GNU Linux-libre 5.4.241-gnu1
[releases.git] / drivers / md / dm-writecache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18
19 #define DM_MSG_PREFIX "writecache"
20
21 #define HIGH_WATERMARK                  50
22 #define LOW_WATERMARK                   45
23 #define MAX_WRITEBACK_JOBS              min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
24 #define ENDIO_LATENCY                   16
25 #define WRITEBACK_LATENCY               64
26 #define AUTOCOMMIT_BLOCKS_SSD           65536
27 #define AUTOCOMMIT_BLOCKS_PMEM          64
28 #define AUTOCOMMIT_MSEC                 1000
29
30 #define BITMAP_GRANULARITY      65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY      PAGE_SIZE
34 #endif
35
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
38 #endif
39
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src)                                  \
42 do {                                                            \
43         typeof(dest) uniq = (src);                              \
44         memcpy_flushcache(&(dest), &uniq, sizeof(dest));        \
45 } while (0)
46 #else
47 #define pmem_assign(dest, src)  ((dest) = (src))
48 #endif
49
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52 #endif
53
54 #define MEMORY_SUPERBLOCK_MAGIC         0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION       1
56
57 struct wc_memory_entry {
58         __le64 original_sector;
59         __le64 seq_count;
60 };
61
62 struct wc_memory_superblock {
63         union {
64                 struct {
65                         __le32 magic;
66                         __le32 version;
67                         __le32 block_size;
68                         __le32 pad;
69                         __le64 n_blocks;
70                         __le64 seq_count;
71                 };
72                 __le64 padding[8];
73         };
74         struct wc_memory_entry entries[0];
75 };
76
77 struct wc_entry {
78         struct rb_node rb_node;
79         struct list_head lru;
80         unsigned short wc_list_contiguous;
81         bool write_in_progress
82 #if BITS_PER_LONG == 64
83                 :1
84 #endif
85         ;
86         unsigned long index
87 #if BITS_PER_LONG == 64
88                 :47
89 #endif
90         ;
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92         uint64_t original_sector;
93         uint64_t seq_count;
94 #endif
95 };
96
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc)                        ((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc)                         ((wc)->writeback_fua)
100 #else
101 #define WC_MODE_PMEM(wc)                        false
102 #define WC_MODE_FUA(wc)                         false
103 #endif
104 #define WC_MODE_SORT_FREELIST(wc)               (!WC_MODE_PMEM(wc))
105
106 struct dm_writecache {
107         struct mutex lock;
108         struct list_head lru;
109         union {
110                 struct list_head freelist;
111                 struct {
112                         struct rb_root freetree;
113                         struct wc_entry *current_free;
114                 };
115         };
116         struct rb_root tree;
117
118         size_t freelist_size;
119         size_t writeback_size;
120         size_t freelist_high_watermark;
121         size_t freelist_low_watermark;
122
123         unsigned uncommitted_blocks;
124         unsigned autocommit_blocks;
125         unsigned max_writeback_jobs;
126
127         int error;
128
129         unsigned long autocommit_jiffies;
130         struct timer_list autocommit_timer;
131         struct wait_queue_head freelist_wait;
132
133         atomic_t bio_in_progress[2];
134         struct wait_queue_head bio_in_progress_wait[2];
135
136         struct dm_target *ti;
137         struct dm_dev *dev;
138         struct dm_dev *ssd_dev;
139         sector_t start_sector;
140         void *memory_map;
141         uint64_t memory_map_size;
142         size_t metadata_sectors;
143         size_t n_blocks;
144         uint64_t seq_count;
145         sector_t data_device_sectors;
146         void *block_start;
147         struct wc_entry *entries;
148         unsigned block_size;
149         unsigned char block_size_bits;
150
151         bool pmem_mode:1;
152         bool writeback_fua:1;
153
154         bool overwrote_committed:1;
155         bool memory_vmapped:1;
156
157         bool start_sector_set:1;
158         bool high_wm_percent_set:1;
159         bool low_wm_percent_set:1;
160         bool max_writeback_jobs_set:1;
161         bool autocommit_blocks_set:1;
162         bool autocommit_time_set:1;
163         bool writeback_fua_set:1;
164         bool flush_on_suspend:1;
165
166         unsigned high_wm_percent_value;
167         unsigned low_wm_percent_value;
168         unsigned autocommit_time_value;
169
170         unsigned writeback_all;
171         struct workqueue_struct *writeback_wq;
172         struct work_struct writeback_work;
173         struct work_struct flush_work;
174
175         struct dm_io_client *dm_io;
176
177         raw_spinlock_t endio_list_lock;
178         struct list_head endio_list;
179         struct task_struct *endio_thread;
180
181         struct task_struct *flush_thread;
182         struct bio_list flush_list;
183
184         struct dm_kcopyd_client *dm_kcopyd;
185         unsigned long *dirty_bitmap;
186         unsigned dirty_bitmap_size;
187
188         struct bio_set bio_set;
189         mempool_t copy_pool;
190 };
191
192 #define WB_LIST_INLINE          16
193
194 struct writeback_struct {
195         struct list_head endio_entry;
196         struct dm_writecache *wc;
197         struct wc_entry **wc_list;
198         unsigned wc_list_n;
199         struct wc_entry *wc_list_inline[WB_LIST_INLINE];
200         struct bio bio;
201 };
202
203 struct copy_struct {
204         struct list_head endio_entry;
205         struct dm_writecache *wc;
206         struct wc_entry *e;
207         unsigned n_entries;
208         int error;
209 };
210
211 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
212                                             "A percentage of time allocated for data copying");
213
214 static void wc_lock(struct dm_writecache *wc)
215 {
216         mutex_lock(&wc->lock);
217 }
218
219 static void wc_unlock(struct dm_writecache *wc)
220 {
221         mutex_unlock(&wc->lock);
222 }
223
224 #ifdef DM_WRITECACHE_HAS_PMEM
225 static int persistent_memory_claim(struct dm_writecache *wc)
226 {
227         int r;
228         loff_t s;
229         long p, da;
230         pfn_t pfn;
231         int id;
232         struct page **pages;
233         sector_t offset;
234
235         wc->memory_vmapped = false;
236
237         if (!wc->ssd_dev->dax_dev) {
238                 r = -EOPNOTSUPP;
239                 goto err1;
240         }
241         s = wc->memory_map_size;
242         p = s >> PAGE_SHIFT;
243         if (!p) {
244                 r = -EINVAL;
245                 goto err1;
246         }
247         if (p != s >> PAGE_SHIFT) {
248                 r = -EOVERFLOW;
249                 goto err1;
250         }
251
252         offset = get_start_sect(wc->ssd_dev->bdev);
253         if (offset & (PAGE_SIZE / 512 - 1)) {
254                 r = -EINVAL;
255                 goto err1;
256         }
257         offset >>= PAGE_SHIFT - 9;
258
259         id = dax_read_lock();
260
261         da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
262         if (da < 0) {
263                 wc->memory_map = NULL;
264                 r = da;
265                 goto err2;
266         }
267         if (!pfn_t_has_page(pfn)) {
268                 wc->memory_map = NULL;
269                 r = -EOPNOTSUPP;
270                 goto err2;
271         }
272         if (da != p) {
273                 long i;
274                 wc->memory_map = NULL;
275                 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
276                 if (!pages) {
277                         r = -ENOMEM;
278                         goto err2;
279                 }
280                 i = 0;
281                 do {
282                         long daa;
283                         daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
284                                                 NULL, &pfn);
285                         if (daa <= 0) {
286                                 r = daa ? daa : -EINVAL;
287                                 goto err3;
288                         }
289                         if (!pfn_t_has_page(pfn)) {
290                                 r = -EOPNOTSUPP;
291                                 goto err3;
292                         }
293                         while (daa-- && i < p) {
294                                 pages[i++] = pfn_t_to_page(pfn);
295                                 pfn.val++;
296                                 if (!(i & 15))
297                                         cond_resched();
298                         }
299                 } while (i < p);
300                 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
301                 if (!wc->memory_map) {
302                         r = -ENOMEM;
303                         goto err3;
304                 }
305                 kvfree(pages);
306                 wc->memory_vmapped = true;
307         }
308
309         dax_read_unlock(id);
310
311         wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
312         wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
313
314         return 0;
315 err3:
316         kvfree(pages);
317 err2:
318         dax_read_unlock(id);
319 err1:
320         return r;
321 }
322 #else
323 static int persistent_memory_claim(struct dm_writecache *wc)
324 {
325         return -EOPNOTSUPP;
326 }
327 #endif
328
329 static void persistent_memory_release(struct dm_writecache *wc)
330 {
331         if (wc->memory_vmapped)
332                 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
333 }
334
335 static struct page *persistent_memory_page(void *addr)
336 {
337         if (is_vmalloc_addr(addr))
338                 return vmalloc_to_page(addr);
339         else
340                 return virt_to_page(addr);
341 }
342
343 static unsigned persistent_memory_page_offset(void *addr)
344 {
345         return (unsigned long)addr & (PAGE_SIZE - 1);
346 }
347
348 static void persistent_memory_flush_cache(void *ptr, size_t size)
349 {
350         if (is_vmalloc_addr(ptr))
351                 flush_kernel_vmap_range(ptr, size);
352 }
353
354 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
355 {
356         if (is_vmalloc_addr(ptr))
357                 invalidate_kernel_vmap_range(ptr, size);
358 }
359
360 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
361 {
362         return wc->memory_map;
363 }
364
365 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
366 {
367         return &sb(wc)->entries[e->index];
368 }
369
370 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
371 {
372         return (char *)wc->block_start + (e->index << wc->block_size_bits);
373 }
374
375 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
376 {
377         return wc->start_sector + wc->metadata_sectors +
378                 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
379 }
380
381 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
382 {
383 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
384         return e->original_sector;
385 #else
386         return le64_to_cpu(memory_entry(wc, e)->original_sector);
387 #endif
388 }
389
390 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
391 {
392 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
393         return e->seq_count;
394 #else
395         return le64_to_cpu(memory_entry(wc, e)->seq_count);
396 #endif
397 }
398
399 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
400 {
401 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
402         e->seq_count = -1;
403 #endif
404         pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
405 }
406
407 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
408                                             uint64_t original_sector, uint64_t seq_count)
409 {
410         struct wc_memory_entry me;
411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
412         e->original_sector = original_sector;
413         e->seq_count = seq_count;
414 #endif
415         me.original_sector = cpu_to_le64(original_sector);
416         me.seq_count = cpu_to_le64(seq_count);
417         pmem_assign(*memory_entry(wc, e), me);
418 }
419
420 #define writecache_error(wc, err, msg, arg...)                          \
421 do {                                                                    \
422         if (!cmpxchg(&(wc)->error, 0, err))                             \
423                 DMERR(msg, ##arg);                                      \
424         wake_up(&(wc)->freelist_wait);                                  \
425 } while (0)
426
427 #define writecache_has_error(wc)        (unlikely(READ_ONCE((wc)->error)))
428
429 static void writecache_flush_all_metadata(struct dm_writecache *wc)
430 {
431         if (!WC_MODE_PMEM(wc))
432                 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
433 }
434
435 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
436 {
437         if (!WC_MODE_PMEM(wc))
438                 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
439                           wc->dirty_bitmap);
440 }
441
442 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
443
444 struct io_notify {
445         struct dm_writecache *wc;
446         struct completion c;
447         atomic_t count;
448 };
449
450 static void writecache_notify_io(unsigned long error, void *context)
451 {
452         struct io_notify *endio = context;
453
454         if (unlikely(error != 0))
455                 writecache_error(endio->wc, -EIO, "error writing metadata");
456         BUG_ON(atomic_read(&endio->count) <= 0);
457         if (atomic_dec_and_test(&endio->count))
458                 complete(&endio->c);
459 }
460
461 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
462 {
463         wait_event(wc->bio_in_progress_wait[direction],
464                    !atomic_read(&wc->bio_in_progress[direction]));
465 }
466
467 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
468 {
469         struct dm_io_region region;
470         struct dm_io_request req;
471         struct io_notify endio = {
472                 wc,
473                 COMPLETION_INITIALIZER_ONSTACK(endio.c),
474                 ATOMIC_INIT(1),
475         };
476         unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
477         unsigned i = 0;
478
479         while (1) {
480                 unsigned j;
481                 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
482                 if (unlikely(i == bitmap_bits))
483                         break;
484                 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
485
486                 region.bdev = wc->ssd_dev->bdev;
487                 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
488                 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
489
490                 if (unlikely(region.sector >= wc->metadata_sectors))
491                         break;
492                 if (unlikely(region.sector + region.count > wc->metadata_sectors))
493                         region.count = wc->metadata_sectors - region.sector;
494
495                 region.sector += wc->start_sector;
496                 atomic_inc(&endio.count);
497                 req.bi_op = REQ_OP_WRITE;
498                 req.bi_op_flags = REQ_SYNC;
499                 req.mem.type = DM_IO_VMA;
500                 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
501                 req.client = wc->dm_io;
502                 req.notify.fn = writecache_notify_io;
503                 req.notify.context = &endio;
504
505                 /* writing via async dm-io (implied by notify.fn above) won't return an error */
506                 (void) dm_io(&req, 1, &region, NULL);
507                 i = j;
508         }
509
510         writecache_notify_io(0, &endio);
511         wait_for_completion_io(&endio.c);
512
513         if (wait_for_ios)
514                 writecache_wait_for_ios(wc, WRITE);
515
516         writecache_disk_flush(wc, wc->ssd_dev);
517
518         memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
519 }
520
521 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
522 {
523         if (WC_MODE_PMEM(wc))
524                 wmb();
525         else
526                 ssd_commit_flushed(wc, wait_for_ios);
527 }
528
529 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
530 {
531         int r;
532         struct dm_io_region region;
533         struct dm_io_request req;
534
535         region.bdev = dev->bdev;
536         region.sector = 0;
537         region.count = 0;
538         req.bi_op = REQ_OP_WRITE;
539         req.bi_op_flags = REQ_PREFLUSH;
540         req.mem.type = DM_IO_KMEM;
541         req.mem.ptr.addr = NULL;
542         req.client = wc->dm_io;
543         req.notify.fn = NULL;
544
545         r = dm_io(&req, 1, &region, NULL);
546         if (unlikely(r))
547                 writecache_error(wc, r, "error flushing metadata: %d", r);
548 }
549
550 #define WFE_RETURN_FOLLOWING    1
551 #define WFE_LOWEST_SEQ          2
552
553 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
554                                               uint64_t block, int flags)
555 {
556         struct wc_entry *e;
557         struct rb_node *node = wc->tree.rb_node;
558
559         if (unlikely(!node))
560                 return NULL;
561
562         while (1) {
563                 e = container_of(node, struct wc_entry, rb_node);
564                 if (read_original_sector(wc, e) == block)
565                         break;
566
567                 node = (read_original_sector(wc, e) >= block ?
568                         e->rb_node.rb_left : e->rb_node.rb_right);
569                 if (unlikely(!node)) {
570                         if (!(flags & WFE_RETURN_FOLLOWING))
571                                 return NULL;
572                         if (read_original_sector(wc, e) >= block) {
573                                 return e;
574                         } else {
575                                 node = rb_next(&e->rb_node);
576                                 if (unlikely(!node))
577                                         return NULL;
578                                 e = container_of(node, struct wc_entry, rb_node);
579                                 return e;
580                         }
581                 }
582         }
583
584         while (1) {
585                 struct wc_entry *e2;
586                 if (flags & WFE_LOWEST_SEQ)
587                         node = rb_prev(&e->rb_node);
588                 else
589                         node = rb_next(&e->rb_node);
590                 if (unlikely(!node))
591                         return e;
592                 e2 = container_of(node, struct wc_entry, rb_node);
593                 if (read_original_sector(wc, e2) != block)
594                         return e;
595                 e = e2;
596         }
597 }
598
599 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
600 {
601         struct wc_entry *e;
602         struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
603
604         while (*node) {
605                 e = container_of(*node, struct wc_entry, rb_node);
606                 parent = &e->rb_node;
607                 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
608                         node = &parent->rb_left;
609                 else
610                         node = &parent->rb_right;
611         }
612         rb_link_node(&ins->rb_node, parent, node);
613         rb_insert_color(&ins->rb_node, &wc->tree);
614         list_add(&ins->lru, &wc->lru);
615 }
616
617 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
618 {
619         list_del(&e->lru);
620         rb_erase(&e->rb_node, &wc->tree);
621 }
622
623 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
624 {
625         if (WC_MODE_SORT_FREELIST(wc)) {
626                 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
627                 if (unlikely(!*node))
628                         wc->current_free = e;
629                 while (*node) {
630                         parent = *node;
631                         if (&e->rb_node < *node)
632                                 node = &parent->rb_left;
633                         else
634                                 node = &parent->rb_right;
635                 }
636                 rb_link_node(&e->rb_node, parent, node);
637                 rb_insert_color(&e->rb_node, &wc->freetree);
638         } else {
639                 list_add_tail(&e->lru, &wc->freelist);
640         }
641         wc->freelist_size++;
642 }
643
644 static inline void writecache_verify_watermark(struct dm_writecache *wc)
645 {
646         if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
647                 queue_work(wc->writeback_wq, &wc->writeback_work);
648 }
649
650 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
651 {
652         struct wc_entry *e;
653
654         if (WC_MODE_SORT_FREELIST(wc)) {
655                 struct rb_node *next;
656                 if (unlikely(!wc->current_free))
657                         return NULL;
658                 e = wc->current_free;
659                 next = rb_next(&e->rb_node);
660                 rb_erase(&e->rb_node, &wc->freetree);
661                 if (unlikely(!next))
662                         next = rb_first(&wc->freetree);
663                 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
664         } else {
665                 if (unlikely(list_empty(&wc->freelist)))
666                         return NULL;
667                 e = container_of(wc->freelist.next, struct wc_entry, lru);
668                 list_del(&e->lru);
669         }
670         wc->freelist_size--;
671
672         writecache_verify_watermark(wc);
673
674         return e;
675 }
676
677 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
678 {
679         writecache_unlink(wc, e);
680         writecache_add_to_freelist(wc, e);
681         clear_seq_count(wc, e);
682         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
683         if (unlikely(waitqueue_active(&wc->freelist_wait)))
684                 wake_up(&wc->freelist_wait);
685 }
686
687 static void writecache_wait_on_freelist(struct dm_writecache *wc)
688 {
689         DEFINE_WAIT(wait);
690
691         prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
692         wc_unlock(wc);
693         io_schedule();
694         finish_wait(&wc->freelist_wait, &wait);
695         wc_lock(wc);
696 }
697
698 static void writecache_poison_lists(struct dm_writecache *wc)
699 {
700         /*
701          * Catch incorrect access to these values while the device is suspended.
702          */
703         memset(&wc->tree, -1, sizeof wc->tree);
704         wc->lru.next = LIST_POISON1;
705         wc->lru.prev = LIST_POISON2;
706         wc->freelist.next = LIST_POISON1;
707         wc->freelist.prev = LIST_POISON2;
708 }
709
710 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
711 {
712         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
713         if (WC_MODE_PMEM(wc))
714                 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
715 }
716
717 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
718 {
719         return read_seq_count(wc, e) < wc->seq_count;
720 }
721
722 static void writecache_flush(struct dm_writecache *wc)
723 {
724         struct wc_entry *e, *e2;
725         bool need_flush_after_free;
726
727         wc->uncommitted_blocks = 0;
728         del_timer(&wc->autocommit_timer);
729
730         if (list_empty(&wc->lru))
731                 return;
732
733         e = container_of(wc->lru.next, struct wc_entry, lru);
734         if (writecache_entry_is_committed(wc, e)) {
735                 if (wc->overwrote_committed) {
736                         writecache_wait_for_ios(wc, WRITE);
737                         writecache_disk_flush(wc, wc->ssd_dev);
738                         wc->overwrote_committed = false;
739                 }
740                 return;
741         }
742         while (1) {
743                 writecache_flush_entry(wc, e);
744                 if (unlikely(e->lru.next == &wc->lru))
745                         break;
746                 e2 = container_of(e->lru.next, struct wc_entry, lru);
747                 if (writecache_entry_is_committed(wc, e2))
748                         break;
749                 e = e2;
750                 cond_resched();
751         }
752         writecache_commit_flushed(wc, true);
753
754         wc->seq_count++;
755         pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
756         writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
757         writecache_commit_flushed(wc, false);
758
759         wc->overwrote_committed = false;
760
761         need_flush_after_free = false;
762         while (1) {
763                 /* Free another committed entry with lower seq-count */
764                 struct rb_node *rb_node = rb_prev(&e->rb_node);
765
766                 if (rb_node) {
767                         e2 = container_of(rb_node, struct wc_entry, rb_node);
768                         if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
769                             likely(!e2->write_in_progress)) {
770                                 writecache_free_entry(wc, e2);
771                                 need_flush_after_free = true;
772                         }
773                 }
774                 if (unlikely(e->lru.prev == &wc->lru))
775                         break;
776                 e = container_of(e->lru.prev, struct wc_entry, lru);
777                 cond_resched();
778         }
779
780         if (need_flush_after_free)
781                 writecache_commit_flushed(wc, false);
782 }
783
784 static void writecache_flush_work(struct work_struct *work)
785 {
786         struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
787
788         wc_lock(wc);
789         writecache_flush(wc);
790         wc_unlock(wc);
791 }
792
793 static void writecache_autocommit_timer(struct timer_list *t)
794 {
795         struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
796         if (!writecache_has_error(wc))
797                 queue_work(wc->writeback_wq, &wc->flush_work);
798 }
799
800 static void writecache_schedule_autocommit(struct dm_writecache *wc)
801 {
802         if (!timer_pending(&wc->autocommit_timer))
803                 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
804 }
805
806 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
807 {
808         struct wc_entry *e;
809         bool discarded_something = false;
810
811         e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
812         if (unlikely(!e))
813                 return;
814
815         while (read_original_sector(wc, e) < end) {
816                 struct rb_node *node = rb_next(&e->rb_node);
817
818                 if (likely(!e->write_in_progress)) {
819                         if (!discarded_something) {
820                                 writecache_wait_for_ios(wc, READ);
821                                 writecache_wait_for_ios(wc, WRITE);
822                                 discarded_something = true;
823                         }
824                         if (!writecache_entry_is_committed(wc, e))
825                                 wc->uncommitted_blocks--;
826                         writecache_free_entry(wc, e);
827                 }
828
829                 if (unlikely(!node))
830                         break;
831
832                 e = container_of(node, struct wc_entry, rb_node);
833         }
834
835         if (discarded_something)
836                 writecache_commit_flushed(wc, false);
837 }
838
839 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
840 {
841         if (wc->writeback_size) {
842                 writecache_wait_on_freelist(wc);
843                 return true;
844         }
845         return false;
846 }
847
848 static void writecache_suspend(struct dm_target *ti)
849 {
850         struct dm_writecache *wc = ti->private;
851         bool flush_on_suspend;
852
853         del_timer_sync(&wc->autocommit_timer);
854
855         wc_lock(wc);
856         writecache_flush(wc);
857         flush_on_suspend = wc->flush_on_suspend;
858         if (flush_on_suspend) {
859                 wc->flush_on_suspend = false;
860                 wc->writeback_all++;
861                 queue_work(wc->writeback_wq, &wc->writeback_work);
862         }
863         wc_unlock(wc);
864
865         drain_workqueue(wc->writeback_wq);
866
867         wc_lock(wc);
868         if (flush_on_suspend)
869                 wc->writeback_all--;
870         while (writecache_wait_for_writeback(wc));
871
872         if (WC_MODE_PMEM(wc))
873                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
874
875         writecache_poison_lists(wc);
876
877         wc_unlock(wc);
878 }
879
880 static int writecache_alloc_entries(struct dm_writecache *wc)
881 {
882         size_t b;
883
884         if (wc->entries)
885                 return 0;
886         wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
887         if (!wc->entries)
888                 return -ENOMEM;
889         for (b = 0; b < wc->n_blocks; b++) {
890                 struct wc_entry *e = &wc->entries[b];
891                 e->index = b;
892                 e->write_in_progress = false;
893                 cond_resched();
894         }
895
896         return 0;
897 }
898
899 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
900 {
901         struct dm_io_region region;
902         struct dm_io_request req;
903
904         region.bdev = wc->ssd_dev->bdev;
905         region.sector = wc->start_sector;
906         region.count = n_sectors;
907         req.bi_op = REQ_OP_READ;
908         req.bi_op_flags = REQ_SYNC;
909         req.mem.type = DM_IO_VMA;
910         req.mem.ptr.vma = (char *)wc->memory_map;
911         req.client = wc->dm_io;
912         req.notify.fn = NULL;
913
914         return dm_io(&req, 1, &region, NULL);
915 }
916
917 static void writecache_resume(struct dm_target *ti)
918 {
919         struct dm_writecache *wc = ti->private;
920         size_t b;
921         bool need_flush = false;
922         __le64 sb_seq_count;
923         int r;
924
925         wc_lock(wc);
926
927         wc->data_device_sectors = i_size_read(wc->dev->bdev->bd_inode) >> SECTOR_SHIFT;
928
929         if (WC_MODE_PMEM(wc)) {
930                 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
931         } else {
932                 r = writecache_read_metadata(wc, wc->metadata_sectors);
933                 if (r) {
934                         size_t sb_entries_offset;
935                         writecache_error(wc, r, "unable to read metadata: %d", r);
936                         sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
937                         memset((char *)wc->memory_map + sb_entries_offset, -1,
938                                (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
939                 }
940         }
941
942         wc->tree = RB_ROOT;
943         INIT_LIST_HEAD(&wc->lru);
944         if (WC_MODE_SORT_FREELIST(wc)) {
945                 wc->freetree = RB_ROOT;
946                 wc->current_free = NULL;
947         } else {
948                 INIT_LIST_HEAD(&wc->freelist);
949         }
950         wc->freelist_size = 0;
951
952         r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
953         if (r) {
954                 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
955                 sb_seq_count = cpu_to_le64(0);
956         }
957         wc->seq_count = le64_to_cpu(sb_seq_count);
958
959 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
960         for (b = 0; b < wc->n_blocks; b++) {
961                 struct wc_entry *e = &wc->entries[b];
962                 struct wc_memory_entry wme;
963                 if (writecache_has_error(wc)) {
964                         e->original_sector = -1;
965                         e->seq_count = -1;
966                         continue;
967                 }
968                 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
969                 if (r) {
970                         writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
971                                          (unsigned long)b, r);
972                         e->original_sector = -1;
973                         e->seq_count = -1;
974                 } else {
975                         e->original_sector = le64_to_cpu(wme.original_sector);
976                         e->seq_count = le64_to_cpu(wme.seq_count);
977                 }
978                 cond_resched();
979         }
980 #endif
981         for (b = 0; b < wc->n_blocks; b++) {
982                 struct wc_entry *e = &wc->entries[b];
983                 if (!writecache_entry_is_committed(wc, e)) {
984                         if (read_seq_count(wc, e) != -1) {
985 erase_this:
986                                 clear_seq_count(wc, e);
987                                 need_flush = true;
988                         }
989                         writecache_add_to_freelist(wc, e);
990                 } else {
991                         struct wc_entry *old;
992
993                         old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
994                         if (!old) {
995                                 writecache_insert_entry(wc, e);
996                         } else {
997                                 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
998                                         writecache_error(wc, -EINVAL,
999                                                  "two identical entries, position %llu, sector %llu, sequence %llu",
1000                                                  (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1001                                                  (unsigned long long)read_seq_count(wc, e));
1002                                 }
1003                                 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1004                                         goto erase_this;
1005                                 } else {
1006                                         writecache_free_entry(wc, old);
1007                                         writecache_insert_entry(wc, e);
1008                                         need_flush = true;
1009                                 }
1010                         }
1011                 }
1012                 cond_resched();
1013         }
1014
1015         if (need_flush) {
1016                 writecache_flush_all_metadata(wc);
1017                 writecache_commit_flushed(wc, false);
1018         }
1019
1020         writecache_verify_watermark(wc);
1021
1022         wc_unlock(wc);
1023 }
1024
1025 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1026 {
1027         if (argc != 1)
1028                 return -EINVAL;
1029
1030         wc_lock(wc);
1031         if (dm_suspended(wc->ti)) {
1032                 wc_unlock(wc);
1033                 return -EBUSY;
1034         }
1035         if (writecache_has_error(wc)) {
1036                 wc_unlock(wc);
1037                 return -EIO;
1038         }
1039
1040         writecache_flush(wc);
1041         wc->writeback_all++;
1042         queue_work(wc->writeback_wq, &wc->writeback_work);
1043         wc_unlock(wc);
1044
1045         flush_workqueue(wc->writeback_wq);
1046
1047         wc_lock(wc);
1048         wc->writeback_all--;
1049         if (writecache_has_error(wc)) {
1050                 wc_unlock(wc);
1051                 return -EIO;
1052         }
1053         wc_unlock(wc);
1054
1055         return 0;
1056 }
1057
1058 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1059 {
1060         if (argc != 1)
1061                 return -EINVAL;
1062
1063         wc_lock(wc);
1064         wc->flush_on_suspend = true;
1065         wc_unlock(wc);
1066
1067         return 0;
1068 }
1069
1070 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1071                               char *result, unsigned maxlen)
1072 {
1073         int r = -EINVAL;
1074         struct dm_writecache *wc = ti->private;
1075
1076         if (!strcasecmp(argv[0], "flush"))
1077                 r = process_flush_mesg(argc, argv, wc);
1078         else if (!strcasecmp(argv[0], "flush_on_suspend"))
1079                 r = process_flush_on_suspend_mesg(argc, argv, wc);
1080         else
1081                 DMERR("unrecognised message received: %s", argv[0]);
1082
1083         return r;
1084 }
1085
1086 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1087 {
1088         void *buf;
1089         unsigned long flags;
1090         unsigned size;
1091         int rw = bio_data_dir(bio);
1092         unsigned remaining_size = wc->block_size;
1093
1094         do {
1095                 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1096                 buf = bvec_kmap_irq(&bv, &flags);
1097                 size = bv.bv_len;
1098                 if (unlikely(size > remaining_size))
1099                         size = remaining_size;
1100
1101                 if (rw == READ) {
1102                         int r;
1103                         r = memcpy_mcsafe(buf, data, size);
1104                         flush_dcache_page(bio_page(bio));
1105                         if (unlikely(r)) {
1106                                 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1107                                 bio->bi_status = BLK_STS_IOERR;
1108                         }
1109                 } else {
1110                         flush_dcache_page(bio_page(bio));
1111                         memcpy_flushcache(data, buf, size);
1112                 }
1113
1114                 bvec_kunmap_irq(buf, &flags);
1115
1116                 data = (char *)data + size;
1117                 remaining_size -= size;
1118                 bio_advance(bio, size);
1119         } while (unlikely(remaining_size));
1120 }
1121
1122 static int writecache_flush_thread(void *data)
1123 {
1124         struct dm_writecache *wc = data;
1125
1126         while (1) {
1127                 struct bio *bio;
1128
1129                 wc_lock(wc);
1130                 bio = bio_list_pop(&wc->flush_list);
1131                 if (!bio) {
1132                         set_current_state(TASK_INTERRUPTIBLE);
1133                         wc_unlock(wc);
1134
1135                         if (unlikely(kthread_should_stop())) {
1136                                 set_current_state(TASK_RUNNING);
1137                                 break;
1138                         }
1139
1140                         schedule();
1141                         continue;
1142                 }
1143
1144                 if (bio_op(bio) == REQ_OP_DISCARD) {
1145                         writecache_discard(wc, bio->bi_iter.bi_sector,
1146                                            bio_end_sector(bio));
1147                         wc_unlock(wc);
1148                         bio_set_dev(bio, wc->dev->bdev);
1149                         generic_make_request(bio);
1150                 } else {
1151                         writecache_flush(wc);
1152                         wc_unlock(wc);
1153                         if (writecache_has_error(wc))
1154                                 bio->bi_status = BLK_STS_IOERR;
1155                         bio_endio(bio);
1156                 }
1157         }
1158
1159         return 0;
1160 }
1161
1162 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1163 {
1164         if (bio_list_empty(&wc->flush_list))
1165                 wake_up_process(wc->flush_thread);
1166         bio_list_add(&wc->flush_list, bio);
1167 }
1168
1169 static int writecache_map(struct dm_target *ti, struct bio *bio)
1170 {
1171         struct wc_entry *e;
1172         struct dm_writecache *wc = ti->private;
1173
1174         bio->bi_private = NULL;
1175
1176         wc_lock(wc);
1177
1178         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1179                 if (writecache_has_error(wc))
1180                         goto unlock_error;
1181                 if (WC_MODE_PMEM(wc)) {
1182                         writecache_flush(wc);
1183                         if (writecache_has_error(wc))
1184                                 goto unlock_error;
1185                         goto unlock_submit;
1186                 } else {
1187                         writecache_offload_bio(wc, bio);
1188                         goto unlock_return;
1189                 }
1190         }
1191
1192         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1193
1194         if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1195                                 (wc->block_size / 512 - 1)) != 0)) {
1196                 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1197                       (unsigned long long)bio->bi_iter.bi_sector,
1198                       bio->bi_iter.bi_size, wc->block_size);
1199                 goto unlock_error;
1200         }
1201
1202         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1203                 if (writecache_has_error(wc))
1204                         goto unlock_error;
1205                 if (WC_MODE_PMEM(wc)) {
1206                         writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1207                         goto unlock_remap_origin;
1208                 } else {
1209                         writecache_offload_bio(wc, bio);
1210                         goto unlock_return;
1211                 }
1212         }
1213
1214         if (bio_data_dir(bio) == READ) {
1215 read_next_block:
1216                 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1217                 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1218                         if (WC_MODE_PMEM(wc)) {
1219                                 bio_copy_block(wc, bio, memory_data(wc, e));
1220                                 if (bio->bi_iter.bi_size)
1221                                         goto read_next_block;
1222                                 goto unlock_submit;
1223                         } else {
1224                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1225                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1226                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1227                                 if (!writecache_entry_is_committed(wc, e))
1228                                         writecache_wait_for_ios(wc, WRITE);
1229                                 goto unlock_remap;
1230                         }
1231                 } else {
1232                         if (e) {
1233                                 sector_t next_boundary =
1234                                         read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1235                                 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1236                                         dm_accept_partial_bio(bio, next_boundary);
1237                                 }
1238                         }
1239                         goto unlock_remap_origin;
1240                 }
1241         } else {
1242                 do {
1243                         if (writecache_has_error(wc))
1244                                 goto unlock_error;
1245                         e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1246                         if (e) {
1247                                 if (!writecache_entry_is_committed(wc, e))
1248                                         goto bio_copy;
1249                                 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1250                                         wc->overwrote_committed = true;
1251                                         goto bio_copy;
1252                                 }
1253                         }
1254                         e = writecache_pop_from_freelist(wc);
1255                         if (unlikely(!e)) {
1256                                 writecache_wait_on_freelist(wc);
1257                                 continue;
1258                         }
1259                         write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1260                         writecache_insert_entry(wc, e);
1261                         wc->uncommitted_blocks++;
1262 bio_copy:
1263                         if (WC_MODE_PMEM(wc)) {
1264                                 bio_copy_block(wc, bio, memory_data(wc, e));
1265                         } else {
1266                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1267                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1268                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1269                                 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1270                                         wc->uncommitted_blocks = 0;
1271                                         queue_work(wc->writeback_wq, &wc->flush_work);
1272                                 } else {
1273                                         writecache_schedule_autocommit(wc);
1274                                 }
1275                                 goto unlock_remap;
1276                         }
1277                 } while (bio->bi_iter.bi_size);
1278
1279                 if (unlikely(bio->bi_opf & REQ_FUA ||
1280                              wc->uncommitted_blocks >= wc->autocommit_blocks))
1281                         writecache_flush(wc);
1282                 else
1283                         writecache_schedule_autocommit(wc);
1284                 goto unlock_submit;
1285         }
1286
1287 unlock_remap_origin:
1288         bio_set_dev(bio, wc->dev->bdev);
1289         wc_unlock(wc);
1290         return DM_MAPIO_REMAPPED;
1291
1292 unlock_remap:
1293         /* make sure that writecache_end_io decrements bio_in_progress: */
1294         bio->bi_private = (void *)1;
1295         atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1296         wc_unlock(wc);
1297         return DM_MAPIO_REMAPPED;
1298
1299 unlock_submit:
1300         wc_unlock(wc);
1301         bio_endio(bio);
1302         return DM_MAPIO_SUBMITTED;
1303
1304 unlock_return:
1305         wc_unlock(wc);
1306         return DM_MAPIO_SUBMITTED;
1307
1308 unlock_error:
1309         wc_unlock(wc);
1310         bio_io_error(bio);
1311         return DM_MAPIO_SUBMITTED;
1312 }
1313
1314 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1315 {
1316         struct dm_writecache *wc = ti->private;
1317
1318         if (bio->bi_private != NULL) {
1319                 int dir = bio_data_dir(bio);
1320                 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1321                         if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1322                                 wake_up(&wc->bio_in_progress_wait[dir]);
1323         }
1324         return 0;
1325 }
1326
1327 static int writecache_iterate_devices(struct dm_target *ti,
1328                                       iterate_devices_callout_fn fn, void *data)
1329 {
1330         struct dm_writecache *wc = ti->private;
1331
1332         return fn(ti, wc->dev, 0, ti->len, data);
1333 }
1334
1335 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1336 {
1337         struct dm_writecache *wc = ti->private;
1338
1339         if (limits->logical_block_size < wc->block_size)
1340                 limits->logical_block_size = wc->block_size;
1341
1342         if (limits->physical_block_size < wc->block_size)
1343                 limits->physical_block_size = wc->block_size;
1344
1345         if (limits->io_min < wc->block_size)
1346                 limits->io_min = wc->block_size;
1347 }
1348
1349
1350 static void writecache_writeback_endio(struct bio *bio)
1351 {
1352         struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1353         struct dm_writecache *wc = wb->wc;
1354         unsigned long flags;
1355
1356         raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1357         if (unlikely(list_empty(&wc->endio_list)))
1358                 wake_up_process(wc->endio_thread);
1359         list_add_tail(&wb->endio_entry, &wc->endio_list);
1360         raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1361 }
1362
1363 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1364 {
1365         struct copy_struct *c = ptr;
1366         struct dm_writecache *wc = c->wc;
1367
1368         c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1369
1370         raw_spin_lock_irq(&wc->endio_list_lock);
1371         if (unlikely(list_empty(&wc->endio_list)))
1372                 wake_up_process(wc->endio_thread);
1373         list_add_tail(&c->endio_entry, &wc->endio_list);
1374         raw_spin_unlock_irq(&wc->endio_list_lock);
1375 }
1376
1377 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1378 {
1379         unsigned i;
1380         struct writeback_struct *wb;
1381         struct wc_entry *e;
1382         unsigned long n_walked = 0;
1383
1384         do {
1385                 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1386                 list_del(&wb->endio_entry);
1387
1388                 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1389                         writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1390                                         "write error %d", wb->bio.bi_status);
1391                 i = 0;
1392                 do {
1393                         e = wb->wc_list[i];
1394                         BUG_ON(!e->write_in_progress);
1395                         e->write_in_progress = false;
1396                         INIT_LIST_HEAD(&e->lru);
1397                         if (!writecache_has_error(wc))
1398                                 writecache_free_entry(wc, e);
1399                         BUG_ON(!wc->writeback_size);
1400                         wc->writeback_size--;
1401                         n_walked++;
1402                         if (unlikely(n_walked >= ENDIO_LATENCY)) {
1403                                 writecache_commit_flushed(wc, false);
1404                                 wc_unlock(wc);
1405                                 wc_lock(wc);
1406                                 n_walked = 0;
1407                         }
1408                 } while (++i < wb->wc_list_n);
1409
1410                 if (wb->wc_list != wb->wc_list_inline)
1411                         kfree(wb->wc_list);
1412                 bio_put(&wb->bio);
1413         } while (!list_empty(list));
1414 }
1415
1416 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1417 {
1418         struct copy_struct *c;
1419         struct wc_entry *e;
1420
1421         do {
1422                 c = list_entry(list->next, struct copy_struct, endio_entry);
1423                 list_del(&c->endio_entry);
1424
1425                 if (unlikely(c->error))
1426                         writecache_error(wc, c->error, "copy error");
1427
1428                 e = c->e;
1429                 do {
1430                         BUG_ON(!e->write_in_progress);
1431                         e->write_in_progress = false;
1432                         INIT_LIST_HEAD(&e->lru);
1433                         if (!writecache_has_error(wc))
1434                                 writecache_free_entry(wc, e);
1435
1436                         BUG_ON(!wc->writeback_size);
1437                         wc->writeback_size--;
1438                         e++;
1439                 } while (--c->n_entries);
1440                 mempool_free(c, &wc->copy_pool);
1441         } while (!list_empty(list));
1442 }
1443
1444 static int writecache_endio_thread(void *data)
1445 {
1446         struct dm_writecache *wc = data;
1447
1448         while (1) {
1449                 struct list_head list;
1450
1451                 raw_spin_lock_irq(&wc->endio_list_lock);
1452                 if (!list_empty(&wc->endio_list))
1453                         goto pop_from_list;
1454                 set_current_state(TASK_INTERRUPTIBLE);
1455                 raw_spin_unlock_irq(&wc->endio_list_lock);
1456
1457                 if (unlikely(kthread_should_stop())) {
1458                         set_current_state(TASK_RUNNING);
1459                         break;
1460                 }
1461
1462                 schedule();
1463
1464                 continue;
1465
1466 pop_from_list:
1467                 list = wc->endio_list;
1468                 list.next->prev = list.prev->next = &list;
1469                 INIT_LIST_HEAD(&wc->endio_list);
1470                 raw_spin_unlock_irq(&wc->endio_list_lock);
1471
1472                 if (!WC_MODE_FUA(wc))
1473                         writecache_disk_flush(wc, wc->dev);
1474
1475                 wc_lock(wc);
1476
1477                 if (WC_MODE_PMEM(wc)) {
1478                         __writecache_endio_pmem(wc, &list);
1479                 } else {
1480                         __writecache_endio_ssd(wc, &list);
1481                         writecache_wait_for_ios(wc, READ);
1482                 }
1483
1484                 writecache_commit_flushed(wc, false);
1485
1486                 wc_unlock(wc);
1487         }
1488
1489         return 0;
1490 }
1491
1492 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1493 {
1494         struct dm_writecache *wc = wb->wc;
1495         unsigned block_size = wc->block_size;
1496         void *address = memory_data(wc, e);
1497
1498         persistent_memory_flush_cache(address, block_size);
1499
1500         if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1501                 return true;
1502
1503         return bio_add_page(&wb->bio, persistent_memory_page(address),
1504                             block_size, persistent_memory_page_offset(address)) != 0;
1505 }
1506
1507 struct writeback_list {
1508         struct list_head list;
1509         size_t size;
1510 };
1511
1512 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1513 {
1514         if (unlikely(wc->max_writeback_jobs)) {
1515                 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1516                         wc_lock(wc);
1517                         while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1518                                 writecache_wait_on_freelist(wc);
1519                         wc_unlock(wc);
1520                 }
1521         }
1522         cond_resched();
1523 }
1524
1525 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1526 {
1527         struct wc_entry *e, *f;
1528         struct bio *bio;
1529         struct writeback_struct *wb;
1530         unsigned max_pages;
1531
1532         while (wbl->size) {
1533                 wbl->size--;
1534                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1535                 list_del(&e->lru);
1536
1537                 max_pages = e->wc_list_contiguous;
1538
1539                 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1540                 wb = container_of(bio, struct writeback_struct, bio);
1541                 wb->wc = wc;
1542                 bio->bi_end_io = writecache_writeback_endio;
1543                 bio_set_dev(bio, wc->dev->bdev);
1544                 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1545                 if (max_pages <= WB_LIST_INLINE ||
1546                     unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1547                                                            GFP_NOIO | __GFP_NORETRY |
1548                                                            __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1549                         wb->wc_list = wb->wc_list_inline;
1550                         max_pages = WB_LIST_INLINE;
1551                 }
1552
1553                 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1554
1555                 wb->wc_list[0] = e;
1556                 wb->wc_list_n = 1;
1557
1558                 while (wbl->size && wb->wc_list_n < max_pages) {
1559                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1560                         if (read_original_sector(wc, f) !=
1561                             read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1562                                 break;
1563                         if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1564                                 break;
1565                         wbl->size--;
1566                         list_del(&f->lru);
1567                         wb->wc_list[wb->wc_list_n++] = f;
1568                         e = f;
1569                 }
1570                 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1571                 if (writecache_has_error(wc)) {
1572                         bio->bi_status = BLK_STS_IOERR;
1573                         bio_endio(bio);
1574                 } else if (unlikely(!bio_sectors(bio))) {
1575                         bio->bi_status = BLK_STS_OK;
1576                         bio_endio(bio);
1577                 } else {
1578                         submit_bio(bio);
1579                 }
1580
1581                 __writeback_throttle(wc, wbl);
1582         }
1583 }
1584
1585 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1586 {
1587         struct wc_entry *e, *f;
1588         struct dm_io_region from, to;
1589         struct copy_struct *c;
1590
1591         while (wbl->size) {
1592                 unsigned n_sectors;
1593
1594                 wbl->size--;
1595                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1596                 list_del(&e->lru);
1597
1598                 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1599
1600                 from.bdev = wc->ssd_dev->bdev;
1601                 from.sector = cache_sector(wc, e);
1602                 from.count = n_sectors;
1603                 to.bdev = wc->dev->bdev;
1604                 to.sector = read_original_sector(wc, e);
1605                 to.count = n_sectors;
1606
1607                 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1608                 c->wc = wc;
1609                 c->e = e;
1610                 c->n_entries = e->wc_list_contiguous;
1611
1612                 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1613                         wbl->size--;
1614                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1615                         BUG_ON(f != e + 1);
1616                         list_del(&f->lru);
1617                         e = f;
1618                 }
1619
1620                 if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1621                         if (to.sector >= wc->data_device_sectors) {
1622                                 writecache_copy_endio(0, 0, c);
1623                                 continue;
1624                         }
1625                         from.count = to.count = wc->data_device_sectors - to.sector;
1626                 }
1627
1628                 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1629
1630                 __writeback_throttle(wc, wbl);
1631         }
1632 }
1633
1634 static void writecache_writeback(struct work_struct *work)
1635 {
1636         struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1637         struct blk_plug plug;
1638         struct wc_entry *f, *g, *e = NULL;
1639         struct rb_node *node, *next_node;
1640         struct list_head skipped;
1641         struct writeback_list wbl;
1642         unsigned long n_walked;
1643
1644         wc_lock(wc);
1645 restart:
1646         if (writecache_has_error(wc)) {
1647                 wc_unlock(wc);
1648                 return;
1649         }
1650
1651         if (unlikely(wc->writeback_all)) {
1652                 if (writecache_wait_for_writeback(wc))
1653                         goto restart;
1654         }
1655
1656         if (wc->overwrote_committed) {
1657                 writecache_wait_for_ios(wc, WRITE);
1658         }
1659
1660         n_walked = 0;
1661         INIT_LIST_HEAD(&skipped);
1662         INIT_LIST_HEAD(&wbl.list);
1663         wbl.size = 0;
1664         while (!list_empty(&wc->lru) &&
1665                (wc->writeback_all ||
1666                 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1667
1668                 n_walked++;
1669                 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1670                     likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1671                         queue_work(wc->writeback_wq, &wc->writeback_work);
1672                         break;
1673                 }
1674
1675                 if (unlikely(wc->writeback_all)) {
1676                         if (unlikely(!e)) {
1677                                 writecache_flush(wc);
1678                                 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1679                         } else
1680                                 e = g;
1681                 } else
1682                         e = container_of(wc->lru.prev, struct wc_entry, lru);
1683                 BUG_ON(e->write_in_progress);
1684                 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1685                         writecache_flush(wc);
1686                 }
1687                 node = rb_prev(&e->rb_node);
1688                 if (node) {
1689                         f = container_of(node, struct wc_entry, rb_node);
1690                         if (unlikely(read_original_sector(wc, f) ==
1691                                      read_original_sector(wc, e))) {
1692                                 BUG_ON(!f->write_in_progress);
1693                                 list_del(&e->lru);
1694                                 list_add(&e->lru, &skipped);
1695                                 cond_resched();
1696                                 continue;
1697                         }
1698                 }
1699                 wc->writeback_size++;
1700                 list_del(&e->lru);
1701                 list_add(&e->lru, &wbl.list);
1702                 wbl.size++;
1703                 e->write_in_progress = true;
1704                 e->wc_list_contiguous = 1;
1705
1706                 f = e;
1707
1708                 while (1) {
1709                         next_node = rb_next(&f->rb_node);
1710                         if (unlikely(!next_node))
1711                                 break;
1712                         g = container_of(next_node, struct wc_entry, rb_node);
1713                         if (unlikely(read_original_sector(wc, g) ==
1714                             read_original_sector(wc, f))) {
1715                                 f = g;
1716                                 continue;
1717                         }
1718                         if (read_original_sector(wc, g) !=
1719                             read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1720                                 break;
1721                         if (unlikely(g->write_in_progress))
1722                                 break;
1723                         if (unlikely(!writecache_entry_is_committed(wc, g)))
1724                                 break;
1725
1726                         if (!WC_MODE_PMEM(wc)) {
1727                                 if (g != f + 1)
1728                                         break;
1729                         }
1730
1731                         n_walked++;
1732                         //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1733                         //      break;
1734
1735                         wc->writeback_size++;
1736                         list_del(&g->lru);
1737                         list_add(&g->lru, &wbl.list);
1738                         wbl.size++;
1739                         g->write_in_progress = true;
1740                         g->wc_list_contiguous = BIO_MAX_PAGES;
1741                         f = g;
1742                         e->wc_list_contiguous++;
1743                         if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1744                                 if (unlikely(wc->writeback_all)) {
1745                                         next_node = rb_next(&f->rb_node);
1746                                         if (likely(next_node))
1747                                                 g = container_of(next_node, struct wc_entry, rb_node);
1748                                 }
1749                                 break;
1750                         }
1751                 }
1752                 cond_resched();
1753         }
1754
1755         if (!list_empty(&skipped)) {
1756                 list_splice_tail(&skipped, &wc->lru);
1757                 /*
1758                  * If we didn't do any progress, we must wait until some
1759                  * writeback finishes to avoid burning CPU in a loop
1760                  */
1761                 if (unlikely(!wbl.size))
1762                         writecache_wait_for_writeback(wc);
1763         }
1764
1765         wc_unlock(wc);
1766
1767         blk_start_plug(&plug);
1768
1769         if (WC_MODE_PMEM(wc))
1770                 __writecache_writeback_pmem(wc, &wbl);
1771         else
1772                 __writecache_writeback_ssd(wc, &wbl);
1773
1774         blk_finish_plug(&plug);
1775
1776         if (unlikely(wc->writeback_all)) {
1777                 wc_lock(wc);
1778                 while (writecache_wait_for_writeback(wc));
1779                 wc_unlock(wc);
1780         }
1781 }
1782
1783 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1784                                  size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1785 {
1786         uint64_t n_blocks, offset;
1787         struct wc_entry e;
1788
1789         n_blocks = device_size;
1790         do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1791
1792         while (1) {
1793                 if (!n_blocks)
1794                         return -ENOSPC;
1795                 /* Verify the following entries[n_blocks] won't overflow */
1796                 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1797                                  sizeof(struct wc_memory_entry)))
1798                         return -EFBIG;
1799                 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1800                 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1801                 if (offset + n_blocks * block_size <= device_size)
1802                         break;
1803                 n_blocks--;
1804         }
1805
1806         /* check if the bit field overflows */
1807         e.index = n_blocks;
1808         if (e.index != n_blocks)
1809                 return -EFBIG;
1810
1811         if (n_blocks_p)
1812                 *n_blocks_p = n_blocks;
1813         if (n_metadata_blocks_p)
1814                 *n_metadata_blocks_p = offset >> __ffs(block_size);
1815         return 0;
1816 }
1817
1818 static int init_memory(struct dm_writecache *wc)
1819 {
1820         size_t b;
1821         int r;
1822
1823         r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1824         if (r)
1825                 return r;
1826
1827         r = writecache_alloc_entries(wc);
1828         if (r)
1829                 return r;
1830
1831         for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1832                 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1833         pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1834         pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1835         pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1836         pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1837
1838         for (b = 0; b < wc->n_blocks; b++) {
1839                 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1840                 cond_resched();
1841         }
1842
1843         writecache_flush_all_metadata(wc);
1844         writecache_commit_flushed(wc, false);
1845         pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1846         writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1847         writecache_commit_flushed(wc, false);
1848
1849         return 0;
1850 }
1851
1852 static void writecache_dtr(struct dm_target *ti)
1853 {
1854         struct dm_writecache *wc = ti->private;
1855
1856         if (!wc)
1857                 return;
1858
1859         if (wc->endio_thread)
1860                 kthread_stop(wc->endio_thread);
1861
1862         if (wc->flush_thread)
1863                 kthread_stop(wc->flush_thread);
1864
1865         bioset_exit(&wc->bio_set);
1866
1867         mempool_exit(&wc->copy_pool);
1868
1869         if (wc->writeback_wq)
1870                 destroy_workqueue(wc->writeback_wq);
1871
1872         if (wc->dev)
1873                 dm_put_device(ti, wc->dev);
1874
1875         if (wc->ssd_dev)
1876                 dm_put_device(ti, wc->ssd_dev);
1877
1878         if (wc->entries)
1879                 vfree(wc->entries);
1880
1881         if (wc->memory_map) {
1882                 if (WC_MODE_PMEM(wc))
1883                         persistent_memory_release(wc);
1884                 else
1885                         vfree(wc->memory_map);
1886         }
1887
1888         if (wc->dm_kcopyd)
1889                 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1890
1891         if (wc->dm_io)
1892                 dm_io_client_destroy(wc->dm_io);
1893
1894         if (wc->dirty_bitmap)
1895                 vfree(wc->dirty_bitmap);
1896
1897         kfree(wc);
1898 }
1899
1900 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1901 {
1902         struct dm_writecache *wc;
1903         struct dm_arg_set as;
1904         const char *string;
1905         unsigned opt_params;
1906         size_t offset, data_size;
1907         int i, r;
1908         char dummy;
1909         int high_wm_percent = HIGH_WATERMARK;
1910         int low_wm_percent = LOW_WATERMARK;
1911         uint64_t x;
1912         struct wc_memory_superblock s;
1913
1914         static struct dm_arg _args[] = {
1915                 {0, 16, "Invalid number of feature args"},
1916         };
1917
1918         as.argc = argc;
1919         as.argv = argv;
1920
1921         wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1922         if (!wc) {
1923                 ti->error = "Cannot allocate writecache structure";
1924                 r = -ENOMEM;
1925                 goto bad;
1926         }
1927         ti->private = wc;
1928         wc->ti = ti;
1929
1930         mutex_init(&wc->lock);
1931         writecache_poison_lists(wc);
1932         init_waitqueue_head(&wc->freelist_wait);
1933         timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1934
1935         for (i = 0; i < 2; i++) {
1936                 atomic_set(&wc->bio_in_progress[i], 0);
1937                 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1938         }
1939
1940         wc->dm_io = dm_io_client_create();
1941         if (IS_ERR(wc->dm_io)) {
1942                 r = PTR_ERR(wc->dm_io);
1943                 ti->error = "Unable to allocate dm-io client";
1944                 wc->dm_io = NULL;
1945                 goto bad;
1946         }
1947
1948         wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1949         if (!wc->writeback_wq) {
1950                 r = -ENOMEM;
1951                 ti->error = "Could not allocate writeback workqueue";
1952                 goto bad;
1953         }
1954         INIT_WORK(&wc->writeback_work, writecache_writeback);
1955         INIT_WORK(&wc->flush_work, writecache_flush_work);
1956
1957         raw_spin_lock_init(&wc->endio_list_lock);
1958         INIT_LIST_HEAD(&wc->endio_list);
1959         wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1960         if (IS_ERR(wc->endio_thread)) {
1961                 r = PTR_ERR(wc->endio_thread);
1962                 wc->endio_thread = NULL;
1963                 ti->error = "Couldn't spawn endio thread";
1964                 goto bad;
1965         }
1966         wake_up_process(wc->endio_thread);
1967
1968         /*
1969          * Parse the mode (pmem or ssd)
1970          */
1971         string = dm_shift_arg(&as);
1972         if (!string)
1973                 goto bad_arguments;
1974
1975         if (!strcasecmp(string, "s")) {
1976                 wc->pmem_mode = false;
1977         } else if (!strcasecmp(string, "p")) {
1978 #ifdef DM_WRITECACHE_HAS_PMEM
1979                 wc->pmem_mode = true;
1980                 wc->writeback_fua = true;
1981 #else
1982                 /*
1983                  * If the architecture doesn't support persistent memory or
1984                  * the kernel doesn't support any DAX drivers, this driver can
1985                  * only be used in SSD-only mode.
1986                  */
1987                 r = -EOPNOTSUPP;
1988                 ti->error = "Persistent memory or DAX not supported on this system";
1989                 goto bad;
1990 #endif
1991         } else {
1992                 goto bad_arguments;
1993         }
1994
1995         if (WC_MODE_PMEM(wc)) {
1996                 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1997                                 offsetof(struct writeback_struct, bio),
1998                                 BIOSET_NEED_BVECS);
1999                 if (r) {
2000                         ti->error = "Could not allocate bio set";
2001                         goto bad;
2002                 }
2003         } else {
2004                 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2005                 if (r) {
2006                         ti->error = "Could not allocate mempool";
2007                         goto bad;
2008                 }
2009         }
2010
2011         /*
2012          * Parse the origin data device
2013          */
2014         string = dm_shift_arg(&as);
2015         if (!string)
2016                 goto bad_arguments;
2017         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2018         if (r) {
2019                 ti->error = "Origin data device lookup failed";
2020                 goto bad;
2021         }
2022
2023         /*
2024          * Parse cache data device (be it pmem or ssd)
2025          */
2026         string = dm_shift_arg(&as);
2027         if (!string)
2028                 goto bad_arguments;
2029
2030         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2031         if (r) {
2032                 ti->error = "Cache data device lookup failed";
2033                 goto bad;
2034         }
2035         wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2036
2037         /*
2038          * Parse the cache block size
2039          */
2040         string = dm_shift_arg(&as);
2041         if (!string)
2042                 goto bad_arguments;
2043         if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2044             wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2045             (wc->block_size & (wc->block_size - 1))) {
2046                 r = -EINVAL;
2047                 ti->error = "Invalid block size";
2048                 goto bad;
2049         }
2050         if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2051             wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2052                 r = -EINVAL;
2053                 ti->error = "Block size is smaller than device logical block size";
2054                 goto bad;
2055         }
2056         wc->block_size_bits = __ffs(wc->block_size);
2057
2058         wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2059         wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2060         wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2061
2062         /*
2063          * Parse optional arguments
2064          */
2065         r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2066         if (r)
2067                 goto bad;
2068
2069         while (opt_params) {
2070                 string = dm_shift_arg(&as), opt_params--;
2071                 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2072                         unsigned long long start_sector;
2073                         string = dm_shift_arg(&as), opt_params--;
2074                         if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2075                                 goto invalid_optional;
2076                         wc->start_sector = start_sector;
2077                         wc->start_sector_set = true;
2078                         if (wc->start_sector != start_sector ||
2079                             wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2080                                 goto invalid_optional;
2081                 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2082                         string = dm_shift_arg(&as), opt_params--;
2083                         if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2084                                 goto invalid_optional;
2085                         if (high_wm_percent < 0 || high_wm_percent > 100)
2086                                 goto invalid_optional;
2087                         wc->high_wm_percent_value = high_wm_percent;
2088                         wc->high_wm_percent_set = true;
2089                 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2090                         string = dm_shift_arg(&as), opt_params--;
2091                         if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2092                                 goto invalid_optional;
2093                         if (low_wm_percent < 0 || low_wm_percent > 100)
2094                                 goto invalid_optional;
2095                         wc->low_wm_percent_value = low_wm_percent;
2096                         wc->low_wm_percent_set = true;
2097                 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2098                         string = dm_shift_arg(&as), opt_params--;
2099                         if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2100                                 goto invalid_optional;
2101                         wc->max_writeback_jobs_set = true;
2102                 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2103                         string = dm_shift_arg(&as), opt_params--;
2104                         if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2105                                 goto invalid_optional;
2106                         wc->autocommit_blocks_set = true;
2107                 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2108                         unsigned autocommit_msecs;
2109                         string = dm_shift_arg(&as), opt_params--;
2110                         if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2111                                 goto invalid_optional;
2112                         if (autocommit_msecs > 3600000)
2113                                 goto invalid_optional;
2114                         wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2115                         wc->autocommit_time_value = autocommit_msecs;
2116                         wc->autocommit_time_set = true;
2117                 } else if (!strcasecmp(string, "fua")) {
2118                         if (WC_MODE_PMEM(wc)) {
2119                                 wc->writeback_fua = true;
2120                                 wc->writeback_fua_set = true;
2121                         } else goto invalid_optional;
2122                 } else if (!strcasecmp(string, "nofua")) {
2123                         if (WC_MODE_PMEM(wc)) {
2124                                 wc->writeback_fua = false;
2125                                 wc->writeback_fua_set = true;
2126                         } else goto invalid_optional;
2127                 } else {
2128 invalid_optional:
2129                         r = -EINVAL;
2130                         ti->error = "Invalid optional argument";
2131                         goto bad;
2132                 }
2133         }
2134
2135         if (high_wm_percent < low_wm_percent) {
2136                 r = -EINVAL;
2137                 ti->error = "High watermark must be greater than or equal to low watermark";
2138                 goto bad;
2139         }
2140
2141         if (WC_MODE_PMEM(wc)) {
2142                 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2143                         r = -EOPNOTSUPP;
2144                         ti->error = "Asynchronous persistent memory not supported as pmem cache";
2145                         goto bad;
2146                 }
2147
2148                 r = persistent_memory_claim(wc);
2149                 if (r) {
2150                         ti->error = "Unable to map persistent memory for cache";
2151                         goto bad;
2152                 }
2153         } else {
2154                 size_t n_blocks, n_metadata_blocks;
2155                 uint64_t n_bitmap_bits;
2156
2157                 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2158
2159                 bio_list_init(&wc->flush_list);
2160                 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2161                 if (IS_ERR(wc->flush_thread)) {
2162                         r = PTR_ERR(wc->flush_thread);
2163                         wc->flush_thread = NULL;
2164                         ti->error = "Couldn't spawn flush thread";
2165                         goto bad;
2166                 }
2167                 wake_up_process(wc->flush_thread);
2168
2169                 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2170                                           &n_blocks, &n_metadata_blocks);
2171                 if (r) {
2172                         ti->error = "Invalid device size";
2173                         goto bad;
2174                 }
2175
2176                 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2177                                  BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2178                 /* this is limitation of test_bit functions */
2179                 if (n_bitmap_bits > 1U << 31) {
2180                         r = -EFBIG;
2181                         ti->error = "Invalid device size";
2182                         goto bad;
2183                 }
2184
2185                 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2186                 if (!wc->memory_map) {
2187                         r = -ENOMEM;
2188                         ti->error = "Unable to allocate memory for metadata";
2189                         goto bad;
2190                 }
2191
2192                 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2193                 if (IS_ERR(wc->dm_kcopyd)) {
2194                         r = PTR_ERR(wc->dm_kcopyd);
2195                         ti->error = "Unable to allocate dm-kcopyd client";
2196                         wc->dm_kcopyd = NULL;
2197                         goto bad;
2198                 }
2199
2200                 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2201                 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2202                         BITS_PER_LONG * sizeof(unsigned long);
2203                 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2204                 if (!wc->dirty_bitmap) {
2205                         r = -ENOMEM;
2206                         ti->error = "Unable to allocate dirty bitmap";
2207                         goto bad;
2208                 }
2209
2210                 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2211                 if (r) {
2212                         ti->error = "Unable to read first block of metadata";
2213                         goto bad;
2214                 }
2215         }
2216
2217         r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2218         if (r) {
2219                 ti->error = "Hardware memory error when reading superblock";
2220                 goto bad;
2221         }
2222         if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2223                 r = init_memory(wc);
2224                 if (r) {
2225                         ti->error = "Unable to initialize device";
2226                         goto bad;
2227                 }
2228                 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2229                 if (r) {
2230                         ti->error = "Hardware memory error when reading superblock";
2231                         goto bad;
2232                 }
2233         }
2234
2235         if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2236                 ti->error = "Invalid magic in the superblock";
2237                 r = -EINVAL;
2238                 goto bad;
2239         }
2240
2241         if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2242                 ti->error = "Invalid version in the superblock";
2243                 r = -EINVAL;
2244                 goto bad;
2245         }
2246
2247         if (le32_to_cpu(s.block_size) != wc->block_size) {
2248                 ti->error = "Block size does not match superblock";
2249                 r = -EINVAL;
2250                 goto bad;
2251         }
2252
2253         wc->n_blocks = le64_to_cpu(s.n_blocks);
2254
2255         offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2256         if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2257 overflow:
2258                 ti->error = "Overflow in size calculation";
2259                 r = -EINVAL;
2260                 goto bad;
2261         }
2262         offset += sizeof(struct wc_memory_superblock);
2263         if (offset < sizeof(struct wc_memory_superblock))
2264                 goto overflow;
2265         offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2266         data_size = wc->n_blocks * (size_t)wc->block_size;
2267         if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2268             (offset + data_size < offset))
2269                 goto overflow;
2270         if (offset + data_size > wc->memory_map_size) {
2271                 ti->error = "Memory area is too small";
2272                 r = -EINVAL;
2273                 goto bad;
2274         }
2275
2276         wc->metadata_sectors = offset >> SECTOR_SHIFT;
2277         wc->block_start = (char *)sb(wc) + offset;
2278
2279         x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2280         x += 50;
2281         do_div(x, 100);
2282         wc->freelist_high_watermark = x;
2283         x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2284         x += 50;
2285         do_div(x, 100);
2286         wc->freelist_low_watermark = x;
2287
2288         r = writecache_alloc_entries(wc);
2289         if (r) {
2290                 ti->error = "Cannot allocate memory";
2291                 goto bad;
2292         }
2293
2294         ti->num_flush_bios = 1;
2295         ti->flush_supported = true;
2296         ti->num_discard_bios = 1;
2297
2298         if (WC_MODE_PMEM(wc))
2299                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2300
2301         return 0;
2302
2303 bad_arguments:
2304         r = -EINVAL;
2305         ti->error = "Bad arguments";
2306 bad:
2307         writecache_dtr(ti);
2308         return r;
2309 }
2310
2311 static void writecache_status(struct dm_target *ti, status_type_t type,
2312                               unsigned status_flags, char *result, unsigned maxlen)
2313 {
2314         struct dm_writecache *wc = ti->private;
2315         unsigned extra_args;
2316         unsigned sz = 0;
2317
2318         switch (type) {
2319         case STATUSTYPE_INFO:
2320                 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2321                        (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2322                        (unsigned long long)wc->writeback_size);
2323                 break;
2324         case STATUSTYPE_TABLE:
2325                 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2326                                 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2327                 extra_args = 0;
2328                 if (wc->start_sector_set)
2329                         extra_args += 2;
2330                 if (wc->high_wm_percent_set)
2331                         extra_args += 2;
2332                 if (wc->low_wm_percent_set)
2333                         extra_args += 2;
2334                 if (wc->max_writeback_jobs_set)
2335                         extra_args += 2;
2336                 if (wc->autocommit_blocks_set)
2337                         extra_args += 2;
2338                 if (wc->autocommit_time_set)
2339                         extra_args += 2;
2340                 if (wc->writeback_fua_set)
2341                         extra_args++;
2342
2343                 DMEMIT("%u", extra_args);
2344                 if (wc->start_sector_set)
2345                         DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2346                 if (wc->high_wm_percent_set)
2347                         DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2348                 if (wc->low_wm_percent_set)
2349                         DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2350                 if (wc->max_writeback_jobs_set)
2351                         DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2352                 if (wc->autocommit_blocks_set)
2353                         DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2354                 if (wc->autocommit_time_set)
2355                         DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2356                 if (wc->writeback_fua_set)
2357                         DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2358                 break;
2359         }
2360 }
2361
2362 static struct target_type writecache_target = {
2363         .name                   = "writecache",
2364         .version                = {1, 1, 1},
2365         .module                 = THIS_MODULE,
2366         .ctr                    = writecache_ctr,
2367         .dtr                    = writecache_dtr,
2368         .status                 = writecache_status,
2369         .postsuspend            = writecache_suspend,
2370         .resume                 = writecache_resume,
2371         .message                = writecache_message,
2372         .map                    = writecache_map,
2373         .end_io                 = writecache_end_io,
2374         .iterate_devices        = writecache_iterate_devices,
2375         .io_hints               = writecache_io_hints,
2376 };
2377
2378 static int __init dm_writecache_init(void)
2379 {
2380         int r;
2381
2382         r = dm_register_target(&writecache_target);
2383         if (r < 0) {
2384                 DMERR("register failed %d", r);
2385                 return r;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static void __exit dm_writecache_exit(void)
2392 {
2393         dm_unregister_target(&writecache_target);
2394 }
2395
2396 module_init(dm_writecache_init);
2397 module_exit(dm_writecache_exit);
2398
2399 MODULE_DESCRIPTION(DM_NAME " writecache target");
2400 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2401 MODULE_LICENSE("GPL");