GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct workqueue_struct *wq;
250         struct throttle throttle;
251         struct work_struct worker;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270         mempool_t *mapping_pool;
271
272         process_bio_fn process_bio;
273         process_bio_fn process_discard;
274
275         process_cell_fn process_cell;
276         process_cell_fn process_discard_cell;
277
278         process_mapping_fn process_prepared_mapping;
279         process_mapping_fn process_prepared_discard;
280         process_mapping_fn process_prepared_discard_pt2;
281
282         struct dm_bio_prison_cell **cell_sort_array;
283 };
284
285 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
286
287 static enum pool_mode get_pool_mode(struct pool *pool)
288 {
289         return pool->pf.mode;
290 }
291
292 static void notify_of_pool_mode_change(struct pool *pool)
293 {
294         const char *descs[] = {
295                 "write",
296                 "out-of-data-space",
297                 "read-only",
298                 "read-only",
299                 "fail"
300         };
301         const char *extra_desc = NULL;
302         enum pool_mode mode = get_pool_mode(pool);
303
304         if (mode == PM_OUT_OF_DATA_SPACE) {
305                 if (!pool->pf.error_if_no_space)
306                         extra_desc = " (queue IO)";
307                 else
308                         extra_desc = " (error IO)";
309         }
310
311         dm_table_event(pool->ti->table);
312         DMINFO("%s: switching pool to %s%s mode",
313                dm_device_name(pool->pool_md),
314                descs[(int)mode], extra_desc ? : "");
315 }
316
317 /*
318  * Target context for a pool.
319  */
320 struct pool_c {
321         struct dm_target *ti;
322         struct pool *pool;
323         struct dm_dev *data_dev;
324         struct dm_dev *metadata_dev;
325         struct dm_target_callbacks callbacks;
326
327         dm_block_t low_water_blocks;
328         struct pool_features requested_pf; /* Features requested during table load */
329         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
330 };
331
332 /*
333  * Target context for a thin.
334  */
335 struct thin_c {
336         struct list_head list;
337         struct dm_dev *pool_dev;
338         struct dm_dev *origin_dev;
339         sector_t origin_size;
340         dm_thin_id dev_id;
341
342         struct pool *pool;
343         struct dm_thin_device *td;
344         struct mapped_device *thin_md;
345
346         bool requeue_mode:1;
347         spinlock_t lock;
348         struct list_head deferred_cells;
349         struct bio_list deferred_bio_list;
350         struct bio_list retry_on_resume_list;
351         struct rb_root sort_bio_list; /* sorted list of deferred bios */
352
353         /*
354          * Ensures the thin is not destroyed until the worker has finished
355          * iterating the active_thins list.
356          */
357         atomic_t refcount;
358         struct completion can_destroy;
359 };
360
361 /*----------------------------------------------------------------*/
362
363 static bool block_size_is_power_of_two(struct pool *pool)
364 {
365         return pool->sectors_per_block_shift >= 0;
366 }
367
368 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
369 {
370         return block_size_is_power_of_two(pool) ?
371                 (b << pool->sectors_per_block_shift) :
372                 (b * pool->sectors_per_block);
373 }
374
375 /*----------------------------------------------------------------*/
376
377 struct discard_op {
378         struct thin_c *tc;
379         struct blk_plug plug;
380         struct bio *parent_bio;
381         struct bio *bio;
382 };
383
384 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
385 {
386         BUG_ON(!parent);
387
388         op->tc = tc;
389         blk_start_plug(&op->plug);
390         op->parent_bio = parent;
391         op->bio = NULL;
392 }
393
394 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
395 {
396         struct thin_c *tc = op->tc;
397         sector_t s = block_to_sectors(tc->pool, data_b);
398         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
399
400         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
401                                       GFP_NOWAIT, 0, &op->bio);
402 }
403
404 static void end_discard(struct discard_op *op, int r)
405 {
406         if (op->bio) {
407                 /*
408                  * Even if one of the calls to issue_discard failed, we
409                  * need to wait for the chain to complete.
410                  */
411                 bio_chain(op->bio, op->parent_bio);
412                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
413                 submit_bio(op->bio);
414         }
415
416         blk_finish_plug(&op->plug);
417
418         /*
419          * Even if r is set, there could be sub discards in flight that we
420          * need to wait for.
421          */
422         if (r && !op->parent_bio->bi_status)
423                 op->parent_bio->bi_status = errno_to_blk_status(r);
424         bio_endio(op->parent_bio);
425 }
426
427 /*----------------------------------------------------------------*/
428
429 /*
430  * wake_worker() is used when new work is queued and when pool_resume is
431  * ready to continue deferred IO processing.
432  */
433 static void wake_worker(struct pool *pool)
434 {
435         queue_work(pool->wq, &pool->worker);
436 }
437
438 /*----------------------------------------------------------------*/
439
440 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
441                       struct dm_bio_prison_cell **cell_result)
442 {
443         int r;
444         struct dm_bio_prison_cell *cell_prealloc;
445
446         /*
447          * Allocate a cell from the prison's mempool.
448          * This might block but it can't fail.
449          */
450         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
451
452         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
453         if (r)
454                 /*
455                  * We reused an old cell; we can get rid of
456                  * the new one.
457                  */
458                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
459
460         return r;
461 }
462
463 static void cell_release(struct pool *pool,
464                          struct dm_bio_prison_cell *cell,
465                          struct bio_list *bios)
466 {
467         dm_cell_release(pool->prison, cell, bios);
468         dm_bio_prison_free_cell(pool->prison, cell);
469 }
470
471 static void cell_visit_release(struct pool *pool,
472                                void (*fn)(void *, struct dm_bio_prison_cell *),
473                                void *context,
474                                struct dm_bio_prison_cell *cell)
475 {
476         dm_cell_visit_release(pool->prison, fn, context, cell);
477         dm_bio_prison_free_cell(pool->prison, cell);
478 }
479
480 static void cell_release_no_holder(struct pool *pool,
481                                    struct dm_bio_prison_cell *cell,
482                                    struct bio_list *bios)
483 {
484         dm_cell_release_no_holder(pool->prison, cell, bios);
485         dm_bio_prison_free_cell(pool->prison, cell);
486 }
487
488 static void cell_error_with_code(struct pool *pool,
489                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
490 {
491         dm_cell_error(pool->prison, cell, error_code);
492         dm_bio_prison_free_cell(pool->prison, cell);
493 }
494
495 static blk_status_t get_pool_io_error_code(struct pool *pool)
496 {
497         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
498 }
499
500 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
501 {
502         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
503 }
504
505 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
506 {
507         cell_error_with_code(pool, cell, 0);
508 }
509
510 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
511 {
512         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
513 }
514
515 /*----------------------------------------------------------------*/
516
517 /*
518  * A global list of pools that uses a struct mapped_device as a key.
519  */
520 static struct dm_thin_pool_table {
521         struct mutex mutex;
522         struct list_head pools;
523 } dm_thin_pool_table;
524
525 static void pool_table_init(void)
526 {
527         mutex_init(&dm_thin_pool_table.mutex);
528         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
529 }
530
531 static void __pool_table_insert(struct pool *pool)
532 {
533         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534         list_add(&pool->list, &dm_thin_pool_table.pools);
535 }
536
537 static void __pool_table_remove(struct pool *pool)
538 {
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540         list_del(&pool->list);
541 }
542
543 static struct pool *__pool_table_lookup(struct mapped_device *md)
544 {
545         struct pool *pool = NULL, *tmp;
546
547         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548
549         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
550                 if (tmp->pool_md == md) {
551                         pool = tmp;
552                         break;
553                 }
554         }
555
556         return pool;
557 }
558
559 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
560 {
561         struct pool *pool = NULL, *tmp;
562
563         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
564
565         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
566                 if (tmp->md_dev == md_dev) {
567                         pool = tmp;
568                         break;
569                 }
570         }
571
572         return pool;
573 }
574
575 /*----------------------------------------------------------------*/
576
577 struct dm_thin_endio_hook {
578         struct thin_c *tc;
579         struct dm_deferred_entry *shared_read_entry;
580         struct dm_deferred_entry *all_io_entry;
581         struct dm_thin_new_mapping *overwrite_mapping;
582         struct rb_node rb_node;
583         struct dm_bio_prison_cell *cell;
584 };
585
586 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
587 {
588         bio_list_merge(bios, master);
589         bio_list_init(master);
590 }
591
592 static void error_bio_list(struct bio_list *bios, blk_status_t error)
593 {
594         struct bio *bio;
595
596         while ((bio = bio_list_pop(bios))) {
597                 bio->bi_status = error;
598                 bio_endio(bio);
599         }
600 }
601
602 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
603                 blk_status_t error)
604 {
605         struct bio_list bios;
606         unsigned long flags;
607
608         bio_list_init(&bios);
609
610         spin_lock_irqsave(&tc->lock, flags);
611         __merge_bio_list(&bios, master);
612         spin_unlock_irqrestore(&tc->lock, flags);
613
614         error_bio_list(&bios, error);
615 }
616
617 static void requeue_deferred_cells(struct thin_c *tc)
618 {
619         struct pool *pool = tc->pool;
620         unsigned long flags;
621         struct list_head cells;
622         struct dm_bio_prison_cell *cell, *tmp;
623
624         INIT_LIST_HEAD(&cells);
625
626         spin_lock_irqsave(&tc->lock, flags);
627         list_splice_init(&tc->deferred_cells, &cells);
628         spin_unlock_irqrestore(&tc->lock, flags);
629
630         list_for_each_entry_safe(cell, tmp, &cells, user_list)
631                 cell_requeue(pool, cell);
632 }
633
634 static void requeue_io(struct thin_c *tc)
635 {
636         struct bio_list bios;
637         unsigned long flags;
638
639         bio_list_init(&bios);
640
641         spin_lock_irqsave(&tc->lock, flags);
642         __merge_bio_list(&bios, &tc->deferred_bio_list);
643         __merge_bio_list(&bios, &tc->retry_on_resume_list);
644         spin_unlock_irqrestore(&tc->lock, flags);
645
646         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647         requeue_deferred_cells(tc);
648 }
649
650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
651 {
652         struct thin_c *tc;
653
654         rcu_read_lock();
655         list_for_each_entry_rcu(tc, &pool->active_thins, list)
656                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657         rcu_read_unlock();
658 }
659
660 static void error_retry_list(struct pool *pool)
661 {
662         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
663 }
664
665 /*
666  * This section of code contains the logic for processing a thin device's IO.
667  * Much of the code depends on pool object resources (lists, workqueues, etc)
668  * but most is exclusively called from the thin target rather than the thin-pool
669  * target.
670  */
671
672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
673 {
674         struct pool *pool = tc->pool;
675         sector_t block_nr = bio->bi_iter.bi_sector;
676
677         if (block_size_is_power_of_two(pool))
678                 block_nr >>= pool->sectors_per_block_shift;
679         else
680                 (void) sector_div(block_nr, pool->sectors_per_block);
681
682         return block_nr;
683 }
684
685 /*
686  * Returns the _complete_ blocks that this bio covers.
687  */
688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689                                 dm_block_t *begin, dm_block_t *end)
690 {
691         struct pool *pool = tc->pool;
692         sector_t b = bio->bi_iter.bi_sector;
693         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
694
695         b += pool->sectors_per_block - 1ull; /* so we round up */
696
697         if (block_size_is_power_of_two(pool)) {
698                 b >>= pool->sectors_per_block_shift;
699                 e >>= pool->sectors_per_block_shift;
700         } else {
701                 (void) sector_div(b, pool->sectors_per_block);
702                 (void) sector_div(e, pool->sectors_per_block);
703         }
704
705         if (e < b)
706                 /* Can happen if the bio is within a single block. */
707                 e = b;
708
709         *begin = b;
710         *end = e;
711 }
712
713 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
714 {
715         struct pool *pool = tc->pool;
716         sector_t bi_sector = bio->bi_iter.bi_sector;
717
718         bio_set_dev(bio, tc->pool_dev->bdev);
719         if (block_size_is_power_of_two(pool))
720                 bio->bi_iter.bi_sector =
721                         (block << pool->sectors_per_block_shift) |
722                         (bi_sector & (pool->sectors_per_block - 1));
723         else
724                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
725                                  sector_div(bi_sector, pool->sectors_per_block);
726 }
727
728 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
729 {
730         bio_set_dev(bio, tc->origin_dev->bdev);
731 }
732
733 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
734 {
735         return op_is_flush(bio->bi_opf) &&
736                 dm_thin_changed_this_transaction(tc->td);
737 }
738
739 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
740 {
741         struct dm_thin_endio_hook *h;
742
743         if (bio_op(bio) == REQ_OP_DISCARD)
744                 return;
745
746         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
747         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
748 }
749
750 static void issue(struct thin_c *tc, struct bio *bio)
751 {
752         struct pool *pool = tc->pool;
753         unsigned long flags;
754
755         if (!bio_triggers_commit(tc, bio)) {
756                 generic_make_request(bio);
757                 return;
758         }
759
760         /*
761          * Complete bio with an error if earlier I/O caused changes to
762          * the metadata that can't be committed e.g, due to I/O errors
763          * on the metadata device.
764          */
765         if (dm_thin_aborted_changes(tc->td)) {
766                 bio_io_error(bio);
767                 return;
768         }
769
770         /*
771          * Batch together any bios that trigger commits and then issue a
772          * single commit for them in process_deferred_bios().
773          */
774         spin_lock_irqsave(&pool->lock, flags);
775         bio_list_add(&pool->deferred_flush_bios, bio);
776         spin_unlock_irqrestore(&pool->lock, flags);
777 }
778
779 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
780 {
781         remap_to_origin(tc, bio);
782         issue(tc, bio);
783 }
784
785 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
786                             dm_block_t block)
787 {
788         remap(tc, bio, block);
789         issue(tc, bio);
790 }
791
792 /*----------------------------------------------------------------*/
793
794 /*
795  * Bio endio functions.
796  */
797 struct dm_thin_new_mapping {
798         struct list_head list;
799
800         bool pass_discard:1;
801         bool maybe_shared:1;
802
803         /*
804          * Track quiescing, copying and zeroing preparation actions.  When this
805          * counter hits zero the block is prepared and can be inserted into the
806          * btree.
807          */
808         atomic_t prepare_actions;
809
810         blk_status_t status;
811         struct thin_c *tc;
812         dm_block_t virt_begin, virt_end;
813         dm_block_t data_block;
814         struct dm_bio_prison_cell *cell;
815
816         /*
817          * If the bio covers the whole area of a block then we can avoid
818          * zeroing or copying.  Instead this bio is hooked.  The bio will
819          * still be in the cell, so care has to be taken to avoid issuing
820          * the bio twice.
821          */
822         struct bio *bio;
823         bio_end_io_t *saved_bi_end_io;
824 };
825
826 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
827 {
828         struct pool *pool = m->tc->pool;
829
830         if (atomic_dec_and_test(&m->prepare_actions)) {
831                 list_add_tail(&m->list, &pool->prepared_mappings);
832                 wake_worker(pool);
833         }
834 }
835
836 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
837 {
838         unsigned long flags;
839         struct pool *pool = m->tc->pool;
840
841         spin_lock_irqsave(&pool->lock, flags);
842         __complete_mapping_preparation(m);
843         spin_unlock_irqrestore(&pool->lock, flags);
844 }
845
846 static void copy_complete(int read_err, unsigned long write_err, void *context)
847 {
848         struct dm_thin_new_mapping *m = context;
849
850         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
851         complete_mapping_preparation(m);
852 }
853
854 static void overwrite_endio(struct bio *bio)
855 {
856         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
857         struct dm_thin_new_mapping *m = h->overwrite_mapping;
858
859         bio->bi_end_io = m->saved_bi_end_io;
860
861         m->status = bio->bi_status;
862         complete_mapping_preparation(m);
863 }
864
865 /*----------------------------------------------------------------*/
866
867 /*
868  * Workqueue.
869  */
870
871 /*
872  * Prepared mapping jobs.
873  */
874
875 /*
876  * This sends the bios in the cell, except the original holder, back
877  * to the deferred_bios list.
878  */
879 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
880 {
881         struct pool *pool = tc->pool;
882         unsigned long flags;
883
884         spin_lock_irqsave(&tc->lock, flags);
885         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
886         spin_unlock_irqrestore(&tc->lock, flags);
887
888         wake_worker(pool);
889 }
890
891 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
892
893 struct remap_info {
894         struct thin_c *tc;
895         struct bio_list defer_bios;
896         struct bio_list issue_bios;
897 };
898
899 static void __inc_remap_and_issue_cell(void *context,
900                                        struct dm_bio_prison_cell *cell)
901 {
902         struct remap_info *info = context;
903         struct bio *bio;
904
905         while ((bio = bio_list_pop(&cell->bios))) {
906                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
907                         bio_list_add(&info->defer_bios, bio);
908                 else {
909                         inc_all_io_entry(info->tc->pool, bio);
910
911                         /*
912                          * We can't issue the bios with the bio prison lock
913                          * held, so we add them to a list to issue on
914                          * return from this function.
915                          */
916                         bio_list_add(&info->issue_bios, bio);
917                 }
918         }
919 }
920
921 static void inc_remap_and_issue_cell(struct thin_c *tc,
922                                      struct dm_bio_prison_cell *cell,
923                                      dm_block_t block)
924 {
925         struct bio *bio;
926         struct remap_info info;
927
928         info.tc = tc;
929         bio_list_init(&info.defer_bios);
930         bio_list_init(&info.issue_bios);
931
932         /*
933          * We have to be careful to inc any bios we're about to issue
934          * before the cell is released, and avoid a race with new bios
935          * being added to the cell.
936          */
937         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
938                            &info, cell);
939
940         while ((bio = bio_list_pop(&info.defer_bios)))
941                 thin_defer_bio(tc, bio);
942
943         while ((bio = bio_list_pop(&info.issue_bios)))
944                 remap_and_issue(info.tc, bio, block);
945 }
946
947 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
948 {
949         cell_error(m->tc->pool, m->cell);
950         list_del(&m->list);
951         mempool_free(m, m->tc->pool->mapping_pool);
952 }
953
954 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
955 {
956         struct pool *pool = tc->pool;
957         unsigned long flags;
958
959         /*
960          * If the bio has the REQ_FUA flag set we must commit the metadata
961          * before signaling its completion.
962          */
963         if (!bio_triggers_commit(tc, bio)) {
964                 bio_endio(bio);
965                 return;
966         }
967
968         /*
969          * Complete bio with an error if earlier I/O caused changes to the
970          * metadata that can't be committed, e.g, due to I/O errors on the
971          * metadata device.
972          */
973         if (dm_thin_aborted_changes(tc->td)) {
974                 bio_io_error(bio);
975                 return;
976         }
977
978         /*
979          * Batch together any bios that trigger commits and then issue a
980          * single commit for them in process_deferred_bios().
981          */
982         spin_lock_irqsave(&pool->lock, flags);
983         bio_list_add(&pool->deferred_flush_completions, bio);
984         spin_unlock_irqrestore(&pool->lock, flags);
985 }
986
987 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
988 {
989         struct thin_c *tc = m->tc;
990         struct pool *pool = tc->pool;
991         struct bio *bio = m->bio;
992         int r;
993
994         if (m->status) {
995                 cell_error(pool, m->cell);
996                 goto out;
997         }
998
999         /*
1000          * Commit the prepared block into the mapping btree.
1001          * Any I/O for this block arriving after this point will get
1002          * remapped to it directly.
1003          */
1004         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1005         if (r) {
1006                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1007                 cell_error(pool, m->cell);
1008                 goto out;
1009         }
1010
1011         /*
1012          * Release any bios held while the block was being provisioned.
1013          * If we are processing a write bio that completely covers the block,
1014          * we already processed it so can ignore it now when processing
1015          * the bios in the cell.
1016          */
1017         if (bio) {
1018                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1019                 complete_overwrite_bio(tc, bio);
1020         } else {
1021                 inc_all_io_entry(tc->pool, m->cell->holder);
1022                 remap_and_issue(tc, m->cell->holder, m->data_block);
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024         }
1025
1026 out:
1027         list_del(&m->list);
1028         mempool_free(m, pool->mapping_pool);
1029 }
1030
1031 /*----------------------------------------------------------------*/
1032
1033 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1034 {
1035         struct thin_c *tc = m->tc;
1036         if (m->cell)
1037                 cell_defer_no_holder(tc, m->cell);
1038         mempool_free(m, tc->pool->mapping_pool);
1039 }
1040
1041 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1042 {
1043         bio_io_error(m->bio);
1044         free_discard_mapping(m);
1045 }
1046
1047 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1048 {
1049         bio_endio(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1054 {
1055         int r;
1056         struct thin_c *tc = m->tc;
1057
1058         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1059         if (r) {
1060                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1061                 bio_io_error(m->bio);
1062         } else
1063                 bio_endio(m->bio);
1064
1065         cell_defer_no_holder(tc, m->cell);
1066         mempool_free(m, tc->pool->mapping_pool);
1067 }
1068
1069 /*----------------------------------------------------------------*/
1070
1071 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1072                                                    struct bio *discard_parent)
1073 {
1074         /*
1075          * We've already unmapped this range of blocks, but before we
1076          * passdown we have to check that these blocks are now unused.
1077          */
1078         int r = 0;
1079         bool shared = true;
1080         struct thin_c *tc = m->tc;
1081         struct pool *pool = tc->pool;
1082         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1083         struct discard_op op;
1084
1085         begin_discard(&op, tc, discard_parent);
1086         while (b != end) {
1087                 /* find start of unmapped run */
1088                 for (; b < end; b++) {
1089                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1090                         if (r)
1091                                 goto out;
1092
1093                         if (!shared)
1094                                 break;
1095                 }
1096
1097                 if (b == end)
1098                         break;
1099
1100                 /* find end of run */
1101                 for (e = b + 1; e != end; e++) {
1102                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1103                         if (r)
1104                                 goto out;
1105
1106                         if (shared)
1107                                 break;
1108                 }
1109
1110                 r = issue_discard(&op, b, e);
1111                 if (r)
1112                         goto out;
1113
1114                 b = e;
1115         }
1116 out:
1117         end_discard(&op, r);
1118 }
1119
1120 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1121 {
1122         unsigned long flags;
1123         struct pool *pool = m->tc->pool;
1124
1125         spin_lock_irqsave(&pool->lock, flags);
1126         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1127         spin_unlock_irqrestore(&pool->lock, flags);
1128         wake_worker(pool);
1129 }
1130
1131 static void passdown_endio(struct bio *bio)
1132 {
1133         /*
1134          * It doesn't matter if the passdown discard failed, we still want
1135          * to unmap (we ignore err).
1136          */
1137         queue_passdown_pt2(bio->bi_private);
1138         bio_put(bio);
1139 }
1140
1141 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1142 {
1143         int r;
1144         struct thin_c *tc = m->tc;
1145         struct pool *pool = tc->pool;
1146         struct bio *discard_parent;
1147         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1148
1149         /*
1150          * Only this thread allocates blocks, so we can be sure that the
1151          * newly unmapped blocks will not be allocated before the end of
1152          * the function.
1153          */
1154         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1155         if (r) {
1156                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1157                 bio_io_error(m->bio);
1158                 cell_defer_no_holder(tc, m->cell);
1159                 mempool_free(m, pool->mapping_pool);
1160                 return;
1161         }
1162
1163         /*
1164          * Increment the unmapped blocks.  This prevents a race between the
1165          * passdown io and reallocation of freed blocks.
1166          */
1167         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1168         if (r) {
1169                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1170                 bio_io_error(m->bio);
1171                 cell_defer_no_holder(tc, m->cell);
1172                 mempool_free(m, pool->mapping_pool);
1173                 return;
1174         }
1175
1176         discard_parent = bio_alloc(GFP_NOIO, 1);
1177         if (!discard_parent) {
1178                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1179                        dm_device_name(tc->pool->pool_md));
1180                 queue_passdown_pt2(m);
1181
1182         } else {
1183                 discard_parent->bi_end_io = passdown_endio;
1184                 discard_parent->bi_private = m;
1185
1186                 if (m->maybe_shared)
1187                         passdown_double_checking_shared_status(m, discard_parent);
1188                 else {
1189                         struct discard_op op;
1190
1191                         begin_discard(&op, tc, discard_parent);
1192                         r = issue_discard(&op, m->data_block, data_end);
1193                         end_discard(&op, r);
1194                 }
1195         }
1196 }
1197
1198 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1199 {
1200         int r;
1201         struct thin_c *tc = m->tc;
1202         struct pool *pool = tc->pool;
1203
1204         /*
1205          * The passdown has completed, so now we can decrement all those
1206          * unmapped blocks.
1207          */
1208         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1209                                    m->data_block + (m->virt_end - m->virt_begin));
1210         if (r) {
1211                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1212                 bio_io_error(m->bio);
1213         } else
1214                 bio_endio(m->bio);
1215
1216         cell_defer_no_holder(tc, m->cell);
1217         mempool_free(m, pool->mapping_pool);
1218 }
1219
1220 static void process_prepared(struct pool *pool, struct list_head *head,
1221                              process_mapping_fn *fn)
1222 {
1223         unsigned long flags;
1224         struct list_head maps;
1225         struct dm_thin_new_mapping *m, *tmp;
1226
1227         INIT_LIST_HEAD(&maps);
1228         spin_lock_irqsave(&pool->lock, flags);
1229         list_splice_init(head, &maps);
1230         spin_unlock_irqrestore(&pool->lock, flags);
1231
1232         list_for_each_entry_safe(m, tmp, &maps, list)
1233                 (*fn)(m);
1234 }
1235
1236 /*
1237  * Deferred bio jobs.
1238  */
1239 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1240 {
1241         return bio->bi_iter.bi_size ==
1242                 (pool->sectors_per_block << SECTOR_SHIFT);
1243 }
1244
1245 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1246 {
1247         return (bio_data_dir(bio) == WRITE) &&
1248                 io_overlaps_block(pool, bio);
1249 }
1250
1251 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1252                                bio_end_io_t *fn)
1253 {
1254         *save = bio->bi_end_io;
1255         bio->bi_end_io = fn;
1256 }
1257
1258 static int ensure_next_mapping(struct pool *pool)
1259 {
1260         if (pool->next_mapping)
1261                 return 0;
1262
1263         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1264
1265         return pool->next_mapping ? 0 : -ENOMEM;
1266 }
1267
1268 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1269 {
1270         struct dm_thin_new_mapping *m = pool->next_mapping;
1271
1272         BUG_ON(!pool->next_mapping);
1273
1274         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1275         INIT_LIST_HEAD(&m->list);
1276         m->bio = NULL;
1277
1278         pool->next_mapping = NULL;
1279
1280         return m;
1281 }
1282
1283 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1284                     sector_t begin, sector_t end)
1285 {
1286         int r;
1287         struct dm_io_region to;
1288
1289         to.bdev = tc->pool_dev->bdev;
1290         to.sector = begin;
1291         to.count = end - begin;
1292
1293         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1294         if (r < 0) {
1295                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1296                 copy_complete(1, 1, m);
1297         }
1298 }
1299
1300 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301                                       dm_block_t data_begin,
1302                                       struct dm_thin_new_mapping *m)
1303 {
1304         struct pool *pool = tc->pool;
1305         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307         h->overwrite_mapping = m;
1308         m->bio = bio;
1309         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310         inc_all_io_entry(pool, bio);
1311         remap_and_issue(tc, bio, data_begin);
1312 }
1313
1314 /*
1315  * A partial copy also needs to zero the uncopied region.
1316  */
1317 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318                           struct dm_dev *origin, dm_block_t data_origin,
1319                           dm_block_t data_dest,
1320                           struct dm_bio_prison_cell *cell, struct bio *bio,
1321                           sector_t len)
1322 {
1323         int r;
1324         struct pool *pool = tc->pool;
1325         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326
1327         m->tc = tc;
1328         m->virt_begin = virt_block;
1329         m->virt_end = virt_block + 1u;
1330         m->data_block = data_dest;
1331         m->cell = cell;
1332
1333         /*
1334          * quiesce action + copy action + an extra reference held for the
1335          * duration of this function (we may need to inc later for a
1336          * partial zero).
1337          */
1338         atomic_set(&m->prepare_actions, 3);
1339
1340         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341                 complete_mapping_preparation(m); /* already quiesced */
1342
1343         /*
1344          * IO to pool_dev remaps to the pool target's data_dev.
1345          *
1346          * If the whole block of data is being overwritten, we can issue the
1347          * bio immediately. Otherwise we use kcopyd to clone the data first.
1348          */
1349         if (io_overwrites_block(pool, bio))
1350                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1351         else {
1352                 struct dm_io_region from, to;
1353
1354                 from.bdev = origin->bdev;
1355                 from.sector = data_origin * pool->sectors_per_block;
1356                 from.count = len;
1357
1358                 to.bdev = tc->pool_dev->bdev;
1359                 to.sector = data_dest * pool->sectors_per_block;
1360                 to.count = len;
1361
1362                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363                                    0, copy_complete, m);
1364                 if (r < 0) {
1365                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1366                         copy_complete(1, 1, m);
1367
1368                         /*
1369                          * We allow the zero to be issued, to simplify the
1370                          * error path.  Otherwise we'd need to start
1371                          * worrying about decrementing the prepare_actions
1372                          * counter.
1373                          */
1374                 }
1375
1376                 /*
1377                  * Do we need to zero a tail region?
1378                  */
1379                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1380                         atomic_inc(&m->prepare_actions);
1381                         ll_zero(tc, m,
1382                                 data_dest * pool->sectors_per_block + len,
1383                                 (data_dest + 1) * pool->sectors_per_block);
1384                 }
1385         }
1386
1387         complete_mapping_preparation(m); /* drop our ref */
1388 }
1389
1390 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1391                                    dm_block_t data_origin, dm_block_t data_dest,
1392                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1393 {
1394         schedule_copy(tc, virt_block, tc->pool_dev,
1395                       data_origin, data_dest, cell, bio,
1396                       tc->pool->sectors_per_block);
1397 }
1398
1399 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1400                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1401                           struct bio *bio)
1402 {
1403         struct pool *pool = tc->pool;
1404         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1405
1406         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1407         m->tc = tc;
1408         m->virt_begin = virt_block;
1409         m->virt_end = virt_block + 1u;
1410         m->data_block = data_block;
1411         m->cell = cell;
1412
1413         /*
1414          * If the whole block of data is being overwritten or we are not
1415          * zeroing pre-existing data, we can issue the bio immediately.
1416          * Otherwise we use kcopyd to zero the data first.
1417          */
1418         if (pool->pf.zero_new_blocks) {
1419                 if (io_overwrites_block(pool, bio))
1420                         remap_and_issue_overwrite(tc, bio, data_block, m);
1421                 else
1422                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1423                                 (data_block + 1) * pool->sectors_per_block);
1424         } else
1425                 process_prepared_mapping(m);
1426 }
1427
1428 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1429                                    dm_block_t data_dest,
1430                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1431 {
1432         struct pool *pool = tc->pool;
1433         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1434         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1435
1436         if (virt_block_end <= tc->origin_size)
1437                 schedule_copy(tc, virt_block, tc->origin_dev,
1438                               virt_block, data_dest, cell, bio,
1439                               pool->sectors_per_block);
1440
1441         else if (virt_block_begin < tc->origin_size)
1442                 schedule_copy(tc, virt_block, tc->origin_dev,
1443                               virt_block, data_dest, cell, bio,
1444                               tc->origin_size - virt_block_begin);
1445
1446         else
1447                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1448 }
1449
1450 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1451
1452 static void requeue_bios(struct pool *pool);
1453
1454 static bool is_read_only_pool_mode(enum pool_mode mode)
1455 {
1456         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1457 }
1458
1459 static bool is_read_only(struct pool *pool)
1460 {
1461         return is_read_only_pool_mode(get_pool_mode(pool));
1462 }
1463
1464 static void check_for_metadata_space(struct pool *pool)
1465 {
1466         int r;
1467         const char *ooms_reason = NULL;
1468         dm_block_t nr_free;
1469
1470         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1471         if (r)
1472                 ooms_reason = "Could not get free metadata blocks";
1473         else if (!nr_free)
1474                 ooms_reason = "No free metadata blocks";
1475
1476         if (ooms_reason && !is_read_only(pool)) {
1477                 DMERR("%s", ooms_reason);
1478                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1479         }
1480 }
1481
1482 static void check_for_data_space(struct pool *pool)
1483 {
1484         int r;
1485         dm_block_t nr_free;
1486
1487         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1488                 return;
1489
1490         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1491         if (r)
1492                 return;
1493
1494         if (nr_free) {
1495                 set_pool_mode(pool, PM_WRITE);
1496                 requeue_bios(pool);
1497         }
1498 }
1499
1500 /*
1501  * A non-zero return indicates read_only or fail_io mode.
1502  * Many callers don't care about the return value.
1503  */
1504 static int commit(struct pool *pool)
1505 {
1506         int r;
1507
1508         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1509                 return -EINVAL;
1510
1511         r = dm_pool_commit_metadata(pool->pmd);
1512         if (r)
1513                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1514         else {
1515                 check_for_metadata_space(pool);
1516                 check_for_data_space(pool);
1517         }
1518
1519         return r;
1520 }
1521
1522 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1523 {
1524         unsigned long flags;
1525
1526         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1527                 DMWARN("%s: reached low water mark for data device: sending event.",
1528                        dm_device_name(pool->pool_md));
1529                 spin_lock_irqsave(&pool->lock, flags);
1530                 pool->low_water_triggered = true;
1531                 spin_unlock_irqrestore(&pool->lock, flags);
1532                 dm_table_event(pool->ti->table);
1533         }
1534 }
1535
1536 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1537 {
1538         int r;
1539         dm_block_t free_blocks;
1540         struct pool *pool = tc->pool;
1541
1542         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1543                 return -EINVAL;
1544
1545         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1546         if (r) {
1547                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1548                 return r;
1549         }
1550
1551         check_low_water_mark(pool, free_blocks);
1552
1553         if (!free_blocks) {
1554                 /*
1555                  * Try to commit to see if that will free up some
1556                  * more space.
1557                  */
1558                 r = commit(pool);
1559                 if (r)
1560                         return r;
1561
1562                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1563                 if (r) {
1564                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1565                         return r;
1566                 }
1567
1568                 if (!free_blocks) {
1569                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1570                         return -ENOSPC;
1571                 }
1572         }
1573
1574         r = dm_pool_alloc_data_block(pool->pmd, result);
1575         if (r) {
1576                 if (r == -ENOSPC)
1577                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1578                 else
1579                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1580                 return r;
1581         }
1582
1583         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1584         if (r) {
1585                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1586                 return r;
1587         }
1588
1589         if (!free_blocks) {
1590                 /* Let's commit before we use up the metadata reserve. */
1591                 r = commit(pool);
1592                 if (r)
1593                         return r;
1594         }
1595
1596         return 0;
1597 }
1598
1599 /*
1600  * If we have run out of space, queue bios until the device is
1601  * resumed, presumably after having been reloaded with more space.
1602  */
1603 static void retry_on_resume(struct bio *bio)
1604 {
1605         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1606         struct thin_c *tc = h->tc;
1607         unsigned long flags;
1608
1609         spin_lock_irqsave(&tc->lock, flags);
1610         bio_list_add(&tc->retry_on_resume_list, bio);
1611         spin_unlock_irqrestore(&tc->lock, flags);
1612 }
1613
1614 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1615 {
1616         enum pool_mode m = get_pool_mode(pool);
1617
1618         switch (m) {
1619         case PM_WRITE:
1620                 /* Shouldn't get here */
1621                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1622                 return BLK_STS_IOERR;
1623
1624         case PM_OUT_OF_DATA_SPACE:
1625                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1626
1627         case PM_OUT_OF_METADATA_SPACE:
1628         case PM_READ_ONLY:
1629         case PM_FAIL:
1630                 return BLK_STS_IOERR;
1631         default:
1632                 /* Shouldn't get here */
1633                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1634                 return BLK_STS_IOERR;
1635         }
1636 }
1637
1638 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1639 {
1640         blk_status_t error = should_error_unserviceable_bio(pool);
1641
1642         if (error) {
1643                 bio->bi_status = error;
1644                 bio_endio(bio);
1645         } else
1646                 retry_on_resume(bio);
1647 }
1648
1649 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1650 {
1651         struct bio *bio;
1652         struct bio_list bios;
1653         blk_status_t error;
1654
1655         error = should_error_unserviceable_bio(pool);
1656         if (error) {
1657                 cell_error_with_code(pool, cell, error);
1658                 return;
1659         }
1660
1661         bio_list_init(&bios);
1662         cell_release(pool, cell, &bios);
1663
1664         while ((bio = bio_list_pop(&bios)))
1665                 retry_on_resume(bio);
1666 }
1667
1668 static void process_discard_cell_no_passdown(struct thin_c *tc,
1669                                              struct dm_bio_prison_cell *virt_cell)
1670 {
1671         struct pool *pool = tc->pool;
1672         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1673
1674         /*
1675          * We don't need to lock the data blocks, since there's no
1676          * passdown.  We only lock data blocks for allocation and breaking sharing.
1677          */
1678         m->tc = tc;
1679         m->virt_begin = virt_cell->key.block_begin;
1680         m->virt_end = virt_cell->key.block_end;
1681         m->cell = virt_cell;
1682         m->bio = virt_cell->holder;
1683
1684         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1685                 pool->process_prepared_discard(m);
1686 }
1687
1688 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1689                                  struct bio *bio)
1690 {
1691         struct pool *pool = tc->pool;
1692
1693         int r;
1694         bool maybe_shared;
1695         struct dm_cell_key data_key;
1696         struct dm_bio_prison_cell *data_cell;
1697         struct dm_thin_new_mapping *m;
1698         dm_block_t virt_begin, virt_end, data_begin;
1699
1700         while (begin != end) {
1701                 r = ensure_next_mapping(pool);
1702                 if (r)
1703                         /* we did our best */
1704                         return;
1705
1706                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1707                                               &data_begin, &maybe_shared);
1708                 if (r)
1709                         /*
1710                          * Silently fail, letting any mappings we've
1711                          * created complete.
1712                          */
1713                         break;
1714
1715                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1716                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1717                         /* contention, we'll give up with this range */
1718                         begin = virt_end;
1719                         continue;
1720                 }
1721
1722                 /*
1723                  * IO may still be going to the destination block.  We must
1724                  * quiesce before we can do the removal.
1725                  */
1726                 m = get_next_mapping(pool);
1727                 m->tc = tc;
1728                 m->maybe_shared = maybe_shared;
1729                 m->virt_begin = virt_begin;
1730                 m->virt_end = virt_end;
1731                 m->data_block = data_begin;
1732                 m->cell = data_cell;
1733                 m->bio = bio;
1734
1735                 /*
1736                  * The parent bio must not complete before sub discard bios are
1737                  * chained to it (see end_discard's bio_chain)!
1738                  *
1739                  * This per-mapping bi_remaining increment is paired with
1740                  * the implicit decrement that occurs via bio_endio() in
1741                  * end_discard().
1742                  */
1743                 bio_inc_remaining(bio);
1744                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1745                         pool->process_prepared_discard(m);
1746
1747                 begin = virt_end;
1748         }
1749 }
1750
1751 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1752 {
1753         struct bio *bio = virt_cell->holder;
1754         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1755
1756         /*
1757          * The virt_cell will only get freed once the origin bio completes.
1758          * This means it will remain locked while all the individual
1759          * passdown bios are in flight.
1760          */
1761         h->cell = virt_cell;
1762         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1763
1764         /*
1765          * We complete the bio now, knowing that the bi_remaining field
1766          * will prevent completion until the sub range discards have
1767          * completed.
1768          */
1769         bio_endio(bio);
1770 }
1771
1772 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1773 {
1774         dm_block_t begin, end;
1775         struct dm_cell_key virt_key;
1776         struct dm_bio_prison_cell *virt_cell;
1777
1778         get_bio_block_range(tc, bio, &begin, &end);
1779         if (begin == end) {
1780                 /*
1781                  * The discard covers less than a block.
1782                  */
1783                 bio_endio(bio);
1784                 return;
1785         }
1786
1787         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1788         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1789                 /*
1790                  * Potential starvation issue: We're relying on the
1791                  * fs/application being well behaved, and not trying to
1792                  * send IO to a region at the same time as discarding it.
1793                  * If they do this persistently then it's possible this
1794                  * cell will never be granted.
1795                  */
1796                 return;
1797
1798         tc->pool->process_discard_cell(tc, virt_cell);
1799 }
1800
1801 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802                           struct dm_cell_key *key,
1803                           struct dm_thin_lookup_result *lookup_result,
1804                           struct dm_bio_prison_cell *cell)
1805 {
1806         int r;
1807         dm_block_t data_block;
1808         struct pool *pool = tc->pool;
1809
1810         r = alloc_data_block(tc, &data_block);
1811         switch (r) {
1812         case 0:
1813                 schedule_internal_copy(tc, block, lookup_result->block,
1814                                        data_block, cell, bio);
1815                 break;
1816
1817         case -ENOSPC:
1818                 retry_bios_on_resume(pool, cell);
1819                 break;
1820
1821         default:
1822                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823                             __func__, r);
1824                 cell_error(pool, cell);
1825                 break;
1826         }
1827 }
1828
1829 static void __remap_and_issue_shared_cell(void *context,
1830                                           struct dm_bio_prison_cell *cell)
1831 {
1832         struct remap_info *info = context;
1833         struct bio *bio;
1834
1835         while ((bio = bio_list_pop(&cell->bios))) {
1836                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837                     bio_op(bio) == REQ_OP_DISCARD)
1838                         bio_list_add(&info->defer_bios, bio);
1839                 else {
1840                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1841
1842                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843                         inc_all_io_entry(info->tc->pool, bio);
1844                         bio_list_add(&info->issue_bios, bio);
1845                 }
1846         }
1847 }
1848
1849 static void remap_and_issue_shared_cell(struct thin_c *tc,
1850                                         struct dm_bio_prison_cell *cell,
1851                                         dm_block_t block)
1852 {
1853         struct bio *bio;
1854         struct remap_info info;
1855
1856         info.tc = tc;
1857         bio_list_init(&info.defer_bios);
1858         bio_list_init(&info.issue_bios);
1859
1860         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861                            &info, cell);
1862
1863         while ((bio = bio_list_pop(&info.defer_bios)))
1864                 thin_defer_bio(tc, bio);
1865
1866         while ((bio = bio_list_pop(&info.issue_bios)))
1867                 remap_and_issue(tc, bio, block);
1868 }
1869
1870 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871                                dm_block_t block,
1872                                struct dm_thin_lookup_result *lookup_result,
1873                                struct dm_bio_prison_cell *virt_cell)
1874 {
1875         struct dm_bio_prison_cell *data_cell;
1876         struct pool *pool = tc->pool;
1877         struct dm_cell_key key;
1878
1879         /*
1880          * If cell is already occupied, then sharing is already in the process
1881          * of being broken so we have nothing further to do here.
1882          */
1883         build_data_key(tc->td, lookup_result->block, &key);
1884         if (bio_detain(pool, &key, bio, &data_cell)) {
1885                 cell_defer_no_holder(tc, virt_cell);
1886                 return;
1887         }
1888
1889         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891                 cell_defer_no_holder(tc, virt_cell);
1892         } else {
1893                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1894
1895                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896                 inc_all_io_entry(pool, bio);
1897                 remap_and_issue(tc, bio, lookup_result->block);
1898
1899                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901         }
1902 }
1903
1904 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905                             struct dm_bio_prison_cell *cell)
1906 {
1907         int r;
1908         dm_block_t data_block;
1909         struct pool *pool = tc->pool;
1910
1911         /*
1912          * Remap empty bios (flushes) immediately, without provisioning.
1913          */
1914         if (!bio->bi_iter.bi_size) {
1915                 inc_all_io_entry(pool, bio);
1916                 cell_defer_no_holder(tc, cell);
1917
1918                 remap_and_issue(tc, bio, 0);
1919                 return;
1920         }
1921
1922         /*
1923          * Fill read bios with zeroes and complete them immediately.
1924          */
1925         if (bio_data_dir(bio) == READ) {
1926                 zero_fill_bio(bio);
1927                 cell_defer_no_holder(tc, cell);
1928                 bio_endio(bio);
1929                 return;
1930         }
1931
1932         r = alloc_data_block(tc, &data_block);
1933         switch (r) {
1934         case 0:
1935                 if (tc->origin_dev)
1936                         schedule_external_copy(tc, block, data_block, cell, bio);
1937                 else
1938                         schedule_zero(tc, block, data_block, cell, bio);
1939                 break;
1940
1941         case -ENOSPC:
1942                 retry_bios_on_resume(pool, cell);
1943                 break;
1944
1945         default:
1946                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947                             __func__, r);
1948                 cell_error(pool, cell);
1949                 break;
1950         }
1951 }
1952
1953 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954 {
1955         int r;
1956         struct pool *pool = tc->pool;
1957         struct bio *bio = cell->holder;
1958         dm_block_t block = get_bio_block(tc, bio);
1959         struct dm_thin_lookup_result lookup_result;
1960
1961         if (tc->requeue_mode) {
1962                 cell_requeue(pool, cell);
1963                 return;
1964         }
1965
1966         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967         switch (r) {
1968         case 0:
1969                 if (lookup_result.shared)
1970                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1971                 else {
1972                         inc_all_io_entry(pool, bio);
1973                         remap_and_issue(tc, bio, lookup_result.block);
1974                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975                 }
1976                 break;
1977
1978         case -ENODATA:
1979                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980                         inc_all_io_entry(pool, bio);
1981                         cell_defer_no_holder(tc, cell);
1982
1983                         if (bio_end_sector(bio) <= tc->origin_size)
1984                                 remap_to_origin_and_issue(tc, bio);
1985
1986                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987                                 zero_fill_bio(bio);
1988                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989                                 remap_to_origin_and_issue(tc, bio);
1990
1991                         } else {
1992                                 zero_fill_bio(bio);
1993                                 bio_endio(bio);
1994                         }
1995                 } else
1996                         provision_block(tc, bio, block, cell);
1997                 break;
1998
1999         default:
2000                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001                             __func__, r);
2002                 cell_defer_no_holder(tc, cell);
2003                 bio_io_error(bio);
2004                 break;
2005         }
2006 }
2007
2008 static void process_bio(struct thin_c *tc, struct bio *bio)
2009 {
2010         struct pool *pool = tc->pool;
2011         dm_block_t block = get_bio_block(tc, bio);
2012         struct dm_bio_prison_cell *cell;
2013         struct dm_cell_key key;
2014
2015         /*
2016          * If cell is already occupied, then the block is already
2017          * being provisioned so we have nothing further to do here.
2018          */
2019         build_virtual_key(tc->td, block, &key);
2020         if (bio_detain(pool, &key, bio, &cell))
2021                 return;
2022
2023         process_cell(tc, cell);
2024 }
2025
2026 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027                                     struct dm_bio_prison_cell *cell)
2028 {
2029         int r;
2030         int rw = bio_data_dir(bio);
2031         dm_block_t block = get_bio_block(tc, bio);
2032         struct dm_thin_lookup_result lookup_result;
2033
2034         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035         switch (r) {
2036         case 0:
2037                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038                         handle_unserviceable_bio(tc->pool, bio);
2039                         if (cell)
2040                                 cell_defer_no_holder(tc, cell);
2041                 } else {
2042                         inc_all_io_entry(tc->pool, bio);
2043                         remap_and_issue(tc, bio, lookup_result.block);
2044                         if (cell)
2045                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046                 }
2047                 break;
2048
2049         case -ENODATA:
2050                 if (cell)
2051                         cell_defer_no_holder(tc, cell);
2052                 if (rw != READ) {
2053                         handle_unserviceable_bio(tc->pool, bio);
2054                         break;
2055                 }
2056
2057                 if (tc->origin_dev) {
2058                         inc_all_io_entry(tc->pool, bio);
2059                         remap_to_origin_and_issue(tc, bio);
2060                         break;
2061                 }
2062
2063                 zero_fill_bio(bio);
2064                 bio_endio(bio);
2065                 break;
2066
2067         default:
2068                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069                             __func__, r);
2070                 if (cell)
2071                         cell_defer_no_holder(tc, cell);
2072                 bio_io_error(bio);
2073                 break;
2074         }
2075 }
2076
2077 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078 {
2079         __process_bio_read_only(tc, bio, NULL);
2080 }
2081
2082 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084         __process_bio_read_only(tc, cell->holder, cell);
2085 }
2086
2087 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088 {
2089         bio_endio(bio);
2090 }
2091
2092 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093 {
2094         bio_io_error(bio);
2095 }
2096
2097 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098 {
2099         cell_success(tc->pool, cell);
2100 }
2101
2102 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103 {
2104         cell_error(tc->pool, cell);
2105 }
2106
2107 /*
2108  * FIXME: should we also commit due to size of transaction, measured in
2109  * metadata blocks?
2110  */
2111 static int need_commit_due_to_time(struct pool *pool)
2112 {
2113         return !time_in_range(jiffies, pool->last_commit_jiffies,
2114                               pool->last_commit_jiffies + COMMIT_PERIOD);
2115 }
2116
2117 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119
2120 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121 {
2122         struct rb_node **rbp, *parent;
2123         struct dm_thin_endio_hook *pbd;
2124         sector_t bi_sector = bio->bi_iter.bi_sector;
2125
2126         rbp = &tc->sort_bio_list.rb_node;
2127         parent = NULL;
2128         while (*rbp) {
2129                 parent = *rbp;
2130                 pbd = thin_pbd(parent);
2131
2132                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133                         rbp = &(*rbp)->rb_left;
2134                 else
2135                         rbp = &(*rbp)->rb_right;
2136         }
2137
2138         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139         rb_link_node(&pbd->rb_node, parent, rbp);
2140         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141 }
2142
2143 static void __extract_sorted_bios(struct thin_c *tc)
2144 {
2145         struct rb_node *node;
2146         struct dm_thin_endio_hook *pbd;
2147         struct bio *bio;
2148
2149         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150                 pbd = thin_pbd(node);
2151                 bio = thin_bio(pbd);
2152
2153                 bio_list_add(&tc->deferred_bio_list, bio);
2154                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155         }
2156
2157         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158 }
2159
2160 static void __sort_thin_deferred_bios(struct thin_c *tc)
2161 {
2162         struct bio *bio;
2163         struct bio_list bios;
2164
2165         bio_list_init(&bios);
2166         bio_list_merge(&bios, &tc->deferred_bio_list);
2167         bio_list_init(&tc->deferred_bio_list);
2168
2169         /* Sort deferred_bio_list using rb-tree */
2170         while ((bio = bio_list_pop(&bios)))
2171                 __thin_bio_rb_add(tc, bio);
2172
2173         /*
2174          * Transfer the sorted bios in sort_bio_list back to
2175          * deferred_bio_list to allow lockless submission of
2176          * all bios.
2177          */
2178         __extract_sorted_bios(tc);
2179 }
2180
2181 static void process_thin_deferred_bios(struct thin_c *tc)
2182 {
2183         struct pool *pool = tc->pool;
2184         unsigned long flags;
2185         struct bio *bio;
2186         struct bio_list bios;
2187         struct blk_plug plug;
2188         unsigned count = 0;
2189
2190         if (tc->requeue_mode) {
2191                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2192                                 BLK_STS_DM_REQUEUE);
2193                 return;
2194         }
2195
2196         bio_list_init(&bios);
2197
2198         spin_lock_irqsave(&tc->lock, flags);
2199
2200         if (bio_list_empty(&tc->deferred_bio_list)) {
2201                 spin_unlock_irqrestore(&tc->lock, flags);
2202                 return;
2203         }
2204
2205         __sort_thin_deferred_bios(tc);
2206
2207         bio_list_merge(&bios, &tc->deferred_bio_list);
2208         bio_list_init(&tc->deferred_bio_list);
2209
2210         spin_unlock_irqrestore(&tc->lock, flags);
2211
2212         blk_start_plug(&plug);
2213         while ((bio = bio_list_pop(&bios))) {
2214                 /*
2215                  * If we've got no free new_mapping structs, and processing
2216                  * this bio might require one, we pause until there are some
2217                  * prepared mappings to process.
2218                  */
2219                 if (ensure_next_mapping(pool)) {
2220                         spin_lock_irqsave(&tc->lock, flags);
2221                         bio_list_add(&tc->deferred_bio_list, bio);
2222                         bio_list_merge(&tc->deferred_bio_list, &bios);
2223                         spin_unlock_irqrestore(&tc->lock, flags);
2224                         break;
2225                 }
2226
2227                 if (bio_op(bio) == REQ_OP_DISCARD)
2228                         pool->process_discard(tc, bio);
2229                 else
2230                         pool->process_bio(tc, bio);
2231
2232                 if ((count++ & 127) == 0) {
2233                         throttle_work_update(&pool->throttle);
2234                         dm_pool_issue_prefetches(pool->pmd);
2235                 }
2236                 cond_resched();
2237         }
2238         blk_finish_plug(&plug);
2239 }
2240
2241 static int cmp_cells(const void *lhs, const void *rhs)
2242 {
2243         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2244         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2245
2246         BUG_ON(!lhs_cell->holder);
2247         BUG_ON(!rhs_cell->holder);
2248
2249         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2250                 return -1;
2251
2252         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2253                 return 1;
2254
2255         return 0;
2256 }
2257
2258 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2259 {
2260         unsigned count = 0;
2261         struct dm_bio_prison_cell *cell, *tmp;
2262
2263         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2264                 if (count >= CELL_SORT_ARRAY_SIZE)
2265                         break;
2266
2267                 pool->cell_sort_array[count++] = cell;
2268                 list_del(&cell->user_list);
2269         }
2270
2271         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2272
2273         return count;
2274 }
2275
2276 static void process_thin_deferred_cells(struct thin_c *tc)
2277 {
2278         struct pool *pool = tc->pool;
2279         unsigned long flags;
2280         struct list_head cells;
2281         struct dm_bio_prison_cell *cell;
2282         unsigned i, j, count;
2283
2284         INIT_LIST_HEAD(&cells);
2285
2286         spin_lock_irqsave(&tc->lock, flags);
2287         list_splice_init(&tc->deferred_cells, &cells);
2288         spin_unlock_irqrestore(&tc->lock, flags);
2289
2290         if (list_empty(&cells))
2291                 return;
2292
2293         do {
2294                 count = sort_cells(tc->pool, &cells);
2295
2296                 for (i = 0; i < count; i++) {
2297                         cell = pool->cell_sort_array[i];
2298                         BUG_ON(!cell->holder);
2299
2300                         /*
2301                          * If we've got no free new_mapping structs, and processing
2302                          * this bio might require one, we pause until there are some
2303                          * prepared mappings to process.
2304                          */
2305                         if (ensure_next_mapping(pool)) {
2306                                 for (j = i; j < count; j++)
2307                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2308
2309                                 spin_lock_irqsave(&tc->lock, flags);
2310                                 list_splice(&cells, &tc->deferred_cells);
2311                                 spin_unlock_irqrestore(&tc->lock, flags);
2312                                 return;
2313                         }
2314
2315                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2316                                 pool->process_discard_cell(tc, cell);
2317                         else
2318                                 pool->process_cell(tc, cell);
2319                 }
2320                 cond_resched();
2321         } while (!list_empty(&cells));
2322 }
2323
2324 static void thin_get(struct thin_c *tc);
2325 static void thin_put(struct thin_c *tc);
2326
2327 /*
2328  * We can't hold rcu_read_lock() around code that can block.  So we
2329  * find a thin with the rcu lock held; bump a refcount; then drop
2330  * the lock.
2331  */
2332 static struct thin_c *get_first_thin(struct pool *pool)
2333 {
2334         struct thin_c *tc = NULL;
2335
2336         rcu_read_lock();
2337         if (!list_empty(&pool->active_thins)) {
2338                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2339                 thin_get(tc);
2340         }
2341         rcu_read_unlock();
2342
2343         return tc;
2344 }
2345
2346 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2347 {
2348         struct thin_c *old_tc = tc;
2349
2350         rcu_read_lock();
2351         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352                 thin_get(tc);
2353                 thin_put(old_tc);
2354                 rcu_read_unlock();
2355                 return tc;
2356         }
2357         thin_put(old_tc);
2358         rcu_read_unlock();
2359
2360         return NULL;
2361 }
2362
2363 static void process_deferred_bios(struct pool *pool)
2364 {
2365         unsigned long flags;
2366         struct bio *bio;
2367         struct bio_list bios, bio_completions;
2368         struct thin_c *tc;
2369
2370         tc = get_first_thin(pool);
2371         while (tc) {
2372                 process_thin_deferred_cells(tc);
2373                 process_thin_deferred_bios(tc);
2374                 tc = get_next_thin(pool, tc);
2375         }
2376
2377         /*
2378          * If there are any deferred flush bios, we must commit the metadata
2379          * before issuing them or signaling their completion.
2380          */
2381         bio_list_init(&bios);
2382         bio_list_init(&bio_completions);
2383
2384         spin_lock_irqsave(&pool->lock, flags);
2385         bio_list_merge(&bios, &pool->deferred_flush_bios);
2386         bio_list_init(&pool->deferred_flush_bios);
2387
2388         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2389         bio_list_init(&pool->deferred_flush_completions);
2390         spin_unlock_irqrestore(&pool->lock, flags);
2391
2392         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2393             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2394                 return;
2395
2396         if (commit(pool)) {
2397                 bio_list_merge(&bios, &bio_completions);
2398
2399                 while ((bio = bio_list_pop(&bios)))
2400                         bio_io_error(bio);
2401                 return;
2402         }
2403         pool->last_commit_jiffies = jiffies;
2404
2405         while ((bio = bio_list_pop(&bio_completions)))
2406                 bio_endio(bio);
2407
2408         while ((bio = bio_list_pop(&bios)))
2409                 generic_make_request(bio);
2410 }
2411
2412 static void do_worker(struct work_struct *ws)
2413 {
2414         struct pool *pool = container_of(ws, struct pool, worker);
2415
2416         throttle_work_start(&pool->throttle);
2417         dm_pool_issue_prefetches(pool->pmd);
2418         throttle_work_update(&pool->throttle);
2419         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2420         throttle_work_update(&pool->throttle);
2421         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2422         throttle_work_update(&pool->throttle);
2423         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2424         throttle_work_update(&pool->throttle);
2425         process_deferred_bios(pool);
2426         throttle_work_complete(&pool->throttle);
2427 }
2428
2429 /*
2430  * We want to commit periodically so that not too much
2431  * unwritten data builds up.
2432  */
2433 static void do_waker(struct work_struct *ws)
2434 {
2435         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2436         wake_worker(pool);
2437         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2438 }
2439
2440 /*
2441  * We're holding onto IO to allow userland time to react.  After the
2442  * timeout either the pool will have been resized (and thus back in
2443  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2444  */
2445 static void do_no_space_timeout(struct work_struct *ws)
2446 {
2447         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2448                                          no_space_timeout);
2449
2450         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2451                 pool->pf.error_if_no_space = true;
2452                 notify_of_pool_mode_change(pool);
2453                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2454         }
2455 }
2456
2457 /*----------------------------------------------------------------*/
2458
2459 struct pool_work {
2460         struct work_struct worker;
2461         struct completion complete;
2462 };
2463
2464 static struct pool_work *to_pool_work(struct work_struct *ws)
2465 {
2466         return container_of(ws, struct pool_work, worker);
2467 }
2468
2469 static void pool_work_complete(struct pool_work *pw)
2470 {
2471         complete(&pw->complete);
2472 }
2473
2474 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2475                            void (*fn)(struct work_struct *))
2476 {
2477         INIT_WORK_ONSTACK(&pw->worker, fn);
2478         init_completion(&pw->complete);
2479         queue_work(pool->wq, &pw->worker);
2480         wait_for_completion(&pw->complete);
2481 }
2482
2483 /*----------------------------------------------------------------*/
2484
2485 struct noflush_work {
2486         struct pool_work pw;
2487         struct thin_c *tc;
2488 };
2489
2490 static struct noflush_work *to_noflush(struct work_struct *ws)
2491 {
2492         return container_of(to_pool_work(ws), struct noflush_work, pw);
2493 }
2494
2495 static void do_noflush_start(struct work_struct *ws)
2496 {
2497         struct noflush_work *w = to_noflush(ws);
2498         w->tc->requeue_mode = true;
2499         requeue_io(w->tc);
2500         pool_work_complete(&w->pw);
2501 }
2502
2503 static void do_noflush_stop(struct work_struct *ws)
2504 {
2505         struct noflush_work *w = to_noflush(ws);
2506         w->tc->requeue_mode = false;
2507         pool_work_complete(&w->pw);
2508 }
2509
2510 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2511 {
2512         struct noflush_work w;
2513
2514         w.tc = tc;
2515         pool_work_wait(&w.pw, tc->pool, fn);
2516 }
2517
2518 /*----------------------------------------------------------------*/
2519
2520 static bool passdown_enabled(struct pool_c *pt)
2521 {
2522         return pt->adjusted_pf.discard_passdown;
2523 }
2524
2525 static void set_discard_callbacks(struct pool *pool)
2526 {
2527         struct pool_c *pt = pool->ti->private;
2528
2529         if (passdown_enabled(pt)) {
2530                 pool->process_discard_cell = process_discard_cell_passdown;
2531                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2532                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2533         } else {
2534                 pool->process_discard_cell = process_discard_cell_no_passdown;
2535                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2536         }
2537 }
2538
2539 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2540 {
2541         struct pool_c *pt = pool->ti->private;
2542         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2543         enum pool_mode old_mode = get_pool_mode(pool);
2544         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2545
2546         /*
2547          * Never allow the pool to transition to PM_WRITE mode if user
2548          * intervention is required to verify metadata and data consistency.
2549          */
2550         if (new_mode == PM_WRITE && needs_check) {
2551                 DMERR("%s: unable to switch pool to write mode until repaired.",
2552                       dm_device_name(pool->pool_md));
2553                 if (old_mode != new_mode)
2554                         new_mode = old_mode;
2555                 else
2556                         new_mode = PM_READ_ONLY;
2557         }
2558         /*
2559          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2560          * not going to recover without a thin_repair.  So we never let the
2561          * pool move out of the old mode.
2562          */
2563         if (old_mode == PM_FAIL)
2564                 new_mode = old_mode;
2565
2566         switch (new_mode) {
2567         case PM_FAIL:
2568                 dm_pool_metadata_read_only(pool->pmd);
2569                 pool->process_bio = process_bio_fail;
2570                 pool->process_discard = process_bio_fail;
2571                 pool->process_cell = process_cell_fail;
2572                 pool->process_discard_cell = process_cell_fail;
2573                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2574                 pool->process_prepared_discard = process_prepared_discard_fail;
2575
2576                 error_retry_list(pool);
2577                 break;
2578
2579         case PM_OUT_OF_METADATA_SPACE:
2580         case PM_READ_ONLY:
2581                 dm_pool_metadata_read_only(pool->pmd);
2582                 pool->process_bio = process_bio_read_only;
2583                 pool->process_discard = process_bio_success;
2584                 pool->process_cell = process_cell_read_only;
2585                 pool->process_discard_cell = process_cell_success;
2586                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2587                 pool->process_prepared_discard = process_prepared_discard_success;
2588
2589                 error_retry_list(pool);
2590                 break;
2591
2592         case PM_OUT_OF_DATA_SPACE:
2593                 /*
2594                  * Ideally we'd never hit this state; the low water mark
2595                  * would trigger userland to extend the pool before we
2596                  * completely run out of data space.  However, many small
2597                  * IOs to unprovisioned space can consume data space at an
2598                  * alarming rate.  Adjust your low water mark if you're
2599                  * frequently seeing this mode.
2600                  */
2601                 pool->out_of_data_space = true;
2602                 pool->process_bio = process_bio_read_only;
2603                 pool->process_discard = process_discard_bio;
2604                 pool->process_cell = process_cell_read_only;
2605                 pool->process_prepared_mapping = process_prepared_mapping;
2606                 set_discard_callbacks(pool);
2607
2608                 if (!pool->pf.error_if_no_space && no_space_timeout)
2609                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2610                 break;
2611
2612         case PM_WRITE:
2613                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2614                         cancel_delayed_work_sync(&pool->no_space_timeout);
2615                 pool->out_of_data_space = false;
2616                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2617                 dm_pool_metadata_read_write(pool->pmd);
2618                 pool->process_bio = process_bio;
2619                 pool->process_discard = process_discard_bio;
2620                 pool->process_cell = process_cell;
2621                 pool->process_prepared_mapping = process_prepared_mapping;
2622                 set_discard_callbacks(pool);
2623                 break;
2624         }
2625
2626         pool->pf.mode = new_mode;
2627         /*
2628          * The pool mode may have changed, sync it so bind_control_target()
2629          * doesn't cause an unexpected mode transition on resume.
2630          */
2631         pt->adjusted_pf.mode = new_mode;
2632
2633         if (old_mode != new_mode)
2634                 notify_of_pool_mode_change(pool);
2635 }
2636
2637 static void abort_transaction(struct pool *pool)
2638 {
2639         const char *dev_name = dm_device_name(pool->pool_md);
2640
2641         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2642         if (dm_pool_abort_metadata(pool->pmd)) {
2643                 DMERR("%s: failed to abort metadata transaction", dev_name);
2644                 set_pool_mode(pool, PM_FAIL);
2645         }
2646
2647         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2648                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2649                 set_pool_mode(pool, PM_FAIL);
2650         }
2651 }
2652
2653 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2654 {
2655         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2656                     dm_device_name(pool->pool_md), op, r);
2657
2658         abort_transaction(pool);
2659         set_pool_mode(pool, PM_READ_ONLY);
2660 }
2661
2662 /*----------------------------------------------------------------*/
2663
2664 /*
2665  * Mapping functions.
2666  */
2667
2668 /*
2669  * Called only while mapping a thin bio to hand it over to the workqueue.
2670  */
2671 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2672 {
2673         unsigned long flags;
2674         struct pool *pool = tc->pool;
2675
2676         spin_lock_irqsave(&tc->lock, flags);
2677         bio_list_add(&tc->deferred_bio_list, bio);
2678         spin_unlock_irqrestore(&tc->lock, flags);
2679
2680         wake_worker(pool);
2681 }
2682
2683 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2684 {
2685         struct pool *pool = tc->pool;
2686
2687         throttle_lock(&pool->throttle);
2688         thin_defer_bio(tc, bio);
2689         throttle_unlock(&pool->throttle);
2690 }
2691
2692 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2693 {
2694         unsigned long flags;
2695         struct pool *pool = tc->pool;
2696
2697         throttle_lock(&pool->throttle);
2698         spin_lock_irqsave(&tc->lock, flags);
2699         list_add_tail(&cell->user_list, &tc->deferred_cells);
2700         spin_unlock_irqrestore(&tc->lock, flags);
2701         throttle_unlock(&pool->throttle);
2702
2703         wake_worker(pool);
2704 }
2705
2706 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2707 {
2708         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2709
2710         h->tc = tc;
2711         h->shared_read_entry = NULL;
2712         h->all_io_entry = NULL;
2713         h->overwrite_mapping = NULL;
2714         h->cell = NULL;
2715 }
2716
2717 /*
2718  * Non-blocking function called from the thin target's map function.
2719  */
2720 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2721 {
2722         int r;
2723         struct thin_c *tc = ti->private;
2724         dm_block_t block = get_bio_block(tc, bio);
2725         struct dm_thin_device *td = tc->td;
2726         struct dm_thin_lookup_result result;
2727         struct dm_bio_prison_cell *virt_cell, *data_cell;
2728         struct dm_cell_key key;
2729
2730         thin_hook_bio(tc, bio);
2731
2732         if (tc->requeue_mode) {
2733                 bio->bi_status = BLK_STS_DM_REQUEUE;
2734                 bio_endio(bio);
2735                 return DM_MAPIO_SUBMITTED;
2736         }
2737
2738         if (get_pool_mode(tc->pool) == PM_FAIL) {
2739                 bio_io_error(bio);
2740                 return DM_MAPIO_SUBMITTED;
2741         }
2742
2743         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2744                 thin_defer_bio_with_throttle(tc, bio);
2745                 return DM_MAPIO_SUBMITTED;
2746         }
2747
2748         /*
2749          * We must hold the virtual cell before doing the lookup, otherwise
2750          * there's a race with discard.
2751          */
2752         build_virtual_key(tc->td, block, &key);
2753         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2754                 return DM_MAPIO_SUBMITTED;
2755
2756         r = dm_thin_find_block(td, block, 0, &result);
2757
2758         /*
2759          * Note that we defer readahead too.
2760          */
2761         switch (r) {
2762         case 0:
2763                 if (unlikely(result.shared)) {
2764                         /*
2765                          * We have a race condition here between the
2766                          * result.shared value returned by the lookup and
2767                          * snapshot creation, which may cause new
2768                          * sharing.
2769                          *
2770                          * To avoid this always quiesce the origin before
2771                          * taking the snap.  You want to do this anyway to
2772                          * ensure a consistent application view
2773                          * (i.e. lockfs).
2774                          *
2775                          * More distant ancestors are irrelevant. The
2776                          * shared flag will be set in their case.
2777                          */
2778                         thin_defer_cell(tc, virt_cell);
2779                         return DM_MAPIO_SUBMITTED;
2780                 }
2781
2782                 build_data_key(tc->td, result.block, &key);
2783                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2784                         cell_defer_no_holder(tc, virt_cell);
2785                         return DM_MAPIO_SUBMITTED;
2786                 }
2787
2788                 inc_all_io_entry(tc->pool, bio);
2789                 cell_defer_no_holder(tc, data_cell);
2790                 cell_defer_no_holder(tc, virt_cell);
2791
2792                 remap(tc, bio, result.block);
2793                 return DM_MAPIO_REMAPPED;
2794
2795         case -ENODATA:
2796         case -EWOULDBLOCK:
2797                 thin_defer_cell(tc, virt_cell);
2798                 return DM_MAPIO_SUBMITTED;
2799
2800         default:
2801                 /*
2802                  * Must always call bio_io_error on failure.
2803                  * dm_thin_find_block can fail with -EINVAL if the
2804                  * pool is switched to fail-io mode.
2805                  */
2806                 bio_io_error(bio);
2807                 cell_defer_no_holder(tc, virt_cell);
2808                 return DM_MAPIO_SUBMITTED;
2809         }
2810 }
2811
2812 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2813 {
2814         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2815         struct request_queue *q;
2816
2817         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2818                 return 1;
2819
2820         q = bdev_get_queue(pt->data_dev->bdev);
2821         return bdi_congested(q->backing_dev_info, bdi_bits);
2822 }
2823
2824 static void requeue_bios(struct pool *pool)
2825 {
2826         unsigned long flags;
2827         struct thin_c *tc;
2828
2829         rcu_read_lock();
2830         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2831                 spin_lock_irqsave(&tc->lock, flags);
2832                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2833                 bio_list_init(&tc->retry_on_resume_list);
2834                 spin_unlock_irqrestore(&tc->lock, flags);
2835         }
2836         rcu_read_unlock();
2837 }
2838
2839 /*----------------------------------------------------------------
2840  * Binding of control targets to a pool object
2841  *--------------------------------------------------------------*/
2842 static bool data_dev_supports_discard(struct pool_c *pt)
2843 {
2844         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2845
2846         return q && blk_queue_discard(q);
2847 }
2848
2849 static bool is_factor(sector_t block_size, uint32_t n)
2850 {
2851         return !sector_div(block_size, n);
2852 }
2853
2854 /*
2855  * If discard_passdown was enabled verify that the data device
2856  * supports discards.  Disable discard_passdown if not.
2857  */
2858 static void disable_passdown_if_not_supported(struct pool_c *pt)
2859 {
2860         struct pool *pool = pt->pool;
2861         struct block_device *data_bdev = pt->data_dev->bdev;
2862         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2863         const char *reason = NULL;
2864         char buf[BDEVNAME_SIZE];
2865
2866         if (!pt->adjusted_pf.discard_passdown)
2867                 return;
2868
2869         if (!data_dev_supports_discard(pt))
2870                 reason = "discard unsupported";
2871
2872         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2873                 reason = "max discard sectors smaller than a block";
2874
2875         if (reason) {
2876                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2877                 pt->adjusted_pf.discard_passdown = false;
2878         }
2879 }
2880
2881 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2882 {
2883         struct pool_c *pt = ti->private;
2884
2885         /*
2886          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2887          */
2888         enum pool_mode old_mode = get_pool_mode(pool);
2889         enum pool_mode new_mode = pt->adjusted_pf.mode;
2890
2891         /*
2892          * Don't change the pool's mode until set_pool_mode() below.
2893          * Otherwise the pool's process_* function pointers may
2894          * not match the desired pool mode.
2895          */
2896         pt->adjusted_pf.mode = old_mode;
2897
2898         pool->ti = ti;
2899         pool->pf = pt->adjusted_pf;
2900         pool->low_water_blocks = pt->low_water_blocks;
2901
2902         set_pool_mode(pool, new_mode);
2903
2904         return 0;
2905 }
2906
2907 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2908 {
2909         if (pool->ti == ti)
2910                 pool->ti = NULL;
2911 }
2912
2913 /*----------------------------------------------------------------
2914  * Pool creation
2915  *--------------------------------------------------------------*/
2916 /* Initialize pool features. */
2917 static void pool_features_init(struct pool_features *pf)
2918 {
2919         pf->mode = PM_WRITE;
2920         pf->zero_new_blocks = true;
2921         pf->discard_enabled = true;
2922         pf->discard_passdown = true;
2923         pf->error_if_no_space = false;
2924 }
2925
2926 static void __pool_destroy(struct pool *pool)
2927 {
2928         __pool_table_remove(pool);
2929
2930         vfree(pool->cell_sort_array);
2931         if (dm_pool_metadata_close(pool->pmd) < 0)
2932                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2933
2934         dm_bio_prison_destroy(pool->prison);
2935         dm_kcopyd_client_destroy(pool->copier);
2936
2937         cancel_delayed_work_sync(&pool->waker);
2938         cancel_delayed_work_sync(&pool->no_space_timeout);
2939         if (pool->wq)
2940                 destroy_workqueue(pool->wq);
2941
2942         if (pool->next_mapping)
2943                 mempool_free(pool->next_mapping, pool->mapping_pool);
2944         mempool_destroy(pool->mapping_pool);
2945         dm_deferred_set_destroy(pool->shared_read_ds);
2946         dm_deferred_set_destroy(pool->all_io_ds);
2947         kfree(pool);
2948 }
2949
2950 static struct kmem_cache *_new_mapping_cache;
2951
2952 static struct pool *pool_create(struct mapped_device *pool_md,
2953                                 struct block_device *metadata_dev,
2954                                 unsigned long block_size,
2955                                 int read_only, char **error)
2956 {
2957         int r;
2958         void *err_p;
2959         struct pool *pool;
2960         struct dm_pool_metadata *pmd;
2961         bool format_device = read_only ? false : true;
2962
2963         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2964         if (IS_ERR(pmd)) {
2965                 *error = "Error creating metadata object";
2966                 return (struct pool *)pmd;
2967         }
2968
2969         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2970         if (!pool) {
2971                 *error = "Error allocating memory for pool";
2972                 err_p = ERR_PTR(-ENOMEM);
2973                 goto bad_pool;
2974         }
2975
2976         pool->pmd = pmd;
2977         pool->sectors_per_block = block_size;
2978         if (block_size & (block_size - 1))
2979                 pool->sectors_per_block_shift = -1;
2980         else
2981                 pool->sectors_per_block_shift = __ffs(block_size);
2982         pool->low_water_blocks = 0;
2983         pool_features_init(&pool->pf);
2984         pool->prison = dm_bio_prison_create();
2985         if (!pool->prison) {
2986                 *error = "Error creating pool's bio prison";
2987                 err_p = ERR_PTR(-ENOMEM);
2988                 goto bad_prison;
2989         }
2990
2991         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2992         if (IS_ERR(pool->copier)) {
2993                 r = PTR_ERR(pool->copier);
2994                 *error = "Error creating pool's kcopyd client";
2995                 err_p = ERR_PTR(r);
2996                 goto bad_kcopyd_client;
2997         }
2998
2999         /*
3000          * Create singlethreaded workqueue that will service all devices
3001          * that use this metadata.
3002          */
3003         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
3004         if (!pool->wq) {
3005                 *error = "Error creating pool's workqueue";
3006                 err_p = ERR_PTR(-ENOMEM);
3007                 goto bad_wq;
3008         }
3009
3010         throttle_init(&pool->throttle);
3011         INIT_WORK(&pool->worker, do_worker);
3012         INIT_DELAYED_WORK(&pool->waker, do_waker);
3013         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3014         spin_lock_init(&pool->lock);
3015         bio_list_init(&pool->deferred_flush_bios);
3016         bio_list_init(&pool->deferred_flush_completions);
3017         INIT_LIST_HEAD(&pool->prepared_mappings);
3018         INIT_LIST_HEAD(&pool->prepared_discards);
3019         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3020         INIT_LIST_HEAD(&pool->active_thins);
3021         pool->low_water_triggered = false;
3022         pool->suspended = true;
3023         pool->out_of_data_space = false;
3024
3025         pool->shared_read_ds = dm_deferred_set_create();
3026         if (!pool->shared_read_ds) {
3027                 *error = "Error creating pool's shared read deferred set";
3028                 err_p = ERR_PTR(-ENOMEM);
3029                 goto bad_shared_read_ds;
3030         }
3031
3032         pool->all_io_ds = dm_deferred_set_create();
3033         if (!pool->all_io_ds) {
3034                 *error = "Error creating pool's all io deferred set";
3035                 err_p = ERR_PTR(-ENOMEM);
3036                 goto bad_all_io_ds;
3037         }
3038
3039         pool->next_mapping = NULL;
3040         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
3041                                                       _new_mapping_cache);
3042         if (!pool->mapping_pool) {
3043                 *error = "Error creating pool's mapping mempool";
3044                 err_p = ERR_PTR(-ENOMEM);
3045                 goto bad_mapping_pool;
3046         }
3047
3048         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
3049         if (!pool->cell_sort_array) {
3050                 *error = "Error allocating cell sort array";
3051                 err_p = ERR_PTR(-ENOMEM);
3052                 goto bad_sort_array;
3053         }
3054
3055         pool->ref_count = 1;
3056         pool->last_commit_jiffies = jiffies;
3057         pool->pool_md = pool_md;
3058         pool->md_dev = metadata_dev;
3059         __pool_table_insert(pool);
3060
3061         return pool;
3062
3063 bad_sort_array:
3064         mempool_destroy(pool->mapping_pool);
3065 bad_mapping_pool:
3066         dm_deferred_set_destroy(pool->all_io_ds);
3067 bad_all_io_ds:
3068         dm_deferred_set_destroy(pool->shared_read_ds);
3069 bad_shared_read_ds:
3070         destroy_workqueue(pool->wq);
3071 bad_wq:
3072         dm_kcopyd_client_destroy(pool->copier);
3073 bad_kcopyd_client:
3074         dm_bio_prison_destroy(pool->prison);
3075 bad_prison:
3076         kfree(pool);
3077 bad_pool:
3078         if (dm_pool_metadata_close(pmd))
3079                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3080
3081         return err_p;
3082 }
3083
3084 static void __pool_inc(struct pool *pool)
3085 {
3086         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3087         pool->ref_count++;
3088 }
3089
3090 static void __pool_dec(struct pool *pool)
3091 {
3092         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3093         BUG_ON(!pool->ref_count);
3094         if (!--pool->ref_count)
3095                 __pool_destroy(pool);
3096 }
3097
3098 static struct pool *__pool_find(struct mapped_device *pool_md,
3099                                 struct block_device *metadata_dev,
3100                                 unsigned long block_size, int read_only,
3101                                 char **error, int *created)
3102 {
3103         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3104
3105         if (pool) {
3106                 if (pool->pool_md != pool_md) {
3107                         *error = "metadata device already in use by a pool";
3108                         return ERR_PTR(-EBUSY);
3109                 }
3110                 __pool_inc(pool);
3111
3112         } else {
3113                 pool = __pool_table_lookup(pool_md);
3114                 if (pool) {
3115                         if (pool->md_dev != metadata_dev) {
3116                                 *error = "different pool cannot replace a pool";
3117                                 return ERR_PTR(-EINVAL);
3118                         }
3119                         __pool_inc(pool);
3120
3121                 } else {
3122                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3123                         *created = 1;
3124                 }
3125         }
3126
3127         return pool;
3128 }
3129
3130 /*----------------------------------------------------------------
3131  * Pool target methods
3132  *--------------------------------------------------------------*/
3133 static void pool_dtr(struct dm_target *ti)
3134 {
3135         struct pool_c *pt = ti->private;
3136
3137         mutex_lock(&dm_thin_pool_table.mutex);
3138
3139         unbind_control_target(pt->pool, ti);
3140         __pool_dec(pt->pool);
3141         dm_put_device(ti, pt->metadata_dev);
3142         dm_put_device(ti, pt->data_dev);
3143         kfree(pt);
3144
3145         mutex_unlock(&dm_thin_pool_table.mutex);
3146 }
3147
3148 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3149                                struct dm_target *ti)
3150 {
3151         int r;
3152         unsigned argc;
3153         const char *arg_name;
3154
3155         static const struct dm_arg _args[] = {
3156                 {0, 4, "Invalid number of pool feature arguments"},
3157         };
3158
3159         /*
3160          * No feature arguments supplied.
3161          */
3162         if (!as->argc)
3163                 return 0;
3164
3165         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3166         if (r)
3167                 return -EINVAL;
3168
3169         while (argc && !r) {
3170                 arg_name = dm_shift_arg(as);
3171                 argc--;
3172
3173                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3174                         pf->zero_new_blocks = false;
3175
3176                 else if (!strcasecmp(arg_name, "ignore_discard"))
3177                         pf->discard_enabled = false;
3178
3179                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3180                         pf->discard_passdown = false;
3181
3182                 else if (!strcasecmp(arg_name, "read_only"))
3183                         pf->mode = PM_READ_ONLY;
3184
3185                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3186                         pf->error_if_no_space = true;
3187
3188                 else {
3189                         ti->error = "Unrecognised pool feature requested";
3190                         r = -EINVAL;
3191                         break;
3192                 }
3193         }
3194
3195         return r;
3196 }
3197
3198 static void metadata_low_callback(void *context)
3199 {
3200         struct pool *pool = context;
3201
3202         DMWARN("%s: reached low water mark for metadata device: sending event.",
3203                dm_device_name(pool->pool_md));
3204
3205         dm_table_event(pool->ti->table);
3206 }
3207
3208 static sector_t get_dev_size(struct block_device *bdev)
3209 {
3210         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3211 }
3212
3213 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3214 {
3215         sector_t metadata_dev_size = get_dev_size(bdev);
3216         char buffer[BDEVNAME_SIZE];
3217
3218         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3219                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3220                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3221 }
3222
3223 static sector_t get_metadata_dev_size(struct block_device *bdev)
3224 {
3225         sector_t metadata_dev_size = get_dev_size(bdev);
3226
3227         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3228                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3229
3230         return metadata_dev_size;
3231 }
3232
3233 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3234 {
3235         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3236
3237         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3238
3239         return metadata_dev_size;
3240 }
3241
3242 /*
3243  * When a metadata threshold is crossed a dm event is triggered, and
3244  * userland should respond by growing the metadata device.  We could let
3245  * userland set the threshold, like we do with the data threshold, but I'm
3246  * not sure they know enough to do this well.
3247  */
3248 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3249 {
3250         /*
3251          * 4M is ample for all ops with the possible exception of thin
3252          * device deletion which is harmless if it fails (just retry the
3253          * delete after you've grown the device).
3254          */
3255         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3256         return min((dm_block_t)1024ULL /* 4M */, quarter);
3257 }
3258
3259 /*
3260  * thin-pool <metadata dev> <data dev>
3261  *           <data block size (sectors)>
3262  *           <low water mark (blocks)>
3263  *           [<#feature args> [<arg>]*]
3264  *
3265  * Optional feature arguments are:
3266  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3267  *           ignore_discard: disable discard
3268  *           no_discard_passdown: don't pass discards down to the data device
3269  *           read_only: Don't allow any changes to be made to the pool metadata.
3270  *           error_if_no_space: error IOs, instead of queueing, if no space.
3271  */
3272 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3273 {
3274         int r, pool_created = 0;
3275         struct pool_c *pt;
3276         struct pool *pool;
3277         struct pool_features pf;
3278         struct dm_arg_set as;
3279         struct dm_dev *data_dev;
3280         unsigned long block_size;
3281         dm_block_t low_water_blocks;
3282         struct dm_dev *metadata_dev;
3283         fmode_t metadata_mode;
3284
3285         /*
3286          * FIXME Remove validation from scope of lock.
3287          */
3288         mutex_lock(&dm_thin_pool_table.mutex);
3289
3290         if (argc < 4) {
3291                 ti->error = "Invalid argument count";
3292                 r = -EINVAL;
3293                 goto out_unlock;
3294         }
3295
3296         as.argc = argc;
3297         as.argv = argv;
3298
3299         /* make sure metadata and data are different devices */
3300         if (!strcmp(argv[0], argv[1])) {
3301                 ti->error = "Error setting metadata or data device";
3302                 r = -EINVAL;
3303                 goto out_unlock;
3304         }
3305
3306         /*
3307          * Set default pool features.
3308          */
3309         pool_features_init(&pf);
3310
3311         dm_consume_args(&as, 4);
3312         r = parse_pool_features(&as, &pf, ti);
3313         if (r)
3314                 goto out_unlock;
3315
3316         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3317         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3318         if (r) {
3319                 ti->error = "Error opening metadata block device";
3320                 goto out_unlock;
3321         }
3322         warn_if_metadata_device_too_big(metadata_dev->bdev);
3323
3324         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3325         if (r) {
3326                 ti->error = "Error getting data device";
3327                 goto out_metadata;
3328         }
3329
3330         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3331             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3332             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3333             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3334                 ti->error = "Invalid block size";
3335                 r = -EINVAL;
3336                 goto out;
3337         }
3338
3339         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3340                 ti->error = "Invalid low water mark";
3341                 r = -EINVAL;
3342                 goto out;
3343         }
3344
3345         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3346         if (!pt) {
3347                 r = -ENOMEM;
3348                 goto out;
3349         }
3350
3351         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3352                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3353         if (IS_ERR(pool)) {
3354                 r = PTR_ERR(pool);
3355                 goto out_free_pt;
3356         }
3357
3358         /*
3359          * 'pool_created' reflects whether this is the first table load.
3360          * Top level discard support is not allowed to be changed after
3361          * initial load.  This would require a pool reload to trigger thin
3362          * device changes.
3363          */
3364         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3365                 ti->error = "Discard support cannot be disabled once enabled";
3366                 r = -EINVAL;
3367                 goto out_flags_changed;
3368         }
3369
3370         pt->pool = pool;
3371         pt->ti = ti;
3372         pt->metadata_dev = metadata_dev;
3373         pt->data_dev = data_dev;
3374         pt->low_water_blocks = low_water_blocks;
3375         pt->adjusted_pf = pt->requested_pf = pf;
3376         ti->num_flush_bios = 1;
3377
3378         /*
3379          * Only need to enable discards if the pool should pass
3380          * them down to the data device.  The thin device's discard
3381          * processing will cause mappings to be removed from the btree.
3382          */
3383         if (pf.discard_enabled && pf.discard_passdown) {
3384                 ti->num_discard_bios = 1;
3385
3386                 /*
3387                  * Setting 'discards_supported' circumvents the normal
3388                  * stacking of discard limits (this keeps the pool and
3389                  * thin devices' discard limits consistent).
3390                  */
3391                 ti->discards_supported = true;
3392         }
3393         ti->private = pt;
3394
3395         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3396                                                 calc_metadata_threshold(pt),
3397                                                 metadata_low_callback,
3398                                                 pool);
3399         if (r)
3400                 goto out_flags_changed;
3401
3402         pt->callbacks.congested_fn = pool_is_congested;
3403         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3404
3405         mutex_unlock(&dm_thin_pool_table.mutex);
3406
3407         return 0;
3408
3409 out_flags_changed:
3410         __pool_dec(pool);
3411 out_free_pt:
3412         kfree(pt);
3413 out:
3414         dm_put_device(ti, data_dev);
3415 out_metadata:
3416         dm_put_device(ti, metadata_dev);
3417 out_unlock:
3418         mutex_unlock(&dm_thin_pool_table.mutex);
3419
3420         return r;
3421 }
3422
3423 static int pool_map(struct dm_target *ti, struct bio *bio)
3424 {
3425         int r;
3426         struct pool_c *pt = ti->private;
3427         struct pool *pool = pt->pool;
3428         unsigned long flags;
3429
3430         /*
3431          * As this is a singleton target, ti->begin is always zero.
3432          */
3433         spin_lock_irqsave(&pool->lock, flags);
3434         bio_set_dev(bio, pt->data_dev->bdev);
3435         r = DM_MAPIO_REMAPPED;
3436         spin_unlock_irqrestore(&pool->lock, flags);
3437
3438         return r;
3439 }
3440
3441 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3442 {
3443         int r;
3444         struct pool_c *pt = ti->private;
3445         struct pool *pool = pt->pool;
3446         sector_t data_size = ti->len;
3447         dm_block_t sb_data_size;
3448
3449         *need_commit = false;
3450
3451         (void) sector_div(data_size, pool->sectors_per_block);
3452
3453         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3454         if (r) {
3455                 DMERR("%s: failed to retrieve data device size",
3456                       dm_device_name(pool->pool_md));
3457                 return r;
3458         }
3459
3460         if (data_size < sb_data_size) {
3461                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3462                       dm_device_name(pool->pool_md),
3463                       (unsigned long long)data_size, sb_data_size);
3464                 return -EINVAL;
3465
3466         } else if (data_size > sb_data_size) {
3467                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3468                         DMERR("%s: unable to grow the data device until repaired.",
3469                               dm_device_name(pool->pool_md));
3470                         return 0;
3471                 }
3472
3473                 if (sb_data_size)
3474                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3475                                dm_device_name(pool->pool_md),
3476                                sb_data_size, (unsigned long long)data_size);
3477                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3478                 if (r) {
3479                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3480                         return r;
3481                 }
3482
3483                 *need_commit = true;
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3490 {
3491         int r;
3492         struct pool_c *pt = ti->private;
3493         struct pool *pool = pt->pool;
3494         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3495
3496         *need_commit = false;
3497
3498         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3499
3500         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3501         if (r) {
3502                 DMERR("%s: failed to retrieve metadata device size",
3503                       dm_device_name(pool->pool_md));
3504                 return r;
3505         }
3506
3507         if (metadata_dev_size < sb_metadata_dev_size) {
3508                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3509                       dm_device_name(pool->pool_md),
3510                       metadata_dev_size, sb_metadata_dev_size);
3511                 return -EINVAL;
3512
3513         } else if (metadata_dev_size > sb_metadata_dev_size) {
3514                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3515                         DMERR("%s: unable to grow the metadata device until repaired.",
3516                               dm_device_name(pool->pool_md));
3517                         return 0;
3518                 }
3519
3520                 warn_if_metadata_device_too_big(pool->md_dev);
3521                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3522                        dm_device_name(pool->pool_md),
3523                        sb_metadata_dev_size, metadata_dev_size);
3524
3525                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3526                         set_pool_mode(pool, PM_WRITE);
3527
3528                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3529                 if (r) {
3530                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3531                         return r;
3532                 }
3533
3534                 *need_commit = true;
3535         }
3536
3537         return 0;
3538 }
3539
3540 /*
3541  * Retrieves the number of blocks of the data device from
3542  * the superblock and compares it to the actual device size,
3543  * thus resizing the data device in case it has grown.
3544  *
3545  * This both copes with opening preallocated data devices in the ctr
3546  * being followed by a resume
3547  * -and-
3548  * calling the resume method individually after userspace has
3549  * grown the data device in reaction to a table event.
3550  */
3551 static int pool_preresume(struct dm_target *ti)
3552 {
3553         int r;
3554         bool need_commit1, need_commit2;
3555         struct pool_c *pt = ti->private;
3556         struct pool *pool = pt->pool;
3557
3558         /*
3559          * Take control of the pool object.
3560          */
3561         r = bind_control_target(pool, ti);
3562         if (r)
3563                 return r;
3564
3565         r = maybe_resize_data_dev(ti, &need_commit1);
3566         if (r)
3567                 return r;
3568
3569         r = maybe_resize_metadata_dev(ti, &need_commit2);
3570         if (r)
3571                 return r;
3572
3573         if (need_commit1 || need_commit2)
3574                 (void) commit(pool);
3575
3576         return 0;
3577 }
3578
3579 static void pool_suspend_active_thins(struct pool *pool)
3580 {
3581         struct thin_c *tc;
3582
3583         /* Suspend all active thin devices */
3584         tc = get_first_thin(pool);
3585         while (tc) {
3586                 dm_internal_suspend_noflush(tc->thin_md);
3587                 tc = get_next_thin(pool, tc);
3588         }
3589 }
3590
3591 static void pool_resume_active_thins(struct pool *pool)
3592 {
3593         struct thin_c *tc;
3594
3595         /* Resume all active thin devices */
3596         tc = get_first_thin(pool);
3597         while (tc) {
3598                 dm_internal_resume(tc->thin_md);
3599                 tc = get_next_thin(pool, tc);
3600         }
3601 }
3602
3603 static void pool_resume(struct dm_target *ti)
3604 {
3605         struct pool_c *pt = ti->private;
3606         struct pool *pool = pt->pool;
3607         unsigned long flags;
3608
3609         /*
3610          * Must requeue active_thins' bios and then resume
3611          * active_thins _before_ clearing 'suspend' flag.
3612          */
3613         requeue_bios(pool);
3614         pool_resume_active_thins(pool);
3615
3616         spin_lock_irqsave(&pool->lock, flags);
3617         pool->low_water_triggered = false;
3618         pool->suspended = false;
3619         spin_unlock_irqrestore(&pool->lock, flags);
3620
3621         do_waker(&pool->waker.work);
3622 }
3623
3624 static void pool_presuspend(struct dm_target *ti)
3625 {
3626         struct pool_c *pt = ti->private;
3627         struct pool *pool = pt->pool;
3628         unsigned long flags;
3629
3630         spin_lock_irqsave(&pool->lock, flags);
3631         pool->suspended = true;
3632         spin_unlock_irqrestore(&pool->lock, flags);
3633
3634         pool_suspend_active_thins(pool);
3635 }
3636
3637 static void pool_presuspend_undo(struct dm_target *ti)
3638 {
3639         struct pool_c *pt = ti->private;
3640         struct pool *pool = pt->pool;
3641         unsigned long flags;
3642
3643         pool_resume_active_thins(pool);
3644
3645         spin_lock_irqsave(&pool->lock, flags);
3646         pool->suspended = false;
3647         spin_unlock_irqrestore(&pool->lock, flags);
3648 }
3649
3650 static void pool_postsuspend(struct dm_target *ti)
3651 {
3652         struct pool_c *pt = ti->private;
3653         struct pool *pool = pt->pool;
3654
3655         cancel_delayed_work_sync(&pool->waker);
3656         cancel_delayed_work_sync(&pool->no_space_timeout);
3657         flush_workqueue(pool->wq);
3658         (void) commit(pool);
3659 }
3660
3661 static int check_arg_count(unsigned argc, unsigned args_required)
3662 {
3663         if (argc != args_required) {
3664                 DMWARN("Message received with %u arguments instead of %u.",
3665                        argc, args_required);
3666                 return -EINVAL;
3667         }
3668
3669         return 0;
3670 }
3671
3672 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3673 {
3674         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3675             *dev_id <= MAX_DEV_ID)
3676                 return 0;
3677
3678         if (warning)
3679                 DMWARN("Message received with invalid device id: %s", arg);
3680
3681         return -EINVAL;
3682 }
3683
3684 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686         dm_thin_id dev_id;
3687         int r;
3688
3689         r = check_arg_count(argc, 2);
3690         if (r)
3691                 return r;
3692
3693         r = read_dev_id(argv[1], &dev_id, 1);
3694         if (r)
3695                 return r;
3696
3697         r = dm_pool_create_thin(pool->pmd, dev_id);
3698         if (r) {
3699                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3700                        argv[1]);
3701                 return r;
3702         }
3703
3704         return 0;
3705 }
3706
3707 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3708 {
3709         dm_thin_id dev_id;
3710         dm_thin_id origin_dev_id;
3711         int r;
3712
3713         r = check_arg_count(argc, 3);
3714         if (r)
3715                 return r;
3716
3717         r = read_dev_id(argv[1], &dev_id, 1);
3718         if (r)
3719                 return r;
3720
3721         r = read_dev_id(argv[2], &origin_dev_id, 1);
3722         if (r)
3723                 return r;
3724
3725         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3726         if (r) {
3727                 DMWARN("Creation of new snapshot %s of device %s failed.",
3728                        argv[1], argv[2]);
3729                 return r;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3736 {
3737         dm_thin_id dev_id;
3738         int r;
3739
3740         r = check_arg_count(argc, 2);
3741         if (r)
3742                 return r;
3743
3744         r = read_dev_id(argv[1], &dev_id, 1);
3745         if (r)
3746                 return r;
3747
3748         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3749         if (r)
3750                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3751
3752         return r;
3753 }
3754
3755 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3756 {
3757         dm_thin_id old_id, new_id;
3758         int r;
3759
3760         r = check_arg_count(argc, 3);
3761         if (r)
3762                 return r;
3763
3764         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3765                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3766                 return -EINVAL;
3767         }
3768
3769         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3770                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3771                 return -EINVAL;
3772         }
3773
3774         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3775         if (r) {
3776                 DMWARN("Failed to change transaction id from %s to %s.",
3777                        argv[1], argv[2]);
3778                 return r;
3779         }
3780
3781         return 0;
3782 }
3783
3784 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3785 {
3786         int r;
3787
3788         r = check_arg_count(argc, 1);
3789         if (r)
3790                 return r;
3791
3792         (void) commit(pool);
3793
3794         r = dm_pool_reserve_metadata_snap(pool->pmd);
3795         if (r)
3796                 DMWARN("reserve_metadata_snap message failed.");
3797
3798         return r;
3799 }
3800
3801 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3802 {
3803         int r;
3804
3805         r = check_arg_count(argc, 1);
3806         if (r)
3807                 return r;
3808
3809         r = dm_pool_release_metadata_snap(pool->pmd);
3810         if (r)
3811                 DMWARN("release_metadata_snap message failed.");
3812
3813         return r;
3814 }
3815
3816 /*
3817  * Messages supported:
3818  *   create_thin        <dev_id>
3819  *   create_snap        <dev_id> <origin_id>
3820  *   delete             <dev_id>
3821  *   set_transaction_id <current_trans_id> <new_trans_id>
3822  *   reserve_metadata_snap
3823  *   release_metadata_snap
3824  */
3825 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3826 {
3827         int r = -EINVAL;
3828         struct pool_c *pt = ti->private;
3829         struct pool *pool = pt->pool;
3830
3831         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3832                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3833                       dm_device_name(pool->pool_md));
3834                 return -EOPNOTSUPP;
3835         }
3836
3837         if (!strcasecmp(argv[0], "create_thin"))
3838                 r = process_create_thin_mesg(argc, argv, pool);
3839
3840         else if (!strcasecmp(argv[0], "create_snap"))
3841                 r = process_create_snap_mesg(argc, argv, pool);
3842
3843         else if (!strcasecmp(argv[0], "delete"))
3844                 r = process_delete_mesg(argc, argv, pool);
3845
3846         else if (!strcasecmp(argv[0], "set_transaction_id"))
3847                 r = process_set_transaction_id_mesg(argc, argv, pool);
3848
3849         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3850                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3851
3852         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3853                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3854
3855         else
3856                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3857
3858         if (!r)
3859                 (void) commit(pool);
3860
3861         return r;
3862 }
3863
3864 static void emit_flags(struct pool_features *pf, char *result,
3865                        unsigned sz, unsigned maxlen)
3866 {
3867         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3868                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3869                 pf->error_if_no_space;
3870         DMEMIT("%u ", count);
3871
3872         if (!pf->zero_new_blocks)
3873                 DMEMIT("skip_block_zeroing ");
3874
3875         if (!pf->discard_enabled)
3876                 DMEMIT("ignore_discard ");
3877
3878         if (!pf->discard_passdown)
3879                 DMEMIT("no_discard_passdown ");
3880
3881         if (pf->mode == PM_READ_ONLY)
3882                 DMEMIT("read_only ");
3883
3884         if (pf->error_if_no_space)
3885                 DMEMIT("error_if_no_space ");
3886 }
3887
3888 /*
3889  * Status line is:
3890  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3891  *    <used data sectors>/<total data sectors> <held metadata root>
3892  *    <pool mode> <discard config> <no space config> <needs_check>
3893  */
3894 static void pool_status(struct dm_target *ti, status_type_t type,
3895                         unsigned status_flags, char *result, unsigned maxlen)
3896 {
3897         int r;
3898         unsigned sz = 0;
3899         uint64_t transaction_id;
3900         dm_block_t nr_free_blocks_data;
3901         dm_block_t nr_free_blocks_metadata;
3902         dm_block_t nr_blocks_data;
3903         dm_block_t nr_blocks_metadata;
3904         dm_block_t held_root;
3905         enum pool_mode mode;
3906         char buf[BDEVNAME_SIZE];
3907         char buf2[BDEVNAME_SIZE];
3908         struct pool_c *pt = ti->private;
3909         struct pool *pool = pt->pool;
3910
3911         switch (type) {
3912         case STATUSTYPE_INFO:
3913                 if (get_pool_mode(pool) == PM_FAIL) {
3914                         DMEMIT("Fail");
3915                         break;
3916                 }
3917
3918                 /* Commit to ensure statistics aren't out-of-date */
3919                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3920                         (void) commit(pool);
3921
3922                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3923                 if (r) {
3924                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3925                               dm_device_name(pool->pool_md), r);
3926                         goto err;
3927                 }
3928
3929                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3930                 if (r) {
3931                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3932                               dm_device_name(pool->pool_md), r);
3933                         goto err;
3934                 }
3935
3936                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3937                 if (r) {
3938                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3939                               dm_device_name(pool->pool_md), r);
3940                         goto err;
3941                 }
3942
3943                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3944                 if (r) {
3945                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3946                               dm_device_name(pool->pool_md), r);
3947                         goto err;
3948                 }
3949
3950                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3951                 if (r) {
3952                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3953                               dm_device_name(pool->pool_md), r);
3954                         goto err;
3955                 }
3956
3957                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3958                 if (r) {
3959                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3960                               dm_device_name(pool->pool_md), r);
3961                         goto err;
3962                 }
3963
3964                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3965                        (unsigned long long)transaction_id,
3966                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3967                        (unsigned long long)nr_blocks_metadata,
3968                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3969                        (unsigned long long)nr_blocks_data);
3970
3971                 if (held_root)
3972                         DMEMIT("%llu ", held_root);
3973                 else
3974                         DMEMIT("- ");
3975
3976                 mode = get_pool_mode(pool);
3977                 if (mode == PM_OUT_OF_DATA_SPACE)
3978                         DMEMIT("out_of_data_space ");
3979                 else if (is_read_only_pool_mode(mode))
3980                         DMEMIT("ro ");
3981                 else
3982                         DMEMIT("rw ");
3983
3984                 if (!pool->pf.discard_enabled)
3985                         DMEMIT("ignore_discard ");
3986                 else if (pool->pf.discard_passdown)
3987                         DMEMIT("discard_passdown ");
3988                 else
3989                         DMEMIT("no_discard_passdown ");
3990
3991                 if (pool->pf.error_if_no_space)
3992                         DMEMIT("error_if_no_space ");
3993                 else
3994                         DMEMIT("queue_if_no_space ");
3995
3996                 if (dm_pool_metadata_needs_check(pool->pmd))
3997                         DMEMIT("needs_check ");
3998                 else
3999                         DMEMIT("- ");
4000
4001                 break;
4002
4003         case STATUSTYPE_TABLE:
4004                 DMEMIT("%s %s %lu %llu ",
4005                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4006                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4007                        (unsigned long)pool->sectors_per_block,
4008                        (unsigned long long)pt->low_water_blocks);
4009                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4010                 break;
4011         }
4012         return;
4013
4014 err:
4015         DMEMIT("Error");
4016 }
4017
4018 static int pool_iterate_devices(struct dm_target *ti,
4019                                 iterate_devices_callout_fn fn, void *data)
4020 {
4021         struct pool_c *pt = ti->private;
4022
4023         return fn(ti, pt->data_dev, 0, ti->len, data);
4024 }
4025
4026 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4027 {
4028         struct pool_c *pt = ti->private;
4029         struct pool *pool = pt->pool;
4030         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4031
4032         /*
4033          * If max_sectors is smaller than pool->sectors_per_block adjust it
4034          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4035          * This is especially beneficial when the pool's data device is a RAID
4036          * device that has a full stripe width that matches pool->sectors_per_block
4037          * -- because even though partial RAID stripe-sized IOs will be issued to a
4038          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4039          *    boundary.. which avoids additional partial RAID stripe writes cascading
4040          */
4041         if (limits->max_sectors < pool->sectors_per_block) {
4042                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4043                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4044                                 limits->max_sectors--;
4045                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4046                 }
4047         }
4048
4049         /*
4050          * If the system-determined stacked limits are compatible with the
4051          * pool's blocksize (io_opt is a factor) do not override them.
4052          */
4053         if (io_opt_sectors < pool->sectors_per_block ||
4054             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4055                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4056                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4057                 else
4058                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4059                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4060         }
4061
4062         /*
4063          * pt->adjusted_pf is a staging area for the actual features to use.
4064          * They get transferred to the live pool in bind_control_target()
4065          * called from pool_preresume().
4066          */
4067         if (!pt->adjusted_pf.discard_enabled) {
4068                 /*
4069                  * Must explicitly disallow stacking discard limits otherwise the
4070                  * block layer will stack them if pool's data device has support.
4071                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4072                  * user to see that, so make sure to set all discard limits to 0.
4073                  */
4074                 limits->discard_granularity = 0;
4075                 return;
4076         }
4077
4078         disable_passdown_if_not_supported(pt);
4079
4080         /*
4081          * The pool uses the same discard limits as the underlying data
4082          * device.  DM core has already set this up.
4083          */
4084 }
4085
4086 static struct target_type pool_target = {
4087         .name = "thin-pool",
4088         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4089                     DM_TARGET_IMMUTABLE,
4090         .version = {1, 19, 0},
4091         .module = THIS_MODULE,
4092         .ctr = pool_ctr,
4093         .dtr = pool_dtr,
4094         .map = pool_map,
4095         .presuspend = pool_presuspend,
4096         .presuspend_undo = pool_presuspend_undo,
4097         .postsuspend = pool_postsuspend,
4098         .preresume = pool_preresume,
4099         .resume = pool_resume,
4100         .message = pool_message,
4101         .status = pool_status,
4102         .iterate_devices = pool_iterate_devices,
4103         .io_hints = pool_io_hints,
4104 };
4105
4106 /*----------------------------------------------------------------
4107  * Thin target methods
4108  *--------------------------------------------------------------*/
4109 static void thin_get(struct thin_c *tc)
4110 {
4111         atomic_inc(&tc->refcount);
4112 }
4113
4114 static void thin_put(struct thin_c *tc)
4115 {
4116         if (atomic_dec_and_test(&tc->refcount))
4117                 complete(&tc->can_destroy);
4118 }
4119
4120 static void thin_dtr(struct dm_target *ti)
4121 {
4122         struct thin_c *tc = ti->private;
4123         unsigned long flags;
4124
4125         spin_lock_irqsave(&tc->pool->lock, flags);
4126         list_del_rcu(&tc->list);
4127         spin_unlock_irqrestore(&tc->pool->lock, flags);
4128         synchronize_rcu();
4129
4130         thin_put(tc);
4131         wait_for_completion(&tc->can_destroy);
4132
4133         mutex_lock(&dm_thin_pool_table.mutex);
4134
4135         __pool_dec(tc->pool);
4136         dm_pool_close_thin_device(tc->td);
4137         dm_put_device(ti, tc->pool_dev);
4138         if (tc->origin_dev)
4139                 dm_put_device(ti, tc->origin_dev);
4140         kfree(tc);
4141
4142         mutex_unlock(&dm_thin_pool_table.mutex);
4143 }
4144
4145 /*
4146  * Thin target parameters:
4147  *
4148  * <pool_dev> <dev_id> [origin_dev]
4149  *
4150  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4151  * dev_id: the internal device identifier
4152  * origin_dev: a device external to the pool that should act as the origin
4153  *
4154  * If the pool device has discards disabled, they get disabled for the thin
4155  * device as well.
4156  */
4157 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4158 {
4159         int r;
4160         struct thin_c *tc;
4161         struct dm_dev *pool_dev, *origin_dev;
4162         struct mapped_device *pool_md;
4163         unsigned long flags;
4164
4165         mutex_lock(&dm_thin_pool_table.mutex);
4166
4167         if (argc != 2 && argc != 3) {
4168                 ti->error = "Invalid argument count";
4169                 r = -EINVAL;
4170                 goto out_unlock;
4171         }
4172
4173         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4174         if (!tc) {
4175                 ti->error = "Out of memory";
4176                 r = -ENOMEM;
4177                 goto out_unlock;
4178         }
4179         tc->thin_md = dm_table_get_md(ti->table);
4180         spin_lock_init(&tc->lock);
4181         INIT_LIST_HEAD(&tc->deferred_cells);
4182         bio_list_init(&tc->deferred_bio_list);
4183         bio_list_init(&tc->retry_on_resume_list);
4184         tc->sort_bio_list = RB_ROOT;
4185
4186         if (argc == 3) {
4187                 if (!strcmp(argv[0], argv[2])) {
4188                         ti->error = "Error setting origin device";
4189                         r = -EINVAL;
4190                         goto bad_origin_dev;
4191                 }
4192
4193                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4194                 if (r) {
4195                         ti->error = "Error opening origin device";
4196                         goto bad_origin_dev;
4197                 }
4198                 tc->origin_dev = origin_dev;
4199         }
4200
4201         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4202         if (r) {
4203                 ti->error = "Error opening pool device";
4204                 goto bad_pool_dev;
4205         }
4206         tc->pool_dev = pool_dev;
4207
4208         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4209                 ti->error = "Invalid device id";
4210                 r = -EINVAL;
4211                 goto bad_common;
4212         }
4213
4214         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4215         if (!pool_md) {
4216                 ti->error = "Couldn't get pool mapped device";
4217                 r = -EINVAL;
4218                 goto bad_common;
4219         }
4220
4221         tc->pool = __pool_table_lookup(pool_md);
4222         if (!tc->pool) {
4223                 ti->error = "Couldn't find pool object";
4224                 r = -EINVAL;
4225                 goto bad_pool_lookup;
4226         }
4227         __pool_inc(tc->pool);
4228
4229         if (get_pool_mode(tc->pool) == PM_FAIL) {
4230                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4231                 r = -EINVAL;
4232                 goto bad_pool;
4233         }
4234
4235         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4236         if (r) {
4237                 ti->error = "Couldn't open thin internal device";
4238                 goto bad_pool;
4239         }
4240
4241         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4242         if (r)
4243                 goto bad;
4244
4245         ti->num_flush_bios = 1;
4246         ti->flush_supported = true;
4247         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4248
4249         /* In case the pool supports discards, pass them on. */
4250         if (tc->pool->pf.discard_enabled) {
4251                 ti->discards_supported = true;
4252                 ti->num_discard_bios = 1;
4253                 ti->split_discard_bios = false;
4254         }
4255
4256         mutex_unlock(&dm_thin_pool_table.mutex);
4257
4258         spin_lock_irqsave(&tc->pool->lock, flags);
4259         if (tc->pool->suspended) {
4260                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4261                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4262                 ti->error = "Unable to activate thin device while pool is suspended";
4263                 r = -EINVAL;
4264                 goto bad;
4265         }
4266         atomic_set(&tc->refcount, 1);
4267         init_completion(&tc->can_destroy);
4268         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4269         spin_unlock_irqrestore(&tc->pool->lock, flags);
4270         /*
4271          * This synchronize_rcu() call is needed here otherwise we risk a
4272          * wake_worker() call finding no bios to process (because the newly
4273          * added tc isn't yet visible).  So this reduces latency since we
4274          * aren't then dependent on the periodic commit to wake_worker().
4275          */
4276         synchronize_rcu();
4277
4278         dm_put(pool_md);
4279
4280         return 0;
4281
4282 bad:
4283         dm_pool_close_thin_device(tc->td);
4284 bad_pool:
4285         __pool_dec(tc->pool);
4286 bad_pool_lookup:
4287         dm_put(pool_md);
4288 bad_common:
4289         dm_put_device(ti, tc->pool_dev);
4290 bad_pool_dev:
4291         if (tc->origin_dev)
4292                 dm_put_device(ti, tc->origin_dev);
4293 bad_origin_dev:
4294         kfree(tc);
4295 out_unlock:
4296         mutex_unlock(&dm_thin_pool_table.mutex);
4297
4298         return r;
4299 }
4300
4301 static int thin_map(struct dm_target *ti, struct bio *bio)
4302 {
4303         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4304
4305         return thin_bio_map(ti, bio);
4306 }
4307
4308 static int thin_endio(struct dm_target *ti, struct bio *bio,
4309                 blk_status_t *err)
4310 {
4311         unsigned long flags;
4312         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4313         struct list_head work;
4314         struct dm_thin_new_mapping *m, *tmp;
4315         struct pool *pool = h->tc->pool;
4316
4317         if (h->shared_read_entry) {
4318                 INIT_LIST_HEAD(&work);
4319                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4320
4321                 spin_lock_irqsave(&pool->lock, flags);
4322                 list_for_each_entry_safe(m, tmp, &work, list) {
4323                         list_del(&m->list);
4324                         __complete_mapping_preparation(m);
4325                 }
4326                 spin_unlock_irqrestore(&pool->lock, flags);
4327         }
4328
4329         if (h->all_io_entry) {
4330                 INIT_LIST_HEAD(&work);
4331                 dm_deferred_entry_dec(h->all_io_entry, &work);
4332                 if (!list_empty(&work)) {
4333                         spin_lock_irqsave(&pool->lock, flags);
4334                         list_for_each_entry_safe(m, tmp, &work, list)
4335                                 list_add_tail(&m->list, &pool->prepared_discards);
4336                         spin_unlock_irqrestore(&pool->lock, flags);
4337                         wake_worker(pool);
4338                 }
4339         }
4340
4341         if (h->cell)
4342                 cell_defer_no_holder(h->tc, h->cell);
4343
4344         return DM_ENDIO_DONE;
4345 }
4346
4347 static void thin_presuspend(struct dm_target *ti)
4348 {
4349         struct thin_c *tc = ti->private;
4350
4351         if (dm_noflush_suspending(ti))
4352                 noflush_work(tc, do_noflush_start);
4353 }
4354
4355 static void thin_postsuspend(struct dm_target *ti)
4356 {
4357         struct thin_c *tc = ti->private;
4358
4359         /*
4360          * The dm_noflush_suspending flag has been cleared by now, so
4361          * unfortunately we must always run this.
4362          */
4363         noflush_work(tc, do_noflush_stop);
4364 }
4365
4366 static int thin_preresume(struct dm_target *ti)
4367 {
4368         struct thin_c *tc = ti->private;
4369
4370         if (tc->origin_dev)
4371                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4372
4373         return 0;
4374 }
4375
4376 /*
4377  * <nr mapped sectors> <highest mapped sector>
4378  */
4379 static void thin_status(struct dm_target *ti, status_type_t type,
4380                         unsigned status_flags, char *result, unsigned maxlen)
4381 {
4382         int r;
4383         ssize_t sz = 0;
4384         dm_block_t mapped, highest;
4385         char buf[BDEVNAME_SIZE];
4386         struct thin_c *tc = ti->private;
4387
4388         if (get_pool_mode(tc->pool) == PM_FAIL) {
4389                 DMEMIT("Fail");
4390                 return;
4391         }
4392
4393         if (!tc->td)
4394                 DMEMIT("-");
4395         else {
4396                 switch (type) {
4397                 case STATUSTYPE_INFO:
4398                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4399                         if (r) {
4400                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4401                                 goto err;
4402                         }
4403
4404                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4405                         if (r < 0) {
4406                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4407                                 goto err;
4408                         }
4409
4410                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4411                         if (r)
4412                                 DMEMIT("%llu", ((highest + 1) *
4413                                                 tc->pool->sectors_per_block) - 1);
4414                         else
4415                                 DMEMIT("-");
4416                         break;
4417
4418                 case STATUSTYPE_TABLE:
4419                         DMEMIT("%s %lu",
4420                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4421                                (unsigned long) tc->dev_id);
4422                         if (tc->origin_dev)
4423                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4424                         break;
4425                 }
4426         }
4427
4428         return;
4429
4430 err:
4431         DMEMIT("Error");
4432 }
4433
4434 static int thin_iterate_devices(struct dm_target *ti,
4435                                 iterate_devices_callout_fn fn, void *data)
4436 {
4437         sector_t blocks;
4438         struct thin_c *tc = ti->private;
4439         struct pool *pool = tc->pool;
4440
4441         /*
4442          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4443          * we follow a more convoluted path through to the pool's target.
4444          */
4445         if (!pool->ti)
4446                 return 0;       /* nothing is bound */
4447
4448         blocks = pool->ti->len;
4449         (void) sector_div(blocks, pool->sectors_per_block);
4450         if (blocks)
4451                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4452
4453         return 0;
4454 }
4455
4456 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4457 {
4458         struct thin_c *tc = ti->private;
4459         struct pool *pool = tc->pool;
4460
4461         if (!pool->pf.discard_enabled)
4462                 return;
4463
4464         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4465         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4466 }
4467
4468 static struct target_type thin_target = {
4469         .name = "thin",
4470         .version = {1, 19, 0},
4471         .module = THIS_MODULE,
4472         .ctr = thin_ctr,
4473         .dtr = thin_dtr,
4474         .map = thin_map,
4475         .end_io = thin_endio,
4476         .preresume = thin_preresume,
4477         .presuspend = thin_presuspend,
4478         .postsuspend = thin_postsuspend,
4479         .status = thin_status,
4480         .iterate_devices = thin_iterate_devices,
4481         .io_hints = thin_io_hints,
4482 };
4483
4484 /*----------------------------------------------------------------*/
4485
4486 static int __init dm_thin_init(void)
4487 {
4488         int r = -ENOMEM;
4489
4490         pool_table_init();
4491
4492         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4493         if (!_new_mapping_cache)
4494                 return r;
4495
4496         r = dm_register_target(&thin_target);
4497         if (r)
4498                 goto bad_new_mapping_cache;
4499
4500         r = dm_register_target(&pool_target);
4501         if (r)
4502                 goto bad_thin_target;
4503
4504         return 0;
4505
4506 bad_thin_target:
4507         dm_unregister_target(&thin_target);
4508 bad_new_mapping_cache:
4509         kmem_cache_destroy(_new_mapping_cache);
4510
4511         return r;
4512 }
4513
4514 static void dm_thin_exit(void)
4515 {
4516         dm_unregister_target(&thin_target);
4517         dm_unregister_target(&pool_target);
4518
4519         kmem_cache_destroy(_new_mapping_cache);
4520 }
4521
4522 module_init(dm_thin_init);
4523 module_exit(dm_thin_exit);
4524
4525 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4526 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4527
4528 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4529 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4530 MODULE_LICENSE("GPL");