GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
75
76         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
77                 dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
78
79         else if (vt->inc)
80                 vt->inc(vt->context, value_ptr(n, 0), nr_entries);
81 }
82
83 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
84                      uint64_t key, void *value)
85         __dm_written_to_disk(value)
86 {
87         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
88         uint32_t max_entries = le32_to_cpu(node->header.max_entries);
89         __le64 key_le = cpu_to_le64(key);
90
91         if (index > nr_entries ||
92             index >= max_entries ||
93             nr_entries >= max_entries) {
94                 DMERR("too many entries in btree node for insert");
95                 __dm_unbless_for_disk(value);
96                 return -ENOMEM;
97         }
98
99         __dm_bless_for_disk(&key_le);
100
101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102         array_insert(value_base(node), value_size, nr_entries, index, value);
103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105         return 0;
106 }
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116         uint32_t total, n;
117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119         block_size -= sizeof(struct node_header);
120         total = block_size / elt_size;
121         n = total / 3;          /* rounds down */
122
123         return 3 * n;
124 }
125
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128         int r;
129         struct dm_block *b;
130         struct btree_node *n;
131         size_t block_size;
132         uint32_t max_entries;
133
134         r = new_block(info, &b);
135         if (r < 0)
136                 return r;
137
138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139         max_entries = calc_max_entries(info->value_type.size, block_size);
140
141         n = dm_block_data(b);
142         memset(n, 0, block_size);
143         n->header.flags = cpu_to_le32(LEAF_NODE);
144         n->header.nr_entries = cpu_to_le32(0);
145         n->header.max_entries = cpu_to_le32(max_entries);
146         n->header.value_size = cpu_to_le32(info->value_type.size);
147
148         *root = dm_block_location(b);
149         unlock_block(info, b);
150
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155 /*----------------------------------------------------------------*/
156
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163         struct dm_block *b;
164         struct btree_node *n;
165         unsigned level;
166         unsigned nr_children;
167         unsigned current_child;
168 };
169
170 struct del_stack {
171         struct dm_btree_info *info;
172         struct dm_transaction_manager *tm;
173         int top;
174         struct frame spine[MAX_SPINE_DEPTH];
175 };
176
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179         if (s->top < 0) {
180                 DMERR("btree deletion stack empty");
181                 return -EINVAL;
182         }
183
184         *f = s->spine + s->top;
185
186         return 0;
187 }
188
189 static int unprocessed_frames(struct del_stack *s)
190 {
191         return s->top >= 0;
192 }
193
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196         unsigned i;
197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199         for (i = 0; i < f->nr_children; i++)
200                 dm_bm_prefetch(bm, value64(f->n, i));
201 }
202
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205         return f->level < (info->levels - 1);
206 }
207
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210         int r;
211         uint32_t ref_count;
212
213         if (s->top >= MAX_SPINE_DEPTH - 1) {
214                 DMERR("btree deletion stack out of memory");
215                 return -ENOMEM;
216         }
217
218         r = dm_tm_ref(s->tm, b, &ref_count);
219         if (r)
220                 return r;
221
222         if (ref_count > 1)
223                 /*
224                  * This is a shared node, so we can just decrement it's
225                  * reference counter and leave the children.
226                  */
227                 dm_tm_dec(s->tm, b);
228
229         else {
230                 uint32_t flags;
231                 struct frame *f = s->spine + ++s->top;
232
233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234                 if (r) {
235                         s->top--;
236                         return r;
237                 }
238
239                 f->n = dm_block_data(f->b);
240                 f->level = level;
241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242                 f->current_child = 0;
243
244                 flags = le32_to_cpu(f->n->header.flags);
245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246                         prefetch_children(s, f);
247         }
248
249         return 0;
250 }
251
252 static void pop_frame(struct del_stack *s)
253 {
254         struct frame *f = s->spine + s->top--;
255
256         dm_tm_dec(s->tm, dm_block_location(f->b));
257         dm_tm_unlock(s->tm, f->b);
258 }
259
260 static void unlock_all_frames(struct del_stack *s)
261 {
262         struct frame *f;
263
264         while (unprocessed_frames(s)) {
265                 f = s->spine + s->top--;
266                 dm_tm_unlock(s->tm, f->b);
267         }
268 }
269
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272         int r;
273         struct del_stack *s;
274
275         /*
276          * dm_btree_del() is called via an ioctl, as such should be
277          * considered an FS op.  We can't recurse back into the FS, so we
278          * allocate GFP_NOFS.
279          */
280         s = kmalloc(sizeof(*s), GFP_NOFS);
281         if (!s)
282                 return -ENOMEM;
283         s->info = info;
284         s->tm = info->tm;
285         s->top = -1;
286
287         r = push_frame(s, root, 0);
288         if (r)
289                 goto out;
290
291         while (unprocessed_frames(s)) {
292                 uint32_t flags;
293                 struct frame *f;
294                 dm_block_t b;
295
296                 r = top_frame(s, &f);
297                 if (r)
298                         goto out;
299
300                 if (f->current_child >= f->nr_children) {
301                         pop_frame(s);
302                         continue;
303                 }
304
305                 flags = le32_to_cpu(f->n->header.flags);
306                 if (flags & INTERNAL_NODE) {
307                         b = value64(f->n, f->current_child);
308                         f->current_child++;
309                         r = push_frame(s, b, f->level);
310                         if (r)
311                                 goto out;
312
313                 } else if (is_internal_level(info, f)) {
314                         b = value64(f->n, f->current_child);
315                         f->current_child++;
316                         r = push_frame(s, b, f->level + 1);
317                         if (r)
318                                 goto out;
319
320                 } else {
321                         if (info->value_type.dec)
322                                 info->value_type.dec(info->value_type.context,
323                                                      value_ptr(f->n, 0), f->nr_children);
324                         pop_frame(s);
325                 }
326         }
327 out:
328         if (r) {
329                 /* cleanup all frames of del_stack */
330                 unlock_all_frames(s);
331         }
332         kfree(s);
333
334         return r;
335 }
336 EXPORT_SYMBOL_GPL(dm_btree_del);
337
338 /*----------------------------------------------------------------*/
339
340 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
341                             int (*search_fn)(struct btree_node *, uint64_t),
342                             uint64_t *result_key, void *v, size_t value_size)
343 {
344         int i, r;
345         uint32_t flags, nr_entries;
346
347         do {
348                 r = ro_step(s, block);
349                 if (r < 0)
350                         return r;
351
352                 i = search_fn(ro_node(s), key);
353
354                 flags = le32_to_cpu(ro_node(s)->header.flags);
355                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
356                 if (i < 0 || i >= nr_entries)
357                         return -ENODATA;
358
359                 if (flags & INTERNAL_NODE)
360                         block = value64(ro_node(s), i);
361
362         } while (!(flags & LEAF_NODE));
363
364         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
365         if (v)
366                 memcpy(v, value_ptr(ro_node(s), i), value_size);
367
368         return 0;
369 }
370
371 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
372                     uint64_t *keys, void *value_le)
373 {
374         unsigned level, last_level = info->levels - 1;
375         int r = -ENODATA;
376         uint64_t rkey;
377         __le64 internal_value_le;
378         struct ro_spine spine;
379
380         init_ro_spine(&spine, info);
381         for (level = 0; level < info->levels; level++) {
382                 size_t size;
383                 void *value_p;
384
385                 if (level == last_level) {
386                         value_p = value_le;
387                         size = info->value_type.size;
388
389                 } else {
390                         value_p = &internal_value_le;
391                         size = sizeof(uint64_t);
392                 }
393
394                 r = btree_lookup_raw(&spine, root, keys[level],
395                                      lower_bound, &rkey,
396                                      value_p, size);
397
398                 if (!r) {
399                         if (rkey != keys[level]) {
400                                 exit_ro_spine(&spine);
401                                 return -ENODATA;
402                         }
403                 } else {
404                         exit_ro_spine(&spine);
405                         return r;
406                 }
407
408                 root = le64_to_cpu(internal_value_le);
409         }
410         exit_ro_spine(&spine);
411
412         return r;
413 }
414 EXPORT_SYMBOL_GPL(dm_btree_lookup);
415
416 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
417                                        uint64_t key, uint64_t *rkey, void *value_le)
418 {
419         int r, i;
420         uint32_t flags, nr_entries;
421         struct dm_block *node;
422         struct btree_node *n;
423
424         r = bn_read_lock(info, root, &node);
425         if (r)
426                 return r;
427
428         n = dm_block_data(node);
429         flags = le32_to_cpu(n->header.flags);
430         nr_entries = le32_to_cpu(n->header.nr_entries);
431
432         if (flags & INTERNAL_NODE) {
433                 i = lower_bound(n, key);
434                 if (i < 0) {
435                         /*
436                          * avoid early -ENODATA return when all entries are
437                          * higher than the search @key.
438                          */
439                         i = 0;
440                 }
441                 if (i >= nr_entries) {
442                         r = -ENODATA;
443                         goto out;
444                 }
445
446                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
447                 if (r == -ENODATA && i < (nr_entries - 1)) {
448                         i++;
449                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450                 }
451
452         } else {
453                 i = upper_bound(n, key);
454                 if (i < 0 || i >= nr_entries) {
455                         r = -ENODATA;
456                         goto out;
457                 }
458
459                 *rkey = le64_to_cpu(n->keys[i]);
460                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
461         }
462 out:
463         dm_tm_unlock(info->tm, node);
464         return r;
465 }
466
467 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
468                          uint64_t *keys, uint64_t *rkey, void *value_le)
469 {
470         unsigned level;
471         int r = -ENODATA;
472         __le64 internal_value_le;
473         struct ro_spine spine;
474
475         init_ro_spine(&spine, info);
476         for (level = 0; level < info->levels - 1u; level++) {
477                 r = btree_lookup_raw(&spine, root, keys[level],
478                                      lower_bound, rkey,
479                                      &internal_value_le, sizeof(uint64_t));
480                 if (r)
481                         goto out;
482
483                 if (*rkey != keys[level]) {
484                         r = -ENODATA;
485                         goto out;
486                 }
487
488                 root = le64_to_cpu(internal_value_le);
489         }
490
491         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
492 out:
493         exit_ro_spine(&spine);
494         return r;
495 }
496
497 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
498
499 /*----------------------------------------------------------------*/
500
501 /*
502  * Copies entries from one region of a btree node to another.  The regions
503  * must not overlap.
504  */
505 static void copy_entries(struct btree_node *dest, unsigned dest_offset,
506                          struct btree_node *src, unsigned src_offset,
507                          unsigned count)
508 {
509         size_t value_size = le32_to_cpu(dest->header.value_size);
510         memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
511         memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
512 }
513
514 /*
515  * Moves entries from one region fo a btree node to another.  The regions
516  * may overlap.
517  */
518 static void move_entries(struct btree_node *dest, unsigned dest_offset,
519                          struct btree_node *src, unsigned src_offset,
520                          unsigned count)
521 {
522         size_t value_size = le32_to_cpu(dest->header.value_size);
523         memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
524         memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
525 }
526
527 /*
528  * Erases the first 'count' entries of a btree node, shifting following
529  * entries down into their place.
530  */
531 static void shift_down(struct btree_node *n, unsigned count)
532 {
533         move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
534 }
535
536 /*
537  * Moves entries in a btree node up 'count' places, making space for
538  * new entries at the start of the node.
539  */
540 static void shift_up(struct btree_node *n, unsigned count)
541 {
542         move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
543 }
544
545 /*
546  * Redistributes entries between two btree nodes to make them
547  * have similar numbers of entries.
548  */
549 static void redistribute2(struct btree_node *left, struct btree_node *right)
550 {
551         unsigned nr_left = le32_to_cpu(left->header.nr_entries);
552         unsigned nr_right = le32_to_cpu(right->header.nr_entries);
553         unsigned total = nr_left + nr_right;
554         unsigned target_left = total / 2;
555         unsigned target_right = total - target_left;
556
557         if (nr_left < target_left) {
558                 unsigned delta = target_left - nr_left;
559                 copy_entries(left, nr_left, right, 0, delta);
560                 shift_down(right, delta);
561         } else if (nr_left > target_left) {
562                 unsigned delta = nr_left - target_left;
563                 if (nr_right)
564                         shift_up(right, delta);
565                 copy_entries(right, 0, left, target_left, delta);
566         }
567
568         left->header.nr_entries = cpu_to_le32(target_left);
569         right->header.nr_entries = cpu_to_le32(target_right);
570 }
571
572 /*
573  * Redistribute entries between three nodes.  Assumes the central
574  * node is empty.
575  */
576 static void redistribute3(struct btree_node *left, struct btree_node *center,
577                           struct btree_node *right)
578 {
579         unsigned nr_left = le32_to_cpu(left->header.nr_entries);
580         unsigned nr_center = le32_to_cpu(center->header.nr_entries);
581         unsigned nr_right = le32_to_cpu(right->header.nr_entries);
582         unsigned total, target_left, target_center, target_right;
583
584         BUG_ON(nr_center);
585
586         total = nr_left + nr_right;
587         target_left = total / 3;
588         target_center = (total - target_left) / 2;
589         target_right = (total - target_left - target_center);
590
591         if (nr_left < target_left) {
592                 unsigned left_short = target_left - nr_left;
593                 copy_entries(left, nr_left, right, 0, left_short);
594                 copy_entries(center, 0, right, left_short, target_center);
595                 shift_down(right, nr_right - target_right);
596
597         } else if (nr_left < (target_left + target_center)) {
598                 unsigned left_to_center = nr_left - target_left;
599                 copy_entries(center, 0, left, target_left, left_to_center);
600                 copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
601                 shift_down(right, nr_right - target_right);
602
603         } else {
604                 unsigned right_short = target_right - nr_right;
605                 shift_up(right, right_short);
606                 copy_entries(right, 0, left, nr_left - right_short, right_short);
607                 copy_entries(center, 0, left, target_left, nr_left - target_left);
608         }
609
610         left->header.nr_entries = cpu_to_le32(target_left);
611         center->header.nr_entries = cpu_to_le32(target_center);
612         right->header.nr_entries = cpu_to_le32(target_right);
613 }
614
615 /*
616  * Splits a node by creating a sibling node and shifting half the nodes
617  * contents across.  Assumes there is a parent node, and it has room for
618  * another child.
619  *
620  * Before:
621  *        +--------+
622  *        | Parent |
623  *        +--------+
624  *           |
625  *           v
626  *      +----------+
627  *      | A ++++++ |
628  *      +----------+
629  *
630  *
631  * After:
632  *              +--------+
633  *              | Parent |
634  *              +--------+
635  *                |     |
636  *                v     +------+
637  *          +---------+        |
638  *          | A* +++  |        v
639  *          +---------+   +-------+
640  *                        | B +++ |
641  *                        +-------+
642  *
643  * Where A* is a shadow of A.
644  */
645 static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
646                               struct dm_btree_value_type *vt, uint64_t key)
647 {
648         int r;
649         struct dm_block *left, *right, *parent;
650         struct btree_node *ln, *rn, *pn;
651         __le64 location;
652
653         left = shadow_current(s);
654
655         r = new_block(s->info, &right);
656         if (r < 0)
657                 return r;
658
659         ln = dm_block_data(left);
660         rn = dm_block_data(right);
661
662         rn->header.flags = ln->header.flags;
663         rn->header.nr_entries = cpu_to_le32(0);
664         rn->header.max_entries = ln->header.max_entries;
665         rn->header.value_size = ln->header.value_size;
666         redistribute2(ln, rn);
667
668         /* patch up the parent */
669         parent = shadow_parent(s);
670         pn = dm_block_data(parent);
671
672         location = cpu_to_le64(dm_block_location(right));
673         __dm_bless_for_disk(&location);
674         r = insert_at(sizeof(__le64), pn, parent_index + 1,
675                       le64_to_cpu(rn->keys[0]), &location);
676         if (r) {
677                 unlock_block(s->info, right);
678                 return r;
679         }
680
681         /* patch up the spine */
682         if (key < le64_to_cpu(rn->keys[0])) {
683                 unlock_block(s->info, right);
684                 s->nodes[1] = left;
685         } else {
686                 unlock_block(s->info, left);
687                 s->nodes[1] = right;
688         }
689
690         return 0;
691 }
692
693 /*
694  * We often need to modify a sibling node.  This function shadows a particular
695  * child of the given parent node.  Making sure to update the parent to point
696  * to the new shadow.
697  */
698 static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
699                         struct btree_node *parent, unsigned index,
700                         struct dm_block **result)
701 {
702         int r, inc;
703         dm_block_t root;
704         struct btree_node *node;
705
706         root = value64(parent, index);
707
708         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
709                                result, &inc);
710         if (r)
711                 return r;
712
713         node = dm_block_data(*result);
714
715         if (inc)
716                 inc_children(info->tm, node, vt);
717
718         *((__le64 *) value_ptr(parent, index)) =
719                 cpu_to_le64(dm_block_location(*result));
720
721         return 0;
722 }
723
724 /*
725  * Splits two nodes into three.  This is more work, but results in fuller
726  * nodes, so saves metadata space.
727  */
728 static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
729                                 struct dm_btree_value_type *vt, uint64_t key)
730 {
731         int r;
732         unsigned middle_index;
733         struct dm_block *left, *middle, *right, *parent;
734         struct btree_node *ln, *rn, *mn, *pn;
735         __le64 location;
736
737         parent = shadow_parent(s);
738         pn = dm_block_data(parent);
739
740         if (parent_index == 0) {
741                 middle_index = 1;
742                 left = shadow_current(s);
743                 r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
744                 if (r)
745                         return r;
746         } else {
747                 middle_index = parent_index;
748                 right = shadow_current(s);
749                 r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
750                 if (r)
751                         return r;
752         }
753
754         r = new_block(s->info, &middle);
755         if (r < 0)
756                 return r;
757
758         ln = dm_block_data(left);
759         mn = dm_block_data(middle);
760         rn = dm_block_data(right);
761
762         mn->header.nr_entries = cpu_to_le32(0);
763         mn->header.flags = ln->header.flags;
764         mn->header.max_entries = ln->header.max_entries;
765         mn->header.value_size = ln->header.value_size;
766
767         redistribute3(ln, mn, rn);
768
769         /* patch up the parent */
770         pn->keys[middle_index] = rn->keys[0];
771         location = cpu_to_le64(dm_block_location(middle));
772         __dm_bless_for_disk(&location);
773         r = insert_at(sizeof(__le64), pn, middle_index,
774                       le64_to_cpu(mn->keys[0]), &location);
775         if (r) {
776                 if (shadow_current(s) != left)
777                         unlock_block(s->info, left);
778
779                 unlock_block(s->info, middle);
780
781                 if (shadow_current(s) != right)
782                         unlock_block(s->info, right);
783
784                 return r;
785         }
786
787
788         /* patch up the spine */
789         if (key < le64_to_cpu(mn->keys[0])) {
790                 unlock_block(s->info, middle);
791                 unlock_block(s->info, right);
792                 s->nodes[1] = left;
793         } else if (key < le64_to_cpu(rn->keys[0])) {
794                 unlock_block(s->info, left);
795                 unlock_block(s->info, right);
796                 s->nodes[1] = middle;
797         } else {
798                 unlock_block(s->info, left);
799                 unlock_block(s->info, middle);
800                 s->nodes[1] = right;
801         }
802
803         return 0;
804 }
805
806 /*----------------------------------------------------------------*/
807
808 /*
809  * Splits a node by creating two new children beneath the given node.
810  *
811  * Before:
812  *        +----------+
813  *        | A ++++++ |
814  *        +----------+
815  *
816  *
817  * After:
818  *      +------------+
819  *      | A (shadow) |
820  *      +------------+
821  *          |   |
822  *   +------+   +----+
823  *   |               |
824  *   v               v
825  * +-------+     +-------+
826  * | B +++ |     | C +++ |
827  * +-------+     +-------+
828  */
829 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
830 {
831         int r;
832         size_t size;
833         unsigned nr_left, nr_right;
834         struct dm_block *left, *right, *new_parent;
835         struct btree_node *pn, *ln, *rn;
836         __le64 val;
837
838         new_parent = shadow_current(s);
839
840         pn = dm_block_data(new_parent);
841         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
842                 sizeof(__le64) : s->info->value_type.size;
843
844         /* create & init the left block */
845         r = new_block(s->info, &left);
846         if (r < 0)
847                 return r;
848
849         ln = dm_block_data(left);
850         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
851
852         ln->header.flags = pn->header.flags;
853         ln->header.nr_entries = cpu_to_le32(nr_left);
854         ln->header.max_entries = pn->header.max_entries;
855         ln->header.value_size = pn->header.value_size;
856         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
857         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
858
859         /* create & init the right block */
860         r = new_block(s->info, &right);
861         if (r < 0) {
862                 unlock_block(s->info, left);
863                 return r;
864         }
865
866         rn = dm_block_data(right);
867         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
868
869         rn->header.flags = pn->header.flags;
870         rn->header.nr_entries = cpu_to_le32(nr_right);
871         rn->header.max_entries = pn->header.max_entries;
872         rn->header.value_size = pn->header.value_size;
873         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
874         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
875                nr_right * size);
876
877         /* new_parent should just point to l and r now */
878         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
879         pn->header.nr_entries = cpu_to_le32(2);
880         pn->header.max_entries = cpu_to_le32(
881                 calc_max_entries(sizeof(__le64),
882                                  dm_bm_block_size(
883                                          dm_tm_get_bm(s->info->tm))));
884         pn->header.value_size = cpu_to_le32(sizeof(__le64));
885
886         val = cpu_to_le64(dm_block_location(left));
887         __dm_bless_for_disk(&val);
888         pn->keys[0] = ln->keys[0];
889         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
890
891         val = cpu_to_le64(dm_block_location(right));
892         __dm_bless_for_disk(&val);
893         pn->keys[1] = rn->keys[0];
894         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
895
896         unlock_block(s->info, left);
897         unlock_block(s->info, right);
898         return 0;
899 }
900
901 /*----------------------------------------------------------------*/
902
903 /*
904  * Redistributes a node's entries with its left sibling.
905  */
906 static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
907                           unsigned parent_index, uint64_t key)
908 {
909         int r;
910         struct dm_block *sib;
911         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
912
913         r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
914         if (r)
915                 return r;
916
917         left = dm_block_data(sib);
918         right = dm_block_data(shadow_current(s));
919         redistribute2(left, right);
920         *key_ptr(parent, parent_index) = right->keys[0];
921
922         if (key < le64_to_cpu(right->keys[0])) {
923                 unlock_block(s->info, s->nodes[1]);
924                 s->nodes[1] = sib;
925         } else {
926                 unlock_block(s->info, sib);
927         }
928
929         return 0;
930 }
931
932 /*
933  * Redistributes a nodes entries with its right sibling.
934  */
935 static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
936                            unsigned parent_index, uint64_t key)
937 {
938         int r;
939         struct dm_block *sib;
940         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
941
942         r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
943         if (r)
944                 return r;
945
946         left = dm_block_data(shadow_current(s));
947         right = dm_block_data(sib);
948         redistribute2(left, right);
949         *key_ptr(parent, parent_index + 1) = right->keys[0];
950
951         if (key < le64_to_cpu(right->keys[0])) {
952                 unlock_block(s->info, sib);
953         } else {
954                 unlock_block(s->info, s->nodes[1]);
955                 s->nodes[1] = sib;
956         }
957
958         return 0;
959 }
960
961 /*
962  * Returns the number of spare entries in a node.
963  */
964 static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
965 {
966         int r;
967         unsigned nr_entries;
968         struct dm_block *block;
969         struct btree_node *node;
970
971         r = bn_read_lock(info, b, &block);
972         if (r)
973                 return r;
974
975         node = dm_block_data(block);
976         nr_entries = le32_to_cpu(node->header.nr_entries);
977         *space = le32_to_cpu(node->header.max_entries) - nr_entries;
978
979         unlock_block(info, block);
980         return 0;
981 }
982
983 /*
984  * Make space in a node, either by moving some entries to a sibling,
985  * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
986  * number of free entries that must be in the sibling to make the move
987  * worth while.  If the siblings are shared (eg, part of a snapshot),
988  * then they are not touched, since this break sharing and so consume
989  * more space than we save.
990  */
991 #define SPACE_THRESHOLD 8
992 static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
993                               unsigned parent_index, uint64_t key)
994 {
995         int r;
996         struct btree_node *parent = dm_block_data(shadow_parent(s));
997         unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
998         unsigned free_space;
999         int left_shared = 0, right_shared = 0;
1000
1001         /* Should we move entries to the left sibling? */
1002         if (parent_index > 0) {
1003                 dm_block_t left_b = value64(parent, parent_index - 1);
1004                 r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1005                 if (r)
1006                         return r;
1007
1008                 if (!left_shared) {
1009                         r = get_node_free_space(s->info, left_b, &free_space);
1010                         if (r)
1011                                 return r;
1012
1013                         if (free_space >= SPACE_THRESHOLD)
1014                                 return rebalance_left(s, vt, parent_index, key);
1015                 }
1016         }
1017
1018         /* Should we move entries to the right sibling? */
1019         if (parent_index < (nr_parent - 1)) {
1020                 dm_block_t right_b = value64(parent, parent_index + 1);
1021                 r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1022                 if (r)
1023                         return r;
1024
1025                 if (!right_shared) {
1026                         r = get_node_free_space(s->info, right_b, &free_space);
1027                         if (r)
1028                                 return r;
1029
1030                         if (free_space >= SPACE_THRESHOLD)
1031                                 return rebalance_right(s, vt, parent_index, key);
1032                 }
1033         }
1034
1035         /*
1036          * We need to split the node, normally we split two nodes
1037          * into three.  But when inserting a sequence that is either
1038          * monotonically increasing or decreasing it's better to split
1039          * a single node into two.
1040          */
1041         if (left_shared || right_shared || (nr_parent <= 2) ||
1042             (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1043                 return split_one_into_two(s, parent_index, vt, key);
1044         } else {
1045                 return split_two_into_three(s, parent_index, vt, key);
1046         }
1047 }
1048
1049 /*
1050  * Does the node contain a particular key?
1051  */
1052 static bool contains_key(struct btree_node *node, uint64_t key)
1053 {
1054         int i = lower_bound(node, key);
1055
1056         if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1057                 return true;
1058
1059         return false;
1060 }
1061
1062 /*
1063  * In general we preemptively make sure there's a free entry in every
1064  * node on the spine when doing an insert.  But we can avoid that with
1065  * leaf nodes if we know it's an overwrite.
1066  */
1067 static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1068 {
1069         if (node->header.nr_entries == node->header.max_entries) {
1070                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1071                         /* we don't need space if it's an overwrite */
1072                         return contains_key(node, key);
1073                 }
1074
1075                 return false;
1076         }
1077
1078         return true;
1079 }
1080
1081 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1082                             struct dm_btree_value_type *vt,
1083                             uint64_t key, unsigned *index)
1084 {
1085         int r, i = *index, top = 1;
1086         struct btree_node *node;
1087
1088         for (;;) {
1089                 r = shadow_step(s, root, vt);
1090                 if (r < 0)
1091                         return r;
1092
1093                 node = dm_block_data(shadow_current(s));
1094
1095                 /*
1096                  * We have to patch up the parent node, ugly, but I don't
1097                  * see a way to do this automatically as part of the spine
1098                  * op.
1099                  */
1100                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1101                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1102
1103                         __dm_bless_for_disk(&location);
1104                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1105                                     &location, sizeof(__le64));
1106                 }
1107
1108                 node = dm_block_data(shadow_current(s));
1109
1110                 if (!has_space_for_insert(node, key)) {
1111                         if (top)
1112                                 r = btree_split_beneath(s, key);
1113                         else
1114                                 r = rebalance_or_split(s, vt, i, key);
1115
1116                         if (r < 0)
1117                                 return r;
1118
1119                         /* making space can cause the current node to change */
1120                         node = dm_block_data(shadow_current(s));
1121                 }
1122
1123                 i = lower_bound(node, key);
1124
1125                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1126                         break;
1127
1128                 if (i < 0) {
1129                         /* change the bounds on the lowest key */
1130                         node->keys[0] = cpu_to_le64(key);
1131                         i = 0;
1132                 }
1133
1134                 root = value64(node, i);
1135                 top = 0;
1136         }
1137
1138         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1139                 i++;
1140
1141         *index = i;
1142         return 0;
1143 }
1144
1145 static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1146                                       uint64_t key, int *index)
1147 {
1148         int r, i = -1;
1149         struct btree_node *node;
1150
1151         *index = 0;
1152         for (;;) {
1153                 r = shadow_step(s, root, &s->info->value_type);
1154                 if (r < 0)
1155                         return r;
1156
1157                 node = dm_block_data(shadow_current(s));
1158
1159                 /*
1160                  * We have to patch up the parent node, ugly, but I don't
1161                  * see a way to do this automatically as part of the spine
1162                  * op.
1163                  */
1164                 if (shadow_has_parent(s) && i >= 0) {
1165                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1166
1167                         __dm_bless_for_disk(&location);
1168                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1169                                     &location, sizeof(__le64));
1170                 }
1171
1172                 node = dm_block_data(shadow_current(s));
1173                 i = lower_bound(node, key);
1174
1175                 BUG_ON(i < 0);
1176                 BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1177
1178                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1179                         if (key != le64_to_cpu(node->keys[i]))
1180                                 return -EINVAL;
1181                         break;
1182                 }
1183
1184                 root = value64(node, i);
1185         }
1186
1187         *index = i;
1188         return 0;
1189 }
1190
1191 int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1192                              uint64_t key, int *index,
1193                              dm_block_t *new_root, struct dm_block **leaf)
1194 {
1195         int r;
1196         struct shadow_spine spine;
1197
1198         BUG_ON(info->levels > 1);
1199         init_shadow_spine(&spine, info);
1200         r = __btree_get_overwrite_leaf(&spine, root, key, index);
1201         if (!r) {
1202                 *new_root = shadow_root(&spine);
1203                 *leaf = shadow_current(&spine);
1204
1205                 /*
1206                  * Decrement the count so exit_shadow_spine() doesn't
1207                  * unlock the leaf.
1208                  */
1209                 spine.count--;
1210         }
1211         exit_shadow_spine(&spine);
1212
1213         return r;
1214 }
1215
1216 static bool need_insert(struct btree_node *node, uint64_t *keys,
1217                         unsigned level, unsigned index)
1218 {
1219         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1220                 (le64_to_cpu(node->keys[index]) != keys[level]));
1221 }
1222
1223 static int insert(struct dm_btree_info *info, dm_block_t root,
1224                   uint64_t *keys, void *value, dm_block_t *new_root,
1225                   int *inserted)
1226                   __dm_written_to_disk(value)
1227 {
1228         int r;
1229         unsigned level, index = -1, last_level = info->levels - 1;
1230         dm_block_t block = root;
1231         struct shadow_spine spine;
1232         struct btree_node *n;
1233         struct dm_btree_value_type le64_type;
1234
1235         init_le64_type(info->tm, &le64_type);
1236         init_shadow_spine(&spine, info);
1237
1238         for (level = 0; level < (info->levels - 1); level++) {
1239                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1240                 if (r < 0)
1241                         goto bad;
1242
1243                 n = dm_block_data(shadow_current(&spine));
1244
1245                 if (need_insert(n, keys, level, index)) {
1246                         dm_block_t new_tree;
1247                         __le64 new_le;
1248
1249                         r = dm_btree_empty(info, &new_tree);
1250                         if (r < 0)
1251                                 goto bad;
1252
1253                         new_le = cpu_to_le64(new_tree);
1254                         __dm_bless_for_disk(&new_le);
1255
1256                         r = insert_at(sizeof(uint64_t), n, index,
1257                                       keys[level], &new_le);
1258                         if (r)
1259                                 goto bad;
1260                 }
1261
1262                 if (level < last_level)
1263                         block = value64(n, index);
1264         }
1265
1266         r = btree_insert_raw(&spine, block, &info->value_type,
1267                              keys[level], &index);
1268         if (r < 0)
1269                 goto bad;
1270
1271         n = dm_block_data(shadow_current(&spine));
1272
1273         if (need_insert(n, keys, level, index)) {
1274                 if (inserted)
1275                         *inserted = 1;
1276
1277                 r = insert_at(info->value_type.size, n, index,
1278                               keys[level], value);
1279                 if (r)
1280                         goto bad_unblessed;
1281         } else {
1282                 if (inserted)
1283                         *inserted = 0;
1284
1285                 if (info->value_type.dec &&
1286                     (!info->value_type.equal ||
1287                      !info->value_type.equal(
1288                              info->value_type.context,
1289                              value_ptr(n, index),
1290                              value))) {
1291                         info->value_type.dec(info->value_type.context,
1292                                              value_ptr(n, index), 1);
1293                 }
1294                 memcpy_disk(value_ptr(n, index),
1295                             value, info->value_type.size);
1296         }
1297
1298         *new_root = shadow_root(&spine);
1299         exit_shadow_spine(&spine);
1300
1301         return 0;
1302
1303 bad:
1304         __dm_unbless_for_disk(value);
1305 bad_unblessed:
1306         exit_shadow_spine(&spine);
1307         return r;
1308 }
1309
1310 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1311                     uint64_t *keys, void *value, dm_block_t *new_root)
1312                     __dm_written_to_disk(value)
1313 {
1314         return insert(info, root, keys, value, new_root, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(dm_btree_insert);
1317
1318 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1319                            uint64_t *keys, void *value, dm_block_t *new_root,
1320                            int *inserted)
1321                            __dm_written_to_disk(value)
1322 {
1323         return insert(info, root, keys, value, new_root, inserted);
1324 }
1325 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1326
1327 /*----------------------------------------------------------------*/
1328
1329 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1330                     uint64_t *result_key, dm_block_t *next_block)
1331 {
1332         int i, r;
1333         uint32_t flags;
1334
1335         do {
1336                 r = ro_step(s, block);
1337                 if (r < 0)
1338                         return r;
1339
1340                 flags = le32_to_cpu(ro_node(s)->header.flags);
1341                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
1342                 if (!i)
1343                         return -ENODATA;
1344                 else
1345                         i--;
1346
1347                 if (find_highest)
1348                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
1349                 else
1350                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
1351
1352                 if (next_block || flags & INTERNAL_NODE) {
1353                         if (find_highest)
1354                                 block = value64(ro_node(s), i);
1355                         else
1356                                 block = value64(ro_node(s), 0);
1357                 }
1358
1359         } while (flags & INTERNAL_NODE);
1360
1361         if (next_block)
1362                 *next_block = block;
1363         return 0;
1364 }
1365
1366 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1367                              bool find_highest, uint64_t *result_keys)
1368 {
1369         int r = 0, count = 0, level;
1370         struct ro_spine spine;
1371
1372         init_ro_spine(&spine, info);
1373         for (level = 0; level < info->levels; level++) {
1374                 r = find_key(&spine, root, find_highest, result_keys + level,
1375                              level == info->levels - 1 ? NULL : &root);
1376                 if (r == -ENODATA) {
1377                         r = 0;
1378                         break;
1379
1380                 } else if (r)
1381                         break;
1382
1383                 count++;
1384         }
1385         exit_ro_spine(&spine);
1386
1387         return r ? r : count;
1388 }
1389
1390 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1391                               uint64_t *result_keys)
1392 {
1393         return dm_btree_find_key(info, root, true, result_keys);
1394 }
1395 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1396
1397 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1398                              uint64_t *result_keys)
1399 {
1400         return dm_btree_find_key(info, root, false, result_keys);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1403
1404 /*----------------------------------------------------------------*/
1405
1406 /*
1407  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1408  * space.  Also this only works for single level trees.
1409  */
1410 static int walk_node(struct dm_btree_info *info, dm_block_t block,
1411                      int (*fn)(void *context, uint64_t *keys, void *leaf),
1412                      void *context)
1413 {
1414         int r;
1415         unsigned i, nr;
1416         struct dm_block *node;
1417         struct btree_node *n;
1418         uint64_t keys;
1419
1420         r = bn_read_lock(info, block, &node);
1421         if (r)
1422                 return r;
1423
1424         n = dm_block_data(node);
1425
1426         nr = le32_to_cpu(n->header.nr_entries);
1427         for (i = 0; i < nr; i++) {
1428                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1429                         r = walk_node(info, value64(n, i), fn, context);
1430                         if (r)
1431                                 goto out;
1432                 } else {
1433                         keys = le64_to_cpu(*key_ptr(n, i));
1434                         r = fn(context, &keys, value_ptr(n, i));
1435                         if (r)
1436                                 goto out;
1437                 }
1438         }
1439
1440 out:
1441         dm_tm_unlock(info->tm, node);
1442         return r;
1443 }
1444
1445 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1446                   int (*fn)(void *context, uint64_t *keys, void *leaf),
1447                   void *context)
1448 {
1449         BUG_ON(info->levels > 1);
1450         return walk_node(info, root, fn, context);
1451 }
1452 EXPORT_SYMBOL_GPL(dm_btree_walk);
1453
1454 /*----------------------------------------------------------------*/
1455
1456 static void prefetch_values(struct dm_btree_cursor *c)
1457 {
1458         unsigned i, nr;
1459         __le64 value_le;
1460         struct cursor_node *n = c->nodes + c->depth - 1;
1461         struct btree_node *bn = dm_block_data(n->b);
1462         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1463
1464         BUG_ON(c->info->value_type.size != sizeof(value_le));
1465
1466         nr = le32_to_cpu(bn->header.nr_entries);
1467         for (i = 0; i < nr; i++) {
1468                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1469                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1470         }
1471 }
1472
1473 static bool leaf_node(struct dm_btree_cursor *c)
1474 {
1475         struct cursor_node *n = c->nodes + c->depth - 1;
1476         struct btree_node *bn = dm_block_data(n->b);
1477
1478         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1479 }
1480
1481 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1482 {
1483         int r;
1484         struct cursor_node *n = c->nodes + c->depth;
1485
1486         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1487                 DMERR("couldn't push cursor node, stack depth too high");
1488                 return -EINVAL;
1489         }
1490
1491         r = bn_read_lock(c->info, b, &n->b);
1492         if (r)
1493                 return r;
1494
1495         n->index = 0;
1496         c->depth++;
1497
1498         if (c->prefetch_leaves || !leaf_node(c))
1499                 prefetch_values(c);
1500
1501         return 0;
1502 }
1503
1504 static void pop_node(struct dm_btree_cursor *c)
1505 {
1506         c->depth--;
1507         unlock_block(c->info, c->nodes[c->depth].b);
1508 }
1509
1510 static int inc_or_backtrack(struct dm_btree_cursor *c)
1511 {
1512         struct cursor_node *n;
1513         struct btree_node *bn;
1514
1515         for (;;) {
1516                 if (!c->depth)
1517                         return -ENODATA;
1518
1519                 n = c->nodes + c->depth - 1;
1520                 bn = dm_block_data(n->b);
1521
1522                 n->index++;
1523                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1524                         break;
1525
1526                 pop_node(c);
1527         }
1528
1529         return 0;
1530 }
1531
1532 static int find_leaf(struct dm_btree_cursor *c)
1533 {
1534         int r = 0;
1535         struct cursor_node *n;
1536         struct btree_node *bn;
1537         __le64 value_le;
1538
1539         for (;;) {
1540                 n = c->nodes + c->depth - 1;
1541                 bn = dm_block_data(n->b);
1542
1543                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1544                         break;
1545
1546                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1547                 r = push_node(c, le64_to_cpu(value_le));
1548                 if (r) {
1549                         DMERR("push_node failed");
1550                         break;
1551                 }
1552         }
1553
1554         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1555                 return -ENODATA;
1556
1557         return r;
1558 }
1559
1560 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1561                           bool prefetch_leaves, struct dm_btree_cursor *c)
1562 {
1563         int r;
1564
1565         c->info = info;
1566         c->root = root;
1567         c->depth = 0;
1568         c->prefetch_leaves = prefetch_leaves;
1569
1570         r = push_node(c, root);
1571         if (r)
1572                 return r;
1573
1574         return find_leaf(c);
1575 }
1576 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1577
1578 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1579 {
1580         while (c->depth)
1581                 pop_node(c);
1582 }
1583 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1584
1585 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1586 {
1587         int r = inc_or_backtrack(c);
1588         if (!r) {
1589                 r = find_leaf(c);
1590                 if (r)
1591                         DMERR("find_leaf failed");
1592         }
1593
1594         return r;
1595 }
1596 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1597
1598 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1599 {
1600         int r = 0;
1601
1602         while (count-- && !r)
1603                 r = dm_btree_cursor_next(c);
1604
1605         return r;
1606 }
1607 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1608
1609 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1610 {
1611         if (c->depth) {
1612                 struct cursor_node *n = c->nodes + c->depth - 1;
1613                 struct btree_node *bn = dm_block_data(n->b);
1614
1615                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1616                         return -EINVAL;
1617
1618                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1619                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1620                 return 0;
1621
1622         } else
1623                 return -ENODATA;
1624 }
1625 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);