GNU Linux-libre 4.9.326-gnu1
[releases.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct workqueue_struct *wq;
250         struct throttle throttle;
251         struct work_struct worker;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270         mempool_t *mapping_pool;
271
272         process_bio_fn process_bio;
273         process_bio_fn process_discard;
274
275         process_cell_fn process_cell;
276         process_cell_fn process_discard_cell;
277
278         process_mapping_fn process_prepared_mapping;
279         process_mapping_fn process_prepared_discard;
280         process_mapping_fn process_prepared_discard_pt2;
281
282         struct dm_bio_prison_cell **cell_sort_array;
283 };
284
285 static enum pool_mode get_pool_mode(struct pool *pool);
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 /*
289  * Target context for a pool.
290  */
291 struct pool_c {
292         struct dm_target *ti;
293         struct pool *pool;
294         struct dm_dev *data_dev;
295         struct dm_dev *metadata_dev;
296         struct dm_target_callbacks callbacks;
297
298         dm_block_t low_water_blocks;
299         struct pool_features requested_pf; /* Features requested during table load */
300         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
301 };
302
303 /*
304  * Target context for a thin.
305  */
306 struct thin_c {
307         struct list_head list;
308         struct dm_dev *pool_dev;
309         struct dm_dev *origin_dev;
310         sector_t origin_size;
311         dm_thin_id dev_id;
312
313         struct pool *pool;
314         struct dm_thin_device *td;
315         struct mapped_device *thin_md;
316
317         bool requeue_mode:1;
318         spinlock_t lock;
319         struct list_head deferred_cells;
320         struct bio_list deferred_bio_list;
321         struct bio_list retry_on_resume_list;
322         struct rb_root sort_bio_list; /* sorted list of deferred bios */
323
324         /*
325          * Ensures the thin is not destroyed until the worker has finished
326          * iterating the active_thins list.
327          */
328         atomic_t refcount;
329         struct completion can_destroy;
330 };
331
332 /*----------------------------------------------------------------*/
333
334 static bool block_size_is_power_of_two(struct pool *pool)
335 {
336         return pool->sectors_per_block_shift >= 0;
337 }
338
339 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
340 {
341         return block_size_is_power_of_two(pool) ?
342                 (b << pool->sectors_per_block_shift) :
343                 (b * pool->sectors_per_block);
344 }
345
346 /*----------------------------------------------------------------*/
347
348 struct discard_op {
349         struct thin_c *tc;
350         struct blk_plug plug;
351         struct bio *parent_bio;
352         struct bio *bio;
353 };
354
355 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
356 {
357         BUG_ON(!parent);
358
359         op->tc = tc;
360         blk_start_plug(&op->plug);
361         op->parent_bio = parent;
362         op->bio = NULL;
363 }
364
365 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
366 {
367         struct thin_c *tc = op->tc;
368         sector_t s = block_to_sectors(tc->pool, data_b);
369         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
370
371         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
372                                       GFP_NOWAIT, 0, &op->bio);
373 }
374
375 static void end_discard(struct discard_op *op, int r)
376 {
377         if (op->bio) {
378                 /*
379                  * Even if one of the calls to issue_discard failed, we
380                  * need to wait for the chain to complete.
381                  */
382                 bio_chain(op->bio, op->parent_bio);
383                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
384                 submit_bio(op->bio);
385         }
386
387         blk_finish_plug(&op->plug);
388
389         /*
390          * Even if r is set, there could be sub discards in flight that we
391          * need to wait for.
392          */
393         if (r && !op->parent_bio->bi_error)
394                 op->parent_bio->bi_error = r;
395         bio_endio(op->parent_bio);
396 }
397
398 /*----------------------------------------------------------------*/
399
400 /*
401  * wake_worker() is used when new work is queued and when pool_resume is
402  * ready to continue deferred IO processing.
403  */
404 static void wake_worker(struct pool *pool)
405 {
406         queue_work(pool->wq, &pool->worker);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
412                       struct dm_bio_prison_cell **cell_result)
413 {
414         int r;
415         struct dm_bio_prison_cell *cell_prealloc;
416
417         /*
418          * Allocate a cell from the prison's mempool.
419          * This might block but it can't fail.
420          */
421         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
422
423         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
424         if (r)
425                 /*
426                  * We reused an old cell; we can get rid of
427                  * the new one.
428                  */
429                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
430
431         return r;
432 }
433
434 static void cell_release(struct pool *pool,
435                          struct dm_bio_prison_cell *cell,
436                          struct bio_list *bios)
437 {
438         dm_cell_release(pool->prison, cell, bios);
439         dm_bio_prison_free_cell(pool->prison, cell);
440 }
441
442 static void cell_visit_release(struct pool *pool,
443                                void (*fn)(void *, struct dm_bio_prison_cell *),
444                                void *context,
445                                struct dm_bio_prison_cell *cell)
446 {
447         dm_cell_visit_release(pool->prison, fn, context, cell);
448         dm_bio_prison_free_cell(pool->prison, cell);
449 }
450
451 static void cell_release_no_holder(struct pool *pool,
452                                    struct dm_bio_prison_cell *cell,
453                                    struct bio_list *bios)
454 {
455         dm_cell_release_no_holder(pool->prison, cell, bios);
456         dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static void cell_error_with_code(struct pool *pool,
460                                  struct dm_bio_prison_cell *cell, int error_code)
461 {
462         dm_cell_error(pool->prison, cell, error_code);
463         dm_bio_prison_free_cell(pool->prison, cell);
464 }
465
466 static int get_pool_io_error_code(struct pool *pool)
467 {
468         return pool->out_of_data_space ? -ENOSPC : -EIO;
469 }
470
471 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473         int error = get_pool_io_error_code(pool);
474
475         cell_error_with_code(pool, cell, error);
476 }
477
478 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
479 {
480         cell_error_with_code(pool, cell, 0);
481 }
482
483 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
484 {
485         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
486 }
487
488 /*----------------------------------------------------------------*/
489
490 /*
491  * A global list of pools that uses a struct mapped_device as a key.
492  */
493 static struct dm_thin_pool_table {
494         struct mutex mutex;
495         struct list_head pools;
496 } dm_thin_pool_table;
497
498 static void pool_table_init(void)
499 {
500         mutex_init(&dm_thin_pool_table.mutex);
501         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
502 }
503
504 static void __pool_table_insert(struct pool *pool)
505 {
506         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
507         list_add(&pool->list, &dm_thin_pool_table.pools);
508 }
509
510 static void __pool_table_remove(struct pool *pool)
511 {
512         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
513         list_del(&pool->list);
514 }
515
516 static struct pool *__pool_table_lookup(struct mapped_device *md)
517 {
518         struct pool *pool = NULL, *tmp;
519
520         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
521
522         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
523                 if (tmp->pool_md == md) {
524                         pool = tmp;
525                         break;
526                 }
527         }
528
529         return pool;
530 }
531
532 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
533 {
534         struct pool *pool = NULL, *tmp;
535
536         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
537
538         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
539                 if (tmp->md_dev == md_dev) {
540                         pool = tmp;
541                         break;
542                 }
543         }
544
545         return pool;
546 }
547
548 /*----------------------------------------------------------------*/
549
550 struct dm_thin_endio_hook {
551         struct thin_c *tc;
552         struct dm_deferred_entry *shared_read_entry;
553         struct dm_deferred_entry *all_io_entry;
554         struct dm_thin_new_mapping *overwrite_mapping;
555         struct rb_node rb_node;
556         struct dm_bio_prison_cell *cell;
557 };
558
559 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
560 {
561         bio_list_merge(bios, master);
562         bio_list_init(master);
563 }
564
565 static void error_bio_list(struct bio_list *bios, int error)
566 {
567         struct bio *bio;
568
569         while ((bio = bio_list_pop(bios))) {
570                 bio->bi_error = error;
571                 bio_endio(bio);
572         }
573 }
574
575 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
576 {
577         struct bio_list bios;
578         unsigned long flags;
579
580         bio_list_init(&bios);
581
582         spin_lock_irqsave(&tc->lock, flags);
583         __merge_bio_list(&bios, master);
584         spin_unlock_irqrestore(&tc->lock, flags);
585
586         error_bio_list(&bios, error);
587 }
588
589 static void requeue_deferred_cells(struct thin_c *tc)
590 {
591         struct pool *pool = tc->pool;
592         unsigned long flags;
593         struct list_head cells;
594         struct dm_bio_prison_cell *cell, *tmp;
595
596         INIT_LIST_HEAD(&cells);
597
598         spin_lock_irqsave(&tc->lock, flags);
599         list_splice_init(&tc->deferred_cells, &cells);
600         spin_unlock_irqrestore(&tc->lock, flags);
601
602         list_for_each_entry_safe(cell, tmp, &cells, user_list)
603                 cell_requeue(pool, cell);
604 }
605
606 static void requeue_io(struct thin_c *tc)
607 {
608         struct bio_list bios;
609         unsigned long flags;
610
611         bio_list_init(&bios);
612
613         spin_lock_irqsave(&tc->lock, flags);
614         __merge_bio_list(&bios, &tc->deferred_bio_list);
615         __merge_bio_list(&bios, &tc->retry_on_resume_list);
616         spin_unlock_irqrestore(&tc->lock, flags);
617
618         error_bio_list(&bios, DM_ENDIO_REQUEUE);
619         requeue_deferred_cells(tc);
620 }
621
622 static void error_retry_list_with_code(struct pool *pool, int error)
623 {
624         struct thin_c *tc;
625
626         rcu_read_lock();
627         list_for_each_entry_rcu(tc, &pool->active_thins, list)
628                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
629         rcu_read_unlock();
630 }
631
632 static void error_retry_list(struct pool *pool)
633 {
634         int error = get_pool_io_error_code(pool);
635
636         error_retry_list_with_code(pool, error);
637 }
638
639 /*
640  * This section of code contains the logic for processing a thin device's IO.
641  * Much of the code depends on pool object resources (lists, workqueues, etc)
642  * but most is exclusively called from the thin target rather than the thin-pool
643  * target.
644  */
645
646 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
647 {
648         struct pool *pool = tc->pool;
649         sector_t block_nr = bio->bi_iter.bi_sector;
650
651         if (block_size_is_power_of_two(pool))
652                 block_nr >>= pool->sectors_per_block_shift;
653         else
654                 (void) sector_div(block_nr, pool->sectors_per_block);
655
656         return block_nr;
657 }
658
659 /*
660  * Returns the _complete_ blocks that this bio covers.
661  */
662 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
663                                 dm_block_t *begin, dm_block_t *end)
664 {
665         struct pool *pool = tc->pool;
666         sector_t b = bio->bi_iter.bi_sector;
667         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
668
669         b += pool->sectors_per_block - 1ull; /* so we round up */
670
671         if (block_size_is_power_of_two(pool)) {
672                 b >>= pool->sectors_per_block_shift;
673                 e >>= pool->sectors_per_block_shift;
674         } else {
675                 (void) sector_div(b, pool->sectors_per_block);
676                 (void) sector_div(e, pool->sectors_per_block);
677         }
678
679         if (e < b)
680                 /* Can happen if the bio is within a single block. */
681                 e = b;
682
683         *begin = b;
684         *end = e;
685 }
686
687 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
688 {
689         struct pool *pool = tc->pool;
690         sector_t bi_sector = bio->bi_iter.bi_sector;
691
692         bio->bi_bdev = tc->pool_dev->bdev;
693         if (block_size_is_power_of_two(pool))
694                 bio->bi_iter.bi_sector =
695                         (block << pool->sectors_per_block_shift) |
696                         (bi_sector & (pool->sectors_per_block - 1));
697         else
698                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
699                                  sector_div(bi_sector, pool->sectors_per_block);
700 }
701
702 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
703 {
704         bio->bi_bdev = tc->origin_dev->bdev;
705 }
706
707 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
708 {
709         return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
710                 dm_thin_changed_this_transaction(tc->td);
711 }
712
713 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
714 {
715         struct dm_thin_endio_hook *h;
716
717         if (bio_op(bio) == REQ_OP_DISCARD)
718                 return;
719
720         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
721         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
722 }
723
724 static void issue(struct thin_c *tc, struct bio *bio)
725 {
726         struct pool *pool = tc->pool;
727         unsigned long flags;
728
729         if (!bio_triggers_commit(tc, bio)) {
730                 generic_make_request(bio);
731                 return;
732         }
733
734         /*
735          * Complete bio with an error if earlier I/O caused changes to
736          * the metadata that can't be committed e.g, due to I/O errors
737          * on the metadata device.
738          */
739         if (dm_thin_aborted_changes(tc->td)) {
740                 bio_io_error(bio);
741                 return;
742         }
743
744         /*
745          * Batch together any bios that trigger commits and then issue a
746          * single commit for them in process_deferred_bios().
747          */
748         spin_lock_irqsave(&pool->lock, flags);
749         bio_list_add(&pool->deferred_flush_bios, bio);
750         spin_unlock_irqrestore(&pool->lock, flags);
751 }
752
753 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
754 {
755         remap_to_origin(tc, bio);
756         issue(tc, bio);
757 }
758
759 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
760                             dm_block_t block)
761 {
762         remap(tc, bio, block);
763         issue(tc, bio);
764 }
765
766 /*----------------------------------------------------------------*/
767
768 /*
769  * Bio endio functions.
770  */
771 struct dm_thin_new_mapping {
772         struct list_head list;
773
774         bool pass_discard:1;
775         bool maybe_shared:1;
776
777         /*
778          * Track quiescing, copying and zeroing preparation actions.  When this
779          * counter hits zero the block is prepared and can be inserted into the
780          * btree.
781          */
782         atomic_t prepare_actions;
783
784         int err;
785         struct thin_c *tc;
786         dm_block_t virt_begin, virt_end;
787         dm_block_t data_block;
788         struct dm_bio_prison_cell *cell;
789
790         /*
791          * If the bio covers the whole area of a block then we can avoid
792          * zeroing or copying.  Instead this bio is hooked.  The bio will
793          * still be in the cell, so care has to be taken to avoid issuing
794          * the bio twice.
795          */
796         struct bio *bio;
797         bio_end_io_t *saved_bi_end_io;
798 };
799
800 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
801 {
802         struct pool *pool = m->tc->pool;
803
804         if (atomic_dec_and_test(&m->prepare_actions)) {
805                 list_add_tail(&m->list, &pool->prepared_mappings);
806                 wake_worker(pool);
807         }
808 }
809
810 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
811 {
812         unsigned long flags;
813         struct pool *pool = m->tc->pool;
814
815         spin_lock_irqsave(&pool->lock, flags);
816         __complete_mapping_preparation(m);
817         spin_unlock_irqrestore(&pool->lock, flags);
818 }
819
820 static void copy_complete(int read_err, unsigned long write_err, void *context)
821 {
822         struct dm_thin_new_mapping *m = context;
823
824         m->err = read_err || write_err ? -EIO : 0;
825         complete_mapping_preparation(m);
826 }
827
828 static void overwrite_endio(struct bio *bio)
829 {
830         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
831         struct dm_thin_new_mapping *m = h->overwrite_mapping;
832
833         bio->bi_end_io = m->saved_bi_end_io;
834
835         m->err = bio->bi_error;
836         complete_mapping_preparation(m);
837 }
838
839 /*----------------------------------------------------------------*/
840
841 /*
842  * Workqueue.
843  */
844
845 /*
846  * Prepared mapping jobs.
847  */
848
849 /*
850  * This sends the bios in the cell, except the original holder, back
851  * to the deferred_bios list.
852  */
853 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
854 {
855         struct pool *pool = tc->pool;
856         unsigned long flags;
857
858         spin_lock_irqsave(&tc->lock, flags);
859         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
860         spin_unlock_irqrestore(&tc->lock, flags);
861
862         wake_worker(pool);
863 }
864
865 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
866
867 struct remap_info {
868         struct thin_c *tc;
869         struct bio_list defer_bios;
870         struct bio_list issue_bios;
871 };
872
873 static void __inc_remap_and_issue_cell(void *context,
874                                        struct dm_bio_prison_cell *cell)
875 {
876         struct remap_info *info = context;
877         struct bio *bio;
878
879         while ((bio = bio_list_pop(&cell->bios))) {
880                 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
881                     bio_op(bio) == REQ_OP_DISCARD)
882                         bio_list_add(&info->defer_bios, bio);
883                 else {
884                         inc_all_io_entry(info->tc->pool, bio);
885
886                         /*
887                          * We can't issue the bios with the bio prison lock
888                          * held, so we add them to a list to issue on
889                          * return from this function.
890                          */
891                         bio_list_add(&info->issue_bios, bio);
892                 }
893         }
894 }
895
896 static void inc_remap_and_issue_cell(struct thin_c *tc,
897                                      struct dm_bio_prison_cell *cell,
898                                      dm_block_t block)
899 {
900         struct bio *bio;
901         struct remap_info info;
902
903         info.tc = tc;
904         bio_list_init(&info.defer_bios);
905         bio_list_init(&info.issue_bios);
906
907         /*
908          * We have to be careful to inc any bios we're about to issue
909          * before the cell is released, and avoid a race with new bios
910          * being added to the cell.
911          */
912         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
913                            &info, cell);
914
915         while ((bio = bio_list_pop(&info.defer_bios)))
916                 thin_defer_bio(tc, bio);
917
918         while ((bio = bio_list_pop(&info.issue_bios)))
919                 remap_and_issue(info.tc, bio, block);
920 }
921
922 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
923 {
924         cell_error(m->tc->pool, m->cell);
925         list_del(&m->list);
926         mempool_free(m, m->tc->pool->mapping_pool);
927 }
928
929 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
930 {
931         struct pool *pool = tc->pool;
932         unsigned long flags;
933
934         /*
935          * If the bio has the REQ_FUA flag set we must commit the metadata
936          * before signaling its completion.
937          */
938         if (!bio_triggers_commit(tc, bio)) {
939                 bio_endio(bio);
940                 return;
941         }
942
943         /*
944          * Complete bio with an error if earlier I/O caused changes to the
945          * metadata that can't be committed, e.g, due to I/O errors on the
946          * metadata device.
947          */
948         if (dm_thin_aborted_changes(tc->td)) {
949                 bio_io_error(bio);
950                 return;
951         }
952
953         /*
954          * Batch together any bios that trigger commits and then issue a
955          * single commit for them in process_deferred_bios().
956          */
957         spin_lock_irqsave(&pool->lock, flags);
958         bio_list_add(&pool->deferred_flush_completions, bio);
959         spin_unlock_irqrestore(&pool->lock, flags);
960 }
961
962 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
963 {
964         struct thin_c *tc = m->tc;
965         struct pool *pool = tc->pool;
966         struct bio *bio = m->bio;
967         int r;
968
969         if (m->err) {
970                 cell_error(pool, m->cell);
971                 goto out;
972         }
973
974         /*
975          * Commit the prepared block into the mapping btree.
976          * Any I/O for this block arriving after this point will get
977          * remapped to it directly.
978          */
979         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
980         if (r) {
981                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
982                 cell_error(pool, m->cell);
983                 goto out;
984         }
985
986         /*
987          * Release any bios held while the block was being provisioned.
988          * If we are processing a write bio that completely covers the block,
989          * we already processed it so can ignore it now when processing
990          * the bios in the cell.
991          */
992         if (bio) {
993                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
994                 complete_overwrite_bio(tc, bio);
995         } else {
996                 inc_all_io_entry(tc->pool, m->cell->holder);
997                 remap_and_issue(tc, m->cell->holder, m->data_block);
998                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
999         }
1000
1001 out:
1002         list_del(&m->list);
1003         mempool_free(m, pool->mapping_pool);
1004 }
1005
1006 /*----------------------------------------------------------------*/
1007
1008 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1009 {
1010         struct thin_c *tc = m->tc;
1011         if (m->cell)
1012                 cell_defer_no_holder(tc, m->cell);
1013         mempool_free(m, tc->pool->mapping_pool);
1014 }
1015
1016 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1017 {
1018         bio_io_error(m->bio);
1019         free_discard_mapping(m);
1020 }
1021
1022 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1023 {
1024         bio_endio(m->bio);
1025         free_discard_mapping(m);
1026 }
1027
1028 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1029 {
1030         int r;
1031         struct thin_c *tc = m->tc;
1032
1033         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1034         if (r) {
1035                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1036                 bio_io_error(m->bio);
1037         } else
1038                 bio_endio(m->bio);
1039
1040         cell_defer_no_holder(tc, m->cell);
1041         mempool_free(m, tc->pool->mapping_pool);
1042 }
1043
1044 /*----------------------------------------------------------------*/
1045
1046 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1047                                                    struct bio *discard_parent)
1048 {
1049         /*
1050          * We've already unmapped this range of blocks, but before we
1051          * passdown we have to check that these blocks are now unused.
1052          */
1053         int r = 0;
1054         bool shared = true;
1055         struct thin_c *tc = m->tc;
1056         struct pool *pool = tc->pool;
1057         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1058         struct discard_op op;
1059
1060         begin_discard(&op, tc, discard_parent);
1061         while (b != end) {
1062                 /* find start of unmapped run */
1063                 for (; b < end; b++) {
1064                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1065                         if (r)
1066                                 goto out;
1067
1068                         if (!shared)
1069                                 break;
1070                 }
1071
1072                 if (b == end)
1073                         break;
1074
1075                 /* find end of run */
1076                 for (e = b + 1; e != end; e++) {
1077                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1078                         if (r)
1079                                 goto out;
1080
1081                         if (shared)
1082                                 break;
1083                 }
1084
1085                 r = issue_discard(&op, b, e);
1086                 if (r)
1087                         goto out;
1088
1089                 b = e;
1090         }
1091 out:
1092         end_discard(&op, r);
1093 }
1094
1095 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1096 {
1097         unsigned long flags;
1098         struct pool *pool = m->tc->pool;
1099
1100         spin_lock_irqsave(&pool->lock, flags);
1101         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1102         spin_unlock_irqrestore(&pool->lock, flags);
1103         wake_worker(pool);
1104 }
1105
1106 static void passdown_endio(struct bio *bio)
1107 {
1108         /*
1109          * It doesn't matter if the passdown discard failed, we still want
1110          * to unmap (we ignore err).
1111          */
1112         queue_passdown_pt2(bio->bi_private);
1113         bio_put(bio);
1114 }
1115
1116 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1117 {
1118         int r;
1119         struct thin_c *tc = m->tc;
1120         struct pool *pool = tc->pool;
1121         struct bio *discard_parent;
1122         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1123
1124         /*
1125          * Only this thread allocates blocks, so we can be sure that the
1126          * newly unmapped blocks will not be allocated before the end of
1127          * the function.
1128          */
1129         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1130         if (r) {
1131                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1132                 bio_io_error(m->bio);
1133                 cell_defer_no_holder(tc, m->cell);
1134                 mempool_free(m, pool->mapping_pool);
1135                 return;
1136         }
1137
1138         /*
1139          * Increment the unmapped blocks.  This prevents a race between the
1140          * passdown io and reallocation of freed blocks.
1141          */
1142         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1143         if (r) {
1144                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1145                 bio_io_error(m->bio);
1146                 cell_defer_no_holder(tc, m->cell);
1147                 mempool_free(m, pool->mapping_pool);
1148                 return;
1149         }
1150
1151         discard_parent = bio_alloc(GFP_NOIO, 1);
1152         if (!discard_parent) {
1153                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1154                        dm_device_name(tc->pool->pool_md));
1155                 queue_passdown_pt2(m);
1156
1157         } else {
1158                 discard_parent->bi_end_io = passdown_endio;
1159                 discard_parent->bi_private = m;
1160
1161                 if (m->maybe_shared)
1162                         passdown_double_checking_shared_status(m, discard_parent);
1163                 else {
1164                         struct discard_op op;
1165
1166                         begin_discard(&op, tc, discard_parent);
1167                         r = issue_discard(&op, m->data_block, data_end);
1168                         end_discard(&op, r);
1169                 }
1170         }
1171 }
1172
1173 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1174 {
1175         int r;
1176         struct thin_c *tc = m->tc;
1177         struct pool *pool = tc->pool;
1178
1179         /*
1180          * The passdown has completed, so now we can decrement all those
1181          * unmapped blocks.
1182          */
1183         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1184                                    m->data_block + (m->virt_end - m->virt_begin));
1185         if (r) {
1186                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1187                 bio_io_error(m->bio);
1188         } else
1189                 bio_endio(m->bio);
1190
1191         cell_defer_no_holder(tc, m->cell);
1192         mempool_free(m, pool->mapping_pool);
1193 }
1194
1195 static void process_prepared(struct pool *pool, struct list_head *head,
1196                              process_mapping_fn *fn)
1197 {
1198         unsigned long flags;
1199         struct list_head maps;
1200         struct dm_thin_new_mapping *m, *tmp;
1201
1202         INIT_LIST_HEAD(&maps);
1203         spin_lock_irqsave(&pool->lock, flags);
1204         list_splice_init(head, &maps);
1205         spin_unlock_irqrestore(&pool->lock, flags);
1206
1207         list_for_each_entry_safe(m, tmp, &maps, list)
1208                 (*fn)(m);
1209 }
1210
1211 /*
1212  * Deferred bio jobs.
1213  */
1214 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1215 {
1216         return bio->bi_iter.bi_size ==
1217                 (pool->sectors_per_block << SECTOR_SHIFT);
1218 }
1219
1220 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1221 {
1222         return (bio_data_dir(bio) == WRITE) &&
1223                 io_overlaps_block(pool, bio);
1224 }
1225
1226 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1227                                bio_end_io_t *fn)
1228 {
1229         *save = bio->bi_end_io;
1230         bio->bi_end_io = fn;
1231 }
1232
1233 static int ensure_next_mapping(struct pool *pool)
1234 {
1235         if (pool->next_mapping)
1236                 return 0;
1237
1238         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1239
1240         return pool->next_mapping ? 0 : -ENOMEM;
1241 }
1242
1243 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1244 {
1245         struct dm_thin_new_mapping *m = pool->next_mapping;
1246
1247         BUG_ON(!pool->next_mapping);
1248
1249         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1250         INIT_LIST_HEAD(&m->list);
1251         m->bio = NULL;
1252
1253         pool->next_mapping = NULL;
1254
1255         return m;
1256 }
1257
1258 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1259                     sector_t begin, sector_t end)
1260 {
1261         int r;
1262         struct dm_io_region to;
1263
1264         to.bdev = tc->pool_dev->bdev;
1265         to.sector = begin;
1266         to.count = end - begin;
1267
1268         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1269         if (r < 0) {
1270                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1271                 copy_complete(1, 1, m);
1272         }
1273 }
1274
1275 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1276                                       dm_block_t data_begin,
1277                                       struct dm_thin_new_mapping *m)
1278 {
1279         struct pool *pool = tc->pool;
1280         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1281
1282         h->overwrite_mapping = m;
1283         m->bio = bio;
1284         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1285         inc_all_io_entry(pool, bio);
1286         remap_and_issue(tc, bio, data_begin);
1287 }
1288
1289 /*
1290  * A partial copy also needs to zero the uncopied region.
1291  */
1292 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1293                           struct dm_dev *origin, dm_block_t data_origin,
1294                           dm_block_t data_dest,
1295                           struct dm_bio_prison_cell *cell, struct bio *bio,
1296                           sector_t len)
1297 {
1298         int r;
1299         struct pool *pool = tc->pool;
1300         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1301
1302         m->tc = tc;
1303         m->virt_begin = virt_block;
1304         m->virt_end = virt_block + 1u;
1305         m->data_block = data_dest;
1306         m->cell = cell;
1307
1308         /*
1309          * quiesce action + copy action + an extra reference held for the
1310          * duration of this function (we may need to inc later for a
1311          * partial zero).
1312          */
1313         atomic_set(&m->prepare_actions, 3);
1314
1315         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1316                 complete_mapping_preparation(m); /* already quiesced */
1317
1318         /*
1319          * IO to pool_dev remaps to the pool target's data_dev.
1320          *
1321          * If the whole block of data is being overwritten, we can issue the
1322          * bio immediately. Otherwise we use kcopyd to clone the data first.
1323          */
1324         if (io_overwrites_block(pool, bio))
1325                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1326         else {
1327                 struct dm_io_region from, to;
1328
1329                 from.bdev = origin->bdev;
1330                 from.sector = data_origin * pool->sectors_per_block;
1331                 from.count = len;
1332
1333                 to.bdev = tc->pool_dev->bdev;
1334                 to.sector = data_dest * pool->sectors_per_block;
1335                 to.count = len;
1336
1337                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1338                                    0, copy_complete, m);
1339                 if (r < 0) {
1340                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1341                         copy_complete(1, 1, m);
1342
1343                         /*
1344                          * We allow the zero to be issued, to simplify the
1345                          * error path.  Otherwise we'd need to start
1346                          * worrying about decrementing the prepare_actions
1347                          * counter.
1348                          */
1349                 }
1350
1351                 /*
1352                  * Do we need to zero a tail region?
1353                  */
1354                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1355                         atomic_inc(&m->prepare_actions);
1356                         ll_zero(tc, m,
1357                                 data_dest * pool->sectors_per_block + len,
1358                                 (data_dest + 1) * pool->sectors_per_block);
1359                 }
1360         }
1361
1362         complete_mapping_preparation(m); /* drop our ref */
1363 }
1364
1365 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1366                                    dm_block_t data_origin, dm_block_t data_dest,
1367                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1368 {
1369         schedule_copy(tc, virt_block, tc->pool_dev,
1370                       data_origin, data_dest, cell, bio,
1371                       tc->pool->sectors_per_block);
1372 }
1373
1374 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1375                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1376                           struct bio *bio)
1377 {
1378         struct pool *pool = tc->pool;
1379         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1380
1381         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1382         m->tc = tc;
1383         m->virt_begin = virt_block;
1384         m->virt_end = virt_block + 1u;
1385         m->data_block = data_block;
1386         m->cell = cell;
1387
1388         /*
1389          * If the whole block of data is being overwritten or we are not
1390          * zeroing pre-existing data, we can issue the bio immediately.
1391          * Otherwise we use kcopyd to zero the data first.
1392          */
1393         if (pool->pf.zero_new_blocks) {
1394                 if (io_overwrites_block(pool, bio))
1395                         remap_and_issue_overwrite(tc, bio, data_block, m);
1396                 else
1397                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1398                                 (data_block + 1) * pool->sectors_per_block);
1399         } else
1400                 process_prepared_mapping(m);
1401 }
1402
1403 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1404                                    dm_block_t data_dest,
1405                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1406 {
1407         struct pool *pool = tc->pool;
1408         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1409         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1410
1411         if (virt_block_end <= tc->origin_size)
1412                 schedule_copy(tc, virt_block, tc->origin_dev,
1413                               virt_block, data_dest, cell, bio,
1414                               pool->sectors_per_block);
1415
1416         else if (virt_block_begin < tc->origin_size)
1417                 schedule_copy(tc, virt_block, tc->origin_dev,
1418                               virt_block, data_dest, cell, bio,
1419                               tc->origin_size - virt_block_begin);
1420
1421         else
1422                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1423 }
1424
1425 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1426
1427 static void requeue_bios(struct pool *pool);
1428
1429 static bool is_read_only_pool_mode(enum pool_mode mode)
1430 {
1431         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1432 }
1433
1434 static bool is_read_only(struct pool *pool)
1435 {
1436         return is_read_only_pool_mode(get_pool_mode(pool));
1437 }
1438
1439 static void check_for_metadata_space(struct pool *pool)
1440 {
1441         int r;
1442         const char *ooms_reason = NULL;
1443         dm_block_t nr_free;
1444
1445         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1446         if (r)
1447                 ooms_reason = "Could not get free metadata blocks";
1448         else if (!nr_free)
1449                 ooms_reason = "No free metadata blocks";
1450
1451         if (ooms_reason && !is_read_only(pool)) {
1452                 DMERR("%s", ooms_reason);
1453                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1454         }
1455 }
1456
1457 static void check_for_data_space(struct pool *pool)
1458 {
1459         int r;
1460         dm_block_t nr_free;
1461
1462         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1463                 return;
1464
1465         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1466         if (r)
1467                 return;
1468
1469         if (nr_free) {
1470                 set_pool_mode(pool, PM_WRITE);
1471                 requeue_bios(pool);
1472         }
1473 }
1474
1475 /*
1476  * A non-zero return indicates read_only or fail_io mode.
1477  * Many callers don't care about the return value.
1478  */
1479 static int commit(struct pool *pool)
1480 {
1481         int r;
1482
1483         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1484                 return -EINVAL;
1485
1486         r = dm_pool_commit_metadata(pool->pmd);
1487         if (r)
1488                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1489         else {
1490                 check_for_metadata_space(pool);
1491                 check_for_data_space(pool);
1492         }
1493
1494         return r;
1495 }
1496
1497 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1498 {
1499         unsigned long flags;
1500
1501         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1502                 DMWARN("%s: reached low water mark for data device: sending event.",
1503                        dm_device_name(pool->pool_md));
1504                 spin_lock_irqsave(&pool->lock, flags);
1505                 pool->low_water_triggered = true;
1506                 spin_unlock_irqrestore(&pool->lock, flags);
1507                 dm_table_event(pool->ti->table);
1508         }
1509 }
1510
1511 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1512 {
1513         int r;
1514         dm_block_t free_blocks;
1515         struct pool *pool = tc->pool;
1516
1517         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1518                 return -EINVAL;
1519
1520         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1521         if (r) {
1522                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1523                 return r;
1524         }
1525
1526         check_low_water_mark(pool, free_blocks);
1527
1528         if (!free_blocks) {
1529                 /*
1530                  * Try to commit to see if that will free up some
1531                  * more space.
1532                  */
1533                 r = commit(pool);
1534                 if (r)
1535                         return r;
1536
1537                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1538                 if (r) {
1539                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1540                         return r;
1541                 }
1542
1543                 if (!free_blocks) {
1544                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1545                         return -ENOSPC;
1546                 }
1547         }
1548
1549         r = dm_pool_alloc_data_block(pool->pmd, result);
1550         if (r) {
1551                 if (r == -ENOSPC)
1552                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1553                 else
1554                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1555                 return r;
1556         }
1557
1558         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1559         if (r) {
1560                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1561                 return r;
1562         }
1563
1564         if (!free_blocks) {
1565                 /* Let's commit before we use up the metadata reserve. */
1566                 r = commit(pool);
1567                 if (r)
1568                         return r;
1569         }
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * If we have run out of space, queue bios until the device is
1576  * resumed, presumably after having been reloaded with more space.
1577  */
1578 static void retry_on_resume(struct bio *bio)
1579 {
1580         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1581         struct thin_c *tc = h->tc;
1582         unsigned long flags;
1583
1584         spin_lock_irqsave(&tc->lock, flags);
1585         bio_list_add(&tc->retry_on_resume_list, bio);
1586         spin_unlock_irqrestore(&tc->lock, flags);
1587 }
1588
1589 static int should_error_unserviceable_bio(struct pool *pool)
1590 {
1591         enum pool_mode m = get_pool_mode(pool);
1592
1593         switch (m) {
1594         case PM_WRITE:
1595                 /* Shouldn't get here */
1596                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597                 return -EIO;
1598
1599         case PM_OUT_OF_DATA_SPACE:
1600                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1601
1602         case PM_OUT_OF_METADATA_SPACE:
1603         case PM_READ_ONLY:
1604         case PM_FAIL:
1605                 return -EIO;
1606         default:
1607                 /* Shouldn't get here */
1608                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609                 return -EIO;
1610         }
1611 }
1612
1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614 {
1615         int error = should_error_unserviceable_bio(pool);
1616
1617         if (error) {
1618                 bio->bi_error = error;
1619                 bio_endio(bio);
1620         } else
1621                 retry_on_resume(bio);
1622 }
1623
1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625 {
1626         struct bio *bio;
1627         struct bio_list bios;
1628         int error;
1629
1630         error = should_error_unserviceable_bio(pool);
1631         if (error) {
1632                 cell_error_with_code(pool, cell, error);
1633                 return;
1634         }
1635
1636         bio_list_init(&bios);
1637         cell_release(pool, cell, &bios);
1638
1639         while ((bio = bio_list_pop(&bios)))
1640                 retry_on_resume(bio);
1641 }
1642
1643 static void process_discard_cell_no_passdown(struct thin_c *tc,
1644                                              struct dm_bio_prison_cell *virt_cell)
1645 {
1646         struct pool *pool = tc->pool;
1647         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649         /*
1650          * We don't need to lock the data blocks, since there's no
1651          * passdown.  We only lock data blocks for allocation and breaking sharing.
1652          */
1653         m->tc = tc;
1654         m->virt_begin = virt_cell->key.block_begin;
1655         m->virt_end = virt_cell->key.block_end;
1656         m->cell = virt_cell;
1657         m->bio = virt_cell->holder;
1658
1659         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660                 pool->process_prepared_discard(m);
1661 }
1662
1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664                                  struct bio *bio)
1665 {
1666         struct pool *pool = tc->pool;
1667
1668         int r;
1669         bool maybe_shared;
1670         struct dm_cell_key data_key;
1671         struct dm_bio_prison_cell *data_cell;
1672         struct dm_thin_new_mapping *m;
1673         dm_block_t virt_begin, virt_end, data_begin;
1674
1675         while (begin != end) {
1676                 r = ensure_next_mapping(pool);
1677                 if (r)
1678                         /* we did our best */
1679                         return;
1680
1681                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682                                               &data_begin, &maybe_shared);
1683                 if (r)
1684                         /*
1685                          * Silently fail, letting any mappings we've
1686                          * created complete.
1687                          */
1688                         break;
1689
1690                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692                         /* contention, we'll give up with this range */
1693                         begin = virt_end;
1694                         continue;
1695                 }
1696
1697                 /*
1698                  * IO may still be going to the destination block.  We must
1699                  * quiesce before we can do the removal.
1700                  */
1701                 m = get_next_mapping(pool);
1702                 m->tc = tc;
1703                 m->maybe_shared = maybe_shared;
1704                 m->virt_begin = virt_begin;
1705                 m->virt_end = virt_end;
1706                 m->data_block = data_begin;
1707                 m->cell = data_cell;
1708                 m->bio = bio;
1709
1710                 /*
1711                  * The parent bio must not complete before sub discard bios are
1712                  * chained to it (see end_discard's bio_chain)!
1713                  *
1714                  * This per-mapping bi_remaining increment is paired with
1715                  * the implicit decrement that occurs via bio_endio() in
1716                  * end_discard().
1717                  */
1718                 bio_inc_remaining(bio);
1719                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720                         pool->process_prepared_discard(m);
1721
1722                 begin = virt_end;
1723         }
1724 }
1725
1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727 {
1728         struct bio *bio = virt_cell->holder;
1729         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731         /*
1732          * The virt_cell will only get freed once the origin bio completes.
1733          * This means it will remain locked while all the individual
1734          * passdown bios are in flight.
1735          */
1736         h->cell = virt_cell;
1737         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739         /*
1740          * We complete the bio now, knowing that the bi_remaining field
1741          * will prevent completion until the sub range discards have
1742          * completed.
1743          */
1744         bio_endio(bio);
1745 }
1746
1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748 {
1749         dm_block_t begin, end;
1750         struct dm_cell_key virt_key;
1751         struct dm_bio_prison_cell *virt_cell;
1752
1753         get_bio_block_range(tc, bio, &begin, &end);
1754         if (begin == end) {
1755                 /*
1756                  * The discard covers less than a block.
1757                  */
1758                 bio_endio(bio);
1759                 return;
1760         }
1761
1762         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764                 /*
1765                  * Potential starvation issue: We're relying on the
1766                  * fs/application being well behaved, and not trying to
1767                  * send IO to a region at the same time as discarding it.
1768                  * If they do this persistently then it's possible this
1769                  * cell will never be granted.
1770                  */
1771                 return;
1772
1773         tc->pool->process_discard_cell(tc, virt_cell);
1774 }
1775
1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777                           struct dm_cell_key *key,
1778                           struct dm_thin_lookup_result *lookup_result,
1779                           struct dm_bio_prison_cell *cell)
1780 {
1781         int r;
1782         dm_block_t data_block;
1783         struct pool *pool = tc->pool;
1784
1785         r = alloc_data_block(tc, &data_block);
1786         switch (r) {
1787         case 0:
1788                 schedule_internal_copy(tc, block, lookup_result->block,
1789                                        data_block, cell, bio);
1790                 break;
1791
1792         case -ENOSPC:
1793                 retry_bios_on_resume(pool, cell);
1794                 break;
1795
1796         default:
1797                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798                             __func__, r);
1799                 cell_error(pool, cell);
1800                 break;
1801         }
1802 }
1803
1804 static void __remap_and_issue_shared_cell(void *context,
1805                                           struct dm_bio_prison_cell *cell)
1806 {
1807         struct remap_info *info = context;
1808         struct bio *bio;
1809
1810         while ((bio = bio_list_pop(&cell->bios))) {
1811                 if ((bio_data_dir(bio) == WRITE) ||
1812                     (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1813                      bio_op(bio) == REQ_OP_DISCARD))
1814                         bio_list_add(&info->defer_bios, bio);
1815                 else {
1816                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1817
1818                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1819                         inc_all_io_entry(info->tc->pool, bio);
1820                         bio_list_add(&info->issue_bios, bio);
1821                 }
1822         }
1823 }
1824
1825 static void remap_and_issue_shared_cell(struct thin_c *tc,
1826                                         struct dm_bio_prison_cell *cell,
1827                                         dm_block_t block)
1828 {
1829         struct bio *bio;
1830         struct remap_info info;
1831
1832         info.tc = tc;
1833         bio_list_init(&info.defer_bios);
1834         bio_list_init(&info.issue_bios);
1835
1836         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1837                            &info, cell);
1838
1839         while ((bio = bio_list_pop(&info.defer_bios)))
1840                 thin_defer_bio(tc, bio);
1841
1842         while ((bio = bio_list_pop(&info.issue_bios)))
1843                 remap_and_issue(tc, bio, block);
1844 }
1845
1846 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1847                                dm_block_t block,
1848                                struct dm_thin_lookup_result *lookup_result,
1849                                struct dm_bio_prison_cell *virt_cell)
1850 {
1851         struct dm_bio_prison_cell *data_cell;
1852         struct pool *pool = tc->pool;
1853         struct dm_cell_key key;
1854
1855         /*
1856          * If cell is already occupied, then sharing is already in the process
1857          * of being broken so we have nothing further to do here.
1858          */
1859         build_data_key(tc->td, lookup_result->block, &key);
1860         if (bio_detain(pool, &key, bio, &data_cell)) {
1861                 cell_defer_no_holder(tc, virt_cell);
1862                 return;
1863         }
1864
1865         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1866                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1867                 cell_defer_no_holder(tc, virt_cell);
1868         } else {
1869                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1870
1871                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1872                 inc_all_io_entry(pool, bio);
1873                 remap_and_issue(tc, bio, lookup_result->block);
1874
1875                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1876                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1877         }
1878 }
1879
1880 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1881                             struct dm_bio_prison_cell *cell)
1882 {
1883         int r;
1884         dm_block_t data_block;
1885         struct pool *pool = tc->pool;
1886
1887         /*
1888          * Remap empty bios (flushes) immediately, without provisioning.
1889          */
1890         if (!bio->bi_iter.bi_size) {
1891                 inc_all_io_entry(pool, bio);
1892                 cell_defer_no_holder(tc, cell);
1893
1894                 remap_and_issue(tc, bio, 0);
1895                 return;
1896         }
1897
1898         /*
1899          * Fill read bios with zeroes and complete them immediately.
1900          */
1901         if (bio_data_dir(bio) == READ) {
1902                 zero_fill_bio(bio);
1903                 cell_defer_no_holder(tc, cell);
1904                 bio_endio(bio);
1905                 return;
1906         }
1907
1908         r = alloc_data_block(tc, &data_block);
1909         switch (r) {
1910         case 0:
1911                 if (tc->origin_dev)
1912                         schedule_external_copy(tc, block, data_block, cell, bio);
1913                 else
1914                         schedule_zero(tc, block, data_block, cell, bio);
1915                 break;
1916
1917         case -ENOSPC:
1918                 retry_bios_on_resume(pool, cell);
1919                 break;
1920
1921         default:
1922                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1923                             __func__, r);
1924                 cell_error(pool, cell);
1925                 break;
1926         }
1927 }
1928
1929 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1930 {
1931         int r;
1932         struct pool *pool = tc->pool;
1933         struct bio *bio = cell->holder;
1934         dm_block_t block = get_bio_block(tc, bio);
1935         struct dm_thin_lookup_result lookup_result;
1936
1937         if (tc->requeue_mode) {
1938                 cell_requeue(pool, cell);
1939                 return;
1940         }
1941
1942         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1943         switch (r) {
1944         case 0:
1945                 if (lookup_result.shared)
1946                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1947                 else {
1948                         inc_all_io_entry(pool, bio);
1949                         remap_and_issue(tc, bio, lookup_result.block);
1950                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1951                 }
1952                 break;
1953
1954         case -ENODATA:
1955                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1956                         inc_all_io_entry(pool, bio);
1957                         cell_defer_no_holder(tc, cell);
1958
1959                         if (bio_end_sector(bio) <= tc->origin_size)
1960                                 remap_to_origin_and_issue(tc, bio);
1961
1962                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1963                                 zero_fill_bio(bio);
1964                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1965                                 remap_to_origin_and_issue(tc, bio);
1966
1967                         } else {
1968                                 zero_fill_bio(bio);
1969                                 bio_endio(bio);
1970                         }
1971                 } else
1972                         provision_block(tc, bio, block, cell);
1973                 break;
1974
1975         default:
1976                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1977                             __func__, r);
1978                 cell_defer_no_holder(tc, cell);
1979                 bio_io_error(bio);
1980                 break;
1981         }
1982 }
1983
1984 static void process_bio(struct thin_c *tc, struct bio *bio)
1985 {
1986         struct pool *pool = tc->pool;
1987         dm_block_t block = get_bio_block(tc, bio);
1988         struct dm_bio_prison_cell *cell;
1989         struct dm_cell_key key;
1990
1991         /*
1992          * If cell is already occupied, then the block is already
1993          * being provisioned so we have nothing further to do here.
1994          */
1995         build_virtual_key(tc->td, block, &key);
1996         if (bio_detain(pool, &key, bio, &cell))
1997                 return;
1998
1999         process_cell(tc, cell);
2000 }
2001
2002 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2003                                     struct dm_bio_prison_cell *cell)
2004 {
2005         int r;
2006         int rw = bio_data_dir(bio);
2007         dm_block_t block = get_bio_block(tc, bio);
2008         struct dm_thin_lookup_result lookup_result;
2009
2010         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2011         switch (r) {
2012         case 0:
2013                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2014                         handle_unserviceable_bio(tc->pool, bio);
2015                         if (cell)
2016                                 cell_defer_no_holder(tc, cell);
2017                 } else {
2018                         inc_all_io_entry(tc->pool, bio);
2019                         remap_and_issue(tc, bio, lookup_result.block);
2020                         if (cell)
2021                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2022                 }
2023                 break;
2024
2025         case -ENODATA:
2026                 if (cell)
2027                         cell_defer_no_holder(tc, cell);
2028                 if (rw != READ) {
2029                         handle_unserviceable_bio(tc->pool, bio);
2030                         break;
2031                 }
2032
2033                 if (tc->origin_dev) {
2034                         inc_all_io_entry(tc->pool, bio);
2035                         remap_to_origin_and_issue(tc, bio);
2036                         break;
2037                 }
2038
2039                 zero_fill_bio(bio);
2040                 bio_endio(bio);
2041                 break;
2042
2043         default:
2044                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2045                             __func__, r);
2046                 if (cell)
2047                         cell_defer_no_holder(tc, cell);
2048                 bio_io_error(bio);
2049                 break;
2050         }
2051 }
2052
2053 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2054 {
2055         __process_bio_read_only(tc, bio, NULL);
2056 }
2057
2058 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2059 {
2060         __process_bio_read_only(tc, cell->holder, cell);
2061 }
2062
2063 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2064 {
2065         bio_endio(bio);
2066 }
2067
2068 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2069 {
2070         bio_io_error(bio);
2071 }
2072
2073 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2074 {
2075         cell_success(tc->pool, cell);
2076 }
2077
2078 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2079 {
2080         cell_error(tc->pool, cell);
2081 }
2082
2083 /*
2084  * FIXME: should we also commit due to size of transaction, measured in
2085  * metadata blocks?
2086  */
2087 static int need_commit_due_to_time(struct pool *pool)
2088 {
2089         return !time_in_range(jiffies, pool->last_commit_jiffies,
2090                               pool->last_commit_jiffies + COMMIT_PERIOD);
2091 }
2092
2093 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2094 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2095
2096 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2097 {
2098         struct rb_node **rbp, *parent;
2099         struct dm_thin_endio_hook *pbd;
2100         sector_t bi_sector = bio->bi_iter.bi_sector;
2101
2102         rbp = &tc->sort_bio_list.rb_node;
2103         parent = NULL;
2104         while (*rbp) {
2105                 parent = *rbp;
2106                 pbd = thin_pbd(parent);
2107
2108                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2109                         rbp = &(*rbp)->rb_left;
2110                 else
2111                         rbp = &(*rbp)->rb_right;
2112         }
2113
2114         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2115         rb_link_node(&pbd->rb_node, parent, rbp);
2116         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2117 }
2118
2119 static void __extract_sorted_bios(struct thin_c *tc)
2120 {
2121         struct rb_node *node;
2122         struct dm_thin_endio_hook *pbd;
2123         struct bio *bio;
2124
2125         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2126                 pbd = thin_pbd(node);
2127                 bio = thin_bio(pbd);
2128
2129                 bio_list_add(&tc->deferred_bio_list, bio);
2130                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2131         }
2132
2133         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2134 }
2135
2136 static void __sort_thin_deferred_bios(struct thin_c *tc)
2137 {
2138         struct bio *bio;
2139         struct bio_list bios;
2140
2141         bio_list_init(&bios);
2142         bio_list_merge(&bios, &tc->deferred_bio_list);
2143         bio_list_init(&tc->deferred_bio_list);
2144
2145         /* Sort deferred_bio_list using rb-tree */
2146         while ((bio = bio_list_pop(&bios)))
2147                 __thin_bio_rb_add(tc, bio);
2148
2149         /*
2150          * Transfer the sorted bios in sort_bio_list back to
2151          * deferred_bio_list to allow lockless submission of
2152          * all bios.
2153          */
2154         __extract_sorted_bios(tc);
2155 }
2156
2157 static void process_thin_deferred_bios(struct thin_c *tc)
2158 {
2159         struct pool *pool = tc->pool;
2160         unsigned long flags;
2161         struct bio *bio;
2162         struct bio_list bios;
2163         struct blk_plug plug;
2164         unsigned count = 0;
2165
2166         if (tc->requeue_mode) {
2167                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2168                 return;
2169         }
2170
2171         bio_list_init(&bios);
2172
2173         spin_lock_irqsave(&tc->lock, flags);
2174
2175         if (bio_list_empty(&tc->deferred_bio_list)) {
2176                 spin_unlock_irqrestore(&tc->lock, flags);
2177                 return;
2178         }
2179
2180         __sort_thin_deferred_bios(tc);
2181
2182         bio_list_merge(&bios, &tc->deferred_bio_list);
2183         bio_list_init(&tc->deferred_bio_list);
2184
2185         spin_unlock_irqrestore(&tc->lock, flags);
2186
2187         blk_start_plug(&plug);
2188         while ((bio = bio_list_pop(&bios))) {
2189                 /*
2190                  * If we've got no free new_mapping structs, and processing
2191                  * this bio might require one, we pause until there are some
2192                  * prepared mappings to process.
2193                  */
2194                 if (ensure_next_mapping(pool)) {
2195                         spin_lock_irqsave(&tc->lock, flags);
2196                         bio_list_add(&tc->deferred_bio_list, bio);
2197                         bio_list_merge(&tc->deferred_bio_list, &bios);
2198                         spin_unlock_irqrestore(&tc->lock, flags);
2199                         break;
2200                 }
2201
2202                 if (bio_op(bio) == REQ_OP_DISCARD)
2203                         pool->process_discard(tc, bio);
2204                 else
2205                         pool->process_bio(tc, bio);
2206
2207                 if ((count++ & 127) == 0) {
2208                         throttle_work_update(&pool->throttle);
2209                         dm_pool_issue_prefetches(pool->pmd);
2210                 }
2211         }
2212         blk_finish_plug(&plug);
2213 }
2214
2215 static int cmp_cells(const void *lhs, const void *rhs)
2216 {
2217         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2218         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2219
2220         BUG_ON(!lhs_cell->holder);
2221         BUG_ON(!rhs_cell->holder);
2222
2223         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2224                 return -1;
2225
2226         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2227                 return 1;
2228
2229         return 0;
2230 }
2231
2232 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2233 {
2234         unsigned count = 0;
2235         struct dm_bio_prison_cell *cell, *tmp;
2236
2237         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2238                 if (count >= CELL_SORT_ARRAY_SIZE)
2239                         break;
2240
2241                 pool->cell_sort_array[count++] = cell;
2242                 list_del(&cell->user_list);
2243         }
2244
2245         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2246
2247         return count;
2248 }
2249
2250 static void process_thin_deferred_cells(struct thin_c *tc)
2251 {
2252         struct pool *pool = tc->pool;
2253         unsigned long flags;
2254         struct list_head cells;
2255         struct dm_bio_prison_cell *cell;
2256         unsigned i, j, count;
2257
2258         INIT_LIST_HEAD(&cells);
2259
2260         spin_lock_irqsave(&tc->lock, flags);
2261         list_splice_init(&tc->deferred_cells, &cells);
2262         spin_unlock_irqrestore(&tc->lock, flags);
2263
2264         if (list_empty(&cells))
2265                 return;
2266
2267         do {
2268                 count = sort_cells(tc->pool, &cells);
2269
2270                 for (i = 0; i < count; i++) {
2271                         cell = pool->cell_sort_array[i];
2272                         BUG_ON(!cell->holder);
2273
2274                         /*
2275                          * If we've got no free new_mapping structs, and processing
2276                          * this bio might require one, we pause until there are some
2277                          * prepared mappings to process.
2278                          */
2279                         if (ensure_next_mapping(pool)) {
2280                                 for (j = i; j < count; j++)
2281                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2282
2283                                 spin_lock_irqsave(&tc->lock, flags);
2284                                 list_splice(&cells, &tc->deferred_cells);
2285                                 spin_unlock_irqrestore(&tc->lock, flags);
2286                                 return;
2287                         }
2288
2289                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2290                                 pool->process_discard_cell(tc, cell);
2291                         else
2292                                 pool->process_cell(tc, cell);
2293                 }
2294         } while (!list_empty(&cells));
2295 }
2296
2297 static void thin_get(struct thin_c *tc);
2298 static void thin_put(struct thin_c *tc);
2299
2300 /*
2301  * We can't hold rcu_read_lock() around code that can block.  So we
2302  * find a thin with the rcu lock held; bump a refcount; then drop
2303  * the lock.
2304  */
2305 static struct thin_c *get_first_thin(struct pool *pool)
2306 {
2307         struct thin_c *tc = NULL;
2308
2309         rcu_read_lock();
2310         if (!list_empty(&pool->active_thins)) {
2311                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2312                 thin_get(tc);
2313         }
2314         rcu_read_unlock();
2315
2316         return tc;
2317 }
2318
2319 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2320 {
2321         struct thin_c *old_tc = tc;
2322
2323         rcu_read_lock();
2324         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2325                 thin_get(tc);
2326                 thin_put(old_tc);
2327                 rcu_read_unlock();
2328                 return tc;
2329         }
2330         thin_put(old_tc);
2331         rcu_read_unlock();
2332
2333         return NULL;
2334 }
2335
2336 static void process_deferred_bios(struct pool *pool)
2337 {
2338         unsigned long flags;
2339         struct bio *bio;
2340         struct bio_list bios, bio_completions;
2341         struct thin_c *tc;
2342
2343         tc = get_first_thin(pool);
2344         while (tc) {
2345                 process_thin_deferred_cells(tc);
2346                 process_thin_deferred_bios(tc);
2347                 tc = get_next_thin(pool, tc);
2348         }
2349
2350         /*
2351          * If there are any deferred flush bios, we must commit the metadata
2352          * before issuing them or signaling their completion.
2353          */
2354         bio_list_init(&bios);
2355         bio_list_init(&bio_completions);
2356
2357         spin_lock_irqsave(&pool->lock, flags);
2358         bio_list_merge(&bios, &pool->deferred_flush_bios);
2359         bio_list_init(&pool->deferred_flush_bios);
2360
2361         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2362         bio_list_init(&pool->deferred_flush_completions);
2363         spin_unlock_irqrestore(&pool->lock, flags);
2364
2365         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2366             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2367                 return;
2368
2369         if (commit(pool)) {
2370                 bio_list_merge(&bios, &bio_completions);
2371
2372                 while ((bio = bio_list_pop(&bios)))
2373                         bio_io_error(bio);
2374                 return;
2375         }
2376         pool->last_commit_jiffies = jiffies;
2377
2378         while ((bio = bio_list_pop(&bio_completions)))
2379                 bio_endio(bio);
2380
2381         while ((bio = bio_list_pop(&bios)))
2382                 generic_make_request(bio);
2383 }
2384
2385 static void do_worker(struct work_struct *ws)
2386 {
2387         struct pool *pool = container_of(ws, struct pool, worker);
2388
2389         throttle_work_start(&pool->throttle);
2390         dm_pool_issue_prefetches(pool->pmd);
2391         throttle_work_update(&pool->throttle);
2392         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2393         throttle_work_update(&pool->throttle);
2394         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2395         throttle_work_update(&pool->throttle);
2396         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2397         throttle_work_update(&pool->throttle);
2398         process_deferred_bios(pool);
2399         throttle_work_complete(&pool->throttle);
2400 }
2401
2402 /*
2403  * We want to commit periodically so that not too much
2404  * unwritten data builds up.
2405  */
2406 static void do_waker(struct work_struct *ws)
2407 {
2408         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2409         wake_worker(pool);
2410         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2411 }
2412
2413 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2414
2415 /*
2416  * We're holding onto IO to allow userland time to react.  After the
2417  * timeout either the pool will have been resized (and thus back in
2418  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2419  */
2420 static void do_no_space_timeout(struct work_struct *ws)
2421 {
2422         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2423                                          no_space_timeout);
2424
2425         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2426                 pool->pf.error_if_no_space = true;
2427                 notify_of_pool_mode_change_to_oods(pool);
2428                 error_retry_list_with_code(pool, -ENOSPC);
2429         }
2430 }
2431
2432 /*----------------------------------------------------------------*/
2433
2434 struct pool_work {
2435         struct work_struct worker;
2436         struct completion complete;
2437 };
2438
2439 static struct pool_work *to_pool_work(struct work_struct *ws)
2440 {
2441         return container_of(ws, struct pool_work, worker);
2442 }
2443
2444 static void pool_work_complete(struct pool_work *pw)
2445 {
2446         complete(&pw->complete);
2447 }
2448
2449 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2450                            void (*fn)(struct work_struct *))
2451 {
2452         INIT_WORK_ONSTACK(&pw->worker, fn);
2453         init_completion(&pw->complete);
2454         queue_work(pool->wq, &pw->worker);
2455         wait_for_completion(&pw->complete);
2456 }
2457
2458 /*----------------------------------------------------------------*/
2459
2460 struct noflush_work {
2461         struct pool_work pw;
2462         struct thin_c *tc;
2463 };
2464
2465 static struct noflush_work *to_noflush(struct work_struct *ws)
2466 {
2467         return container_of(to_pool_work(ws), struct noflush_work, pw);
2468 }
2469
2470 static void do_noflush_start(struct work_struct *ws)
2471 {
2472         struct noflush_work *w = to_noflush(ws);
2473         w->tc->requeue_mode = true;
2474         requeue_io(w->tc);
2475         pool_work_complete(&w->pw);
2476 }
2477
2478 static void do_noflush_stop(struct work_struct *ws)
2479 {
2480         struct noflush_work *w = to_noflush(ws);
2481         w->tc->requeue_mode = false;
2482         pool_work_complete(&w->pw);
2483 }
2484
2485 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2486 {
2487         struct noflush_work w;
2488
2489         w.tc = tc;
2490         pool_work_wait(&w.pw, tc->pool, fn);
2491 }
2492
2493 /*----------------------------------------------------------------*/
2494
2495 static enum pool_mode get_pool_mode(struct pool *pool)
2496 {
2497         return pool->pf.mode;
2498 }
2499
2500 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2501 {
2502         dm_table_event(pool->ti->table);
2503         DMINFO("%s: switching pool to %s mode",
2504                dm_device_name(pool->pool_md), new_mode);
2505 }
2506
2507 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2508 {
2509         if (!pool->pf.error_if_no_space)
2510                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2511         else
2512                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2513 }
2514
2515 static bool passdown_enabled(struct pool_c *pt)
2516 {
2517         return pt->adjusted_pf.discard_passdown;
2518 }
2519
2520 static void set_discard_callbacks(struct pool *pool)
2521 {
2522         struct pool_c *pt = pool->ti->private;
2523
2524         if (passdown_enabled(pt)) {
2525                 pool->process_discard_cell = process_discard_cell_passdown;
2526                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2527                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2528         } else {
2529                 pool->process_discard_cell = process_discard_cell_no_passdown;
2530                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2531         }
2532 }
2533
2534 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2535 {
2536         struct pool_c *pt = pool->ti->private;
2537         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2538         enum pool_mode old_mode = get_pool_mode(pool);
2539         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2540
2541         /*
2542          * Never allow the pool to transition to PM_WRITE mode if user
2543          * intervention is required to verify metadata and data consistency.
2544          */
2545         if (new_mode == PM_WRITE && needs_check) {
2546                 DMERR("%s: unable to switch pool to write mode until repaired.",
2547                       dm_device_name(pool->pool_md));
2548                 if (old_mode != new_mode)
2549                         new_mode = old_mode;
2550                 else
2551                         new_mode = PM_READ_ONLY;
2552         }
2553         /*
2554          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2555          * not going to recover without a thin_repair.  So we never let the
2556          * pool move out of the old mode.
2557          */
2558         if (old_mode == PM_FAIL)
2559                 new_mode = old_mode;
2560
2561         switch (new_mode) {
2562         case PM_FAIL:
2563                 if (old_mode != new_mode)
2564                         notify_of_pool_mode_change(pool, "failure");
2565                 dm_pool_metadata_read_only(pool->pmd);
2566                 pool->process_bio = process_bio_fail;
2567                 pool->process_discard = process_bio_fail;
2568                 pool->process_cell = process_cell_fail;
2569                 pool->process_discard_cell = process_cell_fail;
2570                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2571                 pool->process_prepared_discard = process_prepared_discard_fail;
2572
2573                 error_retry_list(pool);
2574                 break;
2575
2576         case PM_OUT_OF_METADATA_SPACE:
2577         case PM_READ_ONLY:
2578                 if (!is_read_only_pool_mode(old_mode))
2579                         notify_of_pool_mode_change(pool, "read-only");
2580                 dm_pool_metadata_read_only(pool->pmd);
2581                 pool->process_bio = process_bio_read_only;
2582                 pool->process_discard = process_bio_success;
2583                 pool->process_cell = process_cell_read_only;
2584                 pool->process_discard_cell = process_cell_success;
2585                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2586                 pool->process_prepared_discard = process_prepared_discard_success;
2587
2588                 error_retry_list(pool);
2589                 break;
2590
2591         case PM_OUT_OF_DATA_SPACE:
2592                 /*
2593                  * Ideally we'd never hit this state; the low water mark
2594                  * would trigger userland to extend the pool before we
2595                  * completely run out of data space.  However, many small
2596                  * IOs to unprovisioned space can consume data space at an
2597                  * alarming rate.  Adjust your low water mark if you're
2598                  * frequently seeing this mode.
2599                  */
2600                 if (old_mode != new_mode)
2601                         notify_of_pool_mode_change_to_oods(pool);
2602                 pool->out_of_data_space = true;
2603                 pool->process_bio = process_bio_read_only;
2604                 pool->process_discard = process_discard_bio;
2605                 pool->process_cell = process_cell_read_only;
2606                 pool->process_prepared_mapping = process_prepared_mapping;
2607                 set_discard_callbacks(pool);
2608
2609                 if (!pool->pf.error_if_no_space && no_space_timeout)
2610                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2611                 break;
2612
2613         case PM_WRITE:
2614                 if (old_mode != new_mode)
2615                         notify_of_pool_mode_change(pool, "write");
2616                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2617                         cancel_delayed_work_sync(&pool->no_space_timeout);
2618                 pool->out_of_data_space = false;
2619                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620                 dm_pool_metadata_read_write(pool->pmd);
2621                 pool->process_bio = process_bio;
2622                 pool->process_discard = process_discard_bio;
2623                 pool->process_cell = process_cell;
2624                 pool->process_prepared_mapping = process_prepared_mapping;
2625                 set_discard_callbacks(pool);
2626                 break;
2627         }
2628
2629         pool->pf.mode = new_mode;
2630         /*
2631          * The pool mode may have changed, sync it so bind_control_target()
2632          * doesn't cause an unexpected mode transition on resume.
2633          */
2634         pt->adjusted_pf.mode = new_mode;
2635 }
2636
2637 static void abort_transaction(struct pool *pool)
2638 {
2639         const char *dev_name = dm_device_name(pool->pool_md);
2640
2641         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2642         if (dm_pool_abort_metadata(pool->pmd)) {
2643                 DMERR("%s: failed to abort metadata transaction", dev_name);
2644                 set_pool_mode(pool, PM_FAIL);
2645         }
2646
2647         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2648                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2649                 set_pool_mode(pool, PM_FAIL);
2650         }
2651 }
2652
2653 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2654 {
2655         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2656                     dm_device_name(pool->pool_md), op, r);
2657
2658         abort_transaction(pool);
2659         set_pool_mode(pool, PM_READ_ONLY);
2660 }
2661
2662 /*----------------------------------------------------------------*/
2663
2664 /*
2665  * Mapping functions.
2666  */
2667
2668 /*
2669  * Called only while mapping a thin bio to hand it over to the workqueue.
2670  */
2671 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2672 {
2673         unsigned long flags;
2674         struct pool *pool = tc->pool;
2675
2676         spin_lock_irqsave(&tc->lock, flags);
2677         bio_list_add(&tc->deferred_bio_list, bio);
2678         spin_unlock_irqrestore(&tc->lock, flags);
2679
2680         wake_worker(pool);
2681 }
2682
2683 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2684 {
2685         struct pool *pool = tc->pool;
2686
2687         throttle_lock(&pool->throttle);
2688         thin_defer_bio(tc, bio);
2689         throttle_unlock(&pool->throttle);
2690 }
2691
2692 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2693 {
2694         unsigned long flags;
2695         struct pool *pool = tc->pool;
2696
2697         throttle_lock(&pool->throttle);
2698         spin_lock_irqsave(&tc->lock, flags);
2699         list_add_tail(&cell->user_list, &tc->deferred_cells);
2700         spin_unlock_irqrestore(&tc->lock, flags);
2701         throttle_unlock(&pool->throttle);
2702
2703         wake_worker(pool);
2704 }
2705
2706 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2707 {
2708         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2709
2710         h->tc = tc;
2711         h->shared_read_entry = NULL;
2712         h->all_io_entry = NULL;
2713         h->overwrite_mapping = NULL;
2714         h->cell = NULL;
2715 }
2716
2717 /*
2718  * Non-blocking function called from the thin target's map function.
2719  */
2720 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2721 {
2722         int r;
2723         struct thin_c *tc = ti->private;
2724         dm_block_t block = get_bio_block(tc, bio);
2725         struct dm_thin_device *td = tc->td;
2726         struct dm_thin_lookup_result result;
2727         struct dm_bio_prison_cell *virt_cell, *data_cell;
2728         struct dm_cell_key key;
2729
2730         thin_hook_bio(tc, bio);
2731
2732         if (tc->requeue_mode) {
2733                 bio->bi_error = DM_ENDIO_REQUEUE;
2734                 bio_endio(bio);
2735                 return DM_MAPIO_SUBMITTED;
2736         }
2737
2738         if (get_pool_mode(tc->pool) == PM_FAIL) {
2739                 bio_io_error(bio);
2740                 return DM_MAPIO_SUBMITTED;
2741         }
2742
2743         if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2744             bio_op(bio) == REQ_OP_DISCARD) {
2745                 thin_defer_bio_with_throttle(tc, bio);
2746                 return DM_MAPIO_SUBMITTED;
2747         }
2748
2749         /*
2750          * We must hold the virtual cell before doing the lookup, otherwise
2751          * there's a race with discard.
2752          */
2753         build_virtual_key(tc->td, block, &key);
2754         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755                 return DM_MAPIO_SUBMITTED;
2756
2757         r = dm_thin_find_block(td, block, 0, &result);
2758
2759         /*
2760          * Note that we defer readahead too.
2761          */
2762         switch (r) {
2763         case 0:
2764                 if (unlikely(result.shared)) {
2765                         /*
2766                          * We have a race condition here between the
2767                          * result.shared value returned by the lookup and
2768                          * snapshot creation, which may cause new
2769                          * sharing.
2770                          *
2771                          * To avoid this always quiesce the origin before
2772                          * taking the snap.  You want to do this anyway to
2773                          * ensure a consistent application view
2774                          * (i.e. lockfs).
2775                          *
2776                          * More distant ancestors are irrelevant. The
2777                          * shared flag will be set in their case.
2778                          */
2779                         thin_defer_cell(tc, virt_cell);
2780                         return DM_MAPIO_SUBMITTED;
2781                 }
2782
2783                 build_data_key(tc->td, result.block, &key);
2784                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785                         cell_defer_no_holder(tc, virt_cell);
2786                         return DM_MAPIO_SUBMITTED;
2787                 }
2788
2789                 inc_all_io_entry(tc->pool, bio);
2790                 cell_defer_no_holder(tc, data_cell);
2791                 cell_defer_no_holder(tc, virt_cell);
2792
2793                 remap(tc, bio, result.block);
2794                 return DM_MAPIO_REMAPPED;
2795
2796         case -ENODATA:
2797         case -EWOULDBLOCK:
2798                 thin_defer_cell(tc, virt_cell);
2799                 return DM_MAPIO_SUBMITTED;
2800
2801         default:
2802                 /*
2803                  * Must always call bio_io_error on failure.
2804                  * dm_thin_find_block can fail with -EINVAL if the
2805                  * pool is switched to fail-io mode.
2806                  */
2807                 bio_io_error(bio);
2808                 cell_defer_no_holder(tc, virt_cell);
2809                 return DM_MAPIO_SUBMITTED;
2810         }
2811 }
2812
2813 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2814 {
2815         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2816         struct request_queue *q;
2817
2818         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2819                 return 1;
2820
2821         q = bdev_get_queue(pt->data_dev->bdev);
2822         return bdi_congested(&q->backing_dev_info, bdi_bits);
2823 }
2824
2825 static void requeue_bios(struct pool *pool)
2826 {
2827         unsigned long flags;
2828         struct thin_c *tc;
2829
2830         rcu_read_lock();
2831         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2832                 spin_lock_irqsave(&tc->lock, flags);
2833                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2834                 bio_list_init(&tc->retry_on_resume_list);
2835                 spin_unlock_irqrestore(&tc->lock, flags);
2836         }
2837         rcu_read_unlock();
2838 }
2839
2840 /*----------------------------------------------------------------
2841  * Binding of control targets to a pool object
2842  *--------------------------------------------------------------*/
2843 static bool data_dev_supports_discard(struct pool_c *pt)
2844 {
2845         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2846
2847         return q && blk_queue_discard(q);
2848 }
2849
2850 static bool is_factor(sector_t block_size, uint32_t n)
2851 {
2852         return !sector_div(block_size, n);
2853 }
2854
2855 /*
2856  * If discard_passdown was enabled verify that the data device
2857  * supports discards.  Disable discard_passdown if not.
2858  */
2859 static void disable_passdown_if_not_supported(struct pool_c *pt)
2860 {
2861         struct pool *pool = pt->pool;
2862         struct block_device *data_bdev = pt->data_dev->bdev;
2863         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2864         const char *reason = NULL;
2865         char buf[BDEVNAME_SIZE];
2866
2867         if (!pt->adjusted_pf.discard_passdown)
2868                 return;
2869
2870         if (!data_dev_supports_discard(pt))
2871                 reason = "discard unsupported";
2872
2873         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2874                 reason = "max discard sectors smaller than a block";
2875
2876         if (reason) {
2877                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2878                 pt->adjusted_pf.discard_passdown = false;
2879         }
2880 }
2881
2882 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2883 {
2884         struct pool_c *pt = ti->private;
2885
2886         /*
2887          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2888          */
2889         enum pool_mode old_mode = get_pool_mode(pool);
2890         enum pool_mode new_mode = pt->adjusted_pf.mode;
2891
2892         /*
2893          * Don't change the pool's mode until set_pool_mode() below.
2894          * Otherwise the pool's process_* function pointers may
2895          * not match the desired pool mode.
2896          */
2897         pt->adjusted_pf.mode = old_mode;
2898
2899         pool->ti = ti;
2900         pool->pf = pt->adjusted_pf;
2901         pool->low_water_blocks = pt->low_water_blocks;
2902
2903         set_pool_mode(pool, new_mode);
2904
2905         return 0;
2906 }
2907
2908 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2909 {
2910         if (pool->ti == ti)
2911                 pool->ti = NULL;
2912 }
2913
2914 /*----------------------------------------------------------------
2915  * Pool creation
2916  *--------------------------------------------------------------*/
2917 /* Initialize pool features. */
2918 static void pool_features_init(struct pool_features *pf)
2919 {
2920         pf->mode = PM_WRITE;
2921         pf->zero_new_blocks = true;
2922         pf->discard_enabled = true;
2923         pf->discard_passdown = true;
2924         pf->error_if_no_space = false;
2925 }
2926
2927 static void __pool_destroy(struct pool *pool)
2928 {
2929         __pool_table_remove(pool);
2930
2931         vfree(pool->cell_sort_array);
2932         if (dm_pool_metadata_close(pool->pmd) < 0)
2933                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2934
2935         dm_bio_prison_destroy(pool->prison);
2936         dm_kcopyd_client_destroy(pool->copier);
2937
2938         if (pool->wq)
2939                 destroy_workqueue(pool->wq);
2940
2941         if (pool->next_mapping)
2942                 mempool_free(pool->next_mapping, pool->mapping_pool);
2943         mempool_destroy(pool->mapping_pool);
2944         dm_deferred_set_destroy(pool->shared_read_ds);
2945         dm_deferred_set_destroy(pool->all_io_ds);
2946         kfree(pool);
2947 }
2948
2949 static struct kmem_cache *_new_mapping_cache;
2950
2951 static struct pool *pool_create(struct mapped_device *pool_md,
2952                                 struct block_device *metadata_dev,
2953                                 unsigned long block_size,
2954                                 int read_only, char **error)
2955 {
2956         int r;
2957         void *err_p;
2958         struct pool *pool;
2959         struct dm_pool_metadata *pmd;
2960         bool format_device = read_only ? false : true;
2961
2962         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2963         if (IS_ERR(pmd)) {
2964                 *error = "Error creating metadata object";
2965                 return (struct pool *)pmd;
2966         }
2967
2968         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2969         if (!pool) {
2970                 *error = "Error allocating memory for pool";
2971                 err_p = ERR_PTR(-ENOMEM);
2972                 goto bad_pool;
2973         }
2974
2975         pool->pmd = pmd;
2976         pool->sectors_per_block = block_size;
2977         if (block_size & (block_size - 1))
2978                 pool->sectors_per_block_shift = -1;
2979         else
2980                 pool->sectors_per_block_shift = __ffs(block_size);
2981         pool->low_water_blocks = 0;
2982         pool_features_init(&pool->pf);
2983         pool->prison = dm_bio_prison_create();
2984         if (!pool->prison) {
2985                 *error = "Error creating pool's bio prison";
2986                 err_p = ERR_PTR(-ENOMEM);
2987                 goto bad_prison;
2988         }
2989
2990         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2991         if (IS_ERR(pool->copier)) {
2992                 r = PTR_ERR(pool->copier);
2993                 *error = "Error creating pool's kcopyd client";
2994                 err_p = ERR_PTR(r);
2995                 goto bad_kcopyd_client;
2996         }
2997
2998         /*
2999          * Create singlethreaded workqueue that will service all devices
3000          * that use this metadata.
3001          */
3002         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
3003         if (!pool->wq) {
3004                 *error = "Error creating pool's workqueue";
3005                 err_p = ERR_PTR(-ENOMEM);
3006                 goto bad_wq;
3007         }
3008
3009         throttle_init(&pool->throttle);
3010         INIT_WORK(&pool->worker, do_worker);
3011         INIT_DELAYED_WORK(&pool->waker, do_waker);
3012         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3013         spin_lock_init(&pool->lock);
3014         bio_list_init(&pool->deferred_flush_bios);
3015         bio_list_init(&pool->deferred_flush_completions);
3016         INIT_LIST_HEAD(&pool->prepared_mappings);
3017         INIT_LIST_HEAD(&pool->prepared_discards);
3018         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3019         INIT_LIST_HEAD(&pool->active_thins);
3020         pool->low_water_triggered = false;
3021         pool->suspended = true;
3022         pool->out_of_data_space = false;
3023
3024         pool->shared_read_ds = dm_deferred_set_create();
3025         if (!pool->shared_read_ds) {
3026                 *error = "Error creating pool's shared read deferred set";
3027                 err_p = ERR_PTR(-ENOMEM);
3028                 goto bad_shared_read_ds;
3029         }
3030
3031         pool->all_io_ds = dm_deferred_set_create();
3032         if (!pool->all_io_ds) {
3033                 *error = "Error creating pool's all io deferred set";
3034                 err_p = ERR_PTR(-ENOMEM);
3035                 goto bad_all_io_ds;
3036         }
3037
3038         pool->next_mapping = NULL;
3039         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
3040                                                       _new_mapping_cache);
3041         if (!pool->mapping_pool) {
3042                 *error = "Error creating pool's mapping mempool";
3043                 err_p = ERR_PTR(-ENOMEM);
3044                 goto bad_mapping_pool;
3045         }
3046
3047         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
3048         if (!pool->cell_sort_array) {
3049                 *error = "Error allocating cell sort array";
3050                 err_p = ERR_PTR(-ENOMEM);
3051                 goto bad_sort_array;
3052         }
3053
3054         pool->ref_count = 1;
3055         pool->last_commit_jiffies = jiffies;
3056         pool->pool_md = pool_md;
3057         pool->md_dev = metadata_dev;
3058         __pool_table_insert(pool);
3059
3060         return pool;
3061
3062 bad_sort_array:
3063         mempool_destroy(pool->mapping_pool);
3064 bad_mapping_pool:
3065         dm_deferred_set_destroy(pool->all_io_ds);
3066 bad_all_io_ds:
3067         dm_deferred_set_destroy(pool->shared_read_ds);
3068 bad_shared_read_ds:
3069         destroy_workqueue(pool->wq);
3070 bad_wq:
3071         dm_kcopyd_client_destroy(pool->copier);
3072 bad_kcopyd_client:
3073         dm_bio_prison_destroy(pool->prison);
3074 bad_prison:
3075         kfree(pool);
3076 bad_pool:
3077         if (dm_pool_metadata_close(pmd))
3078                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3079
3080         return err_p;
3081 }
3082
3083 static void __pool_inc(struct pool *pool)
3084 {
3085         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3086         pool->ref_count++;
3087 }
3088
3089 static void __pool_dec(struct pool *pool)
3090 {
3091         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3092         BUG_ON(!pool->ref_count);
3093         if (!--pool->ref_count)
3094                 __pool_destroy(pool);
3095 }
3096
3097 static struct pool *__pool_find(struct mapped_device *pool_md,
3098                                 struct block_device *metadata_dev,
3099                                 unsigned long block_size, int read_only,
3100                                 char **error, int *created)
3101 {
3102         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3103
3104         if (pool) {
3105                 if (pool->pool_md != pool_md) {
3106                         *error = "metadata device already in use by a pool";
3107                         return ERR_PTR(-EBUSY);
3108                 }
3109                 __pool_inc(pool);
3110
3111         } else {
3112                 pool = __pool_table_lookup(pool_md);
3113                 if (pool) {
3114                         if (pool->md_dev != metadata_dev) {
3115                                 *error = "different pool cannot replace a pool";
3116                                 return ERR_PTR(-EINVAL);
3117                         }
3118                         __pool_inc(pool);
3119
3120                 } else {
3121                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3122                         *created = 1;
3123                 }
3124         }
3125
3126         return pool;
3127 }
3128
3129 /*----------------------------------------------------------------
3130  * Pool target methods
3131  *--------------------------------------------------------------*/
3132 static void pool_dtr(struct dm_target *ti)
3133 {
3134         struct pool_c *pt = ti->private;
3135
3136         mutex_lock(&dm_thin_pool_table.mutex);
3137
3138         unbind_control_target(pt->pool, ti);
3139         __pool_dec(pt->pool);
3140         dm_put_device(ti, pt->metadata_dev);
3141         dm_put_device(ti, pt->data_dev);
3142         kfree(pt);
3143
3144         mutex_unlock(&dm_thin_pool_table.mutex);
3145 }
3146
3147 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3148                                struct dm_target *ti)
3149 {
3150         int r;
3151         unsigned argc;
3152         const char *arg_name;
3153
3154         static struct dm_arg _args[] = {
3155                 {0, 4, "Invalid number of pool feature arguments"},
3156         };
3157
3158         /*
3159          * No feature arguments supplied.
3160          */
3161         if (!as->argc)
3162                 return 0;
3163
3164         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3165         if (r)
3166                 return -EINVAL;
3167
3168         while (argc && !r) {
3169                 arg_name = dm_shift_arg(as);
3170                 argc--;
3171
3172                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3173                         pf->zero_new_blocks = false;
3174
3175                 else if (!strcasecmp(arg_name, "ignore_discard"))
3176                         pf->discard_enabled = false;
3177
3178                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3179                         pf->discard_passdown = false;
3180
3181                 else if (!strcasecmp(arg_name, "read_only"))
3182                         pf->mode = PM_READ_ONLY;
3183
3184                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3185                         pf->error_if_no_space = true;
3186
3187                 else {
3188                         ti->error = "Unrecognised pool feature requested";
3189                         r = -EINVAL;
3190                         break;
3191                 }
3192         }
3193
3194         return r;
3195 }
3196
3197 static void metadata_low_callback(void *context)
3198 {
3199         struct pool *pool = context;
3200
3201         DMWARN("%s: reached low water mark for metadata device: sending event.",
3202                dm_device_name(pool->pool_md));
3203
3204         dm_table_event(pool->ti->table);
3205 }
3206
3207 static sector_t get_dev_size(struct block_device *bdev)
3208 {
3209         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3210 }
3211
3212 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3213 {
3214         sector_t metadata_dev_size = get_dev_size(bdev);
3215         char buffer[BDEVNAME_SIZE];
3216
3217         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3218                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3219                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3220 }
3221
3222 static sector_t get_metadata_dev_size(struct block_device *bdev)
3223 {
3224         sector_t metadata_dev_size = get_dev_size(bdev);
3225
3226         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3227                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3228
3229         return metadata_dev_size;
3230 }
3231
3232 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3233 {
3234         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3235
3236         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3237
3238         return metadata_dev_size;
3239 }
3240
3241 /*
3242  * When a metadata threshold is crossed a dm event is triggered, and
3243  * userland should respond by growing the metadata device.  We could let
3244  * userland set the threshold, like we do with the data threshold, but I'm
3245  * not sure they know enough to do this well.
3246  */
3247 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3248 {
3249         /*
3250          * 4M is ample for all ops with the possible exception of thin
3251          * device deletion which is harmless if it fails (just retry the
3252          * delete after you've grown the device).
3253          */
3254         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3255         return min((dm_block_t)1024ULL /* 4M */, quarter);
3256 }
3257
3258 /*
3259  * thin-pool <metadata dev> <data dev>
3260  *           <data block size (sectors)>
3261  *           <low water mark (blocks)>
3262  *           [<#feature args> [<arg>]*]
3263  *
3264  * Optional feature arguments are:
3265  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3266  *           ignore_discard: disable discard
3267  *           no_discard_passdown: don't pass discards down to the data device
3268  *           read_only: Don't allow any changes to be made to the pool metadata.
3269  *           error_if_no_space: error IOs, instead of queueing, if no space.
3270  */
3271 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3272 {
3273         int r, pool_created = 0;
3274         struct pool_c *pt;
3275         struct pool *pool;
3276         struct pool_features pf;
3277         struct dm_arg_set as;
3278         struct dm_dev *data_dev;
3279         unsigned long block_size;
3280         dm_block_t low_water_blocks;
3281         struct dm_dev *metadata_dev;
3282         fmode_t metadata_mode;
3283
3284         /*
3285          * FIXME Remove validation from scope of lock.
3286          */
3287         mutex_lock(&dm_thin_pool_table.mutex);
3288
3289         if (argc < 4) {
3290                 ti->error = "Invalid argument count";
3291                 r = -EINVAL;
3292                 goto out_unlock;
3293         }
3294
3295         as.argc = argc;
3296         as.argv = argv;
3297
3298         /* make sure metadata and data are different devices */
3299         if (!strcmp(argv[0], argv[1])) {
3300                 ti->error = "Error setting metadata or data device";
3301                 r = -EINVAL;
3302                 goto out_unlock;
3303         }
3304
3305         /*
3306          * Set default pool features.
3307          */
3308         pool_features_init(&pf);
3309
3310         dm_consume_args(&as, 4);
3311         r = parse_pool_features(&as, &pf, ti);
3312         if (r)
3313                 goto out_unlock;
3314
3315         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3316         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3317         if (r) {
3318                 ti->error = "Error opening metadata block device";
3319                 goto out_unlock;
3320         }
3321         warn_if_metadata_device_too_big(metadata_dev->bdev);
3322
3323         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3324         if (r) {
3325                 ti->error = "Error getting data device";
3326                 goto out_metadata;
3327         }
3328
3329         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3330             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3331             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3332             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3333                 ti->error = "Invalid block size";
3334                 r = -EINVAL;
3335                 goto out;
3336         }
3337
3338         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3339                 ti->error = "Invalid low water mark";
3340                 r = -EINVAL;
3341                 goto out;
3342         }
3343
3344         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3345         if (!pt) {
3346                 r = -ENOMEM;
3347                 goto out;
3348         }
3349
3350         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3351                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3352         if (IS_ERR(pool)) {
3353                 r = PTR_ERR(pool);
3354                 goto out_free_pt;
3355         }
3356
3357         /*
3358          * 'pool_created' reflects whether this is the first table load.
3359          * Top level discard support is not allowed to be changed after
3360          * initial load.  This would require a pool reload to trigger thin
3361          * device changes.
3362          */
3363         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3364                 ti->error = "Discard support cannot be disabled once enabled";
3365                 r = -EINVAL;
3366                 goto out_flags_changed;
3367         }
3368
3369         pt->pool = pool;
3370         pt->ti = ti;
3371         pt->metadata_dev = metadata_dev;
3372         pt->data_dev = data_dev;
3373         pt->low_water_blocks = low_water_blocks;
3374         pt->adjusted_pf = pt->requested_pf = pf;
3375         ti->num_flush_bios = 1;
3376
3377         /*
3378          * Only need to enable discards if the pool should pass
3379          * them down to the data device.  The thin device's discard
3380          * processing will cause mappings to be removed from the btree.
3381          */
3382         ti->discard_zeroes_data_unsupported = true;
3383         if (pf.discard_enabled && pf.discard_passdown) {
3384                 ti->num_discard_bios = 1;
3385
3386                 /*
3387                  * Setting 'discards_supported' circumvents the normal
3388                  * stacking of discard limits (this keeps the pool and
3389                  * thin devices' discard limits consistent).
3390                  */
3391                 ti->discards_supported = true;
3392         }
3393         ti->private = pt;
3394
3395         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3396                                                 calc_metadata_threshold(pt),
3397                                                 metadata_low_callback,
3398                                                 pool);
3399         if (r)
3400                 goto out_flags_changed;
3401
3402         pt->callbacks.congested_fn = pool_is_congested;
3403         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3404
3405         mutex_unlock(&dm_thin_pool_table.mutex);
3406
3407         return 0;
3408
3409 out_flags_changed:
3410         __pool_dec(pool);
3411 out_free_pt:
3412         kfree(pt);
3413 out:
3414         dm_put_device(ti, data_dev);
3415 out_metadata:
3416         dm_put_device(ti, metadata_dev);
3417 out_unlock:
3418         mutex_unlock(&dm_thin_pool_table.mutex);
3419
3420         return r;
3421 }
3422
3423 static int pool_map(struct dm_target *ti, struct bio *bio)
3424 {
3425         int r;
3426         struct pool_c *pt = ti->private;
3427         struct pool *pool = pt->pool;
3428         unsigned long flags;
3429
3430         /*
3431          * As this is a singleton target, ti->begin is always zero.
3432          */
3433         spin_lock_irqsave(&pool->lock, flags);
3434         bio->bi_bdev = pt->data_dev->bdev;
3435         r = DM_MAPIO_REMAPPED;
3436         spin_unlock_irqrestore(&pool->lock, flags);
3437
3438         return r;
3439 }
3440
3441 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3442 {
3443         int r;
3444         struct pool_c *pt = ti->private;
3445         struct pool *pool = pt->pool;
3446         sector_t data_size = ti->len;
3447         dm_block_t sb_data_size;
3448
3449         *need_commit = false;
3450
3451         (void) sector_div(data_size, pool->sectors_per_block);
3452
3453         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3454         if (r) {
3455                 DMERR("%s: failed to retrieve data device size",
3456                       dm_device_name(pool->pool_md));
3457                 return r;
3458         }
3459
3460         if (data_size < sb_data_size) {
3461                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3462                       dm_device_name(pool->pool_md),
3463                       (unsigned long long)data_size, sb_data_size);
3464                 return -EINVAL;
3465
3466         } else if (data_size > sb_data_size) {
3467                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3468                         DMERR("%s: unable to grow the data device until repaired.",
3469                               dm_device_name(pool->pool_md));
3470                         return 0;
3471                 }
3472
3473                 if (sb_data_size)
3474                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3475                                dm_device_name(pool->pool_md),
3476                                sb_data_size, (unsigned long long)data_size);
3477                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3478                 if (r) {
3479                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3480                         return r;
3481                 }
3482
3483                 *need_commit = true;
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3490 {
3491         int r;
3492         struct pool_c *pt = ti->private;
3493         struct pool *pool = pt->pool;
3494         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3495
3496         *need_commit = false;
3497
3498         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3499
3500         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3501         if (r) {
3502                 DMERR("%s: failed to retrieve metadata device size",
3503                       dm_device_name(pool->pool_md));
3504                 return r;
3505         }
3506
3507         if (metadata_dev_size < sb_metadata_dev_size) {
3508                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3509                       dm_device_name(pool->pool_md),
3510                       metadata_dev_size, sb_metadata_dev_size);
3511                 return -EINVAL;
3512
3513         } else if (metadata_dev_size > sb_metadata_dev_size) {
3514                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3515                         DMERR("%s: unable to grow the metadata device until repaired.",
3516                               dm_device_name(pool->pool_md));
3517                         return 0;
3518                 }
3519
3520                 warn_if_metadata_device_too_big(pool->md_dev);
3521                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3522                        dm_device_name(pool->pool_md),
3523                        sb_metadata_dev_size, metadata_dev_size);
3524
3525                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3526                         set_pool_mode(pool, PM_WRITE);
3527
3528                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3529                 if (r) {
3530                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3531                         return r;
3532                 }
3533
3534                 *need_commit = true;
3535         }
3536
3537         return 0;
3538 }
3539
3540 /*
3541  * Retrieves the number of blocks of the data device from
3542  * the superblock and compares it to the actual device size,
3543  * thus resizing the data device in case it has grown.
3544  *
3545  * This both copes with opening preallocated data devices in the ctr
3546  * being followed by a resume
3547  * -and-
3548  * calling the resume method individually after userspace has
3549  * grown the data device in reaction to a table event.
3550  */
3551 static int pool_preresume(struct dm_target *ti)
3552 {
3553         int r;
3554         bool need_commit1, need_commit2;
3555         struct pool_c *pt = ti->private;
3556         struct pool *pool = pt->pool;
3557
3558         /*
3559          * Take control of the pool object.
3560          */
3561         r = bind_control_target(pool, ti);
3562         if (r)
3563                 return r;
3564
3565         r = maybe_resize_data_dev(ti, &need_commit1);
3566         if (r)
3567                 return r;
3568
3569         r = maybe_resize_metadata_dev(ti, &need_commit2);
3570         if (r)
3571                 return r;
3572
3573         if (need_commit1 || need_commit2)
3574                 (void) commit(pool);
3575
3576         return 0;
3577 }
3578
3579 static void pool_suspend_active_thins(struct pool *pool)
3580 {
3581         struct thin_c *tc;
3582
3583         /* Suspend all active thin devices */
3584         tc = get_first_thin(pool);
3585         while (tc) {
3586                 dm_internal_suspend_noflush(tc->thin_md);
3587                 tc = get_next_thin(pool, tc);
3588         }
3589 }
3590
3591 static void pool_resume_active_thins(struct pool *pool)
3592 {
3593         struct thin_c *tc;
3594
3595         /* Resume all active thin devices */
3596         tc = get_first_thin(pool);
3597         while (tc) {
3598                 dm_internal_resume(tc->thin_md);
3599                 tc = get_next_thin(pool, tc);
3600         }
3601 }
3602
3603 static void pool_resume(struct dm_target *ti)
3604 {
3605         struct pool_c *pt = ti->private;
3606         struct pool *pool = pt->pool;
3607         unsigned long flags;
3608
3609         /*
3610          * Must requeue active_thins' bios and then resume
3611          * active_thins _before_ clearing 'suspend' flag.
3612          */
3613         requeue_bios(pool);
3614         pool_resume_active_thins(pool);
3615
3616         spin_lock_irqsave(&pool->lock, flags);
3617         pool->low_water_triggered = false;
3618         pool->suspended = false;
3619         spin_unlock_irqrestore(&pool->lock, flags);
3620
3621         do_waker(&pool->waker.work);
3622 }
3623
3624 static void pool_presuspend(struct dm_target *ti)
3625 {
3626         struct pool_c *pt = ti->private;
3627         struct pool *pool = pt->pool;
3628         unsigned long flags;
3629
3630         spin_lock_irqsave(&pool->lock, flags);
3631         pool->suspended = true;
3632         spin_unlock_irqrestore(&pool->lock, flags);
3633
3634         pool_suspend_active_thins(pool);
3635 }
3636
3637 static void pool_presuspend_undo(struct dm_target *ti)
3638 {
3639         struct pool_c *pt = ti->private;
3640         struct pool *pool = pt->pool;
3641         unsigned long flags;
3642
3643         pool_resume_active_thins(pool);
3644
3645         spin_lock_irqsave(&pool->lock, flags);
3646         pool->suspended = false;
3647         spin_unlock_irqrestore(&pool->lock, flags);
3648 }
3649
3650 static void pool_postsuspend(struct dm_target *ti)
3651 {
3652         struct pool_c *pt = ti->private;
3653         struct pool *pool = pt->pool;
3654
3655         cancel_delayed_work_sync(&pool->waker);
3656         cancel_delayed_work_sync(&pool->no_space_timeout);
3657         flush_workqueue(pool->wq);
3658         (void) commit(pool);
3659 }
3660
3661 static int check_arg_count(unsigned argc, unsigned args_required)
3662 {
3663         if (argc != args_required) {
3664                 DMWARN("Message received with %u arguments instead of %u.",
3665                        argc, args_required);
3666                 return -EINVAL;
3667         }
3668
3669         return 0;
3670 }
3671
3672 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3673 {
3674         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3675             *dev_id <= MAX_DEV_ID)
3676                 return 0;
3677
3678         if (warning)
3679                 DMWARN("Message received with invalid device id: %s", arg);
3680
3681         return -EINVAL;
3682 }
3683
3684 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686         dm_thin_id dev_id;
3687         int r;
3688
3689         r = check_arg_count(argc, 2);
3690         if (r)
3691                 return r;
3692
3693         r = read_dev_id(argv[1], &dev_id, 1);
3694         if (r)
3695                 return r;
3696
3697         r = dm_pool_create_thin(pool->pmd, dev_id);
3698         if (r) {
3699                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3700                        argv[1]);
3701                 return r;
3702         }
3703
3704         return 0;
3705 }
3706
3707 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3708 {
3709         dm_thin_id dev_id;
3710         dm_thin_id origin_dev_id;
3711         int r;
3712
3713         r = check_arg_count(argc, 3);
3714         if (r)
3715                 return r;
3716
3717         r = read_dev_id(argv[1], &dev_id, 1);
3718         if (r)
3719                 return r;
3720
3721         r = read_dev_id(argv[2], &origin_dev_id, 1);
3722         if (r)
3723                 return r;
3724
3725         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3726         if (r) {
3727                 DMWARN("Creation of new snapshot %s of device %s failed.",
3728                        argv[1], argv[2]);
3729                 return r;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3736 {
3737         dm_thin_id dev_id;
3738         int r;
3739
3740         r = check_arg_count(argc, 2);
3741         if (r)
3742                 return r;
3743
3744         r = read_dev_id(argv[1], &dev_id, 1);
3745         if (r)
3746                 return r;
3747
3748         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3749         if (r)
3750                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3751
3752         return r;
3753 }
3754
3755 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3756 {
3757         dm_thin_id old_id, new_id;
3758         int r;
3759
3760         r = check_arg_count(argc, 3);
3761         if (r)
3762                 return r;
3763
3764         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3765                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3766                 return -EINVAL;
3767         }
3768
3769         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3770                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3771                 return -EINVAL;
3772         }
3773
3774         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3775         if (r) {
3776                 DMWARN("Failed to change transaction id from %s to %s.",
3777                        argv[1], argv[2]);
3778                 return r;
3779         }
3780
3781         return 0;
3782 }
3783
3784 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3785 {
3786         int r;
3787
3788         r = check_arg_count(argc, 1);
3789         if (r)
3790                 return r;
3791
3792         (void) commit(pool);
3793
3794         r = dm_pool_reserve_metadata_snap(pool->pmd);
3795         if (r)
3796                 DMWARN("reserve_metadata_snap message failed.");
3797
3798         return r;
3799 }
3800
3801 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3802 {
3803         int r;
3804
3805         r = check_arg_count(argc, 1);
3806         if (r)
3807                 return r;
3808
3809         r = dm_pool_release_metadata_snap(pool->pmd);
3810         if (r)
3811                 DMWARN("release_metadata_snap message failed.");
3812
3813         return r;
3814 }
3815
3816 /*
3817  * Messages supported:
3818  *   create_thin        <dev_id>
3819  *   create_snap        <dev_id> <origin_id>
3820  *   delete             <dev_id>
3821  *   set_transaction_id <current_trans_id> <new_trans_id>
3822  *   reserve_metadata_snap
3823  *   release_metadata_snap
3824  */
3825 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3826 {
3827         int r = -EINVAL;
3828         struct pool_c *pt = ti->private;
3829         struct pool *pool = pt->pool;
3830
3831         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3832                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3833                       dm_device_name(pool->pool_md));
3834                 return -EOPNOTSUPP;
3835         }
3836
3837         if (!strcasecmp(argv[0], "create_thin"))
3838                 r = process_create_thin_mesg(argc, argv, pool);
3839
3840         else if (!strcasecmp(argv[0], "create_snap"))
3841                 r = process_create_snap_mesg(argc, argv, pool);
3842
3843         else if (!strcasecmp(argv[0], "delete"))
3844                 r = process_delete_mesg(argc, argv, pool);
3845
3846         else if (!strcasecmp(argv[0], "set_transaction_id"))
3847                 r = process_set_transaction_id_mesg(argc, argv, pool);
3848
3849         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3850                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3851
3852         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3853                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3854
3855         else
3856                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3857
3858         if (!r)
3859                 (void) commit(pool);
3860
3861         return r;
3862 }
3863
3864 static void emit_flags(struct pool_features *pf, char *result,
3865                        unsigned sz, unsigned maxlen)
3866 {
3867         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3868                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3869                 pf->error_if_no_space;
3870         DMEMIT("%u ", count);
3871
3872         if (!pf->zero_new_blocks)
3873                 DMEMIT("skip_block_zeroing ");
3874
3875         if (!pf->discard_enabled)
3876                 DMEMIT("ignore_discard ");
3877
3878         if (!pf->discard_passdown)
3879                 DMEMIT("no_discard_passdown ");
3880
3881         if (pf->mode == PM_READ_ONLY)
3882                 DMEMIT("read_only ");
3883
3884         if (pf->error_if_no_space)
3885                 DMEMIT("error_if_no_space ");
3886 }
3887
3888 /*
3889  * Status line is:
3890  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3891  *    <used data sectors>/<total data sectors> <held metadata root>
3892  *    <pool mode> <discard config> <no space config> <needs_check>
3893  */
3894 static void pool_status(struct dm_target *ti, status_type_t type,
3895                         unsigned status_flags, char *result, unsigned maxlen)
3896 {
3897         int r;
3898         unsigned sz = 0;
3899         uint64_t transaction_id;
3900         dm_block_t nr_free_blocks_data;
3901         dm_block_t nr_free_blocks_metadata;
3902         dm_block_t nr_blocks_data;
3903         dm_block_t nr_blocks_metadata;
3904         dm_block_t held_root;
3905         enum pool_mode mode;
3906         char buf[BDEVNAME_SIZE];
3907         char buf2[BDEVNAME_SIZE];
3908         struct pool_c *pt = ti->private;
3909         struct pool *pool = pt->pool;
3910
3911         switch (type) {
3912         case STATUSTYPE_INFO:
3913                 if (get_pool_mode(pool) == PM_FAIL) {
3914                         DMEMIT("Fail");
3915                         break;
3916                 }
3917
3918                 /* Commit to ensure statistics aren't out-of-date */
3919                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3920                         (void) commit(pool);
3921
3922                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3923                 if (r) {
3924                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3925                               dm_device_name(pool->pool_md), r);
3926                         goto err;
3927                 }
3928
3929                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3930                 if (r) {
3931                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3932                               dm_device_name(pool->pool_md), r);
3933                         goto err;
3934                 }
3935
3936                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3937                 if (r) {
3938                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3939                               dm_device_name(pool->pool_md), r);
3940                         goto err;
3941                 }
3942
3943                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3944                 if (r) {
3945                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3946                               dm_device_name(pool->pool_md), r);
3947                         goto err;
3948                 }
3949
3950                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3951                 if (r) {
3952                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3953                               dm_device_name(pool->pool_md), r);
3954                         goto err;
3955                 }
3956
3957                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3958                 if (r) {
3959                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3960                               dm_device_name(pool->pool_md), r);
3961                         goto err;
3962                 }
3963
3964                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3965                        (unsigned long long)transaction_id,
3966                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3967                        (unsigned long long)nr_blocks_metadata,
3968                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3969                        (unsigned long long)nr_blocks_data);
3970
3971                 if (held_root)
3972                         DMEMIT("%llu ", held_root);
3973                 else
3974                         DMEMIT("- ");
3975
3976                 mode = get_pool_mode(pool);
3977                 if (mode == PM_OUT_OF_DATA_SPACE)
3978                         DMEMIT("out_of_data_space ");
3979                 else if (is_read_only_pool_mode(mode))
3980                         DMEMIT("ro ");
3981                 else
3982                         DMEMIT("rw ");
3983
3984                 if (!pool->pf.discard_enabled)
3985                         DMEMIT("ignore_discard ");
3986                 else if (pool->pf.discard_passdown)
3987                         DMEMIT("discard_passdown ");
3988                 else
3989                         DMEMIT("no_discard_passdown ");
3990
3991                 if (pool->pf.error_if_no_space)
3992                         DMEMIT("error_if_no_space ");
3993                 else
3994                         DMEMIT("queue_if_no_space ");
3995
3996                 if (dm_pool_metadata_needs_check(pool->pmd))
3997                         DMEMIT("needs_check ");
3998                 else
3999                         DMEMIT("- ");
4000
4001                 break;
4002
4003         case STATUSTYPE_TABLE:
4004                 DMEMIT("%s %s %lu %llu ",
4005                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4006                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4007                        (unsigned long)pool->sectors_per_block,
4008                        (unsigned long long)pt->low_water_blocks);
4009                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4010                 break;
4011         }
4012         return;
4013
4014 err:
4015         DMEMIT("Error");
4016 }
4017
4018 static int pool_iterate_devices(struct dm_target *ti,
4019                                 iterate_devices_callout_fn fn, void *data)
4020 {
4021         struct pool_c *pt = ti->private;
4022
4023         return fn(ti, pt->data_dev, 0, ti->len, data);
4024 }
4025
4026 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4027 {
4028         struct pool_c *pt = ti->private;
4029         struct pool *pool = pt->pool;
4030         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4031
4032         /*
4033          * If max_sectors is smaller than pool->sectors_per_block adjust it
4034          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4035          * This is especially beneficial when the pool's data device is a RAID
4036          * device that has a full stripe width that matches pool->sectors_per_block
4037          * -- because even though partial RAID stripe-sized IOs will be issued to a
4038          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4039          *    boundary.. which avoids additional partial RAID stripe writes cascading
4040          */
4041         if (limits->max_sectors < pool->sectors_per_block) {
4042                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4043                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4044                                 limits->max_sectors--;
4045                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4046                 }
4047         }
4048
4049         /*
4050          * If the system-determined stacked limits are compatible with the
4051          * pool's blocksize (io_opt is a factor) do not override them.
4052          */
4053         if (io_opt_sectors < pool->sectors_per_block ||
4054             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4055                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4056                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4057                 else
4058                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4059                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4060         }
4061
4062         /*
4063          * pt->adjusted_pf is a staging area for the actual features to use.
4064          * They get transferred to the live pool in bind_control_target()
4065          * called from pool_preresume().
4066          */
4067         if (!pt->adjusted_pf.discard_enabled) {
4068                 /*
4069                  * Must explicitly disallow stacking discard limits otherwise the
4070                  * block layer will stack them if pool's data device has support.
4071                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4072                  * user to see that, so make sure to set all discard limits to 0.
4073                  */
4074                 limits->discard_granularity = 0;
4075                 return;
4076         }
4077
4078         disable_passdown_if_not_supported(pt);
4079
4080         /*
4081          * The pool uses the same discard limits as the underlying data
4082          * device.  DM core has already set this up.
4083          */
4084 }
4085
4086 static struct target_type pool_target = {
4087         .name = "thin-pool",
4088         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4089                     DM_TARGET_IMMUTABLE,
4090         .version = {1, 19, 0},
4091         .module = THIS_MODULE,
4092         .ctr = pool_ctr,
4093         .dtr = pool_dtr,
4094         .map = pool_map,
4095         .presuspend = pool_presuspend,
4096         .presuspend_undo = pool_presuspend_undo,
4097         .postsuspend = pool_postsuspend,
4098         .preresume = pool_preresume,
4099         .resume = pool_resume,
4100         .message = pool_message,
4101         .status = pool_status,
4102         .iterate_devices = pool_iterate_devices,
4103         .io_hints = pool_io_hints,
4104 };
4105
4106 /*----------------------------------------------------------------
4107  * Thin target methods
4108  *--------------------------------------------------------------*/
4109 static void thin_get(struct thin_c *tc)
4110 {
4111         atomic_inc(&tc->refcount);
4112 }
4113
4114 static void thin_put(struct thin_c *tc)
4115 {
4116         if (atomic_dec_and_test(&tc->refcount))
4117                 complete(&tc->can_destroy);
4118 }
4119
4120 static void thin_dtr(struct dm_target *ti)
4121 {
4122         struct thin_c *tc = ti->private;
4123         unsigned long flags;
4124
4125         spin_lock_irqsave(&tc->pool->lock, flags);
4126         list_del_rcu(&tc->list);
4127         spin_unlock_irqrestore(&tc->pool->lock, flags);
4128         synchronize_rcu();
4129
4130         thin_put(tc);
4131         wait_for_completion(&tc->can_destroy);
4132
4133         mutex_lock(&dm_thin_pool_table.mutex);
4134
4135         __pool_dec(tc->pool);
4136         dm_pool_close_thin_device(tc->td);
4137         dm_put_device(ti, tc->pool_dev);
4138         if (tc->origin_dev)
4139                 dm_put_device(ti, tc->origin_dev);
4140         kfree(tc);
4141
4142         mutex_unlock(&dm_thin_pool_table.mutex);
4143 }
4144
4145 /*
4146  * Thin target parameters:
4147  *
4148  * <pool_dev> <dev_id> [origin_dev]
4149  *
4150  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4151  * dev_id: the internal device identifier
4152  * origin_dev: a device external to the pool that should act as the origin
4153  *
4154  * If the pool device has discards disabled, they get disabled for the thin
4155  * device as well.
4156  */
4157 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4158 {
4159         int r;
4160         struct thin_c *tc;
4161         struct dm_dev *pool_dev, *origin_dev;
4162         struct mapped_device *pool_md;
4163         unsigned long flags;
4164
4165         mutex_lock(&dm_thin_pool_table.mutex);
4166
4167         if (argc != 2 && argc != 3) {
4168                 ti->error = "Invalid argument count";
4169                 r = -EINVAL;
4170                 goto out_unlock;
4171         }
4172
4173         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4174         if (!tc) {
4175                 ti->error = "Out of memory";
4176                 r = -ENOMEM;
4177                 goto out_unlock;
4178         }
4179         tc->thin_md = dm_table_get_md(ti->table);
4180         spin_lock_init(&tc->lock);
4181         INIT_LIST_HEAD(&tc->deferred_cells);
4182         bio_list_init(&tc->deferred_bio_list);
4183         bio_list_init(&tc->retry_on_resume_list);
4184         tc->sort_bio_list = RB_ROOT;
4185
4186         if (argc == 3) {
4187                 if (!strcmp(argv[0], argv[2])) {
4188                         ti->error = "Error setting origin device";
4189                         r = -EINVAL;
4190                         goto bad_origin_dev;
4191                 }
4192
4193                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4194                 if (r) {
4195                         ti->error = "Error opening origin device";
4196                         goto bad_origin_dev;
4197                 }
4198                 tc->origin_dev = origin_dev;
4199         }
4200
4201         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4202         if (r) {
4203                 ti->error = "Error opening pool device";
4204                 goto bad_pool_dev;
4205         }
4206         tc->pool_dev = pool_dev;
4207
4208         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4209                 ti->error = "Invalid device id";
4210                 r = -EINVAL;
4211                 goto bad_common;
4212         }
4213
4214         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4215         if (!pool_md) {
4216                 ti->error = "Couldn't get pool mapped device";
4217                 r = -EINVAL;
4218                 goto bad_common;
4219         }
4220
4221         tc->pool = __pool_table_lookup(pool_md);
4222         if (!tc->pool) {
4223                 ti->error = "Couldn't find pool object";
4224                 r = -EINVAL;
4225                 goto bad_pool_lookup;
4226         }
4227         __pool_inc(tc->pool);
4228
4229         if (get_pool_mode(tc->pool) == PM_FAIL) {
4230                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4231                 r = -EINVAL;
4232                 goto bad_pool;
4233         }
4234
4235         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4236         if (r) {
4237                 ti->error = "Couldn't open thin internal device";
4238                 goto bad_pool;
4239         }
4240
4241         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4242         if (r)
4243                 goto bad;
4244
4245         ti->num_flush_bios = 1;
4246         ti->flush_supported = true;
4247         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4248
4249         /* In case the pool supports discards, pass them on. */
4250         ti->discard_zeroes_data_unsupported = true;
4251         if (tc->pool->pf.discard_enabled) {
4252                 ti->discards_supported = true;
4253                 ti->num_discard_bios = 1;
4254                 ti->split_discard_bios = false;
4255         }
4256
4257         mutex_unlock(&dm_thin_pool_table.mutex);
4258
4259         spin_lock_irqsave(&tc->pool->lock, flags);
4260         if (tc->pool->suspended) {
4261                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4262                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4263                 ti->error = "Unable to activate thin device while pool is suspended";
4264                 r = -EINVAL;
4265                 goto bad;
4266         }
4267         atomic_set(&tc->refcount, 1);
4268         init_completion(&tc->can_destroy);
4269         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4270         spin_unlock_irqrestore(&tc->pool->lock, flags);
4271         /*
4272          * This synchronize_rcu() call is needed here otherwise we risk a
4273          * wake_worker() call finding no bios to process (because the newly
4274          * added tc isn't yet visible).  So this reduces latency since we
4275          * aren't then dependent on the periodic commit to wake_worker().
4276          */
4277         synchronize_rcu();
4278
4279         dm_put(pool_md);
4280
4281         return 0;
4282
4283 bad:
4284         dm_pool_close_thin_device(tc->td);
4285 bad_pool:
4286         __pool_dec(tc->pool);
4287 bad_pool_lookup:
4288         dm_put(pool_md);
4289 bad_common:
4290         dm_put_device(ti, tc->pool_dev);
4291 bad_pool_dev:
4292         if (tc->origin_dev)
4293                 dm_put_device(ti, tc->origin_dev);
4294 bad_origin_dev:
4295         kfree(tc);
4296 out_unlock:
4297         mutex_unlock(&dm_thin_pool_table.mutex);
4298
4299         return r;
4300 }
4301
4302 static int thin_map(struct dm_target *ti, struct bio *bio)
4303 {
4304         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4305
4306         return thin_bio_map(ti, bio);
4307 }
4308
4309 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4310 {
4311         unsigned long flags;
4312         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4313         struct list_head work;
4314         struct dm_thin_new_mapping *m, *tmp;
4315         struct pool *pool = h->tc->pool;
4316
4317         if (h->shared_read_entry) {
4318                 INIT_LIST_HEAD(&work);
4319                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4320
4321                 spin_lock_irqsave(&pool->lock, flags);
4322                 list_for_each_entry_safe(m, tmp, &work, list) {
4323                         list_del(&m->list);
4324                         __complete_mapping_preparation(m);
4325                 }
4326                 spin_unlock_irqrestore(&pool->lock, flags);
4327         }
4328
4329         if (h->all_io_entry) {
4330                 INIT_LIST_HEAD(&work);
4331                 dm_deferred_entry_dec(h->all_io_entry, &work);
4332                 if (!list_empty(&work)) {
4333                         spin_lock_irqsave(&pool->lock, flags);
4334                         list_for_each_entry_safe(m, tmp, &work, list)
4335                                 list_add_tail(&m->list, &pool->prepared_discards);
4336                         spin_unlock_irqrestore(&pool->lock, flags);
4337                         wake_worker(pool);
4338                 }
4339         }
4340
4341         if (h->cell)
4342                 cell_defer_no_holder(h->tc, h->cell);
4343
4344         return 0;
4345 }
4346
4347 static void thin_presuspend(struct dm_target *ti)
4348 {
4349         struct thin_c *tc = ti->private;
4350
4351         if (dm_noflush_suspending(ti))
4352                 noflush_work(tc, do_noflush_start);
4353 }
4354
4355 static void thin_postsuspend(struct dm_target *ti)
4356 {
4357         struct thin_c *tc = ti->private;
4358
4359         /*
4360          * The dm_noflush_suspending flag has been cleared by now, so
4361          * unfortunately we must always run this.
4362          */
4363         noflush_work(tc, do_noflush_stop);
4364 }
4365
4366 static int thin_preresume(struct dm_target *ti)
4367 {
4368         struct thin_c *tc = ti->private;
4369
4370         if (tc->origin_dev)
4371                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4372
4373         return 0;
4374 }
4375
4376 /*
4377  * <nr mapped sectors> <highest mapped sector>
4378  */
4379 static void thin_status(struct dm_target *ti, status_type_t type,
4380                         unsigned status_flags, char *result, unsigned maxlen)
4381 {
4382         int r;
4383         ssize_t sz = 0;
4384         dm_block_t mapped, highest;
4385         char buf[BDEVNAME_SIZE];
4386         struct thin_c *tc = ti->private;
4387
4388         if (get_pool_mode(tc->pool) == PM_FAIL) {
4389                 DMEMIT("Fail");
4390                 return;
4391         }
4392
4393         if (!tc->td)
4394                 DMEMIT("-");
4395         else {
4396                 switch (type) {
4397                 case STATUSTYPE_INFO:
4398                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4399                         if (r) {
4400                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4401                                 goto err;
4402                         }
4403
4404                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4405                         if (r < 0) {
4406                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4407                                 goto err;
4408                         }
4409
4410                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4411                         if (r)
4412                                 DMEMIT("%llu", ((highest + 1) *
4413                                                 tc->pool->sectors_per_block) - 1);
4414                         else
4415                                 DMEMIT("-");
4416                         break;
4417
4418                 case STATUSTYPE_TABLE:
4419                         DMEMIT("%s %lu",
4420                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4421                                (unsigned long) tc->dev_id);
4422                         if (tc->origin_dev)
4423                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4424                         break;
4425                 }
4426         }
4427
4428         return;
4429
4430 err:
4431         DMEMIT("Error");
4432 }
4433
4434 static int thin_iterate_devices(struct dm_target *ti,
4435                                 iterate_devices_callout_fn fn, void *data)
4436 {
4437         sector_t blocks;
4438         struct thin_c *tc = ti->private;
4439         struct pool *pool = tc->pool;
4440
4441         /*
4442          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4443          * we follow a more convoluted path through to the pool's target.
4444          */
4445         if (!pool->ti)
4446                 return 0;       /* nothing is bound */
4447
4448         blocks = pool->ti->len;
4449         (void) sector_div(blocks, pool->sectors_per_block);
4450         if (blocks)
4451                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4452
4453         return 0;
4454 }
4455
4456 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4457 {
4458         struct thin_c *tc = ti->private;
4459         struct pool *pool = tc->pool;
4460
4461         if (!pool->pf.discard_enabled)
4462                 return;
4463
4464         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4465         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4466 }
4467
4468 static struct target_type thin_target = {
4469         .name = "thin",
4470         .version = {1, 19, 0},
4471         .module = THIS_MODULE,
4472         .ctr = thin_ctr,
4473         .dtr = thin_dtr,
4474         .map = thin_map,
4475         .end_io = thin_endio,
4476         .preresume = thin_preresume,
4477         .presuspend = thin_presuspend,
4478         .postsuspend = thin_postsuspend,
4479         .status = thin_status,
4480         .iterate_devices = thin_iterate_devices,
4481         .io_hints = thin_io_hints,
4482 };
4483
4484 /*----------------------------------------------------------------*/
4485
4486 static int __init dm_thin_init(void)
4487 {
4488         int r;
4489
4490         pool_table_init();
4491
4492         r = dm_register_target(&thin_target);
4493         if (r)
4494                 return r;
4495
4496         r = dm_register_target(&pool_target);
4497         if (r)
4498                 goto bad_pool_target;
4499
4500         r = -ENOMEM;
4501
4502         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4503         if (!_new_mapping_cache)
4504                 goto bad_new_mapping_cache;
4505
4506         return 0;
4507
4508 bad_new_mapping_cache:
4509         dm_unregister_target(&pool_target);
4510 bad_pool_target:
4511         dm_unregister_target(&thin_target);
4512
4513         return r;
4514 }
4515
4516 static void dm_thin_exit(void)
4517 {
4518         dm_unregister_target(&thin_target);
4519         dm_unregister_target(&pool_target);
4520
4521         kmem_cache_destroy(_new_mapping_cache);
4522 }
4523
4524 module_init(dm_thin_init);
4525 module_exit(dm_thin_exit);
4526
4527 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4528 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4529
4530 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4531 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4532 MODULE_LICENSE("GPL");