GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / md / persistent-data / dm-array.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "array"
15
16 /*----------------------------------------------------------------*/
17
18 /*
19  * The array is implemented as a fully populated btree, which points to
20  * blocks that contain the packed values.  This is more space efficient
21  * than just using a btree since we don't store 1 key per value.
22  */
23 struct array_block {
24         __le32 csum;
25         __le32 max_entries;
26         __le32 nr_entries;
27         __le32 value_size;
28         __le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
30
31 /*----------------------------------------------------------------*/
32
33 /*
34  * Validator methods.  As usual we calculate a checksum, and also write the
35  * block location into the header (paranoia about ssds remapping areas by
36  * mistake).
37  */
38 #define CSUM_XOR 595846735
39
40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41                                           struct dm_block *b,
42                                           size_t size_of_block)
43 {
44         struct array_block *bh_le = dm_block_data(b);
45
46         bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47         bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48                                                  size_of_block - sizeof(__le32),
49                                                  CSUM_XOR));
50 }
51
52 static int array_block_check(struct dm_block_validator *v,
53                              struct dm_block *b,
54                              size_t size_of_block)
55 {
56         struct array_block *bh_le = dm_block_data(b);
57         __le32 csum_disk;
58
59         if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60                 DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61                             (unsigned long long) le64_to_cpu(bh_le->blocknr),
62                             (unsigned long long) dm_block_location(b));
63                 return -ENOTBLK;
64         }
65
66         csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67                                                size_of_block - sizeof(__le32),
68                                                CSUM_XOR));
69         if (csum_disk != bh_le->csum) {
70                 DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71                             (unsigned) le32_to_cpu(csum_disk),
72                             (unsigned) le32_to_cpu(bh_le->csum));
73                 return -EILSEQ;
74         }
75
76         return 0;
77 }
78
79 static struct dm_block_validator array_validator = {
80         .name = "array",
81         .prepare_for_write = array_block_prepare_for_write,
82         .check = array_block_check
83 };
84
85 /*----------------------------------------------------------------*/
86
87 /*
88  * Functions for manipulating the array blocks.
89  */
90
91 /*
92  * Returns a pointer to a value within an array block.
93  *
94  * index - The index into _this_ specific block.
95  */
96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97                         unsigned index)
98 {
99         unsigned char *entry = (unsigned char *) (ab + 1);
100
101         entry += index * info->value_type.size;
102
103         return entry;
104 }
105
106 /*
107  * Utility function that calls one of the value_type methods on every value
108  * in an array block.
109  */
110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111                        void (*fn)(void *, const void *, unsigned))
112 {
113         unsigned nr_entries = le32_to_cpu(ab->nr_entries);
114         fn(info->value_type.context, element_at(info, ab, 0), nr_entries);
115 }
116
117 /*
118  * Increment every value in an array block.
119  */
120 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
121 {
122         struct dm_btree_value_type *vt = &info->value_type;
123
124         if (vt->inc)
125                 on_entries(info, ab, vt->inc);
126 }
127
128 /*
129  * Decrement every value in an array block.
130  */
131 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
132 {
133         struct dm_btree_value_type *vt = &info->value_type;
134
135         if (vt->dec)
136                 on_entries(info, ab, vt->dec);
137 }
138
139 /*
140  * Each array block can hold this many values.
141  */
142 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
143 {
144         return (size_of_block - sizeof(struct array_block)) / value_size;
145 }
146
147 /*
148  * Allocate a new array block.  The caller will need to unlock block.
149  */
150 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
151                         uint32_t max_entries,
152                         struct dm_block **block, struct array_block **ab)
153 {
154         int r;
155
156         r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
157         if (r)
158                 return r;
159
160         (*ab) = dm_block_data(*block);
161         (*ab)->max_entries = cpu_to_le32(max_entries);
162         (*ab)->nr_entries = cpu_to_le32(0);
163         (*ab)->value_size = cpu_to_le32(info->value_type.size);
164
165         return 0;
166 }
167
168 /*
169  * Pad an array block out with a particular value.  Every instance will
170  * cause an increment of the value_type.  new_nr must always be more than
171  * the current number of entries.
172  */
173 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
174                         const void *value, unsigned new_nr)
175 {
176         uint32_t nr_entries, delta, i;
177         struct dm_btree_value_type *vt = &info->value_type;
178
179         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
180         BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
181
182         nr_entries = le32_to_cpu(ab->nr_entries);
183         delta = new_nr - nr_entries;
184         if (vt->inc)
185                 vt->inc(vt->context, value, delta);
186         for (i = nr_entries; i < new_nr; i++)
187                 memcpy(element_at(info, ab, i), value, vt->size);
188         ab->nr_entries = cpu_to_le32(new_nr);
189 }
190
191 /*
192  * Remove some entries from the back of an array block.  Every value
193  * removed will be decremented.  new_nr must be <= the current number of
194  * entries.
195  */
196 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
197                         unsigned new_nr)
198 {
199         uint32_t nr_entries, delta;
200         struct dm_btree_value_type *vt = &info->value_type;
201
202         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
203         BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
204
205         nr_entries = le32_to_cpu(ab->nr_entries);
206         delta = nr_entries - new_nr;
207         if (vt->dec)
208                 vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta);
209         ab->nr_entries = cpu_to_le32(new_nr);
210 }
211
212 /*
213  * Read locks a block, and coerces it to an array block.  The caller must
214  * unlock 'block' when finished.
215  */
216 static int get_ablock(struct dm_array_info *info, dm_block_t b,
217                       struct dm_block **block, struct array_block **ab)
218 {
219         int r;
220
221         r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
222         if (r)
223                 return r;
224
225         *ab = dm_block_data(*block);
226         return 0;
227 }
228
229 /*
230  * Unlocks an array block.
231  */
232 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
233 {
234         dm_tm_unlock(info->btree_info.tm, block);
235 }
236
237 /*----------------------------------------------------------------*/
238
239 /*
240  * Btree manipulation.
241  */
242
243 /*
244  * Looks up an array block in the btree, and then read locks it.
245  *
246  * index is the index of the index of the array_block, (ie. the array index
247  * / max_entries).
248  */
249 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
250                          unsigned index, struct dm_block **block,
251                          struct array_block **ab)
252 {
253         int r;
254         uint64_t key = index;
255         __le64 block_le;
256
257         r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
258         if (r)
259                 return r;
260
261         return get_ablock(info, le64_to_cpu(block_le), block, ab);
262 }
263
264 /*
265  * Insert an array block into the btree.  The block is _not_ unlocked.
266  */
267 static int insert_ablock(struct dm_array_info *info, uint64_t index,
268                          struct dm_block *block, dm_block_t *root)
269 {
270         __le64 block_le = cpu_to_le64(dm_block_location(block));
271
272         __dm_bless_for_disk(block_le);
273         return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
274 }
275
276 /*----------------------------------------------------------------*/
277
278 static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
279                            struct dm_block **block, struct array_block **ab)
280 {
281         int inc;
282         int r = dm_tm_shadow_block(info->btree_info.tm, b,
283                                    &array_validator, block, &inc);
284         if (r)
285                 return r;
286
287         *ab = dm_block_data(*block);
288         if (inc)
289                 inc_ablock_entries(info, *ab);
290
291         return 0;
292 }
293
294 /*
295  * The shadow op will often be a noop.  Only insert if it really
296  * copied data.
297  */
298 static int __reinsert_ablock(struct dm_array_info *info, unsigned index,
299                              struct dm_block *block, dm_block_t b,
300                              dm_block_t *root)
301 {
302         int r = 0;
303
304         if (dm_block_location(block) != b) {
305                 /*
306                  * dm_tm_shadow_block will have already decremented the old
307                  * block, but it is still referenced by the btree.  We
308                  * increment to stop the insert decrementing it below zero
309                  * when overwriting the old value.
310                  */
311                 dm_tm_inc(info->btree_info.tm, b);
312                 r = insert_ablock(info, index, block, root);
313         }
314
315         return r;
316 }
317
318 /*
319  * Looks up an array block in the btree.  Then shadows it, and updates the
320  * btree to point to this new shadow.  'root' is an input/output parameter
321  * for both the current root block, and the new one.
322  */
323 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
324                          unsigned index, struct dm_block **block,
325                          struct array_block **ab)
326 {
327         int r;
328         uint64_t key = index;
329         dm_block_t b;
330         __le64 block_le;
331
332         r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
333         if (r)
334                 return r;
335         b = le64_to_cpu(block_le);
336
337         r = __shadow_ablock(info, b, block, ab);
338         if (r)
339                 return r;
340
341         return __reinsert_ablock(info, index, *block, b, root);
342 }
343
344 /*
345  * Allocate an new array block, and fill it with some values.
346  */
347 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
348                              uint32_t max_entries,
349                              unsigned block_index, uint32_t nr,
350                              const void *value, dm_block_t *root)
351 {
352         int r;
353         struct dm_block *block;
354         struct array_block *ab;
355
356         r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
357         if (r)
358                 return r;
359
360         fill_ablock(info, ab, value, nr);
361         r = insert_ablock(info, block_index, block, root);
362         unlock_ablock(info, block);
363
364         return r;
365 }
366
367 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
368                                unsigned begin_block, unsigned end_block,
369                                unsigned max_entries, const void *value,
370                                dm_block_t *root)
371 {
372         int r = 0;
373
374         for (; !r && begin_block != end_block; begin_block++)
375                 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
376
377         return r;
378 }
379
380 /*
381  * There are a bunch of functions involved with resizing an array.  This
382  * structure holds information that commonly needed by them.  Purely here
383  * to reduce parameter count.
384  */
385 struct resize {
386         /*
387          * Describes the array.
388          */
389         struct dm_array_info *info;
390
391         /*
392          * The current root of the array.  This gets updated.
393          */
394         dm_block_t root;
395
396         /*
397          * Metadata block size.  Used to calculate the nr entries in an
398          * array block.
399          */
400         size_t size_of_block;
401
402         /*
403          * Maximum nr entries in an array block.
404          */
405         unsigned max_entries;
406
407         /*
408          * nr of completely full blocks in the array.
409          *
410          * 'old' refers to before the resize, 'new' after.
411          */
412         unsigned old_nr_full_blocks, new_nr_full_blocks;
413
414         /*
415          * Number of entries in the final block.  0 iff only full blocks in
416          * the array.
417          */
418         unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
419
420         /*
421          * The default value used when growing the array.
422          */
423         const void *value;
424 };
425
426 /*
427  * Removes a consecutive set of array blocks from the btree.  The values
428  * in block are decremented as a side effect of the btree remove.
429  *
430  * begin_index - the index of the first array block to remove.
431  * end_index - the one-past-the-end value.  ie. this block is not removed.
432  */
433 static int drop_blocks(struct resize *resize, unsigned begin_index,
434                        unsigned end_index)
435 {
436         int r;
437
438         while (begin_index != end_index) {
439                 uint64_t key = begin_index++;
440                 r = dm_btree_remove(&resize->info->btree_info, resize->root,
441                                     &key, &resize->root);
442                 if (r)
443                         return r;
444         }
445
446         return 0;
447 }
448
449 /*
450  * Calculates how many blocks are needed for the array.
451  */
452 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
453                                        unsigned nr_entries_in_last_block)
454 {
455         return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
456 }
457
458 /*
459  * Shrink an array.
460  */
461 static int shrink(struct resize *resize)
462 {
463         int r;
464         unsigned begin, end;
465         struct dm_block *block;
466         struct array_block *ab;
467
468         /*
469          * Lose some blocks from the back?
470          */
471         if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
472                 begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
473                                                resize->new_nr_entries_in_last_block);
474                 end = total_nr_blocks_needed(resize->old_nr_full_blocks,
475                                              resize->old_nr_entries_in_last_block);
476
477                 r = drop_blocks(resize, begin, end);
478                 if (r)
479                         return r;
480         }
481
482         /*
483          * Trim the new tail block
484          */
485         if (resize->new_nr_entries_in_last_block) {
486                 r = shadow_ablock(resize->info, &resize->root,
487                                   resize->new_nr_full_blocks, &block, &ab);
488                 if (r)
489                         return r;
490
491                 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
492                 unlock_ablock(resize->info, block);
493         }
494
495         return 0;
496 }
497
498 /*
499  * Grow an array.
500  */
501 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
502 {
503         int r;
504         struct dm_block *block;
505         struct array_block *ab;
506
507         r = shadow_ablock(resize->info, &resize->root,
508                           resize->old_nr_full_blocks, &block, &ab);
509         if (r)
510                 return r;
511
512         fill_ablock(resize->info, ab, resize->value, new_nr_entries);
513         unlock_ablock(resize->info, block);
514
515         return r;
516 }
517
518 static int grow_add_tail_block(struct resize *resize)
519 {
520         return insert_new_ablock(resize->info, resize->size_of_block,
521                                  resize->max_entries,
522                                  resize->new_nr_full_blocks,
523                                  resize->new_nr_entries_in_last_block,
524                                  resize->value, &resize->root);
525 }
526
527 static int grow_needs_more_blocks(struct resize *resize)
528 {
529         int r;
530         unsigned old_nr_blocks = resize->old_nr_full_blocks;
531
532         if (resize->old_nr_entries_in_last_block > 0) {
533                 old_nr_blocks++;
534
535                 r = grow_extend_tail_block(resize, resize->max_entries);
536                 if (r)
537                         return r;
538         }
539
540         r = insert_full_ablocks(resize->info, resize->size_of_block,
541                                 old_nr_blocks,
542                                 resize->new_nr_full_blocks,
543                                 resize->max_entries, resize->value,
544                                 &resize->root);
545         if (r)
546                 return r;
547
548         if (resize->new_nr_entries_in_last_block)
549                 r = grow_add_tail_block(resize);
550
551         return r;
552 }
553
554 static int grow(struct resize *resize)
555 {
556         if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
557                 return grow_needs_more_blocks(resize);
558
559         else if (resize->old_nr_entries_in_last_block)
560                 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
561
562         else
563                 return grow_add_tail_block(resize);
564 }
565
566 /*----------------------------------------------------------------*/
567
568 /*
569  * These are the value_type functions for the btree elements, which point
570  * to array blocks.
571  */
572 static void block_inc(void *context, const void *value, unsigned count)
573 {
574         const __le64 *block_le = value;
575         struct dm_array_info *info = context;
576         unsigned i;
577
578         for (i = 0; i < count; i++, block_le++)
579                 dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le));
580 }
581
582 static void __block_dec(void *context, const void *value)
583 {
584         int r;
585         uint64_t b;
586         __le64 block_le;
587         uint32_t ref_count;
588         struct dm_block *block;
589         struct array_block *ab;
590         struct dm_array_info *info = context;
591
592         memcpy(&block_le, value, sizeof(block_le));
593         b = le64_to_cpu(block_le);
594
595         r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
596         if (r) {
597                 DMERR_LIMIT("couldn't get reference count for block %llu",
598                             (unsigned long long) b);
599                 return;
600         }
601
602         if (ref_count == 1) {
603                 /*
604                  * We're about to drop the last reference to this ablock.
605                  * So we need to decrement the ref count of the contents.
606                  */
607                 r = get_ablock(info, b, &block, &ab);
608                 if (r) {
609                         DMERR_LIMIT("couldn't get array block %llu",
610                                     (unsigned long long) b);
611                         return;
612                 }
613
614                 dec_ablock_entries(info, ab);
615                 unlock_ablock(info, block);
616         }
617
618         dm_tm_dec(info->btree_info.tm, b);
619 }
620
621 static void block_dec(void *context, const void *value, unsigned count)
622 {
623         unsigned i;
624         for (i = 0; i < count; i++, value += sizeof(__le64))
625                 __block_dec(context, value);
626 }
627
628 static int block_equal(void *context, const void *value1, const void *value2)
629 {
630         return !memcmp(value1, value2, sizeof(__le64));
631 }
632
633 /*----------------------------------------------------------------*/
634
635 void dm_array_info_init(struct dm_array_info *info,
636                         struct dm_transaction_manager *tm,
637                         struct dm_btree_value_type *vt)
638 {
639         struct dm_btree_value_type *bvt = &info->btree_info.value_type;
640
641         memcpy(&info->value_type, vt, sizeof(info->value_type));
642         info->btree_info.tm = tm;
643         info->btree_info.levels = 1;
644
645         bvt->context = info;
646         bvt->size = sizeof(__le64);
647         bvt->inc = block_inc;
648         bvt->dec = block_dec;
649         bvt->equal = block_equal;
650 }
651 EXPORT_SYMBOL_GPL(dm_array_info_init);
652
653 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
654 {
655         return dm_btree_empty(&info->btree_info, root);
656 }
657 EXPORT_SYMBOL_GPL(dm_array_empty);
658
659 static int array_resize(struct dm_array_info *info, dm_block_t root,
660                         uint32_t old_size, uint32_t new_size,
661                         const void *value, dm_block_t *new_root)
662 {
663         int r;
664         struct resize resize;
665
666         if (old_size == new_size) {
667                 *new_root = root;
668                 return 0;
669         }
670
671         resize.info = info;
672         resize.root = root;
673         resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
674         resize.max_entries = calc_max_entries(info->value_type.size,
675                                               resize.size_of_block);
676
677         resize.old_nr_full_blocks = old_size / resize.max_entries;
678         resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
679         resize.new_nr_full_blocks = new_size / resize.max_entries;
680         resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
681         resize.value = value;
682
683         r = ((new_size > old_size) ? grow : shrink)(&resize);
684         if (r)
685                 return r;
686
687         *new_root = resize.root;
688         return 0;
689 }
690
691 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
692                     uint32_t old_size, uint32_t new_size,
693                     const void *value, dm_block_t *new_root)
694                     __dm_written_to_disk(value)
695 {
696         int r = array_resize(info, root, old_size, new_size, value, new_root);
697         __dm_unbless_for_disk(value);
698         return r;
699 }
700 EXPORT_SYMBOL_GPL(dm_array_resize);
701
702 static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
703                                        value_fn fn, void *context, unsigned base, unsigned new_nr)
704 {
705         int r;
706         unsigned i;
707         struct dm_btree_value_type *vt = &info->value_type;
708
709         BUG_ON(le32_to_cpu(ab->nr_entries));
710         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
711
712         for (i = 0; i < new_nr; i++) {
713                 r = fn(base + i, element_at(info, ab, i), context);
714                 if (r)
715                         return r;
716
717                 if (vt->inc)
718                         vt->inc(vt->context, element_at(info, ab, i), 1);
719         }
720
721         ab->nr_entries = cpu_to_le32(new_nr);
722         return 0;
723 }
724
725 int dm_array_new(struct dm_array_info *info, dm_block_t *root,
726                  uint32_t size, value_fn fn, void *context)
727 {
728         int r;
729         struct dm_block *block;
730         struct array_block *ab;
731         unsigned block_index, end_block, size_of_block, max_entries;
732
733         r = dm_array_empty(info, root);
734         if (r)
735                 return r;
736
737         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
738         max_entries = calc_max_entries(info->value_type.size, size_of_block);
739         end_block = dm_div_up(size, max_entries);
740
741         for (block_index = 0; block_index != end_block; block_index++) {
742                 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
743                 if (r)
744                         break;
745
746                 r = populate_ablock_with_values(info, ab, fn, context,
747                                                 block_index * max_entries,
748                                                 min(max_entries, size));
749                 if (r) {
750                         unlock_ablock(info, block);
751                         break;
752                 }
753
754                 r = insert_ablock(info, block_index, block, root);
755                 unlock_ablock(info, block);
756                 if (r)
757                         break;
758
759                 size -= max_entries;
760         }
761
762         return r;
763 }
764 EXPORT_SYMBOL_GPL(dm_array_new);
765
766 int dm_array_del(struct dm_array_info *info, dm_block_t root)
767 {
768         return dm_btree_del(&info->btree_info, root);
769 }
770 EXPORT_SYMBOL_GPL(dm_array_del);
771
772 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
773                        uint32_t index, void *value_le)
774 {
775         int r;
776         struct dm_block *block;
777         struct array_block *ab;
778         size_t size_of_block;
779         unsigned entry, max_entries;
780
781         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
782         max_entries = calc_max_entries(info->value_type.size, size_of_block);
783
784         r = lookup_ablock(info, root, index / max_entries, &block, &ab);
785         if (r)
786                 return r;
787
788         entry = index % max_entries;
789         if (entry >= le32_to_cpu(ab->nr_entries))
790                 r = -ENODATA;
791         else
792                 memcpy(value_le, element_at(info, ab, entry),
793                        info->value_type.size);
794
795         unlock_ablock(info, block);
796         return r;
797 }
798 EXPORT_SYMBOL_GPL(dm_array_get_value);
799
800 static int array_set_value(struct dm_array_info *info, dm_block_t root,
801                            uint32_t index, const void *value, dm_block_t *new_root)
802 {
803         int r;
804         struct dm_block *block;
805         struct array_block *ab;
806         size_t size_of_block;
807         unsigned max_entries;
808         unsigned entry;
809         void *old_value;
810         struct dm_btree_value_type *vt = &info->value_type;
811
812         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
813         max_entries = calc_max_entries(info->value_type.size, size_of_block);
814
815         r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
816         if (r)
817                 return r;
818         *new_root = root;
819
820         entry = index % max_entries;
821         if (entry >= le32_to_cpu(ab->nr_entries)) {
822                 r = -ENODATA;
823                 goto out;
824         }
825
826         old_value = element_at(info, ab, entry);
827         if (vt->dec &&
828             (!vt->equal || !vt->equal(vt->context, old_value, value))) {
829                 vt->dec(vt->context, old_value, 1);
830                 if (vt->inc)
831                         vt->inc(vt->context, value, 1);
832         }
833
834         memcpy(old_value, value, info->value_type.size);
835
836 out:
837         unlock_ablock(info, block);
838         return r;
839 }
840
841 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
842                  uint32_t index, const void *value, dm_block_t *new_root)
843                  __dm_written_to_disk(value)
844 {
845         int r;
846
847         r = array_set_value(info, root, index, value, new_root);
848         __dm_unbless_for_disk(value);
849         return r;
850 }
851 EXPORT_SYMBOL_GPL(dm_array_set_value);
852
853 struct walk_info {
854         struct dm_array_info *info;
855         int (*fn)(void *context, uint64_t key, void *leaf);
856         void *context;
857 };
858
859 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
860 {
861         struct walk_info *wi = context;
862
863         int r;
864         unsigned i;
865         __le64 block_le;
866         unsigned nr_entries, max_entries;
867         struct dm_block *block;
868         struct array_block *ab;
869
870         memcpy(&block_le, leaf, sizeof(block_le));
871         r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
872         if (r)
873                 return r;
874
875         max_entries = le32_to_cpu(ab->max_entries);
876         nr_entries = le32_to_cpu(ab->nr_entries);
877         for (i = 0; i < nr_entries; i++) {
878                 r = wi->fn(wi->context, keys[0] * max_entries + i,
879                            element_at(wi->info, ab, i));
880
881                 if (r)
882                         break;
883         }
884
885         unlock_ablock(wi->info, block);
886         return r;
887 }
888
889 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
890                   int (*fn)(void *, uint64_t key, void *leaf),
891                   void *context)
892 {
893         struct walk_info wi;
894
895         wi.info = info;
896         wi.fn = fn;
897         wi.context = context;
898
899         return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
900 }
901 EXPORT_SYMBOL_GPL(dm_array_walk);
902
903 /*----------------------------------------------------------------*/
904
905 static int load_ablock(struct dm_array_cursor *c)
906 {
907         int r;
908         __le64 value_le;
909         uint64_t key;
910
911         if (c->block)
912                 unlock_ablock(c->info, c->block);
913
914         c->block = NULL;
915         c->ab = NULL;
916         c->index = 0;
917
918         r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
919         if (r) {
920                 DMERR("dm_btree_cursor_get_value failed");
921                 dm_btree_cursor_end(&c->cursor);
922
923         } else {
924                 r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
925                 if (r) {
926                         DMERR("get_ablock failed");
927                         dm_btree_cursor_end(&c->cursor);
928                 }
929         }
930
931         return r;
932 }
933
934 int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
935                           struct dm_array_cursor *c)
936 {
937         int r;
938
939         memset(c, 0, sizeof(*c));
940         c->info = info;
941         r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
942         if (r) {
943                 DMERR("couldn't create btree cursor");
944                 return r;
945         }
946
947         return load_ablock(c);
948 }
949 EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
950
951 void dm_array_cursor_end(struct dm_array_cursor *c)
952 {
953         if (c->block) {
954                 unlock_ablock(c->info, c->block);
955                 dm_btree_cursor_end(&c->cursor);
956         }
957 }
958 EXPORT_SYMBOL_GPL(dm_array_cursor_end);
959
960 int dm_array_cursor_next(struct dm_array_cursor *c)
961 {
962         int r;
963
964         if (!c->block)
965                 return -ENODATA;
966
967         c->index++;
968
969         if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
970                 r = dm_btree_cursor_next(&c->cursor);
971                 if (r)
972                         return r;
973
974                 r = load_ablock(c);
975                 if (r)
976                         return r;
977         }
978
979         return 0;
980 }
981 EXPORT_SYMBOL_GPL(dm_array_cursor_next);
982
983 int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
984 {
985         int r;
986
987         do {
988                 uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
989
990                 if (count < remaining) {
991                         c->index += count;
992                         return 0;
993                 }
994
995                 count -= remaining;
996                 r = dm_array_cursor_next(c);
997
998         } while (!r);
999
1000         return r;
1001 }
1002 EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
1003
1004 void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1005 {
1006         *value_le = element_at(c->info, c->ab, c->index);
1007 }
1008 EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1009
1010 /*----------------------------------------------------------------*/