GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL) |           \
52          (1L << MD_HAS_MULTIPLE_PPLS))
53
54 /*
55  * Number of guaranteed r1bios in case of extreme VM load:
56  */
57 #define NR_RAID1_BIOS 256
58
59 /* when we get a read error on a read-only array, we redirect to another
60  * device without failing the first device, or trying to over-write to
61  * correct the read error.  To keep track of bad blocks on a per-bio
62  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63  */
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66  * bad-block marking which must be done from process context.  So we record
67  * the success by setting devs[n].bio to IO_MADE_GOOD
68  */
69 #define IO_MADE_GOOD ((struct bio *)2)
70
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72
73 /* When there are this many requests queue to be written by
74  * the raid1 thread, we become 'congested' to provide back-pressure
75  * for writeback.
76  */
77 static int max_queued_requests = 1024;
78
79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
81
82 #define raid1_log(md, fmt, args...)                             \
83         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
84
85 #include "raid1-10.c"
86
87 /*
88  * for resync bio, r1bio pointer can be retrieved from the per-bio
89  * 'struct resync_pages'.
90  */
91 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
92 {
93         return get_resync_pages(bio)->raid_bio;
94 }
95
96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
97 {
98         struct pool_info *pi = data;
99         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
100
101         /* allocate a r1bio with room for raid_disks entries in the bios array */
102         return kzalloc(size, gfp_flags);
103 }
104
105 static void r1bio_pool_free(void *r1_bio, void *data)
106 {
107         kfree(r1_bio);
108 }
109
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116
117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
118 {
119         struct pool_info *pi = data;
120         struct r1bio *r1_bio;
121         struct bio *bio;
122         int need_pages;
123         int j;
124         struct resync_pages *rps;
125
126         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
127         if (!r1_bio)
128                 return NULL;
129
130         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131                       gfp_flags);
132         if (!rps)
133                 goto out_free_r1bio;
134
135         /*
136          * Allocate bios : 1 for reading, n-1 for writing
137          */
138         for (j = pi->raid_disks ; j-- ; ) {
139                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
140                 if (!bio)
141                         goto out_free_bio;
142                 r1_bio->bios[j] = bio;
143         }
144         /*
145          * Allocate RESYNC_PAGES data pages and attach them to
146          * the first bio.
147          * If this is a user-requested check/repair, allocate
148          * RESYNC_PAGES for each bio.
149          */
150         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
151                 need_pages = pi->raid_disks;
152         else
153                 need_pages = 1;
154         for (j = 0; j < pi->raid_disks; j++) {
155                 struct resync_pages *rp = &rps[j];
156
157                 bio = r1_bio->bios[j];
158
159                 if (j < need_pages) {
160                         if (resync_alloc_pages(rp, gfp_flags))
161                                 goto out_free_pages;
162                 } else {
163                         memcpy(rp, &rps[0], sizeof(*rp));
164                         resync_get_all_pages(rp);
165                 }
166
167                 rp->raid_bio = r1_bio;
168                 bio->bi_private = rp;
169         }
170
171         r1_bio->master_bio = NULL;
172
173         return r1_bio;
174
175 out_free_pages:
176         while (--j >= 0)
177                 resync_free_pages(&rps[j]);
178
179 out_free_bio:
180         while (++j < pi->raid_disks)
181                 bio_put(r1_bio->bios[j]);
182         kfree(rps);
183
184 out_free_r1bio:
185         r1bio_pool_free(r1_bio, data);
186         return NULL;
187 }
188
189 static void r1buf_pool_free(void *__r1_bio, void *data)
190 {
191         struct pool_info *pi = data;
192         int i;
193         struct r1bio *r1bio = __r1_bio;
194         struct resync_pages *rp = NULL;
195
196         for (i = pi->raid_disks; i--; ) {
197                 rp = get_resync_pages(r1bio->bios[i]);
198                 resync_free_pages(rp);
199                 bio_put(r1bio->bios[i]);
200         }
201
202         /* resync pages array stored in the 1st bio's .bi_private */
203         kfree(rp);
204
205         r1bio_pool_free(r1bio, data);
206 }
207
208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
209 {
210         int i;
211
212         for (i = 0; i < conf->raid_disks * 2; i++) {
213                 struct bio **bio = r1_bio->bios + i;
214                 if (!BIO_SPECIAL(*bio))
215                         bio_put(*bio);
216                 *bio = NULL;
217         }
218 }
219
220 static void free_r1bio(struct r1bio *r1_bio)
221 {
222         struct r1conf *conf = r1_bio->mddev->private;
223
224         put_all_bios(conf, r1_bio);
225         mempool_free(r1_bio, conf->r1bio_pool);
226 }
227
228 static void put_buf(struct r1bio *r1_bio)
229 {
230         struct r1conf *conf = r1_bio->mddev->private;
231         sector_t sect = r1_bio->sector;
232         int i;
233
234         for (i = 0; i < conf->raid_disks * 2; i++) {
235                 struct bio *bio = r1_bio->bios[i];
236                 if (bio->bi_end_io)
237                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
238         }
239
240         mempool_free(r1_bio, conf->r1buf_pool);
241
242         lower_barrier(conf, sect);
243 }
244
245 static void reschedule_retry(struct r1bio *r1_bio)
246 {
247         unsigned long flags;
248         struct mddev *mddev = r1_bio->mddev;
249         struct r1conf *conf = mddev->private;
250         int idx;
251
252         idx = sector_to_idx(r1_bio->sector);
253         spin_lock_irqsave(&conf->device_lock, flags);
254         list_add(&r1_bio->retry_list, &conf->retry_list);
255         atomic_inc(&conf->nr_queued[idx]);
256         spin_unlock_irqrestore(&conf->device_lock, flags);
257
258         wake_up(&conf->wait_barrier);
259         md_wakeup_thread(mddev->thread);
260 }
261
262 /*
263  * raid_end_bio_io() is called when we have finished servicing a mirrored
264  * operation and are ready to return a success/failure code to the buffer
265  * cache layer.
266  */
267 static void call_bio_endio(struct r1bio *r1_bio)
268 {
269         struct bio *bio = r1_bio->master_bio;
270         struct r1conf *conf = r1_bio->mddev->private;
271
272         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
273                 bio->bi_status = BLK_STS_IOERR;
274
275         bio_endio(bio);
276         /*
277          * Wake up any possible resync thread that waits for the device
278          * to go idle.
279          */
280         allow_barrier(conf, r1_bio->sector);
281 }
282
283 static void raid_end_bio_io(struct r1bio *r1_bio)
284 {
285         struct bio *bio = r1_bio->master_bio;
286
287         /* if nobody has done the final endio yet, do it now */
288         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
289                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
291                          (unsigned long long) bio->bi_iter.bi_sector,
292                          (unsigned long long) bio_end_sector(bio) - 1);
293
294                 call_bio_endio(r1_bio);
295         }
296         free_r1bio(r1_bio);
297 }
298
299 /*
300  * Update disk head position estimator based on IRQ completion info.
301  */
302 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
303 {
304         struct r1conf *conf = r1_bio->mddev->private;
305
306         conf->mirrors[disk].head_position =
307                 r1_bio->sector + (r1_bio->sectors);
308 }
309
310 /*
311  * Find the disk number which triggered given bio
312  */
313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
314 {
315         int mirror;
316         struct r1conf *conf = r1_bio->mddev->private;
317         int raid_disks = conf->raid_disks;
318
319         for (mirror = 0; mirror < raid_disks * 2; mirror++)
320                 if (r1_bio->bios[mirror] == bio)
321                         break;
322
323         BUG_ON(mirror == raid_disks * 2);
324         update_head_pos(mirror, r1_bio);
325
326         return mirror;
327 }
328
329 static void raid1_end_read_request(struct bio *bio)
330 {
331         int uptodate = !bio->bi_status;
332         struct r1bio *r1_bio = bio->bi_private;
333         struct r1conf *conf = r1_bio->mddev->private;
334         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
335
336         /*
337          * this branch is our 'one mirror IO has finished' event handler:
338          */
339         update_head_pos(r1_bio->read_disk, r1_bio);
340
341         if (uptodate)
342                 set_bit(R1BIO_Uptodate, &r1_bio->state);
343         else if (test_bit(FailFast, &rdev->flags) &&
344                  test_bit(R1BIO_FailFast, &r1_bio->state))
345                 /* This was a fail-fast read so we definitely
346                  * want to retry */
347                 ;
348         else {
349                 /* If all other devices have failed, we want to return
350                  * the error upwards rather than fail the last device.
351                  * Here we redefine "uptodate" to mean "Don't want to retry"
352                  */
353                 unsigned long flags;
354                 spin_lock_irqsave(&conf->device_lock, flags);
355                 if (r1_bio->mddev->degraded == conf->raid_disks ||
356                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
357                      test_bit(In_sync, &rdev->flags)))
358                         uptodate = 1;
359                 spin_unlock_irqrestore(&conf->device_lock, flags);
360         }
361
362         if (uptodate) {
363                 raid_end_bio_io(r1_bio);
364                 rdev_dec_pending(rdev, conf->mddev);
365         } else {
366                 /*
367                  * oops, read error:
368                  */
369                 char b[BDEVNAME_SIZE];
370                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371                                    mdname(conf->mddev),
372                                    bdevname(rdev->bdev, b),
373                                    (unsigned long long)r1_bio->sector);
374                 set_bit(R1BIO_ReadError, &r1_bio->state);
375                 reschedule_retry(r1_bio);
376                 /* don't drop the reference on read_disk yet */
377         }
378 }
379
380 static void close_write(struct r1bio *r1_bio)
381 {
382         /* it really is the end of this request */
383         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                 bio_free_pages(r1_bio->behind_master_bio);
385                 bio_put(r1_bio->behind_master_bio);
386                 r1_bio->behind_master_bio = NULL;
387         }
388         /* clear the bitmap if all writes complete successfully */
389         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390                         r1_bio->sectors,
391                         !test_bit(R1BIO_Degraded, &r1_bio->state),
392                         test_bit(R1BIO_BehindIO, &r1_bio->state));
393         md_write_end(r1_bio->mddev);
394 }
395
396 static void r1_bio_write_done(struct r1bio *r1_bio)
397 {
398         if (!atomic_dec_and_test(&r1_bio->remaining))
399                 return;
400
401         if (test_bit(R1BIO_WriteError, &r1_bio->state))
402                 reschedule_retry(r1_bio);
403         else {
404                 close_write(r1_bio);
405                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406                         reschedule_retry(r1_bio);
407                 else
408                         raid_end_bio_io(r1_bio);
409         }
410 }
411
412 static void raid1_end_write_request(struct bio *bio)
413 {
414         struct r1bio *r1_bio = bio->bi_private;
415         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
416         struct r1conf *conf = r1_bio->mddev->private;
417         struct bio *to_put = NULL;
418         int mirror = find_bio_disk(r1_bio, bio);
419         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
420         bool discard_error;
421
422         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
423
424         /*
425          * 'one mirror IO has finished' event handler:
426          */
427         if (bio->bi_status && !discard_error) {
428                 set_bit(WriteErrorSeen, &rdev->flags);
429                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
430                         set_bit(MD_RECOVERY_NEEDED, &
431                                 conf->mddev->recovery);
432
433                 if (test_bit(FailFast, &rdev->flags) &&
434                     (bio->bi_opf & MD_FAILFAST) &&
435                     /* We never try FailFast to WriteMostly devices */
436                     !test_bit(WriteMostly, &rdev->flags)) {
437                         md_error(r1_bio->mddev, rdev);
438                 }
439
440                 /*
441                  * When the device is faulty, it is not necessary to
442                  * handle write error.
443                  * For failfast, this is the only remaining device,
444                  * We need to retry the write without FailFast.
445                  */
446                 if (!test_bit(Faulty, &rdev->flags))
447                         set_bit(R1BIO_WriteError, &r1_bio->state);
448                 else {
449                         /* Fail the request */
450                         set_bit(R1BIO_Degraded, &r1_bio->state);
451                         /* Finished with this branch */
452                         r1_bio->bios[mirror] = NULL;
453                         to_put = bio;
454                 }
455         } else {
456                 /*
457                  * Set R1BIO_Uptodate in our master bio, so that we
458                  * will return a good error code for to the higher
459                  * levels even if IO on some other mirrored buffer
460                  * fails.
461                  *
462                  * The 'master' represents the composite IO operation
463                  * to user-side. So if something waits for IO, then it
464                  * will wait for the 'master' bio.
465                  */
466                 sector_t first_bad;
467                 int bad_sectors;
468
469                 r1_bio->bios[mirror] = NULL;
470                 to_put = bio;
471                 /*
472                  * Do not set R1BIO_Uptodate if the current device is
473                  * rebuilding or Faulty. This is because we cannot use
474                  * such device for properly reading the data back (we could
475                  * potentially use it, if the current write would have felt
476                  * before rdev->recovery_offset, but for simplicity we don't
477                  * check this here.
478                  */
479                 if (test_bit(In_sync, &rdev->flags) &&
480                     !test_bit(Faulty, &rdev->flags))
481                         set_bit(R1BIO_Uptodate, &r1_bio->state);
482
483                 /* Maybe we can clear some bad blocks. */
484                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
485                                 &first_bad, &bad_sectors) && !discard_error) {
486                         r1_bio->bios[mirror] = IO_MADE_GOOD;
487                         set_bit(R1BIO_MadeGood, &r1_bio->state);
488                 }
489         }
490
491         if (behind) {
492                 if (test_bit(WriteMostly, &rdev->flags))
493                         atomic_dec(&r1_bio->behind_remaining);
494
495                 /*
496                  * In behind mode, we ACK the master bio once the I/O
497                  * has safely reached all non-writemostly
498                  * disks. Setting the Returned bit ensures that this
499                  * gets done only once -- we don't ever want to return
500                  * -EIO here, instead we'll wait
501                  */
502                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
503                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
504                         /* Maybe we can return now */
505                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
506                                 struct bio *mbio = r1_bio->master_bio;
507                                 pr_debug("raid1: behind end write sectors"
508                                          " %llu-%llu\n",
509                                          (unsigned long long) mbio->bi_iter.bi_sector,
510                                          (unsigned long long) bio_end_sector(mbio) - 1);
511                                 call_bio_endio(r1_bio);
512                         }
513                 }
514         }
515         if (r1_bio->bios[mirror] == NULL)
516                 rdev_dec_pending(rdev, conf->mddev);
517
518         /*
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         r1_bio_write_done(r1_bio);
523
524         if (to_put)
525                 bio_put(to_put);
526 }
527
528 static sector_t align_to_barrier_unit_end(sector_t start_sector,
529                                           sector_t sectors)
530 {
531         sector_t len;
532
533         WARN_ON(sectors == 0);
534         /*
535          * len is the number of sectors from start_sector to end of the
536          * barrier unit which start_sector belongs to.
537          */
538         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
539               start_sector;
540
541         if (len > sectors)
542                 len = sectors;
543
544         return len;
545 }
546
547 /*
548  * This routine returns the disk from which the requested read should
549  * be done. There is a per-array 'next expected sequential IO' sector
550  * number - if this matches on the next IO then we use the last disk.
551  * There is also a per-disk 'last know head position' sector that is
552  * maintained from IRQ contexts, both the normal and the resync IO
553  * completion handlers update this position correctly. If there is no
554  * perfect sequential match then we pick the disk whose head is closest.
555  *
556  * If there are 2 mirrors in the same 2 devices, performance degrades
557  * because position is mirror, not device based.
558  *
559  * The rdev for the device selected will have nr_pending incremented.
560  */
561 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
562 {
563         const sector_t this_sector = r1_bio->sector;
564         int sectors;
565         int best_good_sectors;
566         int best_disk, best_dist_disk, best_pending_disk;
567         int has_nonrot_disk;
568         int disk;
569         sector_t best_dist;
570         unsigned int min_pending;
571         struct md_rdev *rdev;
572         int choose_first;
573         int choose_next_idle;
574
575         rcu_read_lock();
576         /*
577          * Check if we can balance. We can balance on the whole
578          * device if no resync is going on, or below the resync window.
579          * We take the first readable disk when above the resync window.
580          */
581  retry:
582         sectors = r1_bio->sectors;
583         best_disk = -1;
584         best_dist_disk = -1;
585         best_dist = MaxSector;
586         best_pending_disk = -1;
587         min_pending = UINT_MAX;
588         best_good_sectors = 0;
589         has_nonrot_disk = 0;
590         choose_next_idle = 0;
591         clear_bit(R1BIO_FailFast, &r1_bio->state);
592
593         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
594             (mddev_is_clustered(conf->mddev) &&
595             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
596                     this_sector + sectors)))
597                 choose_first = 1;
598         else
599                 choose_first = 0;
600
601         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
602                 sector_t dist;
603                 sector_t first_bad;
604                 int bad_sectors;
605                 unsigned int pending;
606                 bool nonrot;
607
608                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
609                 if (r1_bio->bios[disk] == IO_BLOCKED
610                     || rdev == NULL
611                     || test_bit(Faulty, &rdev->flags))
612                         continue;
613                 if (!test_bit(In_sync, &rdev->flags) &&
614                     rdev->recovery_offset < this_sector + sectors)
615                         continue;
616                 if (test_bit(WriteMostly, &rdev->flags)) {
617                         /* Don't balance among write-mostly, just
618                          * use the first as a last resort */
619                         if (best_dist_disk < 0) {
620                                 if (is_badblock(rdev, this_sector, sectors,
621                                                 &first_bad, &bad_sectors)) {
622                                         if (first_bad <= this_sector)
623                                                 /* Cannot use this */
624                                                 continue;
625                                         best_good_sectors = first_bad - this_sector;
626                                 } else
627                                         best_good_sectors = sectors;
628                                 best_dist_disk = disk;
629                                 best_pending_disk = disk;
630                         }
631                         continue;
632                 }
633                 /* This is a reasonable device to use.  It might
634                  * even be best.
635                  */
636                 if (is_badblock(rdev, this_sector, sectors,
637                                 &first_bad, &bad_sectors)) {
638                         if (best_dist < MaxSector)
639                                 /* already have a better device */
640                                 continue;
641                         if (first_bad <= this_sector) {
642                                 /* cannot read here. If this is the 'primary'
643                                  * device, then we must not read beyond
644                                  * bad_sectors from another device..
645                                  */
646                                 bad_sectors -= (this_sector - first_bad);
647                                 if (choose_first && sectors > bad_sectors)
648                                         sectors = bad_sectors;
649                                 if (best_good_sectors > sectors)
650                                         best_good_sectors = sectors;
651
652                         } else {
653                                 sector_t good_sectors = first_bad - this_sector;
654                                 if (good_sectors > best_good_sectors) {
655                                         best_good_sectors = good_sectors;
656                                         best_disk = disk;
657                                 }
658                                 if (choose_first)
659                                         break;
660                         }
661                         continue;
662                 } else {
663                         if ((sectors > best_good_sectors) && (best_disk >= 0))
664                                 best_disk = -1;
665                         best_good_sectors = sectors;
666                 }
667
668                 if (best_disk >= 0)
669                         /* At least two disks to choose from so failfast is OK */
670                         set_bit(R1BIO_FailFast, &r1_bio->state);
671
672                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
673                 has_nonrot_disk |= nonrot;
674                 pending = atomic_read(&rdev->nr_pending);
675                 dist = abs(this_sector - conf->mirrors[disk].head_position);
676                 if (choose_first) {
677                         best_disk = disk;
678                         break;
679                 }
680                 /* Don't change to another disk for sequential reads */
681                 if (conf->mirrors[disk].next_seq_sect == this_sector
682                     || dist == 0) {
683                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
684                         struct raid1_info *mirror = &conf->mirrors[disk];
685
686                         best_disk = disk;
687                         /*
688                          * If buffered sequential IO size exceeds optimal
689                          * iosize, check if there is idle disk. If yes, choose
690                          * the idle disk. read_balance could already choose an
691                          * idle disk before noticing it's a sequential IO in
692                          * this disk. This doesn't matter because this disk
693                          * will idle, next time it will be utilized after the
694                          * first disk has IO size exceeds optimal iosize. In
695                          * this way, iosize of the first disk will be optimal
696                          * iosize at least. iosize of the second disk might be
697                          * small, but not a big deal since when the second disk
698                          * starts IO, the first disk is likely still busy.
699                          */
700                         if (nonrot && opt_iosize > 0 &&
701                             mirror->seq_start != MaxSector &&
702                             mirror->next_seq_sect > opt_iosize &&
703                             mirror->next_seq_sect - opt_iosize >=
704                             mirror->seq_start) {
705                                 choose_next_idle = 1;
706                                 continue;
707                         }
708                         break;
709                 }
710
711                 if (choose_next_idle)
712                         continue;
713
714                 if (min_pending > pending) {
715                         min_pending = pending;
716                         best_pending_disk = disk;
717                 }
718
719                 if (dist < best_dist) {
720                         best_dist = dist;
721                         best_dist_disk = disk;
722                 }
723         }
724
725         /*
726          * If all disks are rotational, choose the closest disk. If any disk is
727          * non-rotational, choose the disk with less pending request even the
728          * disk is rotational, which might/might not be optimal for raids with
729          * mixed ratation/non-rotational disks depending on workload.
730          */
731         if (best_disk == -1) {
732                 if (has_nonrot_disk || min_pending == 0)
733                         best_disk = best_pending_disk;
734                 else
735                         best_disk = best_dist_disk;
736         }
737
738         if (best_disk >= 0) {
739                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
740                 if (!rdev)
741                         goto retry;
742                 atomic_inc(&rdev->nr_pending);
743                 sectors = best_good_sectors;
744
745                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
746                         conf->mirrors[best_disk].seq_start = this_sector;
747
748                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
749         }
750         rcu_read_unlock();
751         *max_sectors = sectors;
752
753         return best_disk;
754 }
755
756 static int raid1_congested(struct mddev *mddev, int bits)
757 {
758         struct r1conf *conf = mddev->private;
759         int i, ret = 0;
760
761         if ((bits & (1 << WB_async_congested)) &&
762             conf->pending_count >= max_queued_requests)
763                 return 1;
764
765         rcu_read_lock();
766         for (i = 0; i < conf->raid_disks * 2; i++) {
767                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
768                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
769                         struct request_queue *q = bdev_get_queue(rdev->bdev);
770
771                         BUG_ON(!q);
772
773                         /* Note the '|| 1' - when read_balance prefers
774                          * non-congested targets, it can be removed
775                          */
776                         if ((bits & (1 << WB_async_congested)) || 1)
777                                 ret |= bdi_congested(q->backing_dev_info, bits);
778                         else
779                                 ret &= bdi_congested(q->backing_dev_info, bits);
780                 }
781         }
782         rcu_read_unlock();
783         return ret;
784 }
785
786 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
787 {
788         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
789         bitmap_unplug(conf->mddev->bitmap);
790         wake_up(&conf->wait_barrier);
791
792         while (bio) { /* submit pending writes */
793                 struct bio *next = bio->bi_next;
794                 struct md_rdev *rdev = (void *)bio->bi_disk;
795                 bio->bi_next = NULL;
796                 bio_set_dev(bio, rdev->bdev);
797                 if (test_bit(Faulty, &rdev->flags)) {
798                         bio_io_error(bio);
799                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
800                                     !blk_queue_discard(bio->bi_disk->queue)))
801                         /* Just ignore it */
802                         bio_endio(bio);
803                 else
804                         generic_make_request(bio);
805                 bio = next;
806         }
807 }
808
809 static void flush_pending_writes(struct r1conf *conf)
810 {
811         /* Any writes that have been queued but are awaiting
812          * bitmap updates get flushed here.
813          */
814         spin_lock_irq(&conf->device_lock);
815
816         if (conf->pending_bio_list.head) {
817                 struct blk_plug plug;
818                 struct bio *bio;
819
820                 bio = bio_list_get(&conf->pending_bio_list);
821                 conf->pending_count = 0;
822                 spin_unlock_irq(&conf->device_lock);
823                 blk_start_plug(&plug);
824                 flush_bio_list(conf, bio);
825                 blk_finish_plug(&plug);
826         } else
827                 spin_unlock_irq(&conf->device_lock);
828 }
829
830 /* Barriers....
831  * Sometimes we need to suspend IO while we do something else,
832  * either some resync/recovery, or reconfigure the array.
833  * To do this we raise a 'barrier'.
834  * The 'barrier' is a counter that can be raised multiple times
835  * to count how many activities are happening which preclude
836  * normal IO.
837  * We can only raise the barrier if there is no pending IO.
838  * i.e. if nr_pending == 0.
839  * We choose only to raise the barrier if no-one is waiting for the
840  * barrier to go down.  This means that as soon as an IO request
841  * is ready, no other operations which require a barrier will start
842  * until the IO request has had a chance.
843  *
844  * So: regular IO calls 'wait_barrier'.  When that returns there
845  *    is no backgroup IO happening,  It must arrange to call
846  *    allow_barrier when it has finished its IO.
847  * backgroup IO calls must call raise_barrier.  Once that returns
848  *    there is no normal IO happeing.  It must arrange to call
849  *    lower_barrier when the particular background IO completes.
850  */
851 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
852 {
853         int idx = sector_to_idx(sector_nr);
854
855         spin_lock_irq(&conf->resync_lock);
856
857         /* Wait until no block IO is waiting */
858         wait_event_lock_irq(conf->wait_barrier,
859                             !atomic_read(&conf->nr_waiting[idx]),
860                             conf->resync_lock);
861
862         /* block any new IO from starting */
863         atomic_inc(&conf->barrier[idx]);
864         /*
865          * In raise_barrier() we firstly increase conf->barrier[idx] then
866          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
867          * increase conf->nr_pending[idx] then check conf->barrier[idx].
868          * A memory barrier here to make sure conf->nr_pending[idx] won't
869          * be fetched before conf->barrier[idx] is increased. Otherwise
870          * there will be a race between raise_barrier() and _wait_barrier().
871          */
872         smp_mb__after_atomic();
873
874         /* For these conditions we must wait:
875          * A: while the array is in frozen state
876          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
877          *    existing in corresponding I/O barrier bucket.
878          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
879          *    max resync count which allowed on current I/O barrier bucket.
880          */
881         wait_event_lock_irq(conf->wait_barrier,
882                             !conf->array_frozen &&
883                              !atomic_read(&conf->nr_pending[idx]) &&
884                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
885                             conf->resync_lock);
886
887         atomic_inc(&conf->nr_sync_pending);
888         spin_unlock_irq(&conf->resync_lock);
889 }
890
891 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
892 {
893         int idx = sector_to_idx(sector_nr);
894
895         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
896
897         atomic_dec(&conf->barrier[idx]);
898         atomic_dec(&conf->nr_sync_pending);
899         wake_up(&conf->wait_barrier);
900 }
901
902 static void _wait_barrier(struct r1conf *conf, int idx)
903 {
904         /*
905          * We need to increase conf->nr_pending[idx] very early here,
906          * then raise_barrier() can be blocked when it waits for
907          * conf->nr_pending[idx] to be 0. Then we can avoid holding
908          * conf->resync_lock when there is no barrier raised in same
909          * barrier unit bucket. Also if the array is frozen, I/O
910          * should be blocked until array is unfrozen.
911          */
912         atomic_inc(&conf->nr_pending[idx]);
913         /*
914          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
915          * check conf->barrier[idx]. In raise_barrier() we firstly increase
916          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
917          * barrier is necessary here to make sure conf->barrier[idx] won't be
918          * fetched before conf->nr_pending[idx] is increased. Otherwise there
919          * will be a race between _wait_barrier() and raise_barrier().
920          */
921         smp_mb__after_atomic();
922
923         /*
924          * Don't worry about checking two atomic_t variables at same time
925          * here. If during we check conf->barrier[idx], the array is
926          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
927          * 0, it is safe to return and make the I/O continue. Because the
928          * array is frozen, all I/O returned here will eventually complete
929          * or be queued, no race will happen. See code comment in
930          * frozen_array().
931          */
932         if (!READ_ONCE(conf->array_frozen) &&
933             !atomic_read(&conf->barrier[idx]))
934                 return;
935
936         /*
937          * After holding conf->resync_lock, conf->nr_pending[idx]
938          * should be decreased before waiting for barrier to drop.
939          * Otherwise, we may encounter a race condition because
940          * raise_barrer() might be waiting for conf->nr_pending[idx]
941          * to be 0 at same time.
942          */
943         spin_lock_irq(&conf->resync_lock);
944         atomic_inc(&conf->nr_waiting[idx]);
945         atomic_dec(&conf->nr_pending[idx]);
946         /*
947          * In case freeze_array() is waiting for
948          * get_unqueued_pending() == extra
949          */
950         wake_up(&conf->wait_barrier);
951         /* Wait for the barrier in same barrier unit bucket to drop. */
952         wait_event_lock_irq(conf->wait_barrier,
953                             !conf->array_frozen &&
954                              !atomic_read(&conf->barrier[idx]),
955                             conf->resync_lock);
956         atomic_inc(&conf->nr_pending[idx]);
957         atomic_dec(&conf->nr_waiting[idx]);
958         spin_unlock_irq(&conf->resync_lock);
959 }
960
961 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
962 {
963         int idx = sector_to_idx(sector_nr);
964
965         /*
966          * Very similar to _wait_barrier(). The difference is, for read
967          * I/O we don't need wait for sync I/O, but if the whole array
968          * is frozen, the read I/O still has to wait until the array is
969          * unfrozen. Since there is no ordering requirement with
970          * conf->barrier[idx] here, memory barrier is unnecessary as well.
971          */
972         atomic_inc(&conf->nr_pending[idx]);
973
974         if (!READ_ONCE(conf->array_frozen))
975                 return;
976
977         spin_lock_irq(&conf->resync_lock);
978         atomic_inc(&conf->nr_waiting[idx]);
979         atomic_dec(&conf->nr_pending[idx]);
980         /*
981          * In case freeze_array() is waiting for
982          * get_unqueued_pending() == extra
983          */
984         wake_up(&conf->wait_barrier);
985         /* Wait for array to be unfrozen */
986         wait_event_lock_irq(conf->wait_barrier,
987                             !conf->array_frozen,
988                             conf->resync_lock);
989         atomic_inc(&conf->nr_pending[idx]);
990         atomic_dec(&conf->nr_waiting[idx]);
991         spin_unlock_irq(&conf->resync_lock);
992 }
993
994 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
995 {
996         int idx = sector_to_idx(sector_nr);
997
998         _wait_barrier(conf, idx);
999 }
1000
1001 static void _allow_barrier(struct r1conf *conf, int idx)
1002 {
1003         atomic_dec(&conf->nr_pending[idx]);
1004         wake_up(&conf->wait_barrier);
1005 }
1006
1007 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1008 {
1009         int idx = sector_to_idx(sector_nr);
1010
1011         _allow_barrier(conf, idx);
1012 }
1013
1014 /* conf->resync_lock should be held */
1015 static int get_unqueued_pending(struct r1conf *conf)
1016 {
1017         int idx, ret;
1018
1019         ret = atomic_read(&conf->nr_sync_pending);
1020         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1021                 ret += atomic_read(&conf->nr_pending[idx]) -
1022                         atomic_read(&conf->nr_queued[idx]);
1023
1024         return ret;
1025 }
1026
1027 static void freeze_array(struct r1conf *conf, int extra)
1028 {
1029         /* Stop sync I/O and normal I/O and wait for everything to
1030          * go quiet.
1031          * This is called in two situations:
1032          * 1) management command handlers (reshape, remove disk, quiesce).
1033          * 2) one normal I/O request failed.
1034
1035          * After array_frozen is set to 1, new sync IO will be blocked at
1036          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037          * or wait_read_barrier(). The flying I/Os will either complete or be
1038          * queued. When everything goes quite, there are only queued I/Os left.
1039
1040          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041          * barrier bucket index which this I/O request hits. When all sync and
1042          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044          * in handle_read_error(), we may call freeze_array() before trying to
1045          * fix the read error. In this case, the error read I/O is not queued,
1046          * so get_unqueued_pending() == 1.
1047          *
1048          * Therefore before this function returns, we need to wait until
1049          * get_unqueued_pendings(conf) gets equal to extra. For
1050          * normal I/O context, extra is 1, in rested situations extra is 0.
1051          */
1052         spin_lock_irq(&conf->resync_lock);
1053         conf->array_frozen = 1;
1054         raid1_log(conf->mddev, "wait freeze");
1055         wait_event_lock_irq_cmd(
1056                 conf->wait_barrier,
1057                 get_unqueued_pending(conf) == extra,
1058                 conf->resync_lock,
1059                 flush_pending_writes(conf));
1060         spin_unlock_irq(&conf->resync_lock);
1061 }
1062 static void unfreeze_array(struct r1conf *conf)
1063 {
1064         /* reverse the effect of the freeze */
1065         spin_lock_irq(&conf->resync_lock);
1066         conf->array_frozen = 0;
1067         spin_unlock_irq(&conf->resync_lock);
1068         wake_up(&conf->wait_barrier);
1069 }
1070
1071 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1072                                            struct bio *bio)
1073 {
1074         int size = bio->bi_iter.bi_size;
1075         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1076         int i = 0;
1077         struct bio *behind_bio = NULL;
1078
1079         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1080         if (!behind_bio)
1081                 return;
1082
1083         /* discard op, we don't support writezero/writesame yet */
1084         if (!bio_has_data(bio)) {
1085                 behind_bio->bi_iter.bi_size = size;
1086                 goto skip_copy;
1087         }
1088
1089         while (i < vcnt && size) {
1090                 struct page *page;
1091                 int len = min_t(int, PAGE_SIZE, size);
1092
1093                 page = alloc_page(GFP_NOIO);
1094                 if (unlikely(!page))
1095                         goto free_pages;
1096
1097                 bio_add_page(behind_bio, page, len, 0);
1098
1099                 size -= len;
1100                 i++;
1101         }
1102
1103         bio_copy_data(behind_bio, bio);
1104 skip_copy:
1105         r1_bio->behind_master_bio = behind_bio;;
1106         set_bit(R1BIO_BehindIO, &r1_bio->state);
1107
1108         return;
1109
1110 free_pages:
1111         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1112                  bio->bi_iter.bi_size);
1113         bio_free_pages(behind_bio);
1114         bio_put(behind_bio);
1115 }
1116
1117 struct raid1_plug_cb {
1118         struct blk_plug_cb      cb;
1119         struct bio_list         pending;
1120         int                     pending_cnt;
1121 };
1122
1123 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1124 {
1125         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1126                                                   cb);
1127         struct mddev *mddev = plug->cb.data;
1128         struct r1conf *conf = mddev->private;
1129         struct bio *bio;
1130
1131         if (from_schedule || current->bio_list) {
1132                 spin_lock_irq(&conf->device_lock);
1133                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1134                 conf->pending_count += plug->pending_cnt;
1135                 spin_unlock_irq(&conf->device_lock);
1136                 wake_up(&conf->wait_barrier);
1137                 md_wakeup_thread(mddev->thread);
1138                 kfree(plug);
1139                 return;
1140         }
1141
1142         /* we aren't scheduling, so we can do the write-out directly. */
1143         bio = bio_list_get(&plug->pending);
1144         flush_bio_list(conf, bio);
1145         kfree(plug);
1146 }
1147
1148 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1149 {
1150         r1_bio->master_bio = bio;
1151         r1_bio->sectors = bio_sectors(bio);
1152         r1_bio->state = 0;
1153         r1_bio->mddev = mddev;
1154         r1_bio->sector = bio->bi_iter.bi_sector;
1155 }
1156
1157 static inline struct r1bio *
1158 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1159 {
1160         struct r1conf *conf = mddev->private;
1161         struct r1bio *r1_bio;
1162
1163         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1164         /* Ensure no bio records IO_BLOCKED */
1165         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1166         init_r1bio(r1_bio, mddev, bio);
1167         return r1_bio;
1168 }
1169
1170 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1171                                int max_read_sectors, struct r1bio *r1_bio)
1172 {
1173         struct r1conf *conf = mddev->private;
1174         struct raid1_info *mirror;
1175         struct bio *read_bio;
1176         struct bitmap *bitmap = mddev->bitmap;
1177         const int op = bio_op(bio);
1178         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1179         int max_sectors;
1180         int rdisk;
1181         bool print_msg = !!r1_bio;
1182         char b[BDEVNAME_SIZE];
1183
1184         /*
1185          * If r1_bio is set, we are blocking the raid1d thread
1186          * so there is a tiny risk of deadlock.  So ask for
1187          * emergency memory if needed.
1188          */
1189         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1190
1191         if (print_msg) {
1192                 /* Need to get the block device name carefully */
1193                 struct md_rdev *rdev;
1194                 rcu_read_lock();
1195                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1196                 if (rdev)
1197                         bdevname(rdev->bdev, b);
1198                 else
1199                         strcpy(b, "???");
1200                 rcu_read_unlock();
1201         }
1202
1203         /*
1204          * Still need barrier for READ in case that whole
1205          * array is frozen.
1206          */
1207         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1208
1209         if (!r1_bio)
1210                 r1_bio = alloc_r1bio(mddev, bio);
1211         else
1212                 init_r1bio(r1_bio, mddev, bio);
1213         r1_bio->sectors = max_read_sectors;
1214
1215         /*
1216          * make_request() can abort the operation when read-ahead is being
1217          * used and no empty request is available.
1218          */
1219         rdisk = read_balance(conf, r1_bio, &max_sectors);
1220
1221         if (rdisk < 0) {
1222                 /* couldn't find anywhere to read from */
1223                 if (print_msg) {
1224                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1225                                             mdname(mddev),
1226                                             b,
1227                                             (unsigned long long)r1_bio->sector);
1228                 }
1229                 raid_end_bio_io(r1_bio);
1230                 return;
1231         }
1232         mirror = conf->mirrors + rdisk;
1233
1234         if (print_msg)
1235                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1236                                     mdname(mddev),
1237                                     (unsigned long long)r1_bio->sector,
1238                                     bdevname(mirror->rdev->bdev, b));
1239
1240         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1241             bitmap) {
1242                 /*
1243                  * Reading from a write-mostly device must take care not to
1244                  * over-take any writes that are 'behind'
1245                  */
1246                 raid1_log(mddev, "wait behind writes");
1247                 wait_event(bitmap->behind_wait,
1248                            atomic_read(&bitmap->behind_writes) == 0);
1249         }
1250
1251         if (max_sectors < bio_sectors(bio)) {
1252                 struct bio *split = bio_split(bio, max_sectors,
1253                                               gfp, conf->bio_split);
1254                 bio_chain(split, bio);
1255                 generic_make_request(bio);
1256                 bio = split;
1257                 r1_bio->master_bio = bio;
1258                 r1_bio->sectors = max_sectors;
1259         }
1260
1261         r1_bio->read_disk = rdisk;
1262
1263         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1264
1265         r1_bio->bios[rdisk] = read_bio;
1266
1267         read_bio->bi_iter.bi_sector = r1_bio->sector +
1268                 mirror->rdev->data_offset;
1269         bio_set_dev(read_bio, mirror->rdev->bdev);
1270         read_bio->bi_end_io = raid1_end_read_request;
1271         bio_set_op_attrs(read_bio, op, do_sync);
1272         if (test_bit(FailFast, &mirror->rdev->flags) &&
1273             test_bit(R1BIO_FailFast, &r1_bio->state))
1274                 read_bio->bi_opf |= MD_FAILFAST;
1275         read_bio->bi_private = r1_bio;
1276
1277         if (mddev->gendisk)
1278                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1279                                 disk_devt(mddev->gendisk), r1_bio->sector);
1280
1281         generic_make_request(read_bio);
1282 }
1283
1284 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1285                                 int max_write_sectors)
1286 {
1287         struct r1conf *conf = mddev->private;
1288         struct r1bio *r1_bio;
1289         int i, disks;
1290         struct bitmap *bitmap = mddev->bitmap;
1291         unsigned long flags;
1292         struct md_rdev *blocked_rdev;
1293         struct blk_plug_cb *cb;
1294         struct raid1_plug_cb *plug = NULL;
1295         int first_clone;
1296         int max_sectors;
1297
1298         /*
1299          * Register the new request and wait if the reconstruction
1300          * thread has put up a bar for new requests.
1301          * Continue immediately if no resync is active currently.
1302          */
1303
1304
1305         if (mddev_is_clustered(mddev) &&
1306              md_cluster_ops->area_resyncing(mddev, WRITE,
1307                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1308
1309                 /*
1310                  * As the suspend_* range is controlled by userspace, we want
1311                  * an interruptible wait.
1312                  */
1313                 DEFINE_WAIT(w);
1314                 for (;;) {
1315                         sigset_t full, old;
1316                         prepare_to_wait(&conf->wait_barrier,
1317                                         &w, TASK_INTERRUPTIBLE);
1318                         if (!mddev_is_clustered(mddev) ||
1319                             !md_cluster_ops->area_resyncing(mddev, WRITE,
1320                                                         bio->bi_iter.bi_sector,
1321                                                         bio_end_sector(bio)))
1322                                 break;
1323                         sigfillset(&full);
1324                         sigprocmask(SIG_BLOCK, &full, &old);
1325                         schedule();
1326                         sigprocmask(SIG_SETMASK, &old, NULL);
1327                 }
1328                 finish_wait(&conf->wait_barrier, &w);
1329         }
1330         wait_barrier(conf, bio->bi_iter.bi_sector);
1331
1332         r1_bio = alloc_r1bio(mddev, bio);
1333         r1_bio->sectors = max_write_sectors;
1334
1335         if (conf->pending_count >= max_queued_requests) {
1336                 md_wakeup_thread(mddev->thread);
1337                 raid1_log(mddev, "wait queued");
1338                 wait_event(conf->wait_barrier,
1339                            conf->pending_count < max_queued_requests);
1340         }
1341         /* first select target devices under rcu_lock and
1342          * inc refcount on their rdev.  Record them by setting
1343          * bios[x] to bio
1344          * If there are known/acknowledged bad blocks on any device on
1345          * which we have seen a write error, we want to avoid writing those
1346          * blocks.
1347          * This potentially requires several writes to write around
1348          * the bad blocks.  Each set of writes gets it's own r1bio
1349          * with a set of bios attached.
1350          */
1351
1352         disks = conf->raid_disks * 2;
1353  retry_write:
1354         blocked_rdev = NULL;
1355         rcu_read_lock();
1356         max_sectors = r1_bio->sectors;
1357         for (i = 0;  i < disks; i++) {
1358                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1359                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1360                         atomic_inc(&rdev->nr_pending);
1361                         blocked_rdev = rdev;
1362                         break;
1363                 }
1364                 r1_bio->bios[i] = NULL;
1365                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1366                         if (i < conf->raid_disks)
1367                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1368                         continue;
1369                 }
1370
1371                 atomic_inc(&rdev->nr_pending);
1372                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1373                         sector_t first_bad;
1374                         int bad_sectors;
1375                         int is_bad;
1376
1377                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1378                                              &first_bad, &bad_sectors);
1379                         if (is_bad < 0) {
1380                                 /* mustn't write here until the bad block is
1381                                  * acknowledged*/
1382                                 set_bit(BlockedBadBlocks, &rdev->flags);
1383                                 blocked_rdev = rdev;
1384                                 break;
1385                         }
1386                         if (is_bad && first_bad <= r1_bio->sector) {
1387                                 /* Cannot write here at all */
1388                                 bad_sectors -= (r1_bio->sector - first_bad);
1389                                 if (bad_sectors < max_sectors)
1390                                         /* mustn't write more than bad_sectors
1391                                          * to other devices yet
1392                                          */
1393                                         max_sectors = bad_sectors;
1394                                 rdev_dec_pending(rdev, mddev);
1395                                 /* We don't set R1BIO_Degraded as that
1396                                  * only applies if the disk is
1397                                  * missing, so it might be re-added,
1398                                  * and we want to know to recover this
1399                                  * chunk.
1400                                  * In this case the device is here,
1401                                  * and the fact that this chunk is not
1402                                  * in-sync is recorded in the bad
1403                                  * block log
1404                                  */
1405                                 continue;
1406                         }
1407                         if (is_bad) {
1408                                 int good_sectors = first_bad - r1_bio->sector;
1409                                 if (good_sectors < max_sectors)
1410                                         max_sectors = good_sectors;
1411                         }
1412                 }
1413                 r1_bio->bios[i] = bio;
1414         }
1415         rcu_read_unlock();
1416
1417         if (unlikely(blocked_rdev)) {
1418                 /* Wait for this device to become unblocked */
1419                 int j;
1420
1421                 for (j = 0; j < i; j++)
1422                         if (r1_bio->bios[j])
1423                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1424                 r1_bio->state = 0;
1425                 allow_barrier(conf, bio->bi_iter.bi_sector);
1426                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1427                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428                 wait_barrier(conf, bio->bi_iter.bi_sector);
1429                 goto retry_write;
1430         }
1431
1432         if (max_sectors < bio_sectors(bio)) {
1433                 struct bio *split = bio_split(bio, max_sectors,
1434                                               GFP_NOIO, conf->bio_split);
1435                 bio_chain(split, bio);
1436                 generic_make_request(bio);
1437                 bio = split;
1438                 r1_bio->master_bio = bio;
1439                 r1_bio->sectors = max_sectors;
1440         }
1441
1442         atomic_set(&r1_bio->remaining, 1);
1443         atomic_set(&r1_bio->behind_remaining, 0);
1444
1445         first_clone = 1;
1446
1447         for (i = 0; i < disks; i++) {
1448                 struct bio *mbio = NULL;
1449                 if (!r1_bio->bios[i])
1450                         continue;
1451
1452
1453                 if (first_clone) {
1454                         /* do behind I/O ?
1455                          * Not if there are too many, or cannot
1456                          * allocate memory, or a reader on WriteMostly
1457                          * is waiting for behind writes to flush */
1458                         if (bitmap &&
1459                             (atomic_read(&bitmap->behind_writes)
1460                              < mddev->bitmap_info.max_write_behind) &&
1461                             !waitqueue_active(&bitmap->behind_wait)) {
1462                                 alloc_behind_master_bio(r1_bio, bio);
1463                         }
1464
1465                         bitmap_startwrite(bitmap, r1_bio->sector,
1466                                           r1_bio->sectors,
1467                                           test_bit(R1BIO_BehindIO,
1468                                                    &r1_bio->state));
1469                         first_clone = 0;
1470                 }
1471
1472                 if (r1_bio->behind_master_bio)
1473                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1474                                               GFP_NOIO, mddev->bio_set);
1475                 else
1476                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1477
1478                 if (r1_bio->behind_master_bio) {
1479                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1480                                 atomic_inc(&r1_bio->behind_remaining);
1481                 }
1482
1483                 r1_bio->bios[i] = mbio;
1484
1485                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1486                                    conf->mirrors[i].rdev->data_offset);
1487                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1488                 mbio->bi_end_io = raid1_end_write_request;
1489                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1490                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1491                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1492                     conf->raid_disks - mddev->degraded > 1)
1493                         mbio->bi_opf |= MD_FAILFAST;
1494                 mbio->bi_private = r1_bio;
1495
1496                 atomic_inc(&r1_bio->remaining);
1497
1498                 if (mddev->gendisk)
1499                         trace_block_bio_remap(mbio->bi_disk->queue,
1500                                               mbio, disk_devt(mddev->gendisk),
1501                                               r1_bio->sector);
1502                 /* flush_pending_writes() needs access to the rdev so...*/
1503                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1504
1505                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1506                 if (cb)
1507                         plug = container_of(cb, struct raid1_plug_cb, cb);
1508                 else
1509                         plug = NULL;
1510                 if (plug) {
1511                         bio_list_add(&plug->pending, mbio);
1512                         plug->pending_cnt++;
1513                 } else {
1514                         spin_lock_irqsave(&conf->device_lock, flags);
1515                         bio_list_add(&conf->pending_bio_list, mbio);
1516                         conf->pending_count++;
1517                         spin_unlock_irqrestore(&conf->device_lock, flags);
1518                         md_wakeup_thread(mddev->thread);
1519                 }
1520         }
1521
1522         r1_bio_write_done(r1_bio);
1523
1524         /* In case raid1d snuck in to freeze_array */
1525         wake_up(&conf->wait_barrier);
1526 }
1527
1528 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1529 {
1530         sector_t sectors;
1531
1532         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1533                 md_flush_request(mddev, bio);
1534                 return true;
1535         }
1536
1537         /*
1538          * There is a limit to the maximum size, but
1539          * the read/write handler might find a lower limit
1540          * due to bad blocks.  To avoid multiple splits,
1541          * we pass the maximum number of sectors down
1542          * and let the lower level perform the split.
1543          */
1544         sectors = align_to_barrier_unit_end(
1545                 bio->bi_iter.bi_sector, bio_sectors(bio));
1546
1547         if (bio_data_dir(bio) == READ)
1548                 raid1_read_request(mddev, bio, sectors, NULL);
1549         else {
1550                 if (!md_write_start(mddev,bio))
1551                         return false;
1552                 raid1_write_request(mddev, bio, sectors);
1553         }
1554         return true;
1555 }
1556
1557 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1558 {
1559         struct r1conf *conf = mddev->private;
1560         int i;
1561
1562         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1563                    conf->raid_disks - mddev->degraded);
1564         rcu_read_lock();
1565         for (i = 0; i < conf->raid_disks; i++) {
1566                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1567                 seq_printf(seq, "%s",
1568                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1569         }
1570         rcu_read_unlock();
1571         seq_printf(seq, "]");
1572 }
1573
1574 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1575 {
1576         char b[BDEVNAME_SIZE];
1577         struct r1conf *conf = mddev->private;
1578         unsigned long flags;
1579
1580         /*
1581          * If it is not operational, then we have already marked it as dead
1582          * else if it is the last working disks, ignore the error, let the
1583          * next level up know.
1584          * else mark the drive as failed
1585          */
1586         spin_lock_irqsave(&conf->device_lock, flags);
1587         if (test_bit(In_sync, &rdev->flags)
1588             && (conf->raid_disks - mddev->degraded) == 1) {
1589                 /*
1590                  * Don't fail the drive, act as though we were just a
1591                  * normal single drive.
1592                  * However don't try a recovery from this drive as
1593                  * it is very likely to fail.
1594                  */
1595                 conf->recovery_disabled = mddev->recovery_disabled;
1596                 spin_unlock_irqrestore(&conf->device_lock, flags);
1597                 return;
1598         }
1599         set_bit(Blocked, &rdev->flags);
1600         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1601                 mddev->degraded++;
1602                 set_bit(Faulty, &rdev->flags);
1603         } else
1604                 set_bit(Faulty, &rdev->flags);
1605         spin_unlock_irqrestore(&conf->device_lock, flags);
1606         /*
1607          * if recovery is running, make sure it aborts.
1608          */
1609         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1610         set_mask_bits(&mddev->sb_flags, 0,
1611                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1612         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1613                 "md/raid1:%s: Operation continuing on %d devices.\n",
1614                 mdname(mddev), bdevname(rdev->bdev, b),
1615                 mdname(mddev), conf->raid_disks - mddev->degraded);
1616 }
1617
1618 static void print_conf(struct r1conf *conf)
1619 {
1620         int i;
1621
1622         pr_debug("RAID1 conf printout:\n");
1623         if (!conf) {
1624                 pr_debug("(!conf)\n");
1625                 return;
1626         }
1627         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1628                  conf->raid_disks);
1629
1630         rcu_read_lock();
1631         for (i = 0; i < conf->raid_disks; i++) {
1632                 char b[BDEVNAME_SIZE];
1633                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1634                 if (rdev)
1635                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1636                                  i, !test_bit(In_sync, &rdev->flags),
1637                                  !test_bit(Faulty, &rdev->flags),
1638                                  bdevname(rdev->bdev,b));
1639         }
1640         rcu_read_unlock();
1641 }
1642
1643 static void close_sync(struct r1conf *conf)
1644 {
1645         int idx;
1646
1647         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1648                 _wait_barrier(conf, idx);
1649                 _allow_barrier(conf, idx);
1650         }
1651
1652         mempool_destroy(conf->r1buf_pool);
1653         conf->r1buf_pool = NULL;
1654 }
1655
1656 static int raid1_spare_active(struct mddev *mddev)
1657 {
1658         int i;
1659         struct r1conf *conf = mddev->private;
1660         int count = 0;
1661         unsigned long flags;
1662
1663         /*
1664          * Find all failed disks within the RAID1 configuration
1665          * and mark them readable.
1666          * Called under mddev lock, so rcu protection not needed.
1667          * device_lock used to avoid races with raid1_end_read_request
1668          * which expects 'In_sync' flags and ->degraded to be consistent.
1669          */
1670         spin_lock_irqsave(&conf->device_lock, flags);
1671         for (i = 0; i < conf->raid_disks; i++) {
1672                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1673                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1674                 if (repl
1675                     && !test_bit(Candidate, &repl->flags)
1676                     && repl->recovery_offset == MaxSector
1677                     && !test_bit(Faulty, &repl->flags)
1678                     && !test_and_set_bit(In_sync, &repl->flags)) {
1679                         /* replacement has just become active */
1680                         if (!rdev ||
1681                             !test_and_clear_bit(In_sync, &rdev->flags))
1682                                 count++;
1683                         if (rdev) {
1684                                 /* Replaced device not technically
1685                                  * faulty, but we need to be sure
1686                                  * it gets removed and never re-added
1687                                  */
1688                                 set_bit(Faulty, &rdev->flags);
1689                                 sysfs_notify_dirent_safe(
1690                                         rdev->sysfs_state);
1691                         }
1692                 }
1693                 if (rdev
1694                     && rdev->recovery_offset == MaxSector
1695                     && !test_bit(Faulty, &rdev->flags)
1696                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1697                         count++;
1698                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1699                 }
1700         }
1701         mddev->degraded -= count;
1702         spin_unlock_irqrestore(&conf->device_lock, flags);
1703
1704         print_conf(conf);
1705         return count;
1706 }
1707
1708 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1709 {
1710         struct r1conf *conf = mddev->private;
1711         int err = -EEXIST;
1712         int mirror = 0;
1713         struct raid1_info *p;
1714         int first = 0;
1715         int last = conf->raid_disks - 1;
1716
1717         if (mddev->recovery_disabled == conf->recovery_disabled)
1718                 return -EBUSY;
1719
1720         if (md_integrity_add_rdev(rdev, mddev))
1721                 return -ENXIO;
1722
1723         if (rdev->raid_disk >= 0)
1724                 first = last = rdev->raid_disk;
1725
1726         /*
1727          * find the disk ... but prefer rdev->saved_raid_disk
1728          * if possible.
1729          */
1730         if (rdev->saved_raid_disk >= 0 &&
1731             rdev->saved_raid_disk >= first &&
1732             rdev->saved_raid_disk < conf->raid_disks &&
1733             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1734                 first = last = rdev->saved_raid_disk;
1735
1736         for (mirror = first; mirror <= last; mirror++) {
1737                 p = conf->mirrors+mirror;
1738                 if (!p->rdev) {
1739
1740                         if (mddev->gendisk)
1741                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1742                                                   rdev->data_offset << 9);
1743
1744                         p->head_position = 0;
1745                         rdev->raid_disk = mirror;
1746                         err = 0;
1747                         /* As all devices are equivalent, we don't need a full recovery
1748                          * if this was recently any drive of the array
1749                          */
1750                         if (rdev->saved_raid_disk < 0)
1751                                 conf->fullsync = 1;
1752                         rcu_assign_pointer(p->rdev, rdev);
1753                         break;
1754                 }
1755                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1756                     p[conf->raid_disks].rdev == NULL) {
1757                         /* Add this device as a replacement */
1758                         clear_bit(In_sync, &rdev->flags);
1759                         set_bit(Replacement, &rdev->flags);
1760                         rdev->raid_disk = mirror;
1761                         err = 0;
1762                         conf->fullsync = 1;
1763                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1764                         break;
1765                 }
1766         }
1767         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1768                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1769         print_conf(conf);
1770         return err;
1771 }
1772
1773 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775         struct r1conf *conf = mddev->private;
1776         int err = 0;
1777         int number = rdev->raid_disk;
1778         struct raid1_info *p = conf->mirrors + number;
1779
1780         if (rdev != p->rdev)
1781                 p = conf->mirrors + conf->raid_disks + number;
1782
1783         print_conf(conf);
1784         if (rdev == p->rdev) {
1785                 if (test_bit(In_sync, &rdev->flags) ||
1786                     atomic_read(&rdev->nr_pending)) {
1787                         err = -EBUSY;
1788                         goto abort;
1789                 }
1790                 /* Only remove non-faulty devices if recovery
1791                  * is not possible.
1792                  */
1793                 if (!test_bit(Faulty, &rdev->flags) &&
1794                     mddev->recovery_disabled != conf->recovery_disabled &&
1795                     mddev->degraded < conf->raid_disks) {
1796                         err = -EBUSY;
1797                         goto abort;
1798                 }
1799                 p->rdev = NULL;
1800                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1801                         synchronize_rcu();
1802                         if (atomic_read(&rdev->nr_pending)) {
1803                                 /* lost the race, try later */
1804                                 err = -EBUSY;
1805                                 p->rdev = rdev;
1806                                 goto abort;
1807                         }
1808                 }
1809                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1810                         /* We just removed a device that is being replaced.
1811                          * Move down the replacement.  We drain all IO before
1812                          * doing this to avoid confusion.
1813                          */
1814                         struct md_rdev *repl =
1815                                 conf->mirrors[conf->raid_disks + number].rdev;
1816                         freeze_array(conf, 0);
1817                         if (atomic_read(&repl->nr_pending)) {
1818                                 /* It means that some queued IO of retry_list
1819                                  * hold repl. Thus, we cannot set replacement
1820                                  * as NULL, avoiding rdev NULL pointer
1821                                  * dereference in sync_request_write and
1822                                  * handle_write_finished.
1823                                  */
1824                                 err = -EBUSY;
1825                                 unfreeze_array(conf);
1826                                 goto abort;
1827                         }
1828                         clear_bit(Replacement, &repl->flags);
1829                         p->rdev = repl;
1830                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1831                         unfreeze_array(conf);
1832                 }
1833
1834                 clear_bit(WantReplacement, &rdev->flags);
1835                 err = md_integrity_register(mddev);
1836         }
1837 abort:
1838
1839         print_conf(conf);
1840         return err;
1841 }
1842
1843 static void end_sync_read(struct bio *bio)
1844 {
1845         struct r1bio *r1_bio = get_resync_r1bio(bio);
1846
1847         update_head_pos(r1_bio->read_disk, r1_bio);
1848
1849         /*
1850          * we have read a block, now it needs to be re-written,
1851          * or re-read if the read failed.
1852          * We don't do much here, just schedule handling by raid1d
1853          */
1854         if (!bio->bi_status)
1855                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1856
1857         if (atomic_dec_and_test(&r1_bio->remaining))
1858                 reschedule_retry(r1_bio);
1859 }
1860
1861 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1862 {
1863         sector_t sync_blocks = 0;
1864         sector_t s = r1_bio->sector;
1865         long sectors_to_go = r1_bio->sectors;
1866
1867         /* make sure these bits don't get cleared. */
1868         do {
1869                 bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1870                 s += sync_blocks;
1871                 sectors_to_go -= sync_blocks;
1872         } while (sectors_to_go > 0);
1873 }
1874
1875 static void end_sync_write(struct bio *bio)
1876 {
1877         int uptodate = !bio->bi_status;
1878         struct r1bio *r1_bio = get_resync_r1bio(bio);
1879         struct mddev *mddev = r1_bio->mddev;
1880         struct r1conf *conf = mddev->private;
1881         sector_t first_bad;
1882         int bad_sectors;
1883         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1884
1885         if (!uptodate) {
1886                 abort_sync_write(mddev, r1_bio);
1887                 set_bit(WriteErrorSeen, &rdev->flags);
1888                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1889                         set_bit(MD_RECOVERY_NEEDED, &
1890                                 mddev->recovery);
1891                 set_bit(R1BIO_WriteError, &r1_bio->state);
1892         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1893                                &first_bad, &bad_sectors) &&
1894                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1895                                 r1_bio->sector,
1896                                 r1_bio->sectors,
1897                                 &first_bad, &bad_sectors)
1898                 )
1899                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1900
1901         if (atomic_dec_and_test(&r1_bio->remaining)) {
1902                 int s = r1_bio->sectors;
1903                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1904                     test_bit(R1BIO_WriteError, &r1_bio->state))
1905                         reschedule_retry(r1_bio);
1906                 else {
1907                         put_buf(r1_bio);
1908                         md_done_sync(mddev, s, uptodate);
1909                 }
1910         }
1911 }
1912
1913 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1914                             int sectors, struct page *page, int rw)
1915 {
1916         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1917                 /* success */
1918                 return 1;
1919         if (rw == WRITE) {
1920                 set_bit(WriteErrorSeen, &rdev->flags);
1921                 if (!test_and_set_bit(WantReplacement,
1922                                       &rdev->flags))
1923                         set_bit(MD_RECOVERY_NEEDED, &
1924                                 rdev->mddev->recovery);
1925         }
1926         /* need to record an error - either for the block or the device */
1927         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1928                 md_error(rdev->mddev, rdev);
1929         return 0;
1930 }
1931
1932 static int fix_sync_read_error(struct r1bio *r1_bio)
1933 {
1934         /* Try some synchronous reads of other devices to get
1935          * good data, much like with normal read errors.  Only
1936          * read into the pages we already have so we don't
1937          * need to re-issue the read request.
1938          * We don't need to freeze the array, because being in an
1939          * active sync request, there is no normal IO, and
1940          * no overlapping syncs.
1941          * We don't need to check is_badblock() again as we
1942          * made sure that anything with a bad block in range
1943          * will have bi_end_io clear.
1944          */
1945         struct mddev *mddev = r1_bio->mddev;
1946         struct r1conf *conf = mddev->private;
1947         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1948         struct page **pages = get_resync_pages(bio)->pages;
1949         sector_t sect = r1_bio->sector;
1950         int sectors = r1_bio->sectors;
1951         int idx = 0;
1952         struct md_rdev *rdev;
1953
1954         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1955         if (test_bit(FailFast, &rdev->flags)) {
1956                 /* Don't try recovering from here - just fail it
1957                  * ... unless it is the last working device of course */
1958                 md_error(mddev, rdev);
1959                 if (test_bit(Faulty, &rdev->flags))
1960                         /* Don't try to read from here, but make sure
1961                          * put_buf does it's thing
1962                          */
1963                         bio->bi_end_io = end_sync_write;
1964         }
1965
1966         while(sectors) {
1967                 int s = sectors;
1968                 int d = r1_bio->read_disk;
1969                 int success = 0;
1970                 int start;
1971
1972                 if (s > (PAGE_SIZE>>9))
1973                         s = PAGE_SIZE >> 9;
1974                 do {
1975                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1976                                 /* No rcu protection needed here devices
1977                                  * can only be removed when no resync is
1978                                  * active, and resync is currently active
1979                                  */
1980                                 rdev = conf->mirrors[d].rdev;
1981                                 if (sync_page_io(rdev, sect, s<<9,
1982                                                  pages[idx],
1983                                                  REQ_OP_READ, 0, false)) {
1984                                         success = 1;
1985                                         break;
1986                                 }
1987                         }
1988                         d++;
1989                         if (d == conf->raid_disks * 2)
1990                                 d = 0;
1991                 } while (!success && d != r1_bio->read_disk);
1992
1993                 if (!success) {
1994                         char b[BDEVNAME_SIZE];
1995                         int abort = 0;
1996                         /* Cannot read from anywhere, this block is lost.
1997                          * Record a bad block on each device.  If that doesn't
1998                          * work just disable and interrupt the recovery.
1999                          * Don't fail devices as that won't really help.
2000                          */
2001                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2002                                             mdname(mddev), bio_devname(bio, b),
2003                                             (unsigned long long)r1_bio->sector);
2004                         for (d = 0; d < conf->raid_disks * 2; d++) {
2005                                 rdev = conf->mirrors[d].rdev;
2006                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2007                                         continue;
2008                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2009                                         abort = 1;
2010                         }
2011                         if (abort) {
2012                                 conf->recovery_disabled =
2013                                         mddev->recovery_disabled;
2014                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2015                                 md_done_sync(mddev, r1_bio->sectors, 0);
2016                                 put_buf(r1_bio);
2017                                 return 0;
2018                         }
2019                         /* Try next page */
2020                         sectors -= s;
2021                         sect += s;
2022                         idx++;
2023                         continue;
2024                 }
2025
2026                 start = d;
2027                 /* write it back and re-read */
2028                 while (d != r1_bio->read_disk) {
2029                         if (d == 0)
2030                                 d = conf->raid_disks * 2;
2031                         d--;
2032                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2033                                 continue;
2034                         rdev = conf->mirrors[d].rdev;
2035                         if (r1_sync_page_io(rdev, sect, s,
2036                                             pages[idx],
2037                                             WRITE) == 0) {
2038                                 r1_bio->bios[d]->bi_end_io = NULL;
2039                                 rdev_dec_pending(rdev, mddev);
2040                         }
2041                 }
2042                 d = start;
2043                 while (d != r1_bio->read_disk) {
2044                         if (d == 0)
2045                                 d = conf->raid_disks * 2;
2046                         d--;
2047                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2048                                 continue;
2049                         rdev = conf->mirrors[d].rdev;
2050                         if (r1_sync_page_io(rdev, sect, s,
2051                                             pages[idx],
2052                                             READ) != 0)
2053                                 atomic_add(s, &rdev->corrected_errors);
2054                 }
2055                 sectors -= s;
2056                 sect += s;
2057                 idx ++;
2058         }
2059         set_bit(R1BIO_Uptodate, &r1_bio->state);
2060         bio->bi_status = 0;
2061         return 1;
2062 }
2063
2064 static void process_checks(struct r1bio *r1_bio)
2065 {
2066         /* We have read all readable devices.  If we haven't
2067          * got the block, then there is no hope left.
2068          * If we have, then we want to do a comparison
2069          * and skip the write if everything is the same.
2070          * If any blocks failed to read, then we need to
2071          * attempt an over-write
2072          */
2073         struct mddev *mddev = r1_bio->mddev;
2074         struct r1conf *conf = mddev->private;
2075         int primary;
2076         int i;
2077         int vcnt;
2078
2079         /* Fix variable parts of all bios */
2080         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2081         for (i = 0; i < conf->raid_disks * 2; i++) {
2082                 blk_status_t status;
2083                 struct bio *b = r1_bio->bios[i];
2084                 struct resync_pages *rp = get_resync_pages(b);
2085                 if (b->bi_end_io != end_sync_read)
2086                         continue;
2087                 /* fixup the bio for reuse, but preserve errno */
2088                 status = b->bi_status;
2089                 bio_reset(b);
2090                 b->bi_status = status;
2091                 b->bi_iter.bi_sector = r1_bio->sector +
2092                         conf->mirrors[i].rdev->data_offset;
2093                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2094                 b->bi_end_io = end_sync_read;
2095                 rp->raid_bio = r1_bio;
2096                 b->bi_private = rp;
2097
2098                 /* initialize bvec table again */
2099                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2100         }
2101         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2102                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2103                     !r1_bio->bios[primary]->bi_status) {
2104                         r1_bio->bios[primary]->bi_end_io = NULL;
2105                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2106                         break;
2107                 }
2108         r1_bio->read_disk = primary;
2109         for (i = 0; i < conf->raid_disks * 2; i++) {
2110                 int j;
2111                 struct bio *pbio = r1_bio->bios[primary];
2112                 struct bio *sbio = r1_bio->bios[i];
2113                 blk_status_t status = sbio->bi_status;
2114                 struct page **ppages = get_resync_pages(pbio)->pages;
2115                 struct page **spages = get_resync_pages(sbio)->pages;
2116                 struct bio_vec *bi;
2117                 int page_len[RESYNC_PAGES] = { 0 };
2118
2119                 if (sbio->bi_end_io != end_sync_read)
2120                         continue;
2121                 /* Now we can 'fixup' the error value */
2122                 sbio->bi_status = 0;
2123
2124                 bio_for_each_segment_all(bi, sbio, j)
2125                         page_len[j] = bi->bv_len;
2126
2127                 if (!status) {
2128                         for (j = vcnt; j-- ; ) {
2129                                 if (memcmp(page_address(ppages[j]),
2130                                            page_address(spages[j]),
2131                                            page_len[j]))
2132                                         break;
2133                         }
2134                 } else
2135                         j = 0;
2136                 if (j >= 0)
2137                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2138                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2139                               && !status)) {
2140                         /* No need to write to this device. */
2141                         sbio->bi_end_io = NULL;
2142                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2143                         continue;
2144                 }
2145
2146                 bio_copy_data(sbio, pbio);
2147         }
2148 }
2149
2150 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2151 {
2152         struct r1conf *conf = mddev->private;
2153         int i;
2154         int disks = conf->raid_disks * 2;
2155         struct bio *wbio;
2156
2157         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2158                 /* ouch - failed to read all of that. */
2159                 if (!fix_sync_read_error(r1_bio))
2160                         return;
2161
2162         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2163                 process_checks(r1_bio);
2164
2165         /*
2166          * schedule writes
2167          */
2168         atomic_set(&r1_bio->remaining, 1);
2169         for (i = 0; i < disks ; i++) {
2170                 wbio = r1_bio->bios[i];
2171                 if (wbio->bi_end_io == NULL ||
2172                     (wbio->bi_end_io == end_sync_read &&
2173                      (i == r1_bio->read_disk ||
2174                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2175                         continue;
2176                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2177                         abort_sync_write(mddev, r1_bio);
2178                         continue;
2179                 }
2180
2181                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2182                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2183                         wbio->bi_opf |= MD_FAILFAST;
2184
2185                 wbio->bi_end_io = end_sync_write;
2186                 atomic_inc(&r1_bio->remaining);
2187                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2188
2189                 generic_make_request(wbio);
2190         }
2191
2192         if (atomic_dec_and_test(&r1_bio->remaining)) {
2193                 /* if we're here, all write(s) have completed, so clean up */
2194                 int s = r1_bio->sectors;
2195                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2196                     test_bit(R1BIO_WriteError, &r1_bio->state))
2197                         reschedule_retry(r1_bio);
2198                 else {
2199                         put_buf(r1_bio);
2200                         md_done_sync(mddev, s, 1);
2201                 }
2202         }
2203 }
2204
2205 /*
2206  * This is a kernel thread which:
2207  *
2208  *      1.      Retries failed read operations on working mirrors.
2209  *      2.      Updates the raid superblock when problems encounter.
2210  *      3.      Performs writes following reads for array synchronising.
2211  */
2212
2213 static void fix_read_error(struct r1conf *conf, int read_disk,
2214                            sector_t sect, int sectors)
2215 {
2216         struct mddev *mddev = conf->mddev;
2217         while(sectors) {
2218                 int s = sectors;
2219                 int d = read_disk;
2220                 int success = 0;
2221                 int start;
2222                 struct md_rdev *rdev;
2223
2224                 if (s > (PAGE_SIZE>>9))
2225                         s = PAGE_SIZE >> 9;
2226
2227                 do {
2228                         sector_t first_bad;
2229                         int bad_sectors;
2230
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2233                         if (rdev &&
2234                             (test_bit(In_sync, &rdev->flags) ||
2235                              (!test_bit(Faulty, &rdev->flags) &&
2236                               rdev->recovery_offset >= sect + s)) &&
2237                             is_badblock(rdev, sect, s,
2238                                         &first_bad, &bad_sectors) == 0) {
2239                                 atomic_inc(&rdev->nr_pending);
2240                                 rcu_read_unlock();
2241                                 if (sync_page_io(rdev, sect, s<<9,
2242                                          conf->tmppage, REQ_OP_READ, 0, false))
2243                                         success = 1;
2244                                 rdev_dec_pending(rdev, mddev);
2245                                 if (success)
2246                                         break;
2247                         } else
2248                                 rcu_read_unlock();
2249                         d++;
2250                         if (d == conf->raid_disks * 2)
2251                                 d = 0;
2252                 } while (!success && d != read_disk);
2253
2254                 if (!success) {
2255                         /* Cannot read from anywhere - mark it bad */
2256                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2257                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2258                                 md_error(mddev, rdev);
2259                         break;
2260                 }
2261                 /* write it back and re-read */
2262                 start = d;
2263                 while (d != read_disk) {
2264                         if (d==0)
2265                                 d = conf->raid_disks * 2;
2266                         d--;
2267                         rcu_read_lock();
2268                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2269                         if (rdev &&
2270                             !test_bit(Faulty, &rdev->flags)) {
2271                                 atomic_inc(&rdev->nr_pending);
2272                                 rcu_read_unlock();
2273                                 r1_sync_page_io(rdev, sect, s,
2274                                                 conf->tmppage, WRITE);
2275                                 rdev_dec_pending(rdev, mddev);
2276                         } else
2277                                 rcu_read_unlock();
2278                 }
2279                 d = start;
2280                 while (d != read_disk) {
2281                         char b[BDEVNAME_SIZE];
2282                         if (d==0)
2283                                 d = conf->raid_disks * 2;
2284                         d--;
2285                         rcu_read_lock();
2286                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2287                         if (rdev &&
2288                             !test_bit(Faulty, &rdev->flags)) {
2289                                 atomic_inc(&rdev->nr_pending);
2290                                 rcu_read_unlock();
2291                                 if (r1_sync_page_io(rdev, sect, s,
2292                                                     conf->tmppage, READ)) {
2293                                         atomic_add(s, &rdev->corrected_errors);
2294                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2295                                                 mdname(mddev), s,
2296                                                 (unsigned long long)(sect +
2297                                                                      rdev->data_offset),
2298                                                 bdevname(rdev->bdev, b));
2299                                 }
2300                                 rdev_dec_pending(rdev, mddev);
2301                         } else
2302                                 rcu_read_unlock();
2303                 }
2304                 sectors -= s;
2305                 sect += s;
2306         }
2307 }
2308
2309 static int narrow_write_error(struct r1bio *r1_bio, int i)
2310 {
2311         struct mddev *mddev = r1_bio->mddev;
2312         struct r1conf *conf = mddev->private;
2313         struct md_rdev *rdev = conf->mirrors[i].rdev;
2314
2315         /* bio has the data to be written to device 'i' where
2316          * we just recently had a write error.
2317          * We repeatedly clone the bio and trim down to one block,
2318          * then try the write.  Where the write fails we record
2319          * a bad block.
2320          * It is conceivable that the bio doesn't exactly align with
2321          * blocks.  We must handle this somehow.
2322          *
2323          * We currently own a reference on the rdev.
2324          */
2325
2326         int block_sectors;
2327         sector_t sector;
2328         int sectors;
2329         int sect_to_write = r1_bio->sectors;
2330         int ok = 1;
2331
2332         if (rdev->badblocks.shift < 0)
2333                 return 0;
2334
2335         block_sectors = roundup(1 << rdev->badblocks.shift,
2336                                 bdev_logical_block_size(rdev->bdev) >> 9);
2337         sector = r1_bio->sector;
2338         sectors = ((sector + block_sectors)
2339                    & ~(sector_t)(block_sectors - 1))
2340                 - sector;
2341
2342         while (sect_to_write) {
2343                 struct bio *wbio;
2344                 if (sectors > sect_to_write)
2345                         sectors = sect_to_write;
2346                 /* Write at 'sector' for 'sectors'*/
2347
2348                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2349                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2350                                               GFP_NOIO,
2351                                               mddev->bio_set);
2352                 } else {
2353                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2354                                               mddev->bio_set);
2355                 }
2356
2357                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2358                 wbio->bi_iter.bi_sector = r1_bio->sector;
2359                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2360
2361                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2362                 wbio->bi_iter.bi_sector += rdev->data_offset;
2363                 bio_set_dev(wbio, rdev->bdev);
2364
2365                 if (submit_bio_wait(wbio) < 0)
2366                         /* failure! */
2367                         ok = rdev_set_badblocks(rdev, sector,
2368                                                 sectors, 0)
2369                                 && ok;
2370
2371                 bio_put(wbio);
2372                 sect_to_write -= sectors;
2373                 sector += sectors;
2374                 sectors = block_sectors;
2375         }
2376         return ok;
2377 }
2378
2379 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2380 {
2381         int m;
2382         int s = r1_bio->sectors;
2383         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2384                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2385                 struct bio *bio = r1_bio->bios[m];
2386                 if (bio->bi_end_io == NULL)
2387                         continue;
2388                 if (!bio->bi_status &&
2389                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2390                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2391                 }
2392                 if (bio->bi_status &&
2393                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2394                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2395                                 md_error(conf->mddev, rdev);
2396                 }
2397         }
2398         put_buf(r1_bio);
2399         md_done_sync(conf->mddev, s, 1);
2400 }
2401
2402 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2403 {
2404         int m, idx;
2405         bool fail = false;
2406
2407         for (m = 0; m < conf->raid_disks * 2 ; m++)
2408                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2409                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2410                         rdev_clear_badblocks(rdev,
2411                                              r1_bio->sector,
2412                                              r1_bio->sectors, 0);
2413                         rdev_dec_pending(rdev, conf->mddev);
2414                 } else if (r1_bio->bios[m] != NULL) {
2415                         /* This drive got a write error.  We need to
2416                          * narrow down and record precise write
2417                          * errors.
2418                          */
2419                         fail = true;
2420                         if (!narrow_write_error(r1_bio, m)) {
2421                                 md_error(conf->mddev,
2422                                          conf->mirrors[m].rdev);
2423                                 /* an I/O failed, we can't clear the bitmap */
2424                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2425                         }
2426                         rdev_dec_pending(conf->mirrors[m].rdev,
2427                                          conf->mddev);
2428                 }
2429         if (fail) {
2430                 spin_lock_irq(&conf->device_lock);
2431                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2432                 idx = sector_to_idx(r1_bio->sector);
2433                 atomic_inc(&conf->nr_queued[idx]);
2434                 spin_unlock_irq(&conf->device_lock);
2435                 /*
2436                  * In case freeze_array() is waiting for condition
2437                  * get_unqueued_pending() == extra to be true.
2438                  */
2439                 wake_up(&conf->wait_barrier);
2440                 md_wakeup_thread(conf->mddev->thread);
2441         } else {
2442                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2443                         close_write(r1_bio);
2444                 raid_end_bio_io(r1_bio);
2445         }
2446 }
2447
2448 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2449 {
2450         struct mddev *mddev = conf->mddev;
2451         struct bio *bio;
2452         struct md_rdev *rdev;
2453         sector_t bio_sector;
2454
2455         clear_bit(R1BIO_ReadError, &r1_bio->state);
2456         /* we got a read error. Maybe the drive is bad.  Maybe just
2457          * the block and we can fix it.
2458          * We freeze all other IO, and try reading the block from
2459          * other devices.  When we find one, we re-write
2460          * and check it that fixes the read error.
2461          * This is all done synchronously while the array is
2462          * frozen
2463          */
2464
2465         bio = r1_bio->bios[r1_bio->read_disk];
2466         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2467         bio_put(bio);
2468         r1_bio->bios[r1_bio->read_disk] = NULL;
2469
2470         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2471         if (mddev->ro == 0
2472             && !test_bit(FailFast, &rdev->flags)) {
2473                 freeze_array(conf, 1);
2474                 fix_read_error(conf, r1_bio->read_disk,
2475                                r1_bio->sector, r1_bio->sectors);
2476                 unfreeze_array(conf);
2477         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2478                 md_error(mddev, rdev);
2479         } else {
2480                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2481         }
2482
2483         rdev_dec_pending(rdev, conf->mddev);
2484         allow_barrier(conf, r1_bio->sector);
2485         bio = r1_bio->master_bio;
2486
2487         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2488         r1_bio->state = 0;
2489         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2490 }
2491
2492 static void raid1d(struct md_thread *thread)
2493 {
2494         struct mddev *mddev = thread->mddev;
2495         struct r1bio *r1_bio;
2496         unsigned long flags;
2497         struct r1conf *conf = mddev->private;
2498         struct list_head *head = &conf->retry_list;
2499         struct blk_plug plug;
2500         int idx;
2501
2502         md_check_recovery(mddev);
2503
2504         if (!list_empty_careful(&conf->bio_end_io_list) &&
2505             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2506                 LIST_HEAD(tmp);
2507                 spin_lock_irqsave(&conf->device_lock, flags);
2508                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2509                         list_splice_init(&conf->bio_end_io_list, &tmp);
2510                 spin_unlock_irqrestore(&conf->device_lock, flags);
2511                 while (!list_empty(&tmp)) {
2512                         r1_bio = list_first_entry(&tmp, struct r1bio,
2513                                                   retry_list);
2514                         list_del(&r1_bio->retry_list);
2515                         idx = sector_to_idx(r1_bio->sector);
2516                         atomic_dec(&conf->nr_queued[idx]);
2517                         if (mddev->degraded)
2518                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2519                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2520                                 close_write(r1_bio);
2521                         raid_end_bio_io(r1_bio);
2522                 }
2523         }
2524
2525         blk_start_plug(&plug);
2526         for (;;) {
2527
2528                 flush_pending_writes(conf);
2529
2530                 spin_lock_irqsave(&conf->device_lock, flags);
2531                 if (list_empty(head)) {
2532                         spin_unlock_irqrestore(&conf->device_lock, flags);
2533                         break;
2534                 }
2535                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2536                 list_del(head->prev);
2537                 idx = sector_to_idx(r1_bio->sector);
2538                 atomic_dec(&conf->nr_queued[idx]);
2539                 spin_unlock_irqrestore(&conf->device_lock, flags);
2540
2541                 mddev = r1_bio->mddev;
2542                 conf = mddev->private;
2543                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2544                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2545                             test_bit(R1BIO_WriteError, &r1_bio->state))
2546                                 handle_sync_write_finished(conf, r1_bio);
2547                         else
2548                                 sync_request_write(mddev, r1_bio);
2549                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2550                            test_bit(R1BIO_WriteError, &r1_bio->state))
2551                         handle_write_finished(conf, r1_bio);
2552                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2553                         handle_read_error(conf, r1_bio);
2554                 else
2555                         WARN_ON_ONCE(1);
2556
2557                 cond_resched();
2558                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2559                         md_check_recovery(mddev);
2560         }
2561         blk_finish_plug(&plug);
2562 }
2563
2564 static int init_resync(struct r1conf *conf)
2565 {
2566         int buffs;
2567
2568         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2569         BUG_ON(conf->r1buf_pool);
2570         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2571                                           conf->poolinfo);
2572         if (!conf->r1buf_pool)
2573                 return -ENOMEM;
2574         return 0;
2575 }
2576
2577 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2578 {
2579         struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2580         struct resync_pages *rps;
2581         struct bio *bio;
2582         int i;
2583
2584         for (i = conf->poolinfo->raid_disks; i--; ) {
2585                 bio = r1bio->bios[i];
2586                 rps = bio->bi_private;
2587                 bio_reset(bio);
2588                 bio->bi_private = rps;
2589         }
2590         r1bio->master_bio = NULL;
2591         return r1bio;
2592 }
2593
2594 /*
2595  * perform a "sync" on one "block"
2596  *
2597  * We need to make sure that no normal I/O request - particularly write
2598  * requests - conflict with active sync requests.
2599  *
2600  * This is achieved by tracking pending requests and a 'barrier' concept
2601  * that can be installed to exclude normal IO requests.
2602  */
2603
2604 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2605                                    int *skipped)
2606 {
2607         struct r1conf *conf = mddev->private;
2608         struct r1bio *r1_bio;
2609         struct bio *bio;
2610         sector_t max_sector, nr_sectors;
2611         int disk = -1;
2612         int i;
2613         int wonly = -1;
2614         int write_targets = 0, read_targets = 0;
2615         sector_t sync_blocks;
2616         int still_degraded = 0;
2617         int good_sectors = RESYNC_SECTORS;
2618         int min_bad = 0; /* number of sectors that are bad in all devices */
2619         int idx = sector_to_idx(sector_nr);
2620         int page_idx = 0;
2621
2622         if (!conf->r1buf_pool)
2623                 if (init_resync(conf))
2624                         return 0;
2625
2626         max_sector = mddev->dev_sectors;
2627         if (sector_nr >= max_sector) {
2628                 /* If we aborted, we need to abort the
2629                  * sync on the 'current' bitmap chunk (there will
2630                  * only be one in raid1 resync.
2631                  * We can find the current addess in mddev->curr_resync
2632                  */
2633                 if (mddev->curr_resync < max_sector) /* aborted */
2634                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2635                                                 &sync_blocks, 1);
2636                 else /* completed sync */
2637                         conf->fullsync = 0;
2638
2639                 bitmap_close_sync(mddev->bitmap);
2640                 close_sync(conf);
2641
2642                 if (mddev_is_clustered(mddev)) {
2643                         conf->cluster_sync_low = 0;
2644                         conf->cluster_sync_high = 0;
2645                 }
2646                 return 0;
2647         }
2648
2649         if (mddev->bitmap == NULL &&
2650             mddev->recovery_cp == MaxSector &&
2651             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2652             conf->fullsync == 0) {
2653                 *skipped = 1;
2654                 return max_sector - sector_nr;
2655         }
2656         /* before building a request, check if we can skip these blocks..
2657          * This call the bitmap_start_sync doesn't actually record anything
2658          */
2659         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2660             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2661                 /* We can skip this block, and probably several more */
2662                 *skipped = 1;
2663                 return sync_blocks;
2664         }
2665
2666         /*
2667          * If there is non-resync activity waiting for a turn, then let it
2668          * though before starting on this new sync request.
2669          */
2670         if (atomic_read(&conf->nr_waiting[idx]))
2671                 schedule_timeout_uninterruptible(1);
2672
2673         /* we are incrementing sector_nr below. To be safe, we check against
2674          * sector_nr + two times RESYNC_SECTORS
2675          */
2676
2677         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2678                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2679         r1_bio = raid1_alloc_init_r1buf(conf);
2680
2681         raise_barrier(conf, sector_nr);
2682
2683         rcu_read_lock();
2684         /*
2685          * If we get a correctably read error during resync or recovery,
2686          * we might want to read from a different device.  So we
2687          * flag all drives that could conceivably be read from for READ,
2688          * and any others (which will be non-In_sync devices) for WRITE.
2689          * If a read fails, we try reading from something else for which READ
2690          * is OK.
2691          */
2692
2693         r1_bio->mddev = mddev;
2694         r1_bio->sector = sector_nr;
2695         r1_bio->state = 0;
2696         set_bit(R1BIO_IsSync, &r1_bio->state);
2697         /* make sure good_sectors won't go across barrier unit boundary */
2698         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2699
2700         for (i = 0; i < conf->raid_disks * 2; i++) {
2701                 struct md_rdev *rdev;
2702                 bio = r1_bio->bios[i];
2703
2704                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2705                 if (rdev == NULL ||
2706                     test_bit(Faulty, &rdev->flags)) {
2707                         if (i < conf->raid_disks)
2708                                 still_degraded = 1;
2709                 } else if (!test_bit(In_sync, &rdev->flags)) {
2710                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2711                         bio->bi_end_io = end_sync_write;
2712                         write_targets ++;
2713                 } else {
2714                         /* may need to read from here */
2715                         sector_t first_bad = MaxSector;
2716                         int bad_sectors;
2717
2718                         if (is_badblock(rdev, sector_nr, good_sectors,
2719                                         &first_bad, &bad_sectors)) {
2720                                 if (first_bad > sector_nr)
2721                                         good_sectors = first_bad - sector_nr;
2722                                 else {
2723                                         bad_sectors -= (sector_nr - first_bad);
2724                                         if (min_bad == 0 ||
2725                                             min_bad > bad_sectors)
2726                                                 min_bad = bad_sectors;
2727                                 }
2728                         }
2729                         if (sector_nr < first_bad) {
2730                                 if (test_bit(WriteMostly, &rdev->flags)) {
2731                                         if (wonly < 0)
2732                                                 wonly = i;
2733                                 } else {
2734                                         if (disk < 0)
2735                                                 disk = i;
2736                                 }
2737                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2738                                 bio->bi_end_io = end_sync_read;
2739                                 read_targets++;
2740                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2741                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2742                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2743                                 /*
2744                                  * The device is suitable for reading (InSync),
2745                                  * but has bad block(s) here. Let's try to correct them,
2746                                  * if we are doing resync or repair. Otherwise, leave
2747                                  * this device alone for this sync request.
2748                                  */
2749                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2750                                 bio->bi_end_io = end_sync_write;
2751                                 write_targets++;
2752                         }
2753                 }
2754                 if (rdev && bio->bi_end_io) {
2755                         atomic_inc(&rdev->nr_pending);
2756                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2757                         bio_set_dev(bio, rdev->bdev);
2758                         if (test_bit(FailFast, &rdev->flags))
2759                                 bio->bi_opf |= MD_FAILFAST;
2760                 }
2761         }
2762         rcu_read_unlock();
2763         if (disk < 0)
2764                 disk = wonly;
2765         r1_bio->read_disk = disk;
2766
2767         if (read_targets == 0 && min_bad > 0) {
2768                 /* These sectors are bad on all InSync devices, so we
2769                  * need to mark them bad on all write targets
2770                  */
2771                 int ok = 1;
2772                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2773                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2774                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2775                                 ok = rdev_set_badblocks(rdev, sector_nr,
2776                                                         min_bad, 0
2777                                         ) && ok;
2778                         }
2779                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2780                 *skipped = 1;
2781                 put_buf(r1_bio);
2782
2783                 if (!ok) {
2784                         /* Cannot record the badblocks, so need to
2785                          * abort the resync.
2786                          * If there are multiple read targets, could just
2787                          * fail the really bad ones ???
2788                          */
2789                         conf->recovery_disabled = mddev->recovery_disabled;
2790                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2791                         return 0;
2792                 } else
2793                         return min_bad;
2794
2795         }
2796         if (min_bad > 0 && min_bad < good_sectors) {
2797                 /* only resync enough to reach the next bad->good
2798                  * transition */
2799                 good_sectors = min_bad;
2800         }
2801
2802         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2803                 /* extra read targets are also write targets */
2804                 write_targets += read_targets-1;
2805
2806         if (write_targets == 0 || read_targets == 0) {
2807                 /* There is nowhere to write, so all non-sync
2808                  * drives must be failed - so we are finished
2809                  */
2810                 sector_t rv;
2811                 if (min_bad > 0)
2812                         max_sector = sector_nr + min_bad;
2813                 rv = max_sector - sector_nr;
2814                 *skipped = 1;
2815                 put_buf(r1_bio);
2816                 return rv;
2817         }
2818
2819         if (max_sector > mddev->resync_max)
2820                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2821         if (max_sector > sector_nr + good_sectors)
2822                 max_sector = sector_nr + good_sectors;
2823         nr_sectors = 0;
2824         sync_blocks = 0;
2825         do {
2826                 struct page *page;
2827                 int len = PAGE_SIZE;
2828                 if (sector_nr + (len>>9) > max_sector)
2829                         len = (max_sector - sector_nr) << 9;
2830                 if (len == 0)
2831                         break;
2832                 if (sync_blocks == 0) {
2833                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2834                                                &sync_blocks, still_degraded) &&
2835                             !conf->fullsync &&
2836                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2837                                 break;
2838                         if ((len >> 9) > sync_blocks)
2839                                 len = sync_blocks<<9;
2840                 }
2841
2842                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2843                         struct resync_pages *rp;
2844
2845                         bio = r1_bio->bios[i];
2846                         rp = get_resync_pages(bio);
2847                         if (bio->bi_end_io) {
2848                                 page = resync_fetch_page(rp, page_idx);
2849
2850                                 /*
2851                                  * won't fail because the vec table is big
2852                                  * enough to hold all these pages
2853                                  */
2854                                 bio_add_page(bio, page, len, 0);
2855                         }
2856                 }
2857                 nr_sectors += len>>9;
2858                 sector_nr += len>>9;
2859                 sync_blocks -= (len>>9);
2860         } while (++page_idx < RESYNC_PAGES);
2861
2862         r1_bio->sectors = nr_sectors;
2863
2864         if (mddev_is_clustered(mddev) &&
2865                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2866                 conf->cluster_sync_low = mddev->curr_resync_completed;
2867                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2868                 /* Send resync message */
2869                 md_cluster_ops->resync_info_update(mddev,
2870                                 conf->cluster_sync_low,
2871                                 conf->cluster_sync_high);
2872         }
2873
2874         /* For a user-requested sync, we read all readable devices and do a
2875          * compare
2876          */
2877         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2878                 atomic_set(&r1_bio->remaining, read_targets);
2879                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2880                         bio = r1_bio->bios[i];
2881                         if (bio->bi_end_io == end_sync_read) {
2882                                 read_targets--;
2883                                 md_sync_acct_bio(bio, nr_sectors);
2884                                 if (read_targets == 1)
2885                                         bio->bi_opf &= ~MD_FAILFAST;
2886                                 generic_make_request(bio);
2887                         }
2888                 }
2889         } else {
2890                 atomic_set(&r1_bio->remaining, 1);
2891                 bio = r1_bio->bios[r1_bio->read_disk];
2892                 md_sync_acct_bio(bio, nr_sectors);
2893                 if (read_targets == 1)
2894                         bio->bi_opf &= ~MD_FAILFAST;
2895                 generic_make_request(bio);
2896
2897         }
2898         return nr_sectors;
2899 }
2900
2901 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2902 {
2903         if (sectors)
2904                 return sectors;
2905
2906         return mddev->dev_sectors;
2907 }
2908
2909 static struct r1conf *setup_conf(struct mddev *mddev)
2910 {
2911         struct r1conf *conf;
2912         int i;
2913         struct raid1_info *disk;
2914         struct md_rdev *rdev;
2915         int err = -ENOMEM;
2916
2917         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2918         if (!conf)
2919                 goto abort;
2920
2921         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2922                                    sizeof(atomic_t), GFP_KERNEL);
2923         if (!conf->nr_pending)
2924                 goto abort;
2925
2926         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2927                                    sizeof(atomic_t), GFP_KERNEL);
2928         if (!conf->nr_waiting)
2929                 goto abort;
2930
2931         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2932                                   sizeof(atomic_t), GFP_KERNEL);
2933         if (!conf->nr_queued)
2934                 goto abort;
2935
2936         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2937                                 sizeof(atomic_t), GFP_KERNEL);
2938         if (!conf->barrier)
2939                 goto abort;
2940
2941         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2942                                 * mddev->raid_disks * 2,
2943                                  GFP_KERNEL);
2944         if (!conf->mirrors)
2945                 goto abort;
2946
2947         conf->tmppage = alloc_page(GFP_KERNEL);
2948         if (!conf->tmppage)
2949                 goto abort;
2950
2951         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2952         if (!conf->poolinfo)
2953                 goto abort;
2954         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2955         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2956                                           r1bio_pool_free,
2957                                           conf->poolinfo);
2958         if (!conf->r1bio_pool)
2959                 goto abort;
2960
2961         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2962         if (!conf->bio_split)
2963                 goto abort;
2964
2965         conf->poolinfo->mddev = mddev;
2966
2967         err = -EINVAL;
2968         spin_lock_init(&conf->device_lock);
2969         rdev_for_each(rdev, mddev) {
2970                 int disk_idx = rdev->raid_disk;
2971                 if (disk_idx >= mddev->raid_disks
2972                     || disk_idx < 0)
2973                         continue;
2974                 if (test_bit(Replacement, &rdev->flags))
2975                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2976                 else
2977                         disk = conf->mirrors + disk_idx;
2978
2979                 if (disk->rdev)
2980                         goto abort;
2981                 disk->rdev = rdev;
2982                 disk->head_position = 0;
2983                 disk->seq_start = MaxSector;
2984         }
2985         conf->raid_disks = mddev->raid_disks;
2986         conf->mddev = mddev;
2987         INIT_LIST_HEAD(&conf->retry_list);
2988         INIT_LIST_HEAD(&conf->bio_end_io_list);
2989
2990         spin_lock_init(&conf->resync_lock);
2991         init_waitqueue_head(&conf->wait_barrier);
2992
2993         bio_list_init(&conf->pending_bio_list);
2994         conf->pending_count = 0;
2995         conf->recovery_disabled = mddev->recovery_disabled - 1;
2996
2997         err = -EIO;
2998         for (i = 0; i < conf->raid_disks * 2; i++) {
2999
3000                 disk = conf->mirrors + i;
3001
3002                 if (i < conf->raid_disks &&
3003                     disk[conf->raid_disks].rdev) {
3004                         /* This slot has a replacement. */
3005                         if (!disk->rdev) {
3006                                 /* No original, just make the replacement
3007                                  * a recovering spare
3008                                  */
3009                                 disk->rdev =
3010                                         disk[conf->raid_disks].rdev;
3011                                 disk[conf->raid_disks].rdev = NULL;
3012                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3013                                 /* Original is not in_sync - bad */
3014                                 goto abort;
3015                 }
3016
3017                 if (!disk->rdev ||
3018                     !test_bit(In_sync, &disk->rdev->flags)) {
3019                         disk->head_position = 0;
3020                         if (disk->rdev &&
3021                             (disk->rdev->saved_raid_disk < 0))
3022                                 conf->fullsync = 1;
3023                 }
3024         }
3025
3026         err = -ENOMEM;
3027         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3028         if (!conf->thread)
3029                 goto abort;
3030
3031         return conf;
3032
3033  abort:
3034         if (conf) {
3035                 mempool_destroy(conf->r1bio_pool);
3036                 kfree(conf->mirrors);
3037                 safe_put_page(conf->tmppage);
3038                 kfree(conf->poolinfo);
3039                 kfree(conf->nr_pending);
3040                 kfree(conf->nr_waiting);
3041                 kfree(conf->nr_queued);
3042                 kfree(conf->barrier);
3043                 if (conf->bio_split)
3044                         bioset_free(conf->bio_split);
3045                 kfree(conf);
3046         }
3047         return ERR_PTR(err);
3048 }
3049
3050 static void raid1_free(struct mddev *mddev, void *priv);
3051 static int raid1_run(struct mddev *mddev)
3052 {
3053         struct r1conf *conf;
3054         int i;
3055         struct md_rdev *rdev;
3056         int ret;
3057         bool discard_supported = false;
3058
3059         if (mddev->level != 1) {
3060                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3061                         mdname(mddev), mddev->level);
3062                 return -EIO;
3063         }
3064         if (mddev->reshape_position != MaxSector) {
3065                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3066                         mdname(mddev));
3067                 return -EIO;
3068         }
3069         if (mddev_init_writes_pending(mddev) < 0)
3070                 return -ENOMEM;
3071         /*
3072          * copy the already verified devices into our private RAID1
3073          * bookkeeping area. [whatever we allocate in run(),
3074          * should be freed in raid1_free()]
3075          */
3076         if (mddev->private == NULL)
3077                 conf = setup_conf(mddev);
3078         else
3079                 conf = mddev->private;
3080
3081         if (IS_ERR(conf))
3082                 return PTR_ERR(conf);
3083
3084         if (mddev->queue) {
3085                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3086                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3087         }
3088
3089         rdev_for_each(rdev, mddev) {
3090                 if (!mddev->gendisk)
3091                         continue;
3092                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3093                                   rdev->data_offset << 9);
3094                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3095                         discard_supported = true;
3096         }
3097
3098         mddev->degraded = 0;
3099         for (i=0; i < conf->raid_disks; i++)
3100                 if (conf->mirrors[i].rdev == NULL ||
3101                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3102                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3103                         mddev->degraded++;
3104         /*
3105          * RAID1 needs at least one disk in active
3106          */
3107         if (conf->raid_disks - mddev->degraded < 1) {
3108                 ret = -EINVAL;
3109                 goto abort;
3110         }
3111
3112         if (conf->raid_disks - mddev->degraded == 1)
3113                 mddev->recovery_cp = MaxSector;
3114
3115         if (mddev->recovery_cp != MaxSector)
3116                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3117                         mdname(mddev));
3118         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3119                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3120                 mddev->raid_disks);
3121
3122         /*
3123          * Ok, everything is just fine now
3124          */
3125         mddev->thread = conf->thread;
3126         conf->thread = NULL;
3127         mddev->private = conf;
3128         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3129
3130         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3131
3132         if (mddev->queue) {
3133                 if (discard_supported)
3134                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3135                                                 mddev->queue);
3136                 else
3137                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3138                                                   mddev->queue);
3139         }
3140
3141         ret =  md_integrity_register(mddev);
3142         if (ret) {
3143                 md_unregister_thread(&mddev->thread);
3144                 goto abort;
3145         }
3146         return 0;
3147
3148 abort:
3149         raid1_free(mddev, conf);
3150         return ret;
3151 }
3152
3153 static void raid1_free(struct mddev *mddev, void *priv)
3154 {
3155         struct r1conf *conf = priv;
3156
3157         mempool_destroy(conf->r1bio_pool);
3158         kfree(conf->mirrors);
3159         safe_put_page(conf->tmppage);
3160         kfree(conf->poolinfo);
3161         kfree(conf->nr_pending);
3162         kfree(conf->nr_waiting);
3163         kfree(conf->nr_queued);
3164         kfree(conf->barrier);
3165         if (conf->bio_split)
3166                 bioset_free(conf->bio_split);
3167         kfree(conf);
3168 }
3169
3170 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3171 {
3172         /* no resync is happening, and there is enough space
3173          * on all devices, so we can resize.
3174          * We need to make sure resync covers any new space.
3175          * If the array is shrinking we should possibly wait until
3176          * any io in the removed space completes, but it hardly seems
3177          * worth it.
3178          */
3179         sector_t newsize = raid1_size(mddev, sectors, 0);
3180         if (mddev->external_size &&
3181             mddev->array_sectors > newsize)
3182                 return -EINVAL;
3183         if (mddev->bitmap) {
3184                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3185                 if (ret)
3186                         return ret;
3187         }
3188         md_set_array_sectors(mddev, newsize);
3189         if (sectors > mddev->dev_sectors &&
3190             mddev->recovery_cp > mddev->dev_sectors) {
3191                 mddev->recovery_cp = mddev->dev_sectors;
3192                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3193         }
3194         mddev->dev_sectors = sectors;
3195         mddev->resync_max_sectors = sectors;
3196         return 0;
3197 }
3198
3199 static int raid1_reshape(struct mddev *mddev)
3200 {
3201         /* We need to:
3202          * 1/ resize the r1bio_pool
3203          * 2/ resize conf->mirrors
3204          *
3205          * We allocate a new r1bio_pool if we can.
3206          * Then raise a device barrier and wait until all IO stops.
3207          * Then resize conf->mirrors and swap in the new r1bio pool.
3208          *
3209          * At the same time, we "pack" the devices so that all the missing
3210          * devices have the higher raid_disk numbers.
3211          */
3212         mempool_t *newpool, *oldpool;
3213         struct pool_info *newpoolinfo;
3214         struct raid1_info *newmirrors;
3215         struct r1conf *conf = mddev->private;
3216         int cnt, raid_disks;
3217         unsigned long flags;
3218         int d, d2;
3219
3220         /* Cannot change chunk_size, layout, or level */
3221         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3222             mddev->layout != mddev->new_layout ||
3223             mddev->level != mddev->new_level) {
3224                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3225                 mddev->new_layout = mddev->layout;
3226                 mddev->new_level = mddev->level;
3227                 return -EINVAL;
3228         }
3229
3230         if (!mddev_is_clustered(mddev))
3231                 md_allow_write(mddev);
3232
3233         raid_disks = mddev->raid_disks + mddev->delta_disks;
3234
3235         if (raid_disks < conf->raid_disks) {
3236                 cnt=0;
3237                 for (d= 0; d < conf->raid_disks; d++)
3238                         if (conf->mirrors[d].rdev)
3239                                 cnt++;
3240                 if (cnt > raid_disks)
3241                         return -EBUSY;
3242         }
3243
3244         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3245         if (!newpoolinfo)
3246                 return -ENOMEM;
3247         newpoolinfo->mddev = mddev;
3248         newpoolinfo->raid_disks = raid_disks * 2;
3249
3250         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3251                                  r1bio_pool_free, newpoolinfo);
3252         if (!newpool) {
3253                 kfree(newpoolinfo);
3254                 return -ENOMEM;
3255         }
3256         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3257                              GFP_KERNEL);
3258         if (!newmirrors) {
3259                 kfree(newpoolinfo);
3260                 mempool_destroy(newpool);
3261                 return -ENOMEM;
3262         }
3263
3264         freeze_array(conf, 0);
3265
3266         /* ok, everything is stopped */
3267         oldpool = conf->r1bio_pool;
3268         conf->r1bio_pool = newpool;
3269
3270         for (d = d2 = 0; d < conf->raid_disks; d++) {
3271                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3272                 if (rdev && rdev->raid_disk != d2) {
3273                         sysfs_unlink_rdev(mddev, rdev);
3274                         rdev->raid_disk = d2;
3275                         sysfs_unlink_rdev(mddev, rdev);
3276                         if (sysfs_link_rdev(mddev, rdev))
3277                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3278                                         mdname(mddev), rdev->raid_disk);
3279                 }
3280                 if (rdev)
3281                         newmirrors[d2++].rdev = rdev;
3282         }
3283         kfree(conf->mirrors);
3284         conf->mirrors = newmirrors;
3285         kfree(conf->poolinfo);
3286         conf->poolinfo = newpoolinfo;
3287
3288         spin_lock_irqsave(&conf->device_lock, flags);
3289         mddev->degraded += (raid_disks - conf->raid_disks);
3290         spin_unlock_irqrestore(&conf->device_lock, flags);
3291         conf->raid_disks = mddev->raid_disks = raid_disks;
3292         mddev->delta_disks = 0;
3293
3294         unfreeze_array(conf);
3295
3296         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3297         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3298         md_wakeup_thread(mddev->thread);
3299
3300         mempool_destroy(oldpool);
3301         return 0;
3302 }
3303
3304 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3305 {
3306         struct r1conf *conf = mddev->private;
3307
3308         if (quiesce)
3309                 freeze_array(conf, 0);
3310         else
3311                 unfreeze_array(conf);
3312 }
3313
3314 static void *raid1_takeover(struct mddev *mddev)
3315 {
3316         /* raid1 can take over:
3317          *  raid5 with 2 devices, any layout or chunk size
3318          */
3319         if (mddev->level == 5 && mddev->raid_disks == 2) {
3320                 struct r1conf *conf;
3321                 mddev->new_level = 1;
3322                 mddev->new_layout = 0;
3323                 mddev->new_chunk_sectors = 0;
3324                 conf = setup_conf(mddev);
3325                 if (!IS_ERR(conf)) {
3326                         /* Array must appear to be quiesced */
3327                         conf->array_frozen = 1;
3328                         mddev_clear_unsupported_flags(mddev,
3329                                 UNSUPPORTED_MDDEV_FLAGS);
3330                 }
3331                 return conf;
3332         }
3333         return ERR_PTR(-EINVAL);
3334 }
3335
3336 static struct md_personality raid1_personality =
3337 {
3338         .name           = "raid1",
3339         .level          = 1,
3340         .owner          = THIS_MODULE,
3341         .make_request   = raid1_make_request,
3342         .run            = raid1_run,
3343         .free           = raid1_free,
3344         .status         = raid1_status,
3345         .error_handler  = raid1_error,
3346         .hot_add_disk   = raid1_add_disk,
3347         .hot_remove_disk= raid1_remove_disk,
3348         .spare_active   = raid1_spare_active,
3349         .sync_request   = raid1_sync_request,
3350         .resize         = raid1_resize,
3351         .size           = raid1_size,
3352         .check_reshape  = raid1_reshape,
3353         .quiesce        = raid1_quiesce,
3354         .takeover       = raid1_takeover,
3355         .congested      = raid1_congested,
3356 };
3357
3358 static int __init raid_init(void)
3359 {
3360         return register_md_personality(&raid1_personality);
3361 }
3362
3363 static void raid_exit(void)
3364 {
3365         unregister_md_personality(&raid1_personality);
3366 }
3367
3368 module_init(raid_init);
3369 module_exit(raid_exit);
3370 MODULE_LICENSE("GPL");
3371 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3372 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3373 MODULE_ALIAS("md-raid1");
3374 MODULE_ALIAS("md-level-1");
3375
3376 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);