10_bio->devs[i].repl_bio)
3271                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3272
3273                         bio = r10_bio->devs[i].bio;
3274                         bio_reset(bio);
3275                         bio->bi_error = -EIO;
3276                         rcu_read_lock();
3277                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3278                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3279                                 rcu_read_unlock();
3280                                 continue;
3281                         }
3282                         sector = r10_bio->devs[i].addr;
3283                         if (is_badblock(rdev, sector, max_sync,
3284                                         &first_bad, &bad_sectors)) {
3285                                 if (first_bad > sector)
3286                                         max_sync = first_bad - sector;
3287                                 else {
3288                                         bad_sectors -= (sector - first_bad);
3289                                         if (max_sync > bad_sectors)
3290                                                 max_sync = bad_sectors;
3291                                         rcu_read_unlock();
3292                                         continue;
3293                                 }
3294                         }
3295                         atomic_inc(&rdev->nr_pending);
3296                         atomic_inc(&r10_bio->remaining);
3297                         bio->bi_next = biolist;
3298                         biolist = bio;
3299                         bio->bi_private = r10_bio;
3300                         bio->bi_end_io = end_sync_read;
3301                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3302                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3303                         bio->bi_bdev = rdev->bdev;
3304                         count++;
3305
3306                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3307                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3308                                 rcu_read_unlock();
3309                                 continue;
3310                         }
3311                         atomic_inc(&rdev->nr_pending);
3312                         rcu_read_unlock();
3313
3314                         /* Need to set up for writing to the replacement */
3315                         bio = r10_bio->devs[i].repl_bio;
3316                         bio_reset(bio);
3317                         bio->bi_error = -EIO;
3318
3319                         sector = r10_bio->devs[i].addr;
3320                         bio->bi_next = biolist;
3321                         biolist = bio;
3322                         bio->bi_private = r10_bio;
3323                         bio->bi_end_io = end_sync_write;
3324                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3325                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3326                         bio->bi_bdev = rdev->bdev;
3327                         count++;
3328                 }
3329
3330                 if (count < 2) {
3331                         for (i=0; i<conf->copies; i++) {
3332                                 int d = r10_bio->devs[i].devnum;
3333                                 if (r10_bio->devs[i].bio->bi_end_io)
3334                                         rdev_dec_pending(conf->mirrors[d].rdev,
3335                                                          mddev);
3336                                 if (r10_bio->devs[i].repl_bio &&
3337                                     r10_bio->devs[i].repl_bio->bi_end_io)
3338                                         rdev_dec_pending(
3339                                                 conf->mirrors[d].replacement,
3340                                                 mddev);
3341                         }
3342                         put_buf(r10_bio);
3343                         biolist = NULL;
3344                         goto giveup;
3345                 }
3346         }
3347
3348         nr_sectors = 0;
3349         if (sector_nr + max_sync < max_sector)
3350                 max_sector = sector_nr + max_sync;
3351         do {
3352                 struct page *page;
3353                 int len = PAGE_SIZE;
3354                 if (sector_nr + (len>>9) > max_sector)
3355                         len = (max_sector - sector_nr) << 9;
3356                 if (len == 0)
3357                         break;
3358                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3359                         struct bio *bio2;
3360                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3361                         if (bio_add_page(bio, page, len, 0))
3362                                 continue;
3363
3364                         /* stop here */
3365                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3366                         for (bio2 = biolist;
3367                              bio2 && bio2 != bio;
3368                              bio2 = bio2->bi_next) {
3369                                 /* remove last page from this bio */
3370                                 bio2->bi_vcnt--;
3371                                 bio2->bi_iter.bi_size -= len;
3372                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3373                         }
3374                         goto bio_full;
3375                 }
3376                 nr_sectors += len>>9;
3377                 sector_nr += len>>9;
3378         } while (biolist->bi_vcnt < RESYNC_PAGES);
3379  bio_full:
3380         r10_bio->sectors = nr_sectors;
3381
3382         while (biolist) {
3383                 bio = biolist;
3384                 biolist = biolist->bi_next;
3385
3386                 bio->bi_next = NULL;
3387                 r10_bio = bio->bi_private;
3388                 r10_bio->sectors = nr_sectors;
3389
3390                 if (bio->bi_end_io == end_sync_read) {
3391                         md_sync_acct(bio->bi_bdev, nr_sectors);
3392                         bio->bi_error = 0;
3393                         generic_make_request(bio);
3394                 }
3395         }
3396
3397         if (sectors_skipped)
3398                 /* pretend they weren't skipped, it makes
3399                  * no important difference in this case
3400                  */
3401                 md_done_sync(mddev, sectors_skipped, 1);
3402
3403         return sectors_skipped + nr_sectors;
3404  giveup:
3405         /* There is nowhere to write, so all non-sync
3406          * drives must be failed or in resync, all drives
3407          * have a bad block, so try the next chunk...
3408          */
3409         if (sector_nr + max_sync < max_sector)
3410                 max_sector = sector_nr + max_sync;
3411
3412         sectors_skipped += (max_sector - sector_nr);
3413         chunks_skipped ++;
3414         sector_nr = max_sector;
3415         goto skipped;
3416 }
3417
3418 static sector_t
3419 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3420 {
3421         sector_t size;
3422         struct r10conf *conf = mddev->private;
3423
3424         if (!raid_disks)
3425                 raid_disks = min(conf->geo.raid_disks,
3426                                  conf->prev.raid_disks);
3427         if (!sectors)
3428                 sectors = conf->dev_sectors;
3429
3430         size = sectors >> conf->geo.chunk_shift;
3431         sector_div(size, conf->geo.far_copies);
3432         size = size * raid_disks;
3433         sector_div(size, conf->geo.near_copies);
3434
3435         return size << conf->geo.chunk_shift;
3436 }
3437
3438 static void calc_sectors(struct r10conf *conf, sector_t size)
3439 {
3440         /* Calculate the number of sectors-per-device that will
3441          * actually be used, and set conf->dev_sectors and
3442          * conf->stride
3443          */
3444
3445         size = size >> conf->geo.chunk_shift;
3446         sector_div(size, conf->geo.far_copies);
3447         size = size * conf->geo.raid_disks;
3448         sector_div(size, conf->geo.near_copies);
3449         /* 'size' is now the number of chunks in the array */
3450         /* calculate "used chunks per device" */
3451         size = size * conf->copies;
3452
3453         /* We need to round up when dividing by raid_disks to
3454          * get the stride size.
3455          */
3456         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3457
3458         conf->dev_sectors = size << conf->geo.chunk_shift;
3459
3460         if (conf->geo.far_offset)
3461                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3462         else {
3463                 sector_div(size, conf->geo.far_copies);
3464                 conf->geo.stride = size << conf->geo.chunk_shift;
3465         }
3466 }
3467
3468 enum geo_type {geo_new, geo_old, geo_start};
3469 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3470 {
3471         int nc, fc, fo;
3472         int layout, chunk, disks;
3473         switch (new) {
3474         case geo_old:
3475                 layout = mddev->layout;
3476                 chunk = mddev->chunk_sectors;
3477                 disks = mddev->raid_disks - mddev->delta_disks;
3478                 break;
3479         case geo_new:
3480                 layout = mddev->new_layout;
3481                 chunk = mddev->new_chunk_sectors;
3482                 disks = mddev->raid_disks;
3483                 break;
3484         default: /* avoid 'may be unused' warnings */
3485         case geo_start: /* new when starting reshape - raid_disks not
3486                          * updated yet. */
3487                 layout = mddev->new_layout;
3488                 chunk = mddev->new_chunk_sectors;
3489                 disks = mddev->raid_disks + mddev->delta_disks;
3490                 break;
3491         }
3492         if (layout >> 19)
3493                 return -1;
3494         if (chunk < (PAGE_SIZE >> 9) ||
3495             !is_power_of_2(chunk))
3496                 return -2;
3497         nc = layout & 255;
3498         fc = (layout >> 8) & 255;
3499         fo = layout & (1<<16);
3500         geo->raid_disks = disks;
3501         geo->near_copies = nc;
3502         geo->far_copies = fc;
3503         geo->far_offset = fo;
3504         switch (layout >> 17) {
3505         case 0: /* original layout.  simple but not always optimal */
3506                 geo->far_set_size = disks;
3507                 break;
3508         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3509                  * actually using this, but leave code here just in case.*/
3510                 geo->far_set_size = disks/fc;
3511                 WARN(geo->far_set_size < fc,
3512                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3513                 break;
3514         case 2: /* "improved" layout fixed to match documentation */
3515                 geo->far_set_size = fc * nc;
3516                 break;
3517         default: /* Not a valid layout */
3518                 return -1;
3519         }
3520         geo->chunk_mask = chunk - 1;
3521         geo->chunk_shift = ffz(~chunk);
3522         return nc*fc;
3523 }
3524
3525 static struct r10conf *setup_conf(struct mddev *mddev)
3526 {
3527         struct r10conf *conf = NULL;
3528         int err = -EINVAL;
3529         struct geom geo;
3530         int copies;
3531
3532         copies = setup_geo(&geo, mddev, geo_new);
3533
3534         if (copies == -2) {
3535                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3536                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3537                        mdname(mddev), PAGE_SIZE);
3538                 goto out;
3539         }
3540
3541         if (copies < 2 || copies > mddev->raid_disks) {
3542                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3543                        mdname(mddev), mddev->new_layout);
3544                 goto out;
3545         }
3546
3547         err = -ENOMEM;
3548         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3549         if (!conf)
3550                 goto out;
3551
3552         /* FIXME calc properly */
3553         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3554                                                             max(0,-mddev->delta_disks)),
3555                                 GFP_KERNEL);
3556         if (!conf->mirrors)
3557                 goto out;
3558
3559         conf->tmppage = alloc_page(GFP_KERNEL);
3560         if (!conf->tmppage)
3561                 goto out;
3562
3563         conf->geo = geo;
3564         conf->copies = copies;
3565         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3566                                            r10bio_pool_free, conf);
3567         if (!conf->r10bio_pool)
3568                 goto out;
3569
3570         calc_sectors(conf, mddev->dev_sectors);
3571         if (mddev->reshape_position == MaxSector) {
3572                 conf->prev = conf->geo;
3573                 conf->reshape_progress = MaxSector;
3574         } else {
3575                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3576                         err = -EINVAL;
3577                         goto out;
3578                 }
3579                 conf->reshape_progress = mddev->reshape_position;
3580                 if (conf->prev.far_offset)
3581                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3582                 else
3583                         /* far_copies must be 1 */
3584                         conf->prev.stride = conf->dev_sectors;
3585         }
3586         conf->reshape_safe = conf->reshape_progress;
3587         spin_lock_init(&conf->device_lock);
3588         INIT_LIST_HEAD(&conf->retry_list);
3589         INIT_LIST_HEAD(&conf->bio_end_io_list);
3590
3591         spin_lock_init(&conf->resync_lock);
3592         init_waitqueue_head(&conf->wait_barrier);
3593         atomic_set(&conf->nr_pending, 0);
3594
3595         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3596         if (!conf->thread)
3597                 goto out;
3598
3599         conf->mddev = mddev;
3600         return conf;
3601
3602  out:
3603         if (err == -ENOMEM)
3604                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3605                        mdname(mddev));
3606         if (conf) {
3607                 mempool_destroy(conf->r10bio_pool);
3608                 kfree(conf->mirrors);
3609                 safe_put_page(conf->tmppage);
3610                 kfree(conf);
3611         }
3612         return ERR_PTR(err);
3613 }
3614
3615 static int raid10_run(struct mddev *mddev)
3616 {
3617         struct r10conf *conf;
3618         int i, disk_idx, chunk_size;
3619         struct raid10_info *disk;
3620         struct md_rdev *rdev;
3621         sector_t size;
3622         sector_t min_offset_diff = 0;
3623         int first = 1;
3624         bool discard_supported = false;
3625
3626         if (mddev->private == NULL) {
3627                 conf = setup_conf(mddev);
3628                 if (IS_ERR(conf))
3629                         return PTR_ERR(conf);
3630                 mddev->private = conf;
3631         }
3632         conf = mddev->private;
3633         if (!conf)
3634                 goto out;
3635
3636         mddev->thread = conf->thread;
3637         conf->thread = NULL;
3638
3639         chunk_size = mddev->chunk_sectors << 9;
3640         if (mddev->queue) {
3641                 blk_queue_max_discard_sectors(mddev->queue,
3642                                               mddev->chunk_sectors);
3643                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3644                 blk_queue_io_min(mddev->queue, chunk_size);
3645                 if (conf->geo.raid_disks % conf->geo.near_copies)
3646                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647                 else
3648                         blk_queue_io_opt(mddev->queue, chunk_size *
3649                                          (conf->geo.raid_disks / conf->geo.near_copies));
3650         }
3651
3652         rdev_for_each(rdev, mddev) {
3653                 long long diff;
3654                 struct request_queue *q;
3655
3656                 disk_idx = rdev->raid_disk;
3657                 if (disk_idx < 0)
3658                         continue;
3659                 if (disk_idx >= conf->geo.raid_disks &&
3660                     disk_idx >= conf->prev.raid_disks)
3661                         continue;
3662                 disk = conf->mirrors + disk_idx;
3663
3664                 if (test_bit(Replacement, &rdev->flags)) {
3665                         if (disk->replacement)
3666                                 goto out_free_conf;
3667                         disk->replacement = rdev;
3668                 } else {
3669                         if (disk->rdev)
3670                                 goto out_free_conf;
3671                         disk->rdev = rdev;
3672                 }
3673                 q = bdev_get_queue(rdev->bdev);
3674                 diff = (rdev->new_data_offset - rdev->data_offset);
3675                 if (!mddev->reshape_backwards)
3676                         diff = -diff;
3677                 if (diff < 0)
3678                         diff = 0;
3679                 if (first || diff < min_offset_diff)
3680                         min_offset_diff = diff;
3681
3682                 if (mddev->gendisk)
3683                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3684                                           rdev->data_offset << 9);
3685
3686                 disk->head_position = 0;
3687
3688                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3689                         discard_supported = true;
3690                 first = 0;
3691         }
3692
3693         if (mddev->queue) {
3694                 if (discard_supported)
3695                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3696                                                 mddev->queue);
3697                 else
3698                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3699                                                   mddev->queue);
3700         }
3701         /* need to check that every block has at least one working mirror */
3702         if (!enough(conf, -1)) {
3703                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3704                        mdname(mddev));
3705                 goto out_free_conf;
3706         }
3707
3708         if (conf->reshape_progress != MaxSector) {
3709                 /* must ensure that shape change is supported */
3710                 if (conf->geo.far_copies != 1 &&
3711                     conf->geo.far_offset == 0)
3712                         goto out_free_conf;
3713                 if (conf->prev.far_copies != 1 &&
3714                     conf->prev.far_offset == 0)
3715                         goto out_free_conf;
3716         }
3717
3718         mddev->degraded = 0;
3719         for (i = 0;
3720              i < conf->geo.raid_disks
3721                      || i < conf->prev.raid_disks;
3722              i++) {
3723
3724                 disk = conf->mirrors + i;
3725
3726                 if (!disk->rdev && disk->replacement) {
3727                         /* The replacement is all we have - use it */
3728                         disk->rdev = disk->replacement;
3729                         disk->replacement = NULL;
3730                         clear_bit(Replacement, &disk->rdev->flags);
3731                 }
3732
3733                 if (!disk->rdev ||
3734                     !test_bit(In_sync, &disk->rdev->flags)) {
3735                         disk->head_position = 0;
3736                         mddev->degraded++;
3737                         if (disk->rdev &&
3738                             disk->rdev->saved_raid_disk < 0)
3739                                 conf->fullsync = 1;
3740                 }
3741
3742                 if (disk->replacement &&
3743                     !test_bit(In_sync, &disk->replacement->flags) &&
3744                     disk->replacement->saved_raid_disk < 0) {
3745                         conf->fullsync = 1;
3746                 }
3747
3748                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3749         }
3750
3751         if (mddev->recovery_cp != MaxSector)
3752                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3753                        " -- starting background reconstruction\n",
3754                        mdname(mddev));
3755         printk(KERN_INFO
3756                 "md/raid10:%s: active with %d out of %d devices\n",
3757                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3758                 conf->geo.raid_disks);
3759         /*
3760          * Ok, everything is just fine now
3761          */
3762         mddev->dev_sectors = conf->dev_sectors;
3763         size = raid10_size(mddev, 0, 0);
3764         md_set_array_sectors(mddev, size);
3765         mddev->resync_max_sectors = size;
3766
3767         if (mddev->queue) {
3768                 int stripe = conf->geo.raid_disks *
3769                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3770
3771                 /* Calculate max read-ahead size.
3772                  * We need to readahead at least twice a whole stripe....
3773                  * maybe...
3774                  */
3775                 stripe /= conf->geo.near_copies;
3776                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3777                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3778         }
3779
3780         if (md_integrity_register(mddev))
3781                 goto out_free_conf;
3782
3783         if (conf->reshape_progress != MaxSector) {
3784                 unsigned long before_length, after_length;
3785
3786                 before_length = ((1 << conf->prev.chunk_shift) *
3787                                  conf->prev.far_copies);
3788                 after_length = ((1 << conf->geo.chunk_shift) *
3789                                 conf->geo.far_copies);
3790
3791                 if (max(before_length, after_length) > min_offset_diff) {
3792                         /* This cannot work */
3793                         printk("md/raid10: offset difference not enough to continue reshape\n");
3794                         goto out_free_conf;
3795                 }
3796                 conf->offset_diff = min_offset_diff;
3797
3798                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3799                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3800                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3801                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3802                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3803                                                         "reshape");
3804                 if (!mddev->sync_thread)
3805                         goto out_free_conf;
3806         }
3807
3808         return 0;
3809
3810 out_free_conf:
3811         md_unregister_thread(&mddev->thread);
3812         mempool_destroy(conf->r10bio_pool);
3813         safe_put_page(conf->tmppage);
3814         kfree(conf->mirrors);
3815         kfree(conf);
3816         mddev->private = NULL;
3817 out:
3818         return -EIO;
3819 }
3820
3821 static void raid10_free(struct mddev *mddev, void *priv)
3822 {
3823         struct r10conf *conf = priv;
3824
3825         mempool_destroy(conf->r10bio_pool);
3826         safe_put_page(conf->tmppage);
3827         kfree(conf->mirrors);
3828         kfree(conf->mirrors_old);
3829         kfree(conf->mirrors_new);
3830         kfree(conf);
3831 }
3832
3833 static void raid10_quiesce(struct mddev *mddev, int state)
3834 {
3835         struct r10conf *conf = mddev->private;
3836
3837         switch(state) {
3838         case 1:
3839                 raise_barrier(conf, 0);
3840                 break;
3841         case 0:
3842                 lower_barrier(conf);
3843                 break;
3844         }
3845 }
3846
3847 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3848 {
3849         /* Resize of 'far' arrays is not supported.
3850          * For 'near' and 'offset' arrays we can set the
3851          * number of sectors used to be an appropriate multiple
3852          * of the chunk size.
3853          * For 'offset', this is far_copies*chunksize.
3854          * For 'near' the multiplier is the LCM of
3855          * near_copies and raid_disks.
3856          * So if far_copies > 1 && !far_offset, fail.
3857          * Else find LCM(raid_disks, near_copy)*far_copies and
3858          * multiply by chunk_size.  Then round to this number.
3859          * This is mostly done by raid10_size()
3860          */
3861         struct r10conf *conf = mddev->private;
3862         sector_t oldsize, size;
3863
3864         if (mddev->reshape_position != MaxSector)
3865                 return -EBUSY;
3866
3867         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3868                 return -EINVAL;
3869
3870         oldsize = raid10_size(mddev, 0, 0);
3871         size = raid10_size(mddev, sectors, 0);
3872         if (mddev->external_size &&
3873             mddev->array_sectors > size)
3874                 return -EINVAL;
3875         if (mddev->bitmap) {
3876                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3877                 if (ret)
3878                         return ret;
3879         }
3880         md_set_array_sectors(mddev, size);
3881         if (mddev->queue) {
3882                 set_capacity(mddev->gendisk, mddev->array_sectors);
3883                 revalidate_disk(mddev->gendisk);
3884         }
3885         if (sectors > mddev->dev_sectors &&
3886             mddev->recovery_cp > oldsize) {
3887                 mddev->recovery_cp = oldsize;
3888                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3889         }
3890         calc_sectors(conf, sectors);
3891         mddev->dev_sectors = conf->dev_sectors;
3892         mddev->resync_max_sectors = size;
3893         return 0;
3894 }
3895
3896 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3897 {
3898         struct md_rdev *rdev;
3899         struct r10conf *conf;
3900
3901         if (mddev->degraded > 0) {
3902                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3903                        mdname(mddev));
3904                 return ERR_PTR(-EINVAL);
3905         }
3906         sector_div(size, devs);
3907
3908         /* Set new parameters */
3909         mddev->new_level = 10;
3910         /* new layout: far_copies = 1, near_copies = 2 */
3911         mddev->new_layout = (1<<8) + 2;
3912         mddev->new_chunk_sectors = mddev->chunk_sectors;
3913         mddev->delta_disks = mddev->raid_disks;
3914         mddev->raid_disks *= 2;
3915         /* make sure it will be not marked as dirty */
3916         mddev->recovery_cp = MaxSector;
3917         mddev->dev_sectors = size;
3918
3919         conf = setup_conf(mddev);
3920         if (!IS_ERR(conf)) {
3921                 rdev_for_each(rdev, mddev)
3922                         if (rdev->raid_disk >= 0) {
3923                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3924                                 rdev->sectors = size;
3925                         }
3926                 conf->barrier = 1;
3927         }
3928
3929         return conf;
3930 }
3931
3932 static void *raid10_takeover(struct mddev *mddev)
3933 {
3934         struct r0conf *raid0_conf;
3935
3936         /* raid10 can take over:
3937          *  raid0 - providing it has only two drives
3938          */
3939         if (mddev->level == 0) {
3940                 /* for raid0 takeover only one zone is supported */
3941                 raid0_conf = mddev->private;
3942                 if (raid0_conf->nr_strip_zones > 1) {
3943                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3944                                " with more than one zone.\n",
3945                                mdname(mddev));
3946                         return ERR_PTR(-EINVAL);
3947                 }
3948                 return raid10_takeover_raid0(mddev,
3949                         raid0_conf->strip_zone->zone_end,
3950                         raid0_conf->strip_zone->nb_dev);
3951         }
3952         return ERR_PTR(-EINVAL);
3953 }
3954
3955 static int raid10_check_reshape(struct mddev *mddev)
3956 {
3957         /* Called when there is a request to change
3958          * - layout (to ->new_layout)
3959          * - chunk size (to ->new_chunk_sectors)
3960          * - raid_disks (by delta_disks)
3961          * or when trying to restart a reshape that was ongoing.
3962          *
3963          * We need to validate the request and possibly allocate
3964          * space if that might be an issue later.
3965          *
3966          * Currently we reject any reshape of a 'far' mode array,
3967          * allow chunk size to change if new is generally acceptable,
3968          * allow raid_disks to increase, and allow
3969          * a switch between 'near' mode and 'offset' mode.
3970          */
3971         struct r10conf *conf = mddev->private;
3972         struct geom geo;
3973
3974         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3975                 return -EINVAL;
3976
3977         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3978                 /* mustn't change number of copies */
3979                 return -EINVAL;
3980         if (geo.far_copies > 1 && !geo.far_offset)
3981                 /* Cannot switch to 'far' mode */
3982                 return -EINVAL;
3983
3984         if (mddev->array_sectors & geo.chunk_mask)
3985                         /* not factor of array size */
3986                         return -EINVAL;
3987
3988         if (!enough(conf, -1))
3989                 return -EINVAL;
3990
3991         kfree(conf->mirrors_new);
3992         conf->mirrors_new = NULL;
3993         if (mddev->delta_disks > 0) {
3994                 /* allocate new 'mirrors' list */
3995                 conf->mirrors_new = kzalloc(
3996                         sizeof(struct raid10_info)
3997                         *(mddev->raid_disks +
3998                           mddev->delta_disks),
3999                         GFP_KERNEL);
4000                 if (!conf->mirrors_new)
4001                         return -ENOMEM;
4002         }
4003         return 0;
4004 }
4005
4006 /*
4007  * Need to check if array has failed when deciding whether to:
4008  *  - start an array
4009  *  - remove non-faulty devices
4010  *  - add a spare
4011  *  - allow a reshape
4012  * This determination is simple when no reshape is happening.
4013  * However if there is a reshape, we need to carefully check
4014  * both the before and after sections.
4015  * This is because some failed devices may only affect one
4016  * of the two sections, and some non-in_sync devices may
4017  * be insync in the section most affected by failed devices.
4018  */
4019 static int calc_degraded(struct r10conf *conf)
4020 {
4021         int degraded, degraded2;
4022         int i;
4023
4024         rcu_read_lock();
4025         degraded = 0;
4026         /* 'prev' section first */
4027         for (i = 0; i < conf->prev.raid_disks; i++) {
4028                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4029                 if (!rdev || test_bit(Faulty, &rdev->flags))
4030                         degraded++;
4031                 else if (!test_bit(In_sync, &rdev->flags))
4032                         /* When we can reduce the number of devices in
4033                          * an array, this might not contribute to
4034                          * 'degraded'.  It does now.
4035                          */
4036                         degraded++;
4037         }
4038         rcu_read_unlock();
4039         if (conf->geo.raid_disks == conf->prev.raid_disks)
4040                 return degraded;
4041         rcu_read_lock();
4042         degraded2 = 0;
4043         for (i = 0; i < conf->geo.raid_disks; i++) {
4044                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045                 if (!rdev || test_bit(Faulty, &rdev->flags))
4046                         degraded2++;
4047                 else if (!test_bit(In_sync, &rdev->flags)) {
4048                         /* If reshape is increasing the number of devices,
4049                          * this section has already been recovered, so
4050                          * it doesn't contribute to degraded.
4051                          * else it does.
4052                          */
4053                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4054                                 degraded2++;
4055                 }
4056         }
4057         rcu_read_unlock();
4058         if (degraded2 > degraded)
4059                 return degraded2;
4060         return degraded;
4061 }
4062
4063 static int raid10_start_reshape(struct mddev *mddev)
4064 {
4065         /* A 'reshape' has been requested. This commits
4066          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4067          * This also checks if there are enough spares and adds them
4068          * to the array.
4069          * We currently require enough spares to make the final
4070          * array non-degraded.  We also require that the difference
4071          * between old and new data_offset - on each device - is
4072          * enough that we never risk over-writing.
4073          */
4074
4075         unsigned long before_length, after_length;
4076         sector_t min_offset_diff = 0;
4077         int first = 1;
4078         struct geom new;
4079         struct r10conf *conf = mddev->private;
4080         struct md_rdev *rdev;
4081         int spares = 0;
4082         int ret;
4083
4084         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4085                 return -EBUSY;
4086
4087         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4088                 return -EINVAL;
4089
4090         before_length = ((1 << conf->prev.chunk_shift) *
4091                          conf->prev.far_copies);
4092         after_length = ((1 << conf->geo.chunk_shift) *
4093                         conf->geo.far_copies);
4094
4095         rdev_for_each(rdev, mddev) {
4096                 if (!test_bit(In_sync, &rdev->flags)
4097                     && !test_bit(Faulty, &rdev->flags))
4098                         spares++;
4099                 if (rdev->raid_disk >= 0) {
4100                         long long diff = (rdev->new_data_offset
4101                                           - rdev->data_offset);
4102                         if (!mddev->reshape_backwards)
4103                                 diff = -diff;
4104                         if (diff < 0)
4105                                 diff = 0;
4106                         if (first || diff < min_offset_diff)
4107                                 min_offset_diff = diff;
4108                         first = 0;
4109                 }
4110         }
4111
4112         if (max(before_length, after_length) > min_offset_diff)
4113                 return -EINVAL;
4114
4115         if (spares < mddev->delta_disks)
4116                 return -EINVAL;
4117
4118         conf->offset_diff = min_offset_diff;
4119         spin_lock_irq(&conf->device_lock);
4120         if (conf->mirrors_new) {
4121                 memcpy(conf->mirrors_new, conf->mirrors,
4122                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4123                 smp_mb();
4124                 kfree(conf->mirrors_old);
4125                 conf->mirrors_old = conf->mirrors;
4126                 conf->mirrors = conf->mirrors_new;
4127                 conf->mirrors_new = NULL;
4128         }
4129         setup_geo(&conf->geo, mddev, geo_start);
4130         smp_mb();
4131         if (mddev->reshape_backwards) {
4132                 sector_t size = raid10_size(mddev, 0, 0);
4133                 if (size < mddev->array_sectors) {
4134                         spin_unlock_irq(&conf->device_lock);
4135                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4136                                mdname(mddev));
4137                         return -EINVAL;
4138                 }
4139                 mddev->resync_max_sectors = size;
4140                 conf->reshape_progress = size;
4141         } else
4142                 conf->reshape_progress = 0;
4143         conf->reshape_safe = conf->reshape_progress;
4144         spin_unlock_irq(&conf->device_lock);
4145
4146         if (mddev->delta_disks && mddev->bitmap) {
4147                 ret = bitmap_resize(mddev->bitmap,
4148                                     raid10_size(mddev, 0,
4149                                                 conf->geo.raid_disks),
4150                                     0, 0);
4151                 if (ret)
4152                         goto abort;
4153         }
4154         if (mddev->delta_disks > 0) {
4155                 rdev_for_each(rdev, mddev)
4156                         if (rdev->raid_disk < 0 &&
4157                             !test_bit(Faulty, &rdev->flags)) {
4158                                 if (raid10_add_disk(mddev, rdev) == 0) {
4159                                         if (rdev->raid_disk >=
4160                                             conf->prev.raid_disks)
4161                                                 set_bit(In_sync, &rdev->flags);
4162                                         else
4163                                                 rdev->recovery_offset = 0;
4164
4165                                         if (sysfs_link_rdev(mddev, rdev))
4166                                                 /* Failure here  is OK */;
4167                                 }
4168                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4169                                    && !test_bit(Faulty, &rdev->flags)) {
4170                                 /* This is a spare that was manually added */
4171                                 set_bit(In_sync, &rdev->flags);
4172                         }
4173         }
4174         /* When a reshape changes the number of devices,
4175          * ->degraded is measured against the larger of the
4176          * pre and  post numbers.
4177          */
4178         spin_lock_irq(&conf->device_lock);
4179         mddev->degraded = calc_degraded(conf);
4180         spin_unlock_irq(&conf->device_lock);
4181         mddev->raid_disks = conf->geo.raid_disks;
4182         mddev->reshape_position = conf->reshape_progress;
4183         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184
4185         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4186         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4187         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4188         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4189         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4190
4191         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4192                                                 "reshape");
4193         if (!mddev->sync_thread) {
4194                 ret = -EAGAIN;
4195                 goto abort;
4196         }
4197         conf->reshape_checkpoint = jiffies;
4198         md_wakeup_thread(mddev->sync_thread);
4199         md_new_event(mddev);
4200         return 0;
4201
4202 abort:
4203         mddev->recovery = 0;
4204         spin_lock_irq(&conf->device_lock);
4205         conf->geo = conf->prev;
4206         mddev->raid_disks = conf->geo.raid_disks;
4207         rdev_for_each(rdev, mddev)
4208                 rdev->new_data_offset = rdev->data_offset;
4209         smp_wmb();
4210         conf->reshape_progress = MaxSector;
4211         conf->reshape_safe = MaxSector;
4212         mddev->reshape_position = MaxSector;
4213         spin_unlock_irq(&conf->device_lock);
4214         return ret;
4215 }
4216
4217 /* Calculate the last device-address that could contain
4218  * any block from the chunk that includes the array-address 's'
4219  * and report the next address.
4220  * i.e. the address returned will be chunk-aligned and after
4221  * any data that is in the chunk containing 's'.
4222  */
4223 static sector_t last_dev_address(sector_t s, struct geom *geo)
4224 {
4225         s = (s | geo->chunk_mask) + 1;
4226         s >>= geo->chunk_shift;
4227         s *= geo->near_copies;
4228         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4229         s *= geo->far_copies;
4230         s <<= geo->chunk_shift;
4231         return s;
4232 }
4233
4234 /* Calculate the first device-address that could contain
4235  * any block from the chunk that includes the array-address 's'.
4236  * This too will be the start of a chunk
4237  */
4238 static sector_t first_dev_address(sector_t s, struct geom *geo)
4239 {
4240         s >>= geo->chunk_shift;
4241         s *= geo->near_copies;
4242         sector_div(s, geo->raid_disks);
4243         s *= geo->far_copies;
4244         s <<= geo->chunk_shift;
4245         return s;
4246 }
4247
4248 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4249                                 int *skipped)
4250 {
4251         /* We simply copy at most one chunk (smallest of old and new)
4252          * at a time, possibly less if that exceeds RESYNC_PAGES,
4253          * or we hit a bad block or something.
4254          * This might mean we pause for normal IO in the middle of
4255          * a chunk, but that is not a problem as mddev->reshape_position
4256          * can record any location.
4257          *
4258          * If we will want to write to a location that isn't
4259          * yet recorded as 'safe' (i.e. in metadata on disk) then
4260          * we need to flush all reshape requests and update the metadata.
4261          *
4262          * When reshaping forwards (e.g. to more devices), we interpret
4263          * 'safe' as the earliest block which might not have been copied
4264          * down yet.  We divide this by previous stripe size and multiply
4265          * by previous stripe length to get lowest device offset that we
4266          * cannot write to yet.
4267          * We interpret 'sector_nr' as an address that we want to write to.
4268          * From this we use last_device_address() to find where we might
4269          * write to, and first_device_address on the  'safe' position.
4270          * If this 'next' write position is after the 'safe' position,
4271          * we must update the metadata to increase the 'safe' position.
4272          *
4273          * When reshaping backwards, we round in the opposite direction
4274          * and perform the reverse test:  next write position must not be
4275          * less than current safe position.
4276          *
4277          * In all this the minimum difference in data offsets
4278          * (conf->offset_diff - always positive) allows a bit of slack,
4279          * so next can be after 'safe', but not by more than offset_diff
4280          *
4281          * We need to prepare all the bios here before we start any IO
4282          * to ensure the size we choose is acceptable to all devices.
4283          * The means one for each copy for write-out and an extra one for
4284          * read-in.
4285          * We store the read-in bio in ->master_bio and the others in
4286          * ->devs[x].bio and ->devs[x].repl_bio.
4287          */
4288         struct r10conf *conf = mddev->private;
4289         struct r10bio *r10_bio;
4290         sector_t next, safe, last;
4291         int max_sectors;
4292         int nr_sectors;
4293         int s;
4294         struct md_rdev *rdev;
4295         int need_flush = 0;
4296         struct bio *blist;
4297         struct bio *bio, *read_bio;
4298         int sectors_done = 0;
4299
4300         if (sector_nr == 0) {
4301                 /* If restarting in the middle, skip the initial sectors */
4302                 if (mddev->reshape_backwards &&
4303                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4304                         sector_nr = (raid10_size(mddev, 0, 0)
4305                                      - conf->reshape_progress);
4306                 } else if (!mddev->reshape_backwards &&
4307                            conf->reshape_progress > 0)
4308                         sector_nr = conf->reshape_progress;
4309                 if (sector_nr) {
4310                         mddev->curr_resync_completed = sector_nr;
4311                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4312                         *skipped = 1;
4313                         return sector_nr;
4314                 }
4315         }
4316
4317         /* We don't use sector_nr to track where we are up to
4318          * as that doesn't work well for ->reshape_backwards.
4319          * So just use ->reshape_progress.
4320          */
4321         if (mddev->reshape_backwards) {
4322                 /* 'next' is the earliest device address that we might
4323                  * write to for this chunk in the new layout
4324                  */
4325                 next = first_dev_address(conf->reshape_progress - 1,
4326                                          &conf->geo);
4327
4328                 /* 'safe' is the last device address that we might read from
4329                  * in the old layout after a restart
4330                  */
4331                 safe = last_dev_address(conf->reshape_safe - 1,
4332                                         &conf->prev);
4333
4334                 if (next + conf->offset_diff < safe)
4335                         need_flush = 1;
4336
4337                 last = conf->reshape_progress - 1;
4338                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4339                                                & conf->prev.chunk_mask);
4340                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4341                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4342         } else {
4343                 /* 'next' is after the last device address that we
4344                  * might write to for this chunk in the new layout
4345                  */
4346                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4347
4348                 /* 'safe' is the earliest device address that we might
4349                  * read from in the old layout after a restart
4350                  */
4351                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4352
4353                 /* Need to update metadata if 'next' might be beyond 'safe'
4354                  * as that would possibly corrupt data
4355                  */
4356                 if (next > safe + conf->offset_diff)
4357                         need_flush = 1;
4358
4359                 sector_nr = conf->reshape_progress;
4360                 last  = sector_nr | (conf->geo.chunk_mask
4361                                      & conf->prev.chunk_mask);
4362
4363                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4364                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4365         }
4366
4367         if (need_flush ||
4368             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4369                 /* Need to update reshape_position in metadata */
4370                 wait_barrier(conf);
4371                 mddev->reshape_position = conf->reshape_progress;
4372                 if (mddev->reshape_backwards)
4373                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4374                                 - conf->reshape_progress;
4375                 else
4376                         mddev->curr_resync_completed = conf->reshape_progress;
4377                 conf->reshape_checkpoint = jiffies;
4378                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4379                 md_wakeup_thread(mddev->thread);
4380                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4381                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4382                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4383                         allow_barrier(conf);
4384                         return sectors_done;
4385                 }
4386                 conf->reshape_safe = mddev->reshape_position;
4387                 allow_barrier(conf);
4388         }
4389
4390         raise_barrier(conf, 0);
4391 read_more:
4392         /* Now schedule reads for blocks from sector_nr to last */
4393         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4394         r10_bio->state = 0;
4395         raise_barrier(conf, 1);
4396         atomic_set(&r10_bio->remaining, 0);
4397         r10_bio->mddev = mddev;
4398         r10_bio->sector = sector_nr;
4399         set_bit(R10BIO_IsReshape, &r10_bio->state);
4400         r10_bio->sectors = last - sector_nr + 1;
4401         rdev = read_balance(conf, r10_bio, &max_sectors);
4402         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4403
4404         if (!rdev) {
4405                 /* Cannot read from here, so need to record bad blocks
4406                  * on all the target devices.
4407                  */
4408                 // FIXME
4409                 mempool_free(r10_bio, conf->r10buf_pool);
4410                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4411                 return sectors_done;
4412         }
4413
4414         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4415
4416         read_bio->bi_bdev = rdev->bdev;
4417         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4418                                + rdev->data_offset);
4419         read_bio->bi_private = r10_bio;
4420         read_bio->bi_end_io = end_sync_read;
4421         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4422         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4423         read_bio->bi_error = 0;
4424         read_bio->bi_vcnt = 0;
4425         read_bio->bi_iter.bi_size = 0;
4426         r10_bio->master_bio = read_bio;
4427         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4428
4429         /* Now find the locations in the new layout */
4430         __raid10_find_phys(&conf->geo, r10_bio);
4431
4432         blist = read_bio;
4433         read_bio->bi_next = NULL;
4434
4435         rcu_read_lock();
4436         for (s = 0; s < conf->copies*2; s++) {
4437                 struct bio *b;
4438                 int d = r10_bio->devs[s/2].devnum;
4439                 struct md_rdev *rdev2;
4440                 if (s&1) {
4441                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4442                         b = r10_bio->devs[s/2].repl_bio;
4443                 } else {
4444                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4445                         b = r10_bio->devs[s/2].bio;
4446                 }
4447                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4448                         continue;
4449
4450                 bio_reset(b);
4451                 b->bi_bdev = rdev2->bdev;
4452                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4453                         rdev2->new_data_offset;
4454                 b->bi_private = r10_bio;
4455                 b->bi_end_io = end_reshape_write;
4456                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4457                 b->bi_next = blist;
4458                 blist = b;
4459         }
4460
4461         /* Now add as many pages as possible to all of these bios. */
4462
4463         nr_sectors = 0;
4464         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4465                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4466                 int len = (max_sectors - s) << 9;
4467                 if (len > PAGE_SIZE)
4468                         len = PAGE_SIZE;
4469                 for (bio = blist; bio ; bio = bio->bi_next) {
4470                         struct bio *bio2;
4471                         if (bio_add_page(bio, page, len, 0))
4472                                 continue;
4473
4474                         /* Didn't fit, must stop */
4475                         for (bio2 = blist;
4476                              bio2 && bio2 != bio;
4477                              bio2 = bio2->bi_next) {
4478                                 /* Remove last page from this bio */
4479                                 bio2->bi_vcnt--;
4480                                 bio2->bi_iter.bi_size -= len;
4481                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4482                         }
4483                         goto bio_full;
4484                 }
4485                 sector_nr += len >> 9;
4486                 nr_sectors += len >> 9;
4487         }
4488 bio_full:
4489         rcu_read_unlock();
4490         r10_bio->sectors = nr_sectors;
4491
4492         /* Now submit the read */
4493         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4494         atomic_inc(&r10_bio->remaining);
4495         read_bio->bi_next = NULL;
4496         generic_make_request(read_bio);
4497         sectors_done += nr_sectors;
4498         if (sector_nr <= last)
4499                 goto read_more;
4500
4501         lower_barrier(conf);
4502
4503         /* Now that we have done the whole section we can
4504          * update reshape_progress
4505          */
4506         if (mddev->reshape_backwards)
4507                 conf->reshape_progress -= sectors_done;
4508         else
4509                 conf->reshape_progress += sectors_done;
4510
4511         return sectors_done;
4512 }
4513
4514 static void end_reshape_request(struct r10bio *r10_bio);
4515 static int handle_reshape_read_error(struct mddev *mddev,
4516                                      struct r10bio *r10_bio);
4517 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4518 {
4519         /* Reshape read completed.  Hopefully we have a block
4520          * to write out.
4521          * If we got a read error then we do sync 1-page reads from
4522          * elsewhere until we find the data - or give up.
4523          */
4524         struct r10conf *conf = mddev->private;
4525         int s;
4526
4527         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4528                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4529                         /* Reshape has been aborted */
4530                         md_done_sync(mddev, r10_bio->sectors, 0);
4531                         return;
4532                 }
4533
4534         /* We definitely have the data in the pages, schedule the
4535          * writes.
4536          */
4537         atomic_set(&r10_bio->remaining, 1);
4538         for (s = 0; s < conf->copies*2; s++) {
4539                 struct bio *b;
4540                 int d = r10_bio->devs[s/2].devnum;
4541                 struct md_rdev *rdev;
4542                 rcu_read_lock();
4543                 if (s&1) {
4544                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4545                         b = r10_bio->devs[s/2].repl_bio;
4546                 } else {
4547                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4548                         b = r10_bio->devs[s/2].bio;
4549                 }
4550                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4551                         rcu_read_unlock();
4552                         continue;
4553                 }
4554                 atomic_inc(&rdev->nr_pending);
4555                 rcu_read_unlock();
4556                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4557                 atomic_inc(&r10_bio->remaining);
4558                 b->bi_next = NULL;
4559                 generic_make_request(b);
4560         }
4561         end_reshape_request(r10_bio);
4562 }
4563
4564 static void end_reshape(struct r10conf *conf)
4565 {
4566         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4567                 return;
4568
4569         spin_lock_irq(&conf->device_lock);
4570         conf->prev = conf->geo;
4571         md_finish_reshape(conf->mddev);
4572         smp_wmb();
4573         conf->reshape_progress = MaxSector;
4574         conf->reshape_safe = MaxSector;
4575         spin_unlock_irq(&conf->device_lock);
4576
4577         /* read-ahead size must cover two whole stripes, which is
4578          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4579          */
4580         if (conf->mddev->queue) {
4581                 int stripe = conf->geo.raid_disks *
4582                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4583                 stripe /= conf->geo.near_copies;
4584                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4585                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4586         }
4587         conf->fullsync = 0;
4588 }
4589
4590 static int handle_reshape_read_error(struct mddev *mddev,
4591                                      struct r10bio *r10_bio)
4592 {
4593         /* Use sync reads to get the blocks from somewhere else */
4594         int sectors = r10_bio->sectors;
4595         struct r10conf *conf = mddev->private;
4596         struct {
4597                 struct r10bio r10_bio;
4598                 struct r10dev devs[conf->copies];
4599         } on_stack;
4600         struct r10bio *r10b = &on_stack.r10_bio;
4601         int slot = 0;
4602         int idx = 0;
4603         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4604
4605         r10b->sector = r10_bio->sector;
4606         __raid10_find_phys(&conf->prev, r10b);
4607
4608         while (sectors) {
4609                 int s = sectors;
4610                 int success = 0;
4611                 int first_slot = slot;
4612
4613                 if (s > (PAGE_SIZE >> 9))
4614                         s = PAGE_SIZE >> 9;
4615
4616                 rcu_read_lock();
4617                 while (!success) {
4618                         int d = r10b->devs[slot].devnum;
4619                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4620                         sector_t addr;
4621                         if (rdev == NULL ||
4622                             test_bit(Faulty, &rdev->flags) ||
4623                             !test_bit(In_sync, &rdev->flags))
4624                                 goto failed;
4625
4626                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4627                         atomic_inc(&rdev->nr_pending);
4628                         rcu_read_unlock();
4629                         success = sync_page_io(rdev,
4630                                                addr,
4631                                                s << 9,
4632                                                bvec[idx].bv_page,
4633                                                REQ_OP_READ, 0, false);
4634                         rdev_dec_pending(rdev, mddev);
4635                         rcu_read_lock();
4636                         if (success)
4637                                 break;
4638                 failed:
4639                         slot++;
4640                         if (slot >= conf->copies)
4641                                 slot = 0;
4642                         if (slot == first_slot)
4643                                 break;
4644                 }
4645                 rcu_read_unlock();
4646                 if (!success) {
4647                         /* couldn't read this block, must give up */
4648                         set_bit(MD_RECOVERY_INTR,
4649                                 &mddev->recovery);
4650                         return -EIO;
4651                 }
4652                 sectors -= s;
4653                 idx++;
4654         }
4655         return 0;
4656 }
4657
4658 static void end_reshape_write(struct bio *bio)
4659 {
4660         struct r10bio *r10_bio = bio->bi_private;
4661         struct mddev *mddev = r10_bio->mddev;
4662         struct r10conf *conf = mddev->private;
4663         int d;
4664         int slot;
4665         int repl;
4666         struct md_rdev *rdev = NULL;
4667
4668         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4669         if (repl)
4670                 rdev = conf->mirrors[d].replacement;
4671         if (!rdev) {
4672                 smp_mb();
4673                 rdev = conf->mirrors[d].rdev;
4674         }
4675
4676         if (bio->bi_error) {
4677                 /* FIXME should record badblock */
4678                 md_error(mddev, rdev);
4679         }
4680
4681         rdev_dec_pending(rdev, mddev);
4682         end_reshape_request(r10_bio);
4683 }
4684
4685 static void end_reshape_request(struct r10bio *r10_bio)
4686 {
4687         if (!atomic_dec_and_test(&r10_bio->remaining))
4688                 return;
4689         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4690         bio_put(r10_bio->master_bio);
4691         put_buf(r10_bio);
4692 }
4693
4694 static void raid10_finish_reshape(struct mddev *mddev)
4695 {
4696         struct r10conf *conf = mddev->private;
4697
4698         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4699                 return;
4700
4701         if (mddev->delta_disks > 0) {
4702                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4703                         mddev->recovery_cp = mddev->resync_max_sectors;
4704                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4705                 }
4706                 mddev->resync_max_sectors = mddev->array_sectors;
4707         } else {
4708                 int d;
4709                 rcu_read_lock();
4710                 for (d = conf->geo.raid_disks ;
4711                      d < conf->geo.raid_disks - mddev->delta_disks;
4712                      d++) {
4713                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4714                         if (rdev)
4715                                 clear_bit(In_sync, &rdev->flags);
4716                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4717                         if (rdev)
4718                                 clear_bit(In_sync, &rdev->flags);
4719                 }
4720                 rcu_read_unlock();
4721         }
4722         mddev->layout = mddev->new_layout;
4723         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4724         mddev->reshape_position = MaxSector;
4725         mddev->delta_disks = 0;
4726         mddev->reshape_backwards = 0;
4727 }
4728
4729 static struct md_personality raid10_personality =
4730 {
4731         .name           = "raid10",
4732         .level          = 10,
4733         .owner          = THIS_MODULE,
4734         .make_request   = raid10_make_request,
4735         .run            = raid10_run,
4736         .free           = raid10_free,
4737         .status         = raid10_status,
4738         .error_handler  = raid10_error,
4739         .hot_add_disk   = raid10_add_disk,
4740         .hot_remove_disk= raid10_remove_disk,
4741         .spare_active   = raid10_spare_active,
4742         .sync_request   = raid10_sync_request,
4743         .quiesce        = raid10_quiesce,
4744         .size           = raid10_size,
4745         .resize         = raid10_resize,
4746         .takeover       = raid10_takeover,
4747         .check_reshape  = raid10_check_reshape,
4748         .start_reshape  = raid10_start_reshape,
4749         .finish_reshape = raid10_finish_reshape,
4750         .congested      = raid10_congested,
4751 };
4752
4753 static int __init raid_init(void)
4754 {
4755         return register_md_personality(&raid10_personality);
4756 }
4757
4758 static void raid_exit(void)
4759 {
4760         unregister_md_personality(&raid10_personality);
4761 }
4762
4763 module_init(raid_init);
4764 module_exit(raid_exit);
4765 MODULE_LICENSE("GPL");
4766 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4767 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4768 MODULE_ALIAS("md-raid10");
4769 MODULE_ALIAS("md-level-10");
4770
4771 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);